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bedded Lagrangian submanifold implies convergence to it in the Hausdorff metric. This
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1. Introduction and main result

Spaces of Lagrangian submanifolds are generally analyzed in a metric sense at large

scale. For example, there has been a great amount of work on whether the space

of Lagrangian submanifolds, subject to some topological constraints, has infinite

diameter, or whether the metric admits upper bounds in terms of intersection num-

bers (see for example [5,20,22,33,38]). However, a less studied problem is the local

behavior of those metrics, even in the case of the well-known Lagrangian Hofer met-

ric. This is probably due to the fact that, without additional constraints, converging

sequences can be quite wild from a set-theoretic standpoint. Furthermore, before

the advent of shadow metrics, one only looked at Hamiltonian isotopic Lagrangian

submanifolds — or at least, conjecturaly Hamiltonian isotopic ones.

The purpose of this paper is to show that, when we only look at Lagrangian

submanifolds behaving well with respect to some auxiliary Riemannian metric,

converging sequences cannot be wild. More precisely, we will show that they also

converge to the same Lagrangian submanifold in the Hausdorff metric associated

to the auxiliary Riemannian metric. Note however that we only look at sequences

converging to an embedded Lagrangian submanifold. This restriction is necessary

since sequences converging in certain metrics could theoretically converge to an im-

1



March 14, 2023 12:4 WSPC/INSTRUCTION FILE convergence4

2 Jean-Philippe Chassé

mersed Lagrangian submanifold. As noted above, this result is of particular interest

when applied to the weighted fragmentation metrics of Biran, Cornea, Shelukhin

and Zhang [5, 6]. Indeed, these metrics exist on spaces of Lagrangian submanifolds

which are not necessarily of the same homotopy type, let alone Hamiltonian iso-

topic. But, as we shall see below, the presence of bounds coming from a Riemannian

metric forces neighboring Lagrangian submanifolds to be homeomorphic.

1.1. Some notation and definitions

Before writing down the main result in a more precise form, we need to fix some

notation and definitions.

1.1.1. Riemannian bounds

We begin by introducing some Riemannian quantities that will serve to restrict the

classes of the Lagrangian submanifolds that we will consider.

Let L be a submanifold of a Riemannian manifold (M, g). We can see its second

fundamental form BL as a section of the bundle (TL⊗ TL⊗ TL⊥)∗ → L, where ⊥
denotes the orthogonal complement with respect to g. We thus define the norm of

the second fundamental form to be

||BL|| := sup
x∈L
|BL(x)|g̃x ,

where g̃x is the scalar product induced by g on (TxL⊗TxL⊗TxL⊥)∗. When dimL =

1 and dimM = 2 — a case that will be of particular interest to us later on — this

is just the supremum of the geodesic curvature of L.

In general, uniformly bounding the norm of the second fundamental form will

not be enough for our purposes. We will thus make use of another quantity, which

gives a better control on the way L is embedded in M .

Definition 1.1. Let (M, g) be a Riemannian manifold, and L be a submanifold.

Let ε ∈ (0, 1]. We say that L is ε-tame if

dM (x, y)

min{1, dL(x, y)}
≥ ε ∀x 6= y ∈ L,

where dM is the distance function on M induced by g, and dL is the distance

function on L induced by g|L.

Remark 1.1. This is a variation of the tame condition appearing in work of Siko-

rav [35]. More precisely, it is equivalent to the (T’1) condition. This condition also

appeared under the name ε-Lipschitz in work of Groman and Solomon [17,18].

1.1.2. Collections of Lagrangian submanifolds

In general, there is no hope of being able to meaningfully compare two arbitrary

Lagrangian submanifolds of a given symplectic manifold. That is why, when defining
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metrics on spaces of Lagrangian submanifolds, it is necessary to consider more

restricted collections of Lagrangian submanifolds, e.g. Hamiltonian isotopic ones,

exact ones, etc.

In the present paper, the symplectic properties of the Lagrangian submanifolds

considered will not matter inasmuch as they allow for the definition of well-behaved

metrics between them. However, to give an idea of the collections to which our result

applies, we present some interesting choices of collection L ?(M) of Lagrangian

submanifolds of a given symplectic manifold (M,ω). Note that throughout this

paper, we will assume that M is connected, and either closed or convex at infinity.

We will also assume that the Lagrangian submanifolds are closed and connected.

• (? = L0): Here, L0 is some fixed Lagrangian submanifold. Then, L L0(M) is the

Hamiltonian orbit of L0, i.e. the set of Lagrangian submanifolds of the form φ(L0)

for some Hamiltonian diffeomorphism with compact support φ.

• (? = e): For this collection to make sense, we need to suppose that M is exact.

Then, L e(M) is the collection of exact Lagrangian submanifolds.

• (? = we): Here, L we(M) is the collection of weakly exact Lagrangian submani-

folds, i.e. Lagrangian submanifolds L such that the morphism ω : π2(M,L)→ R

given by integration with respect to ω is trivial. Note that the existence of such

a Lagrangian submanifold implies that M is symplectically aspherical.

• (? = m(ρ, d)): Here, ρ > 0 and d ∈ Z2. Then, Lm(ρ,d)(M) is the collection of

Lagrangian submanifolds L such that

(a) the Maslov index µ : π2(M,L)→ Z satisfies ω = ρµ;

(b) the minimum Maslov number is NL ≥ 2;

(c) the modulo 2 count of J-holomorphic disks with boundary along L of Maslov

index 2 — for J generic — is equal to d.

As noted by Biran, Cornea and Zhang [6], when one is interested in fragmen-

tation metrics, it might be necessary to restrict oneself to a subcollection of one of

the above choices.

The result that we will present does not hold for all Lagrangian submanifolds

in L ?(M). Indeed, we will need to impose some uniform bounds coming from

Riemannian geometry. Therefore, we fix a Riemannian metric g on M and constants

Λ ≥ 0, ε ∈ (0, 1]. We then introduce two new types of subcollections:

L ?
Λ(M, g) := {L ∈ L ?(M) | ||BL|| ≤ Λ}

L ?
Λ,ε(M, g) := {L ∈ L ?

Λ(M, g) | L is ε-tame} .

We recall that we always consider our Lagrangian submanifolds to be closed and

connected. When it is evident from the context, we will omit g from the notation.
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1.1.3. Chekanov-type metrics on collections of Lagrangian submanifolds

We now describe the type of metrics that we will be putting on our collections

L ?(M). These will be metrics d that interact well with regards to J-holomorphic

curves for a compatible almost complex structure J . In particular, they will include

well-known metrics appearing in symplectic topology:

• (d = dH): This is the case of the Lagrangian Hofer metric, due to Chekanov [10].

It is then understood that L ?(M) ⊆ L L0(M) for some L0.

• (d = γ): This is the case of the spectral metric, originally due to Viterbo [37]

on L L0(T ∗L0). In fact, the metric may be extended to the whole collection

L e(T ∗L0) ∩ Lm(1,0)(T ∗L0) — not just L L0(T ∗L0) — by work from Fukaya,

Seidel, and Smith [14, 15], Abouzaid [1], and Kragh [25]. For any symplec-

tic manifold M , it has also been defined on L L0(M) for L0 weakly exact by

Leclercq [26] and for L0 monotone with nonvanishing quantum homology by

Kislev and Shelukhin [23], following work of Leclercq and Zapolsky [38]. In this

case, we always assume that L ?(M) is included in one of the collection mentioned

above.

• (d = γext): This is a variant of the usual spectral metric, as defined by Kislev

and Shelukhin [23]. We also have that L ?(M) ⊆ L L0(M) for L0 ∈ L we(M).

However, M has then to be closed and monotone, i.e. the diagonal of (M×M,ω⊕
−ω) is in Lm(ρ,d)(M ×M).

These metrics have in common that they all respect a Chekanov-type theorem

relating d(L,L′) to the Gromov width w(L;L′) of L in M − L′. In turn, this is

because whenever L,L′ ∈ L ?(M) intersect transversally, d(L,L′) is small enough,

and J is generic, there is a J-holomorphic strip with boundary along L and L′

and with area bounded from above by d(L,L′) going through every point of L∪L′
(cf. [3, 8, 23]). In fact, without the restrictions on d(L,L′) and J , we still get a J-

holomorphic curve with the above properties by Gromov compactness. The curve

may however be a disk or a sphere instead of a strip.

Our results are however most interesting when working with metrics which are

finite between possibly-nondiffeomorphic Lagrangian submanifolds. In all known

examples of such metrics, they are defined using auxiliary families F ,F ′ ⊆ L ?(M).

They still respect a Chekanov-type theorem, but the J-holomorphic curve used

in the proof of the theorem might be more general J-holomorphic polygons with

boundary along L, L′, and elements of F or F ′.

For this reason, we will consider in what we call Chekanov-type pseudometrics:

pseudometrics dF with the more general property that for any ω-compatible almost

complex structure, any L,L′ ∈ L ?(M) intersecting transversally, and any point

x ∈ L ∪ L′, there exists a J-holomorphic polygon u passing through x such that

ω(u) ≤ 2dF (L,L′).

Furthermore, u has to have boundary along L, L′, and along Lagrangian submani-

folds in F (see [32] for a more detailed exposition on J-holomorphic polygons and
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on their role in symplectic topology — contrary to Seidel, we allow our polygons to

have 0 or 1 side, i.e. to be spheres or disks). If the Lagrangian submanifolds above

do not intersect transversally, then they should be replaced by arbitrarily small

Hamiltonian perturbation. A more precise definition will be given in Subsec. 2.1.

Note that we allow here our pseudometrics to take infinite values.

If dF and dF ′ are Chekanov-type pseudometrics, and if the intersection( ⋃
F∈F

F

)⋂( ⋃
F ′∈F ′

F ′

)
(1.1)

is discrete, then we will call d = d̂F ,F ′ := max{dF , dF ′} a Chekanov-type metric.

As we shall see below, the discreteness of (1.1) insures that the term “metric” is

indeed here warranted.

