Deformations of hyperbolic 3-manifolds in \mathbb{H}^5

A combinatorial approach featuring quaternions

Gemma Di Petrillo

Università di Trento

Ventotene 2025

■ Let M be an orientable, complete hyperbolic 3-manifold with finite volume (and with cusps) \Rightarrow its geometry is given by a holonomy representation $\rho_0: \pi_1(M) \to \mathrm{Isom}^+(\mathbb{H}^3)$.

- Let M be an orientable, complete hyperbolic 3-manifold with finite volume (and with cusps) \Rightarrow its geometry is given by a holonomy representation $\rho_0: \pi_1(M) \to \mathsf{Isom}^+(\mathbb{H}^3)$.
- Mostow-Prasad Rigidity \Rightarrow the complete hyperbolic structure on M is unique, making the holonomy ρ_0 rigid.

- Let M be an orientable, complete hyperbolic 3-manifold with finite volume (and with cusps) \Rightarrow its geometry is given by a holonomy representation $\rho_0: \pi_1(M) \to \mathsf{Isom}^+(\mathbb{H}^3)$.
- Mostow-Prasad Rigidity \Rightarrow the complete hyperbolic structure on M is unique, making the holonomy ρ_0 rigid.

What happens if we allow more space? For each n > 3 we have

- Let M be an orientable, complete hyperbolic 3-manifold with finite volume (and with cusps) \Rightarrow its geometry is given by a holonomy representation $\rho_0: \pi_1(M) \to \mathsf{Isom}^+(\mathbb{H}^3)$.
- Mostow-Prasad Rigidity \Rightarrow the complete hyperbolic structure on M is unique, making the holonomy ρ_0 rigid.

What happens if we allow more space? For each n > 3 we have

$$\mathsf{Isom}^+(\mathbb{H}^3) \hookrightarrow \mathsf{Isom}^+(\mathbb{H}^n)$$

- Let M be an orientable, complete hyperbolic 3-manifold with finite volume (and with cusps) \Rightarrow its geometry is given by a holonomy representation $\rho_0: \pi_1(M) \to \mathsf{Isom}^+(\mathbb{H}^3)$.
- Mostow-Prasad Rigidity \Rightarrow the complete hyperbolic structure on M is unique, making the holonomy ρ_0 rigid.

What happens if we allow more space? For each n > 3 we have

$$\pi_1(M) \stackrel{
ho_0}{\longrightarrow} \operatorname{\mathsf{Isom}}^+(\mathbb{H}^3) \hookrightarrow \operatorname{\mathsf{Isom}}^+(\mathbb{H}^n)$$

- Let M be an orientable, complete hyperbolic 3-manifold with finite volume (and with cusps) \Rightarrow its geometry is given by a holonomy representation $\rho_0: \pi_1(M) \to \mathsf{Isom}^+(\mathbb{H}^3)$.
- Mostow-Prasad Rigidity \Rightarrow the complete hyperbolic structure on M is unique, making the holonomy ρ_0 rigid.

What happens if we allow more space? For each n > 3 we have

$$\pi_1(M) \xrightarrow{\rho_0} \operatorname{Isom}^+(\mathbb{H}^3) \hookrightarrow \operatorname{Isom}^+(\mathbb{H}^n)$$

Purpose: Study deformations of M in \mathbb{H}^5 , that is find continuous deformations of ρ_0 inside Isom $^+(\mathbb{H}^5)$

- Let M be an orientable, complete hyperbolic 3-manifold with finite volume (and with cusps) \Rightarrow its geometry is given by a holonomy representation $\rho_0: \pi_1(M) \to \mathsf{Isom}^+(\mathbb{H}^3)$.
- Mostow-Prasad Rigidity \Rightarrow the complete hyperbolic structure on M is unique, making the holonomy ρ_0 rigid.

What happens if we allow more space? For each n > 3 we have

$$\pi_1(M) \xrightarrow{\rho_0} \operatorname{Isom}^+(\mathbb{H}^3) \hookrightarrow \operatorname{Isom}^+(\mathbb{H}^n)$$

Purpose: Study deformations of M in \mathbb{H}^5 , that is find continuous deformations of ρ_0 inside Isom $^+(\mathbb{H}^5)$

How? With a combinatorial approach based on an ideal triangulation of M, generalizing Thurston's classic framework.

Why dimension 5?

Let $\mathcal H$ be the algebra of quaternions. The algebraic motivation is the inclusion $\mathbb C\hookrightarrow \mathcal H$.

Why dimension 5?

Let $\mathcal H$ be the algebra of quaternions.The algebraic motivation is the inclusion $\mathbb C\hookrightarrow \mathcal H.$

Why dimension 5?

