# First-order theory of torsion-free Tarski monsters Ventotene VII – Lightning talk

Francesco Fournier-Facio joint with Rémi Coulon and Turbo Ho

University of Cambridge

8 September 2025

# Positive theory

#### Definition

The *positive theory* of a group G is the fragment of its first-order theory that does not involve negations.

# Positive theory

#### Definition

The *positive theory* of a group G is the fragment of its first-order theory that does not involve negations.

#### Example

G is abelian iff it satisfies the positive sentence

$$\forall x,y:[x,y]=1.$$

# Positive theory

#### Definition

The *positive theory* of a group G is the fragment of its first-order theory that does not involve negations.

#### Example

G is abelian iff it satisfies the positive sentence

$$\forall x, y : [x, y] = 1.$$

#### Example

G is uniformly perfect iff there exists some n such that G satisfies the positive sentence

$$\forall g \exists x_1, y_1, \dots, x_n, y_n : [x_1, y_1] \cdots [x_n, y_n] = g.$$



Theorem (Merzljakov 1966, Makanin 1982)

Every group contains the positive theory of  $F_2$ .

Theorem (Merzljakov 1966, Makanin 1982)

Every group contains the positive theory of  $F_2$ .

#### Definition

A group has *trivial positive theory* if its positive theory coincides with that of  $F_2$ .

Theorem (Merzljakov 1966, Makanin 1982)

Every group contains the positive theory of  $F_2$ .

#### Definition

A group has *trivial positive theory* if its positive theory coincides with that of  $F_2$ .

This is a common feature of negatively curved groups:

#### Theorem (Merzljakov 1966, Makanin 1982)

Every group contains the positive theory of  $F_2$ .

#### Definition

A group has *trivial positive theory* if its positive theory coincides with that of  $F_2$ .

This is a common feature of negatively curved groups:

Non-elementary hyperbolic groups (Sela 2009, Heil 2018);

#### Theorem (Merzljakov 1966, Makanin 1982)

Every group contains the positive theory of  $F_2$ .

#### Definition

A group has *trivial positive theory* if its positive theory coincides with that of  $F_2$ .

This is a common feature of negatively curved groups:

- Non-elementary hyperbolic groups (Sela 2009, Heil 2018);
- Acylindrically hyperbolic groups (André, Fruchter 2022);

#### Theorem (Merzljakov 1966, Makanin 1982)

Every group contains the positive theory of  $F_2$ .

#### Definition

A group has *trivial positive theory* if its positive theory coincides with that of  $F_2$ .

This is a common feature of negatively curved groups:

- Non-elementary hyperbolic groups (Sela 2009, Heil 2018);
- Acylindrically hyperbolic groups (André, Fruchter 2022);
- Many groups acting on trees (Casals-Ruiz, Garreta, de la Nuez González 2021).

## Theorem (Coulon, FF, Ho 2025)

## Theorem (Coulon, FF, Ho 2025)

There exists a group G with trivial positive theory that has the following properties.

• G is simple and has property (T).

## Theorem (Coulon, FF, Ho 2025)

- G is simple and has property (T).
- G is a torsion-free Tarski monster: every proper non-trivial subgroup is infinite cyclic. In particular, G has no non-abelian free subgroups.

## Theorem (Coulon, FF, Ho 2025)

- G is simple and has property (T).
- G is a torsion-free Tarski monster: every proper non-trivial subgroup is infinite cyclic. In particular, G has no non-abelian free subgroups.
- G does not admit an action on a hyperbolic space with a loxodromic element.

## Theorem (Coulon, FF, Ho 2025)

- G is simple and has property (T).
- G is a torsion-free Tarski monster: every proper non-trivial subgroup is infinite cyclic. In particular, G has no non-abelian free subgroups.
- G does not admit an action on a hyperbolic space with a loxodromic element.
- Every conjugacy-invariant norm on G is stably bounded. In particular, the stable commutator length on G vanishes identically.

## Theorem (Coulon, FF, Ho 2025)

There exists a group G with trivial positive theory that has the following properties.