Note that Chekanov-type metrics not only include the previously-mentionned

metrics (under the case d = dF = dF ′ and F = F ′ = ∅), but some more recent

ones as well.

• (d̂F ,F ′ = d̂F ,F ′

S ): These are the shadow metrics appearing in work of Biran,

Cornea, and Shelukhin [5, 12]. It is then understood that L ?(M) ⊆ L e(M),

L ?(M) ⊆ L we(M), or L ?(M) ⊆ Lm(ρ,d)(M) for some ρ > 0 and d ∈ Z2.

• (d̂F ,F ′ = ŝF ,F ′

alg ): These are the so-called algebraic fragmentation metrics also

appearing in work of Biran, Cornea, and Shelukhin [5]. As above, it is then un-

derstood that L ?(M) is in L e(M), L we(M), or some Lm(ρ,d)(M).

• (d̂F ,F ′ = D̂F ,F ′): There are possibly many other weighted fragmentation pseu-

dometrics — as defined by Biran, Cornea, and Zhang [6] — that belong to this

class.

1.2. A conjecture on convergence in Lagrangian spaces

We now introduce a conjecture due to Cornea and explain how we will show it

holds under some additional assumptions in high dimensions and without them in

dimension 2.

We fix a connected symplectic manifold with compatible almost complex struc-

ture (M,ω, J) which is closed or convex at infinity. We suppose that J is such that

gJ is complete, has uniformly bounded sectional curvature, and has injectivity ra-

dius uniformly bounded away from zero. Note that a symplectic manifold that is

convex at infinity always admits such a J . This has been proven for the case when

M is a twisted cotangent bundle by Cieliebak, Ginzburg, and Kerman [11], following

a suggestion of Sikorav. As noted there, the proof easily adapts to the case when

M is instead convex at infinity.

We also fix a collection of Lagrangian submanifold L ?(M) and a Chekanov-type

metric d̂F ,F ′ on it. By the examples in the previous subsection, we have multiple

choices of appropriate collections L ?(M) and metrics d̂F ,F ′ .

Conjecture 1.1 (Cornea, 2018). The topology induced by the Hausdorff metric
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on L ?
Λ(M) is coaser than the one induced by the Chekanov-type metric d̂F ,F ′ .

In other words, if Ln → L0 in d̂F ,F ′ , then Ln → L0 in the Hausdorff metric δH
induced by gJ .

Remark 1.2. The conjecture was originally stated for the weighted fragmentation

metrics appearing in [5]. However, the proof lends itself naturally to a generalization

to a larger class of metrics behaving well with respect to J-holomorphic curves.

The main purpose of this paper is to prove the conjecture under the slightly

stronger hypothesis that the Lagrangian submanifolds are also ε-tame.

Theorem A. Let {Ln}n≥1 ⊆ L ?
Λ,ε(M) be such that Ln → L0 ∈ L ?(M) with

respect to a Chekanov-type metric d̂F ,F ′ . Then, Ln → L0 in the Hausdorff metric

δH induced by gJ .

Moreover, when dimM = 2, the statement where L ?
Λ,ε(M) is replaced by L ?

Λ(M)

holds, i.e. the conjecture holds as initially stated in dimension 2.

Remark 1.3.

• We have fixed an almost complex structure J in order to have a fixed Riemannian

metric g = gJ through which to impose Riemannian bounds on the Ln’s, i.e. to

have precise Λ and ε. However, convergence in the Hausdorff metric associated

to a Riemannian metric g is independent of the precise g. Therefore, Theorem A

implies that whenever {Ln} ⊆ L ?
Λ,ε(M, gJ) for some J , Λ, and ε, then convergence

in any Chekanov-type metric implies convergence in any Hausdorff metric.

• There is however still the related question of whether, for any compatible almost

complex structures J and J ′, L ∈ L ?
Λ,ε(M, gJ) implies L ∈ L ?

Λ′,ε′(M, gJ′) for

some Λ′ and ε′ independent of L, i.e. the question of whether respecting some

Riemannian bounds is independent of J . Finding such a Λ′ = Λ′(Λ, J − J ′) is

a direct computation, but finding ε′ = ε′(Λ, ε, J − J ′) has proven to be beyond

reach. Indeed, this requires to compare geodesics between two arbitrary metrics,

which is highly nontrivial. However, we expect such ε′ to exist. At the very least,

this implies that Theorem A is an entirely symplectic statement in dimension 2.

Note that this implies in the ε-tame case that, for n large, Ln is diffeomor-

phic to L0. Indeed, although convergence in the Hausdorff metric only implies that

{(Ln, dM |Ln)} converges to (L0, dM |L0
) in the Gromov–Hausdorff metric — not

necessarily {(Ln, dLn)} to (L0, dL0
) — and thus results such as Perelman’s stabil-

ity theorem [30] do not directly applies, Gromov’s [19] and Katsuda’s [21] proof of

the existence of a diffeomorphism between Gromov–Hausdorff-close geometrically-

bounded manifolds still goes through. This is because Gromov’s construction is

ultimately local, and in this regime, the ε-tame condition allows for the comparison

of dM |Ln and dLn .

Actually, we expect Ln to be Hamiltonian isotopic to L0 for n large; we know

that to be true in some cases. Indeed, since {Ln}n≥1 converges to L0 in the Haus-
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dorff metric, Ln is eventually in a Weinstein neighborhood of L0. Therefore, if the

nearby Lagrangian conjecture holds for L0, and if each Ln is exact in the Wein-

stein neighborhood, e.g. it is exact in M or simply connected, then Ln has to be

Hamiltonian isotopic to L0. In particular, this is the case when {Ln} ⊆ L e
Λ(M) and

dimM = 2.

We now give the broad idea of the proof of Theorem A:

(i) Since d̂F ,F ′ is a Chekanov-type metric, for any x ∈ L0 − (Ln ∪ (∪F )) and x′ ∈
Ln− (L0∪ (∪F )), there exist J-holomorphic polygons u and u′ passing through

x and x′, respectively — modulo arbitrarily small perturbations. Furthermore,

their area is bounded from above by 2d̂F ,F ′(Ln, L0).

(ii) By finding appropriate metric balls inM and using a version of the monotonicity

lemma, it is possible to find a lower bound for the area of these polygons for n

large. This bound depends only on M , Λ, ε, and the distances dM (x, Ln∪(∪F )),

dM (x, Ln ∪ (∪F ′)), dM (x′, L0 ∪ (∪F )) and dM (x′, L0 ∪ (∪F )). By the previous

step, this turns into a lower bound of d̂F ,F ′(Ln, L0).

(iii) Using the fact that (∪F )∩(∪F ′) is discrete, it is possible to turn the dependence

on the different distances onto one on the Hausdorff distance δH(Ln, L0).

(iv) The fact that d̂F ,F ′(Ln, L0)→ 0 then forces that δH(Ln, L0)→ 0.

We can get rid of the dependence on ε when dimM = 2 because, in that case,

we can make a better choice of metric balls on which the monotonicity lemma is

applied.

1.3. Structure of the paper

The remainder of the paper is almost entirely dedicated to the proof of Theorem A.

In Sec. 2, we give a proper definition of Chekanov-type metrics. We then give

the proof of the main theorem without any restriction on the dimension of the

symplectic manifold M . This is done in two steps: proving an appropriate version

of the monotonicity lemma, and showing that the existence of an appropriate J-

holomorphic polygon implies the result.

In Sec. 3, we explain how to modify the proof of Sec. 2 to get rid of ε when

dimM = 2. Essentially, it suffices to modify the ball on which we apply the mono-

tonicity lemma. To find such a ball, we develop some combinatoric arguments for

curves on surfaces. This section ends with some proofs of results from Riemannian

geometry that we have not found explicited in the literature.

In Sec. 4, we end the paper with examples of sequences of Lagrangian sub-

manifolds that do not respect uniform Riemannian bounds, some respecting the

conclusion of Theorem A, while others not. This shows that a complete charac-

terization of sequences respecting said conclusion lies beyond simple Riemannian

bounds.
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2. The general proof

In this section, we give the proof of Theorem A without restrictions on the dimension

of M . Actually, we prove a more precise estimate on the relation between d̂F ,F ′ and

δH . In what follows, the almost complex structure J is fixed. We also fix constants

K0, r0 > 0 such that the sectional curvature of M respects |K| ≤ K0, and its

injectivity radius respects rinj(M) ≥ r0. We always assume that (M, gJ) is complete.

Theorem 2.1. For any Chekanov-type metric d̂F ,F ′ on L ?
Λ,ε(M, gJ), there exist

constants R = R
(
K0, r0,Λ, ε, (

⋃
F∈F F )∩(

⋃
F ′∈F ′ F

′)
)
> 0 and C = C(K0, r0, ε) >

0 such that whenever d̂F ,F ′(L,L′) < R, then

d̂F ,F ′(L,L′) ≥ CδH(L,L′)2.

Clearly, the first part of Theorem A follows directly from Theorem 2.1.

Remark 2.1. As explained above, the proof relies on a version of the monotonicity

lemma. However, it was pointed out to us by Shelukhin that a modification of

Groman–Solomon’s reverse isoperimetric inequality [17] would also yield a proof of

Theorem A. Such a modification of the inequality has turned out to be much more

difficult to prove than what ended up being presented here. Furthermore, additional

Riemannian bounds seem then to be required, e.g. C1 bounds on BL. On the other

hand, this would have the advantage of giving a linear inequality in Theorem 2.1,

instead of a quadratic one.

2.1. Chekanov-type metrics

Before going in the proof of Theorem 2.1, we need to give a precise definition of

what we mean by Chekanov-type. We also explain how the metrics enumerated in

the introduction fit in this definition.

We begin by clarifying what we mean by a J-holomorphic polygon, essentially

following Seidel’s book [32].