Let $\mathcal H$ be the algebra of quaternions. The algebraic motivation is the inclusion $\mathbb C\hookrightarrow \mathcal H.$

With the upper-half space model, we have $\mathbb{H}^5 \cong \mathcal{H} \times \mathbb{R}_+$ and

$$\partial_{\infty}\mathbb{H}^5=\hat{\mathcal{H}},\quad \mathsf{Isom}^+(\mathbb{H}^5)\cong\mathsf{PSL}(2,\mathcal{H}).$$

The figure-8 knot complement

• \mathcal{T} = ideal triangulation of M. We assign algebraic data to the combinatorial pieces of \mathcal{T} in a way that is globally consistent.

The figure-8 knot complement

• $\mathcal{T}=$ ideal triangulation of M. We assign algebraic data to the combinatorial pieces of \mathcal{T} in a way that is globally consistent. This will allow us to define a representation $\pi_1(M) \to \mathsf{PSL}(2,\mathcal{H})$.

The figure-8 knot complement

- $\mathcal{T}=$ ideal triangulation of M. We assign algebraic data to the combinatorial pieces of \mathcal{T} in a way that is globally consistent. This will allow us to define a representation $\pi_1(M) \to \mathsf{PSL}(2,\mathcal{H})$.
- Main tool: Quaternionic Cross-Ratio. It encodes the isometry class of tetrahedra but...

The figure-8 knot complement

- $\mathcal{T}=$ ideal triangulation of M. We assign algebraic data to the combinatorial pieces of \mathcal{T} in a way that is globally consistent. This will allow us to define a representation $\pi_1(M) \to \mathsf{PSL}(2,\mathcal{H})$.
- Main tool: Quaternionic Cross-Ratio. It encodes the isometry class of tetrahedra but...
- Problem: it is not an isometry invariant!

The figure-8 knot complement

- $\mathcal{T}=$ ideal triangulation of M. We assign algebraic data to the combinatorial pieces of \mathcal{T} in a way that is globally consistent. This will allow us to define a representation $\pi_1(M) \to \mathsf{PSL}(2,\mathcal{H})$.
- Main tool: Quaternionic Cross-Ratio. It encodes the isometry class of tetrahedra but...
- Problem: it is not an isometry invariant!

3D (Classical)

5D (Quaternionic)

Parameters A complex shape parameter $(z \in \mathbb{C})$ per edge.

Conditions

The figure-8 knot complement

- $\mathcal{T}=$ ideal triangulation of M. We assign algebraic data to the combinatorial pieces of \mathcal{T} in a way that is globally consistent. This will allow us to define a representation $\pi_1(M) \to \mathsf{PSL}(2,\mathcal{H})$.
- Main tool: Quaternionic Cross-Ratio. It encodes the isometry class of tetrahedra but...
- Problem: it is not an isometry invariant!

	3D (Classical)	5D (Quaternionic)
Parameters	A complex shape parameter $(z\in\mathbb{C})$ per edge.	
Conditions	Thurston's gluing equations $(\prod z_i = 1$ around an edge).	

The figure-8 knot complement

- $\mathcal{T}=$ ideal triangulation of M. We assign algebraic data to the combinatorial pieces of \mathcal{T} in a way that is globally consistent. This will allow us to define a representation $\pi_1(M) \to \mathsf{PSL}(2,\mathcal{H})$.
- Main tool: Quaternionic Cross-Ratio. It encodes the isometry class of tetrahedra but...
- Problem: it is not an isometry invariant!

	3D (Classical)	5D (Quaternionic)
Parameters	A complex shape parameter $(z \in \mathbb{C})$ per edge.	An invariant (a conjugacy class of a k-tuple of quaternions) per oriented edge.
Conditions	Thurston's gluing equations $(\prod z_i=1$ around an edge).	

The figure-8 knot complement

- $\mathcal{T}=$ ideal triangulation of M. We assign algebraic data to the combinatorial pieces of \mathcal{T} in a way that is globally consistent. This will allow us to define a representation $\pi_1(M) \to \mathsf{PSL}(2,\mathcal{H})$.
- Main tool: Quaternionic Cross-Ratio. It encodes the isometry class of tetrahedra but...
- Problem: it is not an isometry invariant!

	3D (Classical)	5D (Quaternionic)
Parameters	A complex shape parameter $(z\in\mathbb{C})$ per edge.	An invariant (a conjugacy class of a k-tuple of quaternions) per oriented edge.
Conditions	Thurston's gluing equations $(\prod z_i=1$ around an edge).	?

The Face Condition

The Face Condition

The Cusp Condition

The Face Condition

The Cusp Condition

Conjecture (Almost Theorem!)

An assignment of quaternionic parameters to the ideal triangulation \mathcal{T} induces a represention $\pi_1(M) \to \mathsf{PSL}(2,\mathcal{H})$ if and only if it satisfies two main axioms:

- Cusp condition
- Pace condition

Thank you for your attention!