Dehn functions of Bestvina-Brady groups

Matteo Migliorini joint with Yu-Chan Chang and Jerónimo García-Mejía

Karlsuher Institut für Technologie

Ventotene, 8th September 2025

Bestvina–Brady group: group BB_{Γ} associated to a finite graph Γ .

- Bestvina-Brady group: group BB_{Γ} associated to a finite graph Γ .
- **Dehn function**: Quasi-isometry invariant of a finitely presented group.

- **Bestvina–Brady group**: group BB_{Γ} associated to a finite graph Γ .
- **Dehn function**: Quasi-isometry invariant of a finitely presented group.

Question. Given a finitely presented BB_{Γ} , can we determine the growth of its Dehn function?

- **Bestvina–Brady group**: group BB_{Γ} associated to a finite graph Γ .
- **Dehn function**: Quasi-isometry invariant of a finitely presented group.

Question. Given a finitely presented BB_{Γ} , can we determine the growth of its Dehn function?

Theorem (Dison, 2008). All finitely presented BB_{Γ} have Dehn function $\leq n^4$.

- **Bestvina–Brady group**: group BB_{Γ} associated to a finite graph Γ .
- **Dehn function**: Quasi-isometry invariant of a finitely presented group.

Question. Given a finitely presented BB_{Γ} , can we determine the growth of its Dehn function?

Theorem (Dison, 2008). All finitely presented BB_{Γ} have Dehn function $\leq n^4$.

Theorem (Chang, García-Mejía, M, 2025). The Dehn function of a finitely presented BB_{Γ} grows as $n^{d_{\Gamma}}$, for some $d_{\Gamma} \in \{1, 2, 3, 4\}$ that can be explicitly computed.

- Bestvina-Brady group: group BB_{Γ} associated to a finite graph Γ .
- **Dehn function**: Quasi-isometry invariant of a finitely presented group.

Question. Given a finitely presented BB_{Γ} , can we determine the growth of its Dehn function?

Theorem (Dison, 2008). All finitely presented BB_{Γ} have Dehn function $\leq n^4$.

Theorem (Chang, García-Mejía, M, 2025). The Dehn function of a finitely presented BB_{Γ} grows as $n^{d_{\Gamma}}$, for some $d_{\Gamma} \in \{1, 2, 3, 4\}$ that can be explicitly computed.

Well-known: $d_{\Gamma} = 1 \Leftrightarrow \mathrm{BB}_{\Gamma}$ hyperbolic $\Leftrightarrow \Gamma$ is a tree.

$$d_{\Gamma}=3$$

$$d_{\Gamma}=3$$

$$d_{\Gamma}=4$$

$$d_{\Gamma}=4$$

$$d_{\Gamma}=4$$

Idea: look at Maximal Reducible Subgraphs.

• Reducible: decomposes as a join $\Gamma_1 * \Gamma_2$

 $d_{\Gamma}=4$

- Reducible: decomposes as a join $\Gamma_1 * \Gamma_2$
- Maximal: under inclusion among reducible subgraphs.

 $d_{\Gamma}=4$

- Reducible: decomposes as a join $\Gamma_1 * \Gamma_2$
- Maximal: under inclusion among reducible subgraphs.

 $d_{\Gamma}=4$

- Reducible: decomposes as a join $\Gamma_1 * \Gamma_2$
- Maximal: under inclusion among reducible subgraphs.

Computing d_{Γ}

• $d_{\Gamma} \geq 3 \Leftrightarrow \Gamma$ contains a MRS that is a join of two *irreducible graphs*, each with at least two vertices.

Computing d_{Γ}

- $d_{\Gamma} \geq 3 \Leftrightarrow \Gamma$ contains a MRS that is a join of two *irreducible graphs*, each with at least two vertices.
- $d_{\Gamma} = 4 \Leftrightarrow \Gamma$ contains a MRS that is a join of two disconnected graphs.

Thank you!