Definition 2.1. Let (M,ω) be a symplectic manifold equipped with a ω-compatible

almost complex structure J . Let L0, . . . , Lk be pairwise transverse Lagrangian sub-

manifolds. Denote by Sr the closed unit disk with |r| ≤ k + 1 punctures at its

boundary. We equip Sr with the standard complex structure j and area form σ —

when |r| = 0, we take the convention that Sr is the sphere of area π. We label the

components of ∂Sr counterclockwise from C0 to C|r|−1, and the puncture from ζ0
to ζ|r|−1 accordingly. A J-holomorphic polygon with boundary along L0, . . . , Lk is a

smooth map u : Sr →M such that

(i) u is (j, J)-holomorphic;

(ii) E(u) :=
∫
Sr
|du|2gJσ <∞;

(iii) u(Ci) ⊆ Li for all i ∈ {0, . . . , |r| − 1};
(iv) near ζi, there are conformal coordinates (s, t) ∈ [0,∞) × [0, 1] such that

lims→∞ u(s, t) =: pi ∈ Li−1 ∩ Li.
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Furthermore, for some x ∈ L0, we will say that u passes through x if x ∈ u(C0).

This allows us to define precisely what are Chekanov-type metrics.

Definition 2.2. Let L ?(M) be a collection of Lagrangian submanifolds on M . Let

F ⊆ L ?(M). We say that a pseudometric dF on L ?(M) is of Chekanov-type if for

all compatible almost complex structure J , all δ > 0, and all L,L′ ∈ L ?(M), there

exist Lagrangian submanifolds F1, . . . , Fk ∈ F with the following property.

For any C0- and Hofer-small Hamiltonian perturbations L̃, L̃′, F̃1, . . . , F̃k of the

Lagrangian submanifolds above making them pairwise transverse, and for any x ∈
L̃ ∪ L̃′, there exists a nonconstant J-holomorphic polygon u : Sr →M such that

(i) has boundary along L̃, L̃′ and F̃1, . . . , F̃k;

(ii) passes through x;

(iii) respects the bound

ω(u) ≤ dF (L,L′) + δ.

Let F ′ ⊆ L ?(M) be such that( ⋃
F∈F

F

)⋂( ⋃
F ′∈F ′

F ′

)

is discrete. We will call d̂F ,F ′ := max{dF , dF ′} a Chekanov-type metric if dF and

dF ′ are both Chekanov-type pseudometrics.

We conclude this subsection by explaining how the metrics mentioned in the

introduction are indeed Chekanov-type metrics. In the case when d̂F ,F ′ is either

a shadow metric d̂F ,F ′

S or an algebraic one ŝF ,F ′

alg , this is proven in the course of

Theorem 5.0.2 of [5]. By the inequality d̂∅,∅S ≤ dH , this also implies the result for

the Lagrangian Hofer metric.

In fact, in the case of the Lagrangian Hofer metric, when the Lagrangian sub-

manifolds involved are weakly exact or monotone, it is possible to get a sharper

result. In that case, dH is not only of Chekanov-type on L L0(M), but we may also

take the J-holomorphic polygon u appearing in the definition of a Chekanov-type

metric to have at most 2 sides. Indeed, this appears as Corollary 3.9 in [3] for the

weakly exact case and as Theorem 1.2 in [8] for the monotone one.

The same is true of the spectral metric γ and its variant γext on L L0(M). This

follows from the proof of Theorem E in [23]. When M = T ∗L0, and γ is extended to

L e(T ∗L0)∩Lm(1,0)(T ∗L0), the same stay true. Indeed, the spectral metric between

L and L′ is then taken to be the usual one, but using different decorations on L

and L′. Therefore, the underlying manifolds are the same, and there is still a strip

between them.

We remark that the polygons which are found in the proof of Theorem 5.0.2

of [5] and of Theorem E of [23] are J-holomorphic for a very specific J . This choice

is made to allow for the use Lelong’s inequality to get a Chekanov-type theorem.
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However, the same argument works perfectly well for any J , even without any

genericity assumption.

2.2. A version of the monotonicity lemma

We now prove a slightly improved version of Sikorav’s monotonicity lemma for

curves with Lagrangian boundary [35]. The constants appearing in it will only de-

pend on bounds coming from the Riemannian metric gJ on M and its restriction on

Lagrangian submanifolds. This improvement follows from observations in Groman

and Solomon [18] on the dependence of the constant appearing in the isoperimetric

inequality on these bounds.

Firstly, consider a loop γ : R/(2πZ) → Brinj(M)/2(x), where Brinj(M)/2(x) is

the metric ball in M of radius 1
2rinj(M) centered at some x ∈ M . Denote by a(γ)

the area, with respect to ω, of a disk extension of γ contained in a metric ball

Brinj(M)/2(y). Here, y is not necessarily equal to x. This is of course independent

on the choice of disk: if u : D → Brinj(M)/2(y) and u′ : D → Brinj(M)/2(y′) are

two such extensions, then gluing them along their common boundary gives a sphere

u#u in the ball Brinj(M)(γ(0)). Such a sphere must be nullhomotopic. Therefore,

ω(u)− ω(u′) = ω(u#u) = 0, and a(γ) is well-defined.

Let L ∈ L ?
Λ,ε(M). Consider now an arc γ : ([0, π], {0, π})→ (M,L) with image

in a metric ball Bδ(x) for some x ∈ L, where

δ := min

{
ε,
ε

2
rinj(L),

ε

2
r0,

π

4
√
K0

}
. (2.1)

Take a path α : [0, π] → BLδ/ε(y) such that γ(πi) = α(πi) for each i ∈ {0, 1}.
Here, BLδ/ε(y) denotes the metric ball in L, i.e. with respect to dL, of radius δ

ε

centered at y ∈ L. We then define a(γ) to be the area, again with respect to ω,

of a disk extension of γ#α in the ball Bδ(y), i.e. a(γ) = a(γ#α) as a loop. Here,

α(θ) := α(π − θ) for all θ ∈ [0, π].

Note that such a path α always exists, since dM (x, γ(πi)) < δ ≤ ε. Thus, it must

be so that dL(x, γ(πi)) < δ
ε if the tameness condition is to be fulfilled. We now

show that a(γ) is well-defined. Take α : [0, π] → BLδ/ε(y) and α′ : [0, π] → BLδ/ε(y
′)

to be two paths such that α(πi) = α′(πi) = γ(πi). Take u : D → Bδ(y) and

u′ : D → Bδ(y
′) to be extensions of γ#α and γ#α′, respectively. Then, gluing

u and u′ along γ gives a disk u#u′ with boundary α#α′. But α#α′ is contained

in BL2δ/ε(γ(0)). Since 2δ
ε ≤ rinj(L), it must be a contractible loop. The homotopy

from α#α′ to a point extends to a homotopy of u#u′ to a topological sphere in

B2δ/ε(γ(0)). Since 2δ
ε ≤ r0 ≤ rinj(M), this sphere must be nullhomotopic. Therefore,

ω(u) − ω(u′) = ω(u#u′) = 0, and the definition of a(γ) is again independent of

choices.

Lemma 2.1 (Isoperimetric inequality). Let M , L, and δ be as above. There

exist constants c = c(K0, r0, ε) > 0 and c′ = c′(K0, r0) > 0 such that
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(i) for all loops γ with image in a metric ball Br0/2(x) for some x ∈M , we have

that

a(γ) ≤ c′`(γ)2;

(ii) for all arcs γ with ends in L and image in a metric ball Bδ(x) for some x ∈ L,

we have that

a(γ) ≤ c`(γ)2.

Proof. As noted by Groman and Solomon [18], the proof appearing in Remark

4.4.2 of [28] depends only on the constants above. This gives a proof of (i). We give

here the details of the proof of (ii).

Take α to be the unique minimizing geodesic in L from γ(0) to γ(π); it exists

since dL(γ(0), γ(π)) < 2δ
ε ≤ rinj(L). We define an extension u : D→M of γ#α by

u(reiθ) := expγ(0)(rξ(θ)),

where expγ(0)(ξ(θ)) := (γ#α)(θ) for all θ ∈ [0, 2π]. Although this disk might not

be entirely contained in Bδ(x) — if δ is larger than the convexity radius of M that

is — it is contained in B2δ(γ(0)). Therefore, the same argument as above implies

that ω(u) = a(γ).

By the Gauss lemma, we have that

|∂ru|(reiθ) = |(d expγ(0))rξ(θ)(ξ(θ))| = |ξ(θ)| = dM (γ(0), (γ#α)(θ)).

However, for all θ ∈ [0, π], we have that

dM (γ(0), (γ#α)(θ)) = dM (γ(0), γ(θ)) ≤ `(γ)

and

dM (γ(0), (γ#α)(2π − θ)) = dM (α(0), α(θ)) ≤ `(α)

= dL(γ(0), γ(π)) ≤ 1

ε
dM (γ(0), γ(π))

≤ 1

ε
`(γ).

Therefore, we get that |∂ru| ≤ 1
ε `(γ).

Likewise, we can use the Rauch comparison theorem to compare Jacobi fields

on M with those on spaces of constant sectional curvature ±K0 to get

|∂θu|(reiθ) = |(d expγ(0))rξ(θ)(rξ̇(θ))|

≤ sinh(r|ξ(θ)|
√
K0)

|ξ(θ)|
√
K0

|ξ̇(θ)|

=
sinh(r|ξ(θ)|

√
K0)

|ξ(θ)|
√
K0

∣∣∣∣(d expγ(0))
−1
ξ(θ)

(
d

dθ
(γ#α)(θ)

)∣∣∣∣
≤ sinh(r|ξ(θ)|

√
K0)

sin(|ξ(θ)|
√
K0)

∣∣∣∣ ddθ (γ#α)(θ)

∣∣∣∣ .
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Note that sinh(r|ξ(θ)|
√
K0)

sin(|ξ(θ)|
√
K0)

≤ sinh(|ξ(θ)|
√
K0)

sin(|ξ(θ)|
√
K0)

since r ≤ 1. Furthermore, we have the

inequality |ξ| ≤ 2δ ≤ min{r0,
π

2
√
K0
} by construction. But the map s 7→ sinh(s)

sin(s) is

increasing on the interval [0, π), so that we finally get

|∂θu|(reiθ) ≤
sinh

(
min{r0

√
K0,

π
2 }
)

sin
(
min{r0

√
K0,

π
2 }
) ∣∣∣∣ ddθ (γ#α)(θ)

∣∣∣∣ .
Therefore, we get that

a(γ) =

∣∣∣∣∫ 2π

0

∫ 1

0

ω(∂ru, ∂θu)rdrdθ

∣∣∣∣
≤
∫ 2π

0

∫ 1

0

|∂ru||∂θu|rdrdθ

≤
sinh

(
min{r0

√
K0,

π
2 }
)

ε sin
(
min{r0

√
K0,

π
2 }
)`(γ)

∫ 2π

0

∫ 1

0

∣∣∣∣ ddθ (γ#α)(θ)

∣∣∣∣ rdrdθ
=

sinh
(
min{r0

√
K0,

π
2 }
)

2ε sin
(
min{r0

√
K0,

π
2 }
)`(γ) (`(γ) + `(α))

≤
(

1 +
1

ε

)
sinh

(
min{r0

√
K0,

π
2 }
)

2ε sin
(
min{r0

√
K0,

π
2 }
)`(γ)2.