- G is simple and has property (T).
- G is a torsion-free Tarski monster: every proper non-trivial subgroup is infinite cyclic. In particular, G has no non-abelian free subgroups.
- G does not admit an action on a hyperbolic space with a loxodromic element.
- Every conjugacy-invariant norm on G is stably bounded. In particular, the stable commutator length on G vanishes identically.

In each of these respects, this is drastically different from previous examples.

G arises as the limit of a sequence of small cancellation quotients

$$\Gamma_0 \twoheadrightarrow \Gamma_1 \twoheadrightarrow \Gamma_2 \twoheadrightarrow \cdots \twoheadrightarrow G$$

where  $\Gamma_0$  is an arbitrary torsion-free non-elementary hyperbolic group - with property (T).

G arises as the limit of a sequence of small cancellation quotients

$$\Gamma_0 \twoheadrightarrow \Gamma_1 \twoheadrightarrow \Gamma_2 \twoheadrightarrow \cdots \twoheadrightarrow G$$

where  $\Gamma_0$  is an arbitrary torsion-free non-elementary hyperbolic group - with property (T).

The hard part is to relate the positive theory of the  $\Gamma_i$  to that of G. In fact, we prove a stronger relation between the first-order theories:

G arises as the limit of a sequence of small cancellation quotients

$$\Gamma_0 \twoheadrightarrow \Gamma_1 \twoheadrightarrow \Gamma_2 \twoheadrightarrow \cdots \twoheadrightarrow G$$

where  $\Gamma_0$  is an arbitrary torsion-free non-elementary hyperbolic group - with property (T).

The hard part is to relate the positive theory of the  $\Gamma_i$  to that of G. In fact, we prove a stronger relation between the first-order theories:

$$\operatorname{Th}_{\forall\exists}(G) = \lim_{i \to \infty} \operatorname{Th}_{\forall\exists}(\Gamma_i).$$

G arises as the limit of a sequence of small cancellation quotients

$$\Gamma_0 \twoheadrightarrow \Gamma_1 \twoheadrightarrow \Gamma_2 \twoheadrightarrow \cdots \twoheadrightarrow G$$

where  $\Gamma_0$  is an arbitrary torsion-free non-elementary hyperbolic group - with property (T).

The hard part is to relate the positive theory of the  $\Gamma_i$  to that of G. In fact, we prove a stronger relation between the first-order theories:

$$\mathrm{Th}_{\forall\exists}(G)=\lim_{i\to\infty}\mathrm{Th}_{\forall\exists}(\Gamma_i).$$

The triviality of the first order theory then follows from the result on hyperbolic groups (Sela, Heil) and quantifier reduction for positive sentences (Casals-Ruiz, Garreta, de la Nuez González).

# The key technical step...

...is to relate the theory of a torsion-free hyperbolic group  $\Gamma$  to that of its small cancellation quotient  $\bar{\Gamma}.$ 

# The key technical step...

...is to relate the theory of a torsion-free hyperbolic group  $\Gamma$  to that of its small cancellation quotient  $\bar{\Gamma}$ .

#### Theorem (Coulon, FF, Ho 2025)

Let  $\Gamma$  be a torsion-free non-elementary hyperbolic group. Let G be a finitely generated group, .

If  $\pi\colon\Gamma\to\bar\Gamma$  is a nice enough small cancellation quotient, then every morphism  $\bar\varphi\colon G\to\bar\Gamma$  lifts to  $\Gamma$ .



# The key technical step...

...is to relate the theory of a torsion-free hyperbolic group  $\Gamma$  to that of its small cancellation quotient  $\bar{\Gamma}$ .

#### Theorem (Coulon, FF, Ho 2025)

Let  $\Gamma$  be a torsion-free non-elementary hyperbolic group. Let G be a finitely generated group, H an arbitrary group with morphisms  $\jmath\colon H\to G$  and  $\iota\colon H\to \Gamma$ .

If  $\pi\colon\Gamma\to\bar\Gamma$  is a nice enough small cancellation quotient, then every morphism  $\bar\varphi\colon G\to\bar\Gamma$  compatible with  $H,\jmath$  and  $\iota$  lifts to  $\Gamma$ .



Thank you for the attention!