A marking graph for finite-type Artin groups

Kaitlin Ragosta

Brandeis University

September 8th, 2025

Marking graph for surfaces

- A marking on a surface S is a set $\{(\alpha_i, t_i)\}$ which satisfies the following conditions.
 - \bullet $\{\alpha_i\}$ forms a pants decomposition of S.
 - 2 α_i and t_j are disjoint when $i \neq j$.
 - \bullet and t_i have the minimal possible nonzero intersection number.
- There are two types of *elementary moves* between markings: twist and flip.
- The marking graph is the graph with vertex set equal to the set of markings on S and an edge between M_1 and M_2 if they are connected by an elementary move.

Theorem (Masur-Minsky, 2000)

The action of MCG(S) on the marking graph is geometric.

Definition

- A marking on a finite-type Artin group A_{Γ} is a collection $\{(P_i, Q_i)\}$ which satisfies the following properties.
 - \bullet $\{P_i\}$ spans a maximal simplex in C_{parab} .
 - 2 z_{P_i} commutes with z_{Q_j} exactly when $i \neq j$.
 - **3** For each j, the collection $\{P_1, \dots, P_n, Q_j\}$ is simultaneously standardizable.
- There are two types of *elementary moves* between markings.
- The marking graph is the graph with vertex set equal to the set of markings on S and an edge between M_1 and M_2 if they are connected by an elementary move.

Theorem (Ragosta, 2025)

The action of $A_{\Gamma}/Z(A_{\Gamma})$ on the marking graph is geometric.