This concludes to proof of (ii). Note that replacing `(α) by 0 in the above

argument gives a proof of (i) with c′ =
sinh(min{r0

√
K0,

π
2 })

2 sin(min{r0
√
K0,

π
2 })
≤ c.

Note that we could have taken the π
4
√
K0

part of δ (as defined in (2.1)) to actually

be πη
2
√
K0

for any η ∈ (0, 1); we have just made a convenient choice. Moreover, δ can

always be bounded away from zero by a constant depending only on K0, r0, and Λ,

as shows the following lemma.

Lemma 2.2 ( [18, 34]). Let (M, g) be a complete Riemannian manifold with

sectional curvature K such that |K| ≤ K0, and with injectivity radius such that

rinj(M) ≥ r0 > 0. Let L be a submanifold with second fundamental form BL such

that ||BL|| ≤ Λ for some Λ ≥ 0. Then, there exists a constant i0 = i0(K0, r0,Λ) > 0

such that

rinj(L, g|L) ≥ i0.

Remark 2.2. The constant c — and c′ — we get in the proof depends continuously

on K0, r0, and ε. Likewise, the constant i0 appearing in Lemma 2.2 may also be

chosen so that it depends continuously on K0, r0, and Λ. This follows directly from

the proof in Groman and Solomon’s paper [18].

Proposition 2.1 (Monotonicity lemma). Let M , L, δ be as above. Let Σ be a

compact Riemann surface with boundary ∂Σ with corners. Consider a nonconstant

J-holomorphic curve u : (Σ, ∂Σ) → (B(x, r), ∂B(x, r) ∪ L) for some x ∈ L and
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r ≤ δ such that x ∈ u(Σ). Suppose that u sends the corners of Σ to ∂B(x, r) ∩ L.

Then,

ω(u) ≥ Cr2,

where C = 1
4c , and c is the constant of Lemma 2.1.

Proof. The proof is that of Proposition 4.7.2 in [35], but using the version of

the isoperimetric inequality above. We still give the details here for the sake of

completeness.

Set Σt := u−1(B(x, t)) and a(t) := ω(u|Σt). By Sard’s theorem, there is a subset

of full measure Ω of (0, r) such that for all t ∈ Ω, Σt is a subsurface of Σ with

piecewise smooth boundary ∂Σt = u−1(∂B(x, t) ∪ L). The discontinuities of the

boundary are then contained in u−1(∂B(x, t) ∩ L).

x

L

B(x, t)

B(x, r)

u−1(x)

Σt

Σ

Fig. 1. Visualization in two dimensions, both in the codomain (left) and domain (right).

We begin by noting that, for t ∈ Ω, we have the inequality

a(t) ≤ c`(t)2,

where `(t) is the length of u|∂Σt−u−1(L). Indeed, write the boundary of Σt as

∂Σt =

(⊔
i

γi#αi

)
t

⊔
j

βj

 ,

where the γi’s are arcs in the interior of Σ with extremities in u−1(L), the αi’s are

the segment of u−1(L) between the extremities of γi, and the βj ’s are loops. Finally,

choose disk extensions vi : D → Bt(x) and wj : D → Bt(x) of u|γi#αi and u|βj ,
respectively.

Since Bt(x) is contractible, we may take a primitive λ of ω on it. Then, by
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Stokes’ theorem,

a(t) =

∫
Σt

u∗ω =

∫
∂Σt

u∗λ

=
∑
i

∫
γi#αi

u∗λ+
∑
j

∫
βj

u∗λ

=
∑
i

∫
∂D

v∗i λ+
∑
j

∫
∂D

w∗jλ

=
∑
i

∫
D

v∗i ω +
∑
j

∫
D

w∗jω.

Hence, by Lemma 2.1,

a(t) =
∑
i

a(γi) +
∑
j

a(βj)

≤
∑
i

c`(γi)
2 +

∑
j

c′`(βj)
2

≤ c`(t)2.

Take f := ρ ◦ u, where ρ is the distance from x in M . Fix t ∈ Ω. Then, in a

neighborhood of ∂Σt, u
∗gJ is a metric, and f is its distance function from u−1(x). In

particular, | grad f |u∗gJ ≡ 1. Therefore, by the coarea formula (see for example [9]),

for s near enough t, we have that

a(t)− a(s) =

∫
{s≤f≤t}

| grad f |u∗gJdau∗gJ

=

∫ t

s

∫
{f=τ}

d`u∗gJdτ (2.2)

=

∫ t

s

`(τ)dτ.

In particular, a is absolutely continuous on [0, r], differentiable on Ω, and a′(t) = `(t)

for all t ∈ Ω.

Therefore, for all such t, we have that(√
a(t)

)′
=

a′(t)

2
√
a(t)

=
`(t)

2
√
a(t)

≥ 1

2
√
c

by Lemma 2.1. Since Ω has full measure and a is absolutely continuous, we can

integrate the lower bound to get ω(u) = a(r) ≥ 1
4cr

2.

Remark 2.3. Both Lemma 2.1 and Proposition 2.1 work for a larger class of almost

complex structures J and of metrics g — not necessarily equal to gJ — respecting

the hypotheses of Lemma 2.2. Indeed, suppose that there exist constants C1, C2 > 0

such that ω(X,Y ) ≤ C1|X||Y | and |X|2 ≤ C2ω(X,JX) for all X and Y . In that
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case, let a denote the area with respect to ω as before, and let A denote the area

with respect to g. Then, Lemma 2.1 gives the inequality a(γ) ≤ C1c
′`(γ) at (i) and

the inequality a(γ) ≤ C1c`(γ) at (ii). Furthermore, Equation (2.2) now applies to

A, and thus A′(t) = `(t). Therefore, Proposition 2.1 becomes

ω(u) ≥ 1

C2
A(r) ≥ 1

4C1C2c
r2.

2.3. Proof of Theorem 2.1

We are now ready to give the proof of the main result. Remember that we have

fixed a symplectic manifold (M,ω) and an ω-compatible almost complex struc-

ture J such that (M,J) is either closed or convex at infinity. Likewise, we have

fixed families of closed connected Lagrangian submanifolds F and F ′ such that

(∪F∈FF )∩(∪F ′∈F ′F ′) is discrete. We also assume from now on that all Lagrangian

submanifolds are in some fixed collection L ?
Λ,ε(M) (as defined in Subsec. 1.1). In

what follows, d̂F ,F ′ denotes a Chekanov-type metric (as defined in Subsec. 2.1) on

that collection.

For subsets A,B ⊆M , we take

s(A,B) := sup
x∈A

dM (x,B) := sup
x∈A

inf
y∈B

dM (x, y).

Therefore, the Hausdorff metric is given by δH(A,B) = max{s(A,B), s(B,A)}.
Take L,L′ ∈ L ?

Λ,ε(M) and δ > 0. Let F1, . . . , Fk be the Lagrangian submani-

folds in F given by the definition of a Chekanov-type pseudometric. Take also C0-

and Hofer-small Hamiltonian perturbations L̃, L̃′, and F̃1, . . . , F̃k of these mani-

folds making them pairwise transverse. Then, for any x ∈ L̃ ∪ L̃′, there exists a

nonconstant J-holomorphic polygon u : Sr →M with the following properties:

(i) it has boundary along L̃, L̃′, and F̃1, . . . , F̃k;

(ii) it passes through x;

(iii) ω(u) ≤ dF (L,L′) + δ.

Assuming that the perturbations of L and L′ are also C2-small, we get that L̃, L̃′ ∈
L ?

Λ̃,ε̃
(M) for some Λ̃ ≥ Λ and ε̃ ≤ ε.

Take x ∈ L̃− (L̃′ ∪ F̃1 ∪ · · · ∪ F̃k) and

δ̃ := εmin

{
1,

1

2
r0,

1

2
i0(K0, r0, Λ̃)

}
,

where i0 is the constant appearing in Lemma 2.2. By Sard’s theorem, there is an

open dense subset of (0,min{δ̃, dM (x, L̃′ ∪ F̃1 · · · ∪ F̃|r|−2)}) such that, for all ρ in

this subset, Σ := u−1(Bρ(x)) is a smooth submanifold of Sr with boundary with

corners. In particular, u|Σ respects the hypotheses of Proposition 2.1. We thus get

dF (L,L′) + δ ≥ ω(u) ≥ ω(u|Σ) ≥ C̃ρ2,
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where C̃ = C(K0, r0, Λ̃, ε̃) is the constant appearing in Proposition 2.1. Since this

holds for all δ > 0 and for all ρ in a dense subset, we get

dF (L,L′) ≥ C̃ min
{
δ̃, dM (x, L̃′ ∪ F̃1 · · · ∪ F̃|r|−2)

}2

.

In particular, whenever dF (L,L′) < C̃δ̃2, we get

dF (L,L′) ≥ C̃s(L̃, L̃′ ∪ F̃1 · · · ∪ F̃|r|−2)2 (2.3)

by taking the supremum over all x’s.

We now must get rid of the Hamiltonian perturbations on the right-hand side of

(2.3). In order to do so, choose sequences of generic C2- and Hofer-small Hamiltonian

diffeomorphisms {φn}n≥1 and {φ0
n}n≥1, which converges to the identity in the C2

sense. Likewise, for each i ∈ {1, . . . , k}, choose a sequence of generic C0- and Hofer-

small Hamiltonian diffeomorphisms {φin}n≥1 which converges to the identity in the

C0 sense. For each n, there is a J-holomorphic polygon un : Srn →M as above.

By Remark 2.2, as n tends to infinity, the corresponding constants δ̃ and C̃

converge to

δ0 := min

{
ε,
ε

2
r0,

ε

2
i0(K0, r0,Λ),

π

4
√
K0

}
and C = C(K0, r0,Λ, ε), respectively. Furthermore, for any n ≥ 1, x ∈ L, and

y ∈ L′ ∪ F1 · · · ∪ Fk, we have that

dM (x, y) ≤ dM (x, φn(x)) + dM (φn(x), φin(y)) + dM (φin(y), y)

≤ dM (φn(x), φin(y)) + dC0(1, φn) + max
i
dC0(1, φin),

for all i ∈ {0, 1, . . . , k}. Therefore, by taking the infimum over all y and then, the

supremum over all x, we have that

s(φn(L), φ0
n(L′) ∪ φ1

n(F1) ∪ · · · ∪ φkn(Fk)) ≥ s(L,L′ ∪ F1 ∪ · · · ∪ Fk)

− dC0(1, φn)

−max
i
dC0(1, φin).

We can thus finally put this back into (2.3), and take the limit n→∞ to get

dF (L,L′) ≥ Cs(L,L′ ∪ F1 · · · ∪ Fk)2 ≥ Cs(L,L′ ∪ (∪F∈FF ))2, (2.4)

whenever dF (L,L′) < Cδ2
0 . In other words, Inequality (2.3) holds without any

perturbation. One gets similarly the inequalities

dF (L,L′) ≥ Cs(L′, L ∪ (∪F∈FF ))2

dF ′(L,L′) ≥ Cs(L,L′ ∪ (∪F ′∈F ′F
′))2 (2.5)

dF ′(L,L′) ≥ Cs(L′, L ∪ (∪F ′∈F ′F
′))2.

We must now turn the inequalities in (2.4) and (2.5) into an inequality in terms of

δH(L,L′).
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Since (∪F )∩(∪F ′) is discrete by the definition of a Chekanov-type metric, there

exists a constant η′ > 0 such that Bη′(x)∩Bη′(y) = ∅ for all x 6= y ∈ (∪F )∩ (∪F ′).
Furthermore, there exists a constant η′′ = η′′(K0, r0,Λ) > 0 such that any closed

manifold L which is contained in a metric ball Bη′′(x), for some x ∈M , must have

||BL|| > Λ — we refer the reader to Corollary 3.1 in the next section for a precise

estimate of η′′. We set η := min{η′, η′′}.

L

L′ ∪ ((∪F ) ∩ (∪F ′))

Fig. 2. The 3σ-neighborhood of L′ (in light grey) contains the connected component containing

L′ of the σ-neighborhood of L′ ∪ ((∪F ) ∩ (∪F ′)) (in dark grey).

Suppose now that d̂F ,F ′(L,L′) < min{Cδ2
0 , Cη

2} =: R. By the inequalities in

(2.4) and (2.5), we have that

σ := max{s(L,L′ ∪ (∪F )), s(L,L′ ∪ (∪F ′))} < η.

But, by definition of s, L must be in the σ-neighborhood of L′∪(∪F ) and L′∪(∪F ′),
and thus of L′∪((∪F )∩(∪F ′)). However, this neighborhood is composed of a disjoint

union of an open neighborhood of L′ and metric balls of radius < η′′. By the choice

of η′′, L must then be in the component containing L′. However, this component is

itself contained in the 3σ-neighborhood of L′. Therefore, 3σ ≥ s(L,L′). By taking

the maximum of the inequality in (2.3) and the second inequality of (2.5), we get

d̂F ,F ′(L,L′) ≥ Cσ2 ≥ C

9
s(L,L′)2.

Doing the same thing for the first and third inequalities of (2.5) finishes the proof.

The C appearing in the statement of Theorem 2.1 is thus equal to 1
36c , where c is

the constant of Lemma 2.1.

Remark 2.4.
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• If one is only interested in the statement of Theorem A and is willing to restrict

oneself to the case when M is compact, then the standing hypothesis that (∪F )∩
(∪F ′) is discrete can be loosened up. More precisely, we can suppose that (∪F )∩
(∪F ′) is only totally disconnected.

In that case, a sequence {Ln}n≥1 must have a converging subsequence; this

is because the collection of closed subsets of M with the Hausdorff metric is

compact. Denote by E its limit set. Since the inequalities in (2.4) and (2.5)

still stands — with L replaced by Ln and L′ by L0 — the limit E must lie in

L0 ∪ ((∪F )∩ (∪F ′)). However, a sequence of connected subsets must converge to

a connected one (see [36] for instance). But, by the argument above, it cannot

converge to a point. Therefore, we must have E ⊆ L0. Using an analogous argu-

ment for the first and last inequality in (2.5), we get L0 ⊆ E ∪ ((∪F ) ∩ (∪F ′)).
Thus, L0 ⊆ E by the same connectivity argument. Therefore, any converging

subsequence of {Ln}n≥1 converges to E = L0, which means that {Ln}n≥1 itself

converges to L0 in the Hausdorff metric.

• Likewise, to prove Theorem A, there is no need for the weak-exactness hy-

pothesis on L L0(M) in the spectral case. Indeed, for n large, we will have

γ(L0, Ln) < ~(M,L0, J). Therefore, we will still have a J-holomorphic strip be-

tween Hamiltonian deformations of L0 and Ln. The rest of the proof then follows

as above. The same is true of γext.

3. The two-dimensional case

We now explain how to prove the second part of Theorem A. More precisely, we

will prove the following.

Theorem 3.1. Suppose that dimM = 2. For any Chekanov-type metric d̂F ,F ′

on L ?
Λ(M), there exist constants R′ = R′(K0, r0,Λ, (∪F ) ∩ (∪F ′)) > 0 and C ′ =

C ′(K0, r0) > 0 such that whenever d̂F ,F ′(L,L′) < R′, then

d̂F ,F ′(L,L′) ≥ C ′δH(L,L′)2.

As noted in the introduction, the key to getting rid of the dependency of both R

and C on ε is to use the two-dimensionality of M in order to make a better choice of

a metric ball in M before applying the following version of the monotonicity lemma.

Proposition 3.1 (Monotonocity lemma, absolute version). Let (M,ω, J, gJ)

be a symplectic manifold equipped with a compatible almost complex structure and

the corresponding metric. Let Σ be a compact Riemann surface with boundary ∂Σ.

Consider a nonconstant J-holomorphic curve u : (Σ, ∂Σ) → (B(x, r), ∂B(x, r)),

where x ∈M and r ≤ 1
2r0. Suppose that x ∈ u(Σ). Then,

ω(u) ≥ C ′r2,

where C ′ = 1
4c′ , with c′ the constant of Lemma 2.1.
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Proof. We make use of the same notation as in the proof of Proposition 2.1. Since

u does not have boundary components along some Lagrangian submanifold L, the

boundary ∂Σt is only composed of disjoint loops βj . Therefore, we now get

a(t) =
∑
j

a(βj) ≤
∑
j

c′`(βj)
2 = c′`(t)2.

The rest of the proof than follows as in Proposition 2.1.

Let L and L′ be Lagrangian submanifolds of M , i.e. closed connected curves on

M , and let L̃ and L̃′ be sufficiently small generic Hamiltonian deformations of them.

Take x ∈ L̃ ∪ L̃′. Let u : Sr → M be the J-holomorphic polygon with boundary

along L and L′ — and potentially some other Lagrangian submanifolds — passing

through x given by the definition of a Chekanov-type metric. If u is a sphere, i.e.

|r| = 0, we can just apply Proposition 3.1 directly on it and the rest of the proof

is as before. If u is not a sphere, i.e. |r| ≥ 1, we can still use Proposition 3.1 if we

find an open disk which is entirely contained in u(intSr). To prove Theorem 3.1, it

thus suffices to prove the following purely geometric result.

Theorem 3.2. Let M be a complete surface with Gaussian curvature |K| ≤ K0

and injectivity radius rinj(M) ≥ r0 > 0. Let L,K1, . . . ,Kk be connected curves on

M such that L has geodesic curvature uniformly bounded by Λ. Let x ∈ L − ∪iKi.

Suppose that there exists a smooth map u : Sr →M , 1 ≤ |r| ≤ k+1, with boundaries

along L,K1, . . . ,Kk passing through x (in the notation of Subsec. 2.1). Then, there

exists a constant

ρ0 = ρ0(K0, r0,Λ, dM (x,∪iKi)) > 0

such that u(intSr) contains a metric ball of radius ρ0.

We allow k to be zero, in which case it is understood that Sr = D, ∪iKi = ∅, and

dM (x,∪iKi) =∞ for any x ∈ L. Note that the curves L,K1, . . . ,Kk in Theorem 3.2

need not be closed. This is because everything is happening in u(Sr), and thus the

global properties of the curves do not matter. In particular, we could very much

take |s| = k + 1, L = u(C0), and Ki = u(Ci) for i > 0.

Although it was developed independently, our proof of Theorem 3.2 uses a similar

approach to a recent proof by Petrunin and Zamora Barrera of the so-called Moon

in a puddle theorem [31]. We recover their result by taking M to be the Euclidean

plane and k to be zero. Indeed, one can check that, in this case, ρ0 = 1
Λ .

Remark 3.1. Much like the constants C, C ′ and i0, the constant ρ0 depends

continuously on K0, r0, Λ, and dM (x,∪iKi).

3.1. Finding a good disk

The proof of Theorem 3.2 relies mostly on the following technical lemma, whose

proof we will delay until the next subsection.

Lemma 3.1. Let M be a complete Riemannian manifold of dimension n ≥ 2 with
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|K| ≤ K0 and rinj(M) ≥ r0 > 0. There exist constants ρ1 = ρ1(K0, r0) > 0 and

α = α(K0, r0) > 0 with the following property. Let Γ : [0, `] → M be a unit-speed

curve with image in Bρ(x) for some 0 < ρ ≤ ρ1 and some x ∈ M . Consider the

map

d : [0, `] R≥0

s dM (x,Γ(s)).

Suppose that d has a local maximum at s0 ∈ (0, `). Then,∣∣∣∣Dds Γ̇(s0)

∣∣∣∣ ≥ α

ρ
.

By taking M = R2 and the limit K0 → 0, we recover the classical fact that, on

a loop contained in a disk of radius ρ > 0, there is a point were its curvature is at

least 1
ρ .

Before going in the proof of Theorem 3.2, we note that Lemma 3.1 gives a precise

bound on the smallest metric ball that a submanifold L with second fundamental

form ||BL|| ≤ Λ can be contained in.

Corollary 3.1. Let M , K0, ρ0, and α be as above. Let L be a closed submanifold

of M contained in a metric ball Bρ(x) for some 0 < ρ ≤ ρ0 and some x ∈M . Then,

its second fundamental form respects

||BL|| ≥
α

ρ
.

Proof. Since L is closed, there is a point y ∈ L such that the map x′ 7→ dM (x, x′),

seen as a map L→ R, achieve its maximum at y. Let γ : (−ε, ε)→ L be a unit-speed

geodesic of L such that γ(0) = y. By Lemma 3.1, we have that∣∣∣∣∣BL
(
γ̇(0), γ̇(0),

D
ds γ̇

|Dds γ̇|
(0)

)∣∣∣∣∣ =

∣∣∣∣Ddsγ̇(0)

∣∣∣∣ ≥ α

ρ
.

We now begin the proof of Theorem 3.2 in the case k = 0. This implies in

particular that Sr = D and that L = u(∂D) is a contractible loop. We will explain

how to adapt the proof to the case k > 0 afterwards. Note that u(D) must cover a

contractible region bounded by L. Without loss of generality, we can suppose that

u(intD)) is entirely contained in the interior of that region.

Let us first reduce to the case where M is simply connected. Suppose that it is

not. We then consider its universal cover π : M̃ → M . Note that M̃ comes natu-

rally equipped with a Riemannian metric π∗g, which turns π into a local isometry.

Therefore, we have that the Gaussian curvature of M̃ respects |K̃| ≤ K0 and that

rinj(M̃) ≥ rinj(M) ≥ r0. The inequality between the injectivity radii follows from

the classical result of Klingenberg [24] that

rinj(M) = min

{
rconj(M),

1

2
`(M)

}
. (3.1)
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Here, rconj(M) is the length of the shortest geodesic segment γ : [0, T ] → M such

that there exists a normal Jacobi field J along γ with J(0) = J(T ) = 0. Likewise,

`(M) is the length of the shortest immersed geodesic loop on M . Therefore, the

metric bounds on M are also respected by M̃ . Likewise, since D is contractible, u

admits a lift ũ : D→ M̃ .

It thus indeed suffices to prove Theorem 3.2 on the universal cover: if Bρ0(x̃)

is the metric ball in M̃ given by the theorem, then Bρ0(π(x̃)) = π(Bρ0(x̃)) will be

the sought-after ball in M . Note that this is indeed a topological ball as we may

take ρ0 ≤ r0. Therefore, for the rest of the proof, we will assume that M is simply

connected.

We now fix an injective unit-speed parametrization Γ : [0, `]→M of L = u(∂D).

We may suppose that Γ(0) = Γ(`) 6= x.

The proof has three main steps.

(i) We define a notion of an “osculating disk” Dρ(s) of the curve Γ at s. This disk is

a closed metric ball of M which has the property that Dρ(s)∩Γ([s− ε, s+ ε]) ⊆
∂Dρ(s) for some ε > 0.

(ii) We find t0, s0 ∈ [0, `] with the following property: if there is some s ∈ [t0, s0]

such that int(Dρ(s)) * u(intD) (i.e. such that Dρ(s) ∩ u(∂D) * ∂Dρ(s)), then

there also exists t ∈ [t0, s0] such that Γ(t) ∈ int(Dρ(s)).

(iii) We suppose that Dρ(s) ∩ u(∂D) * ∂Dρ(s) for all s ∈ [s0, t0], and we get a

contradiction.

Denote by rconv(M) the convexity radius of M , i.e. the largest ρ > 0 such that,

for all x ∈M and all y, y′ ∈ Bρ(x), there exists a unique minimizing geodesic from

y to y′ in Bρ(x). It is a classical result from Berger [4] that

rconv(M) ≥ 1

2
min

{
rinj(M),

π√
K0

}
.

By taking a smaller ρ0 if necessary, we may assume that ρ0 ≤ min{ r02 ,
π

2
√
K0
, ρ1}.

Therefore, ρ ≤ ρ0 implies that ρ0 ≤ rconv(M) and that ρ respects Lemma 3.1.

Remark 3.2. In fact, a more recent result of Dibble [13] gives

rconv(M) = min

{
rfoc(M),

1

4
`(M)

}
, (3.2)

where rfoc(M) is the length of the shortest geodesic segment γ : [0, T ] → M such

that there exists a normal Jacobi field J along γ with J(0) = 〈J ′, J〉(T ) = 0. This

can be used to give a better estimate on the optimal ρ0 for a given (M, gJ).

We thus begin with the definition of Dρ(s). Let s ∈ (0, `) and ρ ∈ (0, ρ0). We

define Dρ(s) to be the closed metric ball Bρ(γs(ρ)). Here, γs(t) := expΓ(s)(tN(s))

for t ∈ [0, rinj(M)], and N is the unit-length vector field along Γ which is orthogonal

to Γ̇ and pointing toward the interior of the topological disk u(D).

Lemma 3.2. Let s ∈ (0, `) and ρ ∈ (0,min{αΛ , ρ1}), where ρ1 and α are the con-
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stant appearing in Lemma 3.1. There exists ε > 0 such that

Dρ(s) ∩ Γ([s− ε, s+ ε]) ⊆ ∂Dρ(s).

We also put off the proof of the lemma until the next subsection. In order to use

Lemma 3.2 for the rest of the proof, we thus add the condition that ρ0 ≤ α
Λ and

take ρ ∈ (0, ρ0).

We now make our choice of t0 and s0. Let t0 ∈ (0, `) be such that Γ(t0) = x. If

we have that

Dρ(t0) ∩ Γ([0, `]) ⊆ ∂Dρ(t0) (3.3)

then we have obviously proven the theorem.

Suppose therefore that Dρ(t0) ∩ Γ([0, `]) * ∂Dρ(t0). Fix s0 ∈ (0, `) such that

dM (Γ(t0),Γ(s0)) = min{dM (Γ(t0),Γ(s)) | s ∈ [0, `],Γ(s) ∈ Dρ(t0)}. (3.4)

By shifting the parametrization Γ, we may assume that s0 ∈ (0, `). We must have

that Γ(s0) ∈ intDρ(t0) and, by Lemma 3.2, s0 6= t0. Without loss of generality, we

may assume that s0 > t0.

Denote by [Γ(t0),Γ(s0)] the unique minimizing geodesic segment in Dρ(t0) from

Γ(t0) to Γ(s0). Note that [Γ(t0),Γ(s0)] ∩ Γ([0, `]) = {Γ(t0),Γ(s0)} by minimality of

the geodesic and the definition of s0. Then, Γ([t0, s0]) ∪ [Γ(t0),Γ(s0)] is a contin-

uously embedded loop in M . Therefore, since M is simply connected, it bounds a

topological disk ∆0 and dividesM in two parts. Note that ∆0 is a contractible subset

of the topological disk u(D) by embeddedness of the geodesic segment [Γ(t0),Γ(s0)].

We now get to the proof that [t0, s0] has the desired property, i.e. the proof of

the second step. Let s ∈ [t0, s0] be such that int(Dρ(s)) is not contained in u(intD)

and take

p ∈ int(Dρ(s)) ∩ u(∂D) ⊆ int(Dρ(s))− u(intD). (3.5)

Since the curve ∂∆0 divides M in two, the minimizing geodesic from Γ(s) to p must

intersect ∂∆0 = Γ([t0, s0]) ∪ [Γ(t0),Γ(s0)] at some point y. Indeed, this geodesic

exists, is unique, and is contained in Dρ(s), since ρ < rconv(M) ≤ rinj(M). Fur-

thermore, since p ∈ int(Dρ(s)), it only intersects ∂Dρ(s) at Γ(s). But remember

that γs was chosen precisely so that γ̇s(0) points towards the interior of u(D),

and thus towards int(∆0). In particular, for a small enough neighborhood U of

Γ(s), U ∩ int(Dρ(s)) in contained in int(∆0). This in turn implies that the segment

[Γ(s), p]∩U must be inside int(∆0). Since p /∈ u(intD) and int(∆0) ⊆ u(intD), the

geodesic must intersect ∂∆0 at some point y as desired (cf. Figure 3). Note that we

have that y ∈ int(Dρ(s)) and that dM (p, y) < dM (p,Γ(s)).

If y ∈ Γ([t0, s0]), then we have y = Γ(t) ∈ Dρ(s) for some t ∈ [s0, t0] as desired.

Suppose therefore that y ∈ [Γ(t0),Γ(s0)]. Clearly, it suffices to prove that either

Γ(t0) or Γ(s0) is in Dρ(s) to prove the second step. We thus suppose that it is not

the case and get a contradiction. In this case, [Γ(t0),Γ(s0)] divides Dρ(s) in exactly

two parts, both with nonempty interior. Indeed, y ∈ [Γ(t0),Γ(s0)] ∩ int(Dρ(s)).



March 14, 2023 12:4 WSPC/INSTRUCTION FILE convergence4

Convergence and Riemannian bounds on Lagrangian submanifolds 23

Moreover, if Dρ(s)− [Γ(t0),Γ(s0)] had more than two components, we would get a

contradiction. To see this, note that it is equivalent to [Γ(t0),Γ(s0)]∩Dρ(s) having

more than one component. However, if q, q′ ∈ [Γ(t0),Γ(s0)] ∩Dρ(s) were to belong

to different components, there would still be a minimizing geodesic segment [q, q′]

in Dρ(s). But then

`([Γ(t0), q] ∪ [q, q′] ∪ [q′,Γ(s0)]) < `([Γ(t0),Γ(s0)]) = dM (Γ(t0),Γ(s0)),

which is of course impossible. Furthermore, since

dM (Γ(t0),Γ(s0)) ≤ dM (Γ(t0), γt0(ρ)) + dM (γt0(ρ),Γ(s0)) < 2ρ,

the segment [Γ(t0),Γ(s0)] cannot intersect γs(ρ). Therefore, γs(ρ) must lie in the

interior of one of the component of Dρ(s)− [Γ(t0),Γ(s0)].

Suppose at first that γs(ρ) lies in the same component as Γ(s). We begin by

showing that this implies that p ∈ Dρ(t0). Suppose that it does not. Denote by A the

intersection of ∂Dρ(s) and the component of Dρ(s) − [Γ(t0),Γ(s0)] not containing

γs(ρ). By minimality of [Γ(t0),Γ(s0)], A is an embedded arc. Furthermore, since

∂A ⊆ [Γ(t0),Γ(s0)], we have that ∂A ⊆ Dρ(t0). However, since p /∈ Dρ(t0), A is not

entirely contained in Dρ(t0). In particular, the function q 7→ dM (γt0(ρ), q), q ∈ A,

achieves its maximum at a point q ∈ A− ∂A. This implies that A must be normal

to the geodesic segment [γt0(ρ), q] at q — to see this, one can consider the energy

functional along the minimal geodesics from γt0(ρ) to A and use the fact that it

has a critical point at q. But by construction, A is also normal to the geodesic

segment [γs(ρ), q]. Since dimM = 2 and d(γt0(ρ), q) > ρ = d(γs(ρ), q), this means

that [γs(ρ), q] ( [γt0(ρ), q].

Denote by q′ the intersection of the geodesic segments [γt0(ρ), q] and

[Γ(t0),Γ(s0)]. Suppose at first that dM (Γ(t0), q′) ≤ ρ. Then, [γt0(ρ), q′] ⊆ Bρ(Γ(t0)),

since ρ < rconv(M). However, γs(ρ) ∈ [γt0(ρ), q′], and thus dM (Γ(t0), γs(ρ)) ≤ ρ.

This leads to a contradiction since we have supposed that Γ(t0) /∈ Dρ(s). Therefore,

it must be so that dM (Γ(t0), q′) > ρ. In particular,

dM (Γ(s0), q′) = dM (Γ(s0),Γ(t0))− dM (q′,Γ(t0)) < 2ρ− ρ = ρ

However, by definition of s0, dM (γt0(ρ),Γ(s0)) < ρ. Therefore, we have that

[γt0(ρ), q′] ⊆ Bρ(Γ(s0)) similarly as before. Thus, dM (γs(ρ),Γ(s0)) < ρ and

Γ(s0) ∈ Dρ(s), which is again a contradiction. Therefore, it must be so that

p ∈ Dρ(t0).

We now finally prove that γs(ρ) cannot lie in the same component of Dρ(s) −
[Γ(t0),Γ(s0)] as Γ(s). Recall that y is the intersection of the geodesic segments

[Γ(t0),Γ(s0)] and [γs(ρ), p]. Denote by z the intersection of [y,Γ(s0)] and ∂Dρ(s)

— once again, minimality of the geodesic ensures that this is indeed a point. By
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definition of y, we have that

dM (y, p) = dM (γs(ρ), p)− dM (γs(ρ), y)

≤ ρ− dM (γs(ρ), y)

≤ dM (γs(ρ), y) + dM (y, z)− dM (γs(ρ), y)

< dM (y,Γ(s0)).

Indeed, [γs(ρ), y]∪[y, z] is a path from the center of a ball of radius ρ to its boundary,

and thus must be of length at least ρ.

γs(ρ)

y

z
p

Γ(t0)

Γ(s0)

Γ(s)

Fig. 3. Some relevant geodesic segments (hatched lines) and points in the disk Dρ(s) (in light

grey). The wavy region represents the interior of the topological disk ∆0.

Therefore, we get

dM (Γ(t0), p) ≤ dM (Γ(t0), y) + dM (y, p)

< dM (Γ(t0), y) + dM (y,Γ(s0))

= dM (Γ(t0),Γ(s0)).

By minimality of s0, this implies that

p /∈ Γ([0, `]) (3.6)

which is of course a contradiction since Γ([0, `]) = u(∂D).

Therefore, γs(ρ) and Γ(s) must lie in different components of Dρ(s) −
[Γ(t0),Γ(s0)]. But this once again leads to a contradiction by the same logic as

what we have just done: it suffices to replace every occurrence of p by Γ(s), and

vice versa. Thus, it must be so that either Γ(t0) or Γ(s0) is in Dρ(s), and the second

step of the proof is done.
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For the third and final step of the proof, we suppose that Dρ(s) ∩ Γ([t0, s0]) *
∂Dρ(s) for all s ∈ [t0, s0]. By the previous step of the proof, if we get a contradiction,

then we will have completed the proof. Fix ε ∈ (0, ρ0 − ρ). Suppose that there

exist s 6= t ∈ [t0, s0] such that Γ(t) ∈ int(Dρ(s)) and Γ([t, s]) ⊆ Bρ+ε(γt(ρ)).

By Lemma 3.2, the function d(τ) = dM (γs(ρ),Γ(τ)) has a minimum at s. Since

dM (γs(ρ),Γ(s)) < ρ = dM (γs(ρ),Γ(t)), this thus implies that d has a maximum at

some point s′ ∈ (t, s). Therefore, by Lemma 3.1, we have that∣∣∣∣Dds Γ̇(s′)

∣∣∣∣ ≥ α

ρ+ ε
> Λ,

which is a contradiction.

∣∣∣Dds Γ̇
∣∣∣ > Λ

Γ(sn)

Γ(tn)

Γ(s2)

Γ(t2)

Γ(s1)

Γ(t1)

Γ(s0)

Γ(t0)

Fig. 4. Multiple disks of the form Dρ(ti) (in light grey) with the inevitable point in Bρ+ε(γtn (ρ))

breaking the curvature constraint (both in dark grey).

Summarizing what we have shown, for all s ∈ [t0, s0], there exists t ∈ [t0, s0]

such that Γ(t) ∈ int(Dρ(s)). However, for all such t and s, we have that Γ([t, s]) *
Bρ+ε(γt(ρ)). In particular, we have that s0−t0 ≥ 2ε. Take t1 := t0+ε. Note that, for

any s ∈ [t0, t1), we cannot have Γ(s) ∈ int(Dρ(t1)), since Γ([s, t1]) ⊆ Bρ+ε(γt1(ρ)).

Therefore, we may take s1 ∈ (t1, s0] such that

dM (Γ(t1),Γ(s1)) = min{dM (Γ(t1),Γ(s))|s ∈ [t0, s0],Γ(s) ∈ Dρ(t1)}.

Note that the second step of the proof stays true when we replace [t0, s0] for [t1, s1].

In particular, we can similarly define t2 := t1 + ε and s2 ∈ [t1, s1]. Continuing like
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this, we inductively define tn+1 := tn + ε and sn+1 ∈ (tn+1, sn] such that

dM (Γ(tn+1),Γ(sn+1)) = min{dM (Γ(tn+1),Γ(s))|s ∈ [tn, sn],Γ(s) ∈ Dρ(tn+1)}

for all n ≥ 0. But of course, by construction,

2ε ≤ sn − tn ≤ s0 − t0 − nε.

Therefore, we run into a contradiction for n large enough. This finally concludes

the proof of Theorem 3.2 for the case k = 0.

When k > 0, the preparation is very similar to the basic case; we mostly just

need to replace every D by Sr. Indeed, we can still lift everything to the univer-

sal cover, and the inequality d
M̃

(x̃, ỹ) ≥ dM (π(x̃), π(ỹ)) ensures that estimates on

dM (x,∪iKi) will lift to appropriate estimates upstairs. Likewise, we can still as-

sume that u(intSr) is entirely contained in the interior of the region bounded by

u(∂D) — which may now no longer be contractible however (cf. Figure 5).

Note however that Γ now parametrizes the closure of the segment of u(∂Sr) in

L containing x, i.e. u(C0) in the notation of Subsec. 2.1. In particular, Γ(0),Γ(`) ∈
L ∩ (∪ki=1Ki). By assuming that 2ρ0 ≤ dM (x,∪iKi), we make sure that

int(Dρ(t0)) ∩
(
u(∂Sr)− Γ([0, `])

)
= ∅.

Therefore, the fact that (3.3) directly implies the result is still true. Likewise, we

have that Γ(0),Γ(`) /∈ Dρ(t0) for all ρ < ρ0. Thus, it must be that s0 ∈ (0, `) by

(3.4).

As for the proof proper, the first and third steps stay unchanged. However, in

the second step, we need to change (3.5) by

p ∈ int(Dρ(s)) ∩
(
u(∂Sr)− u(intSr)

)
.

This is because the various Ki’s may intersect L, and thus some part of u(∂Sr) may

lie inside ∆0 without that causing a contradiction (see Fig. 5 for an example of this

phenomenon).

Since we have that

[Γ(t0),Γ(s0)] ∩ (u(∂Sr)− Γ([0, `])) ⊆ Dρ(t0) ∩ (u(Sr)− Γ([0, `])) = ∅.

much of the proof stays nonetheless the same as before. Note however that we no

longer have the equality Γ([0, `]) = u(∂Sr) in (3.6). We still get a contradiction by

noting that

dM (Γ(t0), p) ≤ dM (Γ(t0),Γ(s0)) < 2ρ < dM (Γ(t0),∪iKi),

thus also forcing p /∈ u(∂Sr)− Γ([0, `]).

Remark 3.3. Summarizing all the choices that have been made for ρ0, we can take

ρ0 = min

{
r0

2
,

π

2
√
K0

, ρ1,
α

Λ
,

1

2
dM (x,∪iKi)

}
,

where ρ1 and α are the constants appearing in Lemma 3.1. As we will see below,

ρ1 →∞ and α→ 1 as K0 → 0. Therefore, when k = 0, we get ρ0 → 1
Λ as K0 → 0

and r0 →∞, thus indeed recovering the Moon in a puddle theorem.
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L K

Γ(t0)

Γ(s0)

Fig. 5. An osculating disk (in dark grey) in the topological disk ∆0 (wavy region) satisfying the
conclusion of Theorem 3.2, but intersecting u(∂Sr) nontrivially.

3.2. Proof of technical results

We now give the two proofs we had omitted in the previous subsection.

We now give the two proofs we had omitted in the previous subsection.

Proof of Lemma 3.1. The proof is done in two steps.

(i) For a well-chosen variation of the minimal geodesic from x to Γ(s), we use the

second variation formula for the energy functional to get that∣∣∣∣Dds Γ̇(s0)

∣∣∣∣ ≥ I

ρ

for some I > 0 depending on the variation.

(ii) We use results on Jacobi fields to get a lower bound on I.

We begin with the proof of the first step. For ε > 0 small enough, we consider

the variation

h : [0, 1]× (−ε, ε) M

(t, s) γs(t) := expx(tΓ̃(s0 + s)),

where expx(Γ̃(s0 + s)) = Γ(s0 + s). In particular, d(s) = `(γs). Therefore, since the

length and energy functionals have the same critical points, and that d achieve its
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maximum at s0, we have that

0 =
1

2
E′(0) =

〈
∂h

∂s
,
∂h

∂t

〉
(1, 0)−

〈
∂h

∂s
,
∂h

∂t

〉
(0, 0) (3.7)

and

0 ≥ 1

2
E′′(0) = I

(
∂h

∂s
,
∂h

∂s

)
+

〈
D

∂s

∂h

∂s
,
∂h

∂t

〉
(1, 0)−

〈
D

∂s

∂h

∂s
,
∂h

∂t

〉
(0, 0). (3.8)

Here, I denotes the index form of γ := γ0. For vector fields V and W along γ, it is

defined as

I(V,W ) =

∫ 1

0

(〈
DV

dt
,
DW

dt

〉
− 〈R(γ̇, V )γ̇,W 〉

)
dt.

Note that the last term on the right-hand side of (3.8) is zero since h(0, s) = x for

all s. Furthermore, the middle term can be bounded from below:〈
D

∂s

∂h

∂s
,
∂h

∂t

〉
(1, 0) =

〈
D

ds
c′(s0), γ̇(1)

〉
≥ −

∣∣∣∣Ddsc′(s0)

∣∣∣∣ |γ̇(1)|

= −
∣∣∣∣Ddsc′(s0)

∣∣∣∣ d(s0)

≥ −
∣∣∣∣Ddsc′(s0)

∣∣∣∣ ρ.
Therefore, (3.8) turns into the desired bound of

∣∣D
dsc
′(s0)

∣∣ in terms of I = I(∂h∂s ,
∂h
∂s )

and ρ.

We now turn to the second step of the proof. First of all, note that J(t) :=
∂h
∂s (t, 0) is a Jacobi field along γ. Therefore, since ρ < rinj(M), we have that J(t) 6= 0

for all t > 0. Furthermore, (3.7) implies that J(1) and γ̇(1) are orthogonal, since

the last term on the right-hand side is zero, as noted previously. The same is then

true of J(t) and γ̇(t) for all t by standard results on Jacobi fields. Therefore, the

index form simplifies slightly:

I =

∫ 1

0

(
|J̇ |2 −K (γ̇, J) |J |2|γ̇|2

)
dt ≥

∫ 1

0

(
|J̇ |2 −K0d(s0)2|J |2

)
dt,

where J̇ := D
dtJ .

However, we have that

|J̇ ||J | ≥ |〈J̇ , J〉| = |γ̇| |(Hess ρ)(J, J)| = d(s0) |(Hess ρ)(J, J)| ,

where ρ is the distance function from x. Therefore, by the Hessian comparison
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theorem (see for example [16]) and the Rauch comparison theorem, we get that

I ≥
∫ 1

0

(
cot2(

√
K0d(s0)t)− 1

)
K0d(s0)2|J(t)|2dt

≥ | ˙̃Γ(s0)|2
∫ 1

0

(
cot2(

√
K0d(s0)t)− 1

)
sin2(

√
K0d(s0)t)dt

=
sin(2

√
K0d(s0))

2
√
K0d(s0)

| ˙̃Γ(s0)|2.

But, using the Rauch comparison theorem again, we get

1 = |Γ̇(s0)| = |(d expx)Γ̃(s0)(
˙̃Γ(s0))| ≤ sinh(

√
K0d(s0))√

K0d(s0)
| ˙̃Γ(s0)|.

Therefore, this finally implies that

I ≥
√
K0d(s0) sin(2

√
K0d(s0))

2 sinh2(
√
K0d(s0))

.

However, the function τ 7→ (τ sin(2τ))/(2 sinh2(τ)) is positive and decreasing on

(0, π2 ). Therefore, if we take

ρ1 := min

{
r0,

π

2
√
K0

}
− ε

for any ε > 0 small enough, than we will have

I ≥
√
K0ρ1 sin(2

√
K0ρ1)

2 sinh2(
√
K0ρ1)

=: α > 0,

which concludes the proof of the lemma.

Proof of Lemma 3.2. We suppose the contrary and get a contradiction as follows.

(i) Since Dρ(s)∩Γ([s−ε, s+ε]) * ∂Dρ(s) for all ε > 0, there must exist a decreasing

sequence {εn}n≥1 ⊆ R>0 converging to 0 such that Γ(s ± εn) ∈ Dρ(s) for

all n ≥ 1. By passing to a subsequence and changing the orientation of the

parametrization Γ if needed, we may assume that Γ(s + εn) ∈ Dρ(s) for all

n ≥ 1.

(ii) Since Γ is parametrized by arclength, we have the inclusion Γ((s, s + εn)) ⊆
Bρ+εn(γs(ρ)). We recall that γs(ρ) = expΓ(s)(ρN(s)), and N is the unit-length

vector field along Γ which is orthogonal to Γ̇ and pointing toward the interior

of the topological disk u(Sr).

(iii) Suppose that for all n ≥ 1, there exists sn ∈ (s, s+ εn) such that

dM (γs(ρ),Γ(sn)) ≥ ρ.

Note that sn → s, because εn → 0. Furthermore, sn is a local maximum of

d(σ) = dM (γs(ρ),Γ(σ)) since dM (γs(ρ),Γ(s)) = dM (γs(ρ),Γ(s + εn)) = ρ by
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construction. By applying Lemma 3.1 to Γ|[s,s+εn], we get∣∣∣∣Dds Γ̇(s)

∣∣∣∣ = lim
n→∞

∣∣∣∣Dds Γ̇(sn)

∣∣∣∣
≥ lim
n→∞

α

ρ+ εn

=
α

ρ

> Λ,

which is of course a contradiction. Therefore, it must be that Γ([s, s + εn]) ⊆
Dρ(s) for all n ≥ 1.

(iv) Note that s must be a critical point of the function d of Lemma 3.1 for x = γs(ρ).

Indeed, those correspond to the critical points of the energy functional along

the variation h(τ, t) = expγs(ρ)(τ Γ̃(s+ t)), where expγs(ρ)(Γ̃(s+ t)) = Γ(s+ t).

But, for such a variation,

1

2
E′(0) =

〈
∂h

∂t
,
∂h

∂τ

〉
(1, 0)

=

〈
Γ̇(s),

d

dτ
expγs(ρ)(τ Γ̃(s))

∣∣∣∣
τ=1

〉
=

1

ρ

〈
Γ̇(s),−N(s)

〉
= 0.

Indeed, the path τ 7→ expγs(ρ)(τ Γ̃(s)) is the unique minimizing geodesic of

speed |Γ̃(s)| = ρ from γs(ρ) to Γ(s). This is just γs parametrized in the opposite

orientation and with a different speed.

Furthermore, the fact that Γ([s, s + εn]) ⊆ Dρ(s) for all n ≥ 1 implies

that d must have nonpositive second derivative at s. This in turn implies that

E′′(0) ≤ 0. Therefore, all the proof of Lemma 3.1 still works, and we get a

contradiction: ∣∣∣∣Dds Γ̇(s)

∣∣∣∣ ≥ α

ρ
> Λ.

4. Badly-behaved sequences

We conclude this paper with examples of sequences of Lagrangian submanifolds.

These sequences show that bounds of curvature type are needed to ensure conver-

gence in the Hausdorff metric.

Consider the sequence of Hamiltonians {Hn(x, y) := 1
n sin(nx)}n≥1 on the 2-

torus T2 = R2/2πZ2. We equip the torus with the standard symplectic form ω0,

the standard complex structure J0, and the flat metric g0 = gJ0 . A quick calculation

shows that the induced Hamiltonian flow of Hn is given by

φtn(x, y) = (x, y + t cos(nx)),
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for all t ≥ 0, n ≥ 1 and (x, y) ∈ T2. We then set

L0 := {y = 0} and Ln := φ1
n(L0) = {y = cos(nx)}.

L0

L2

L0

L10

Fig. 6. Ln as n gets larger

Note that dH(L0, Ln) = 2
n , and thus Ln tends to L0 in the Lagrangian Hofer

metric. Indeed, 2
n is an upper bound of dH(L0, Ln), since it is the oscillation of Hn.

On the other hand, by Corollary 3.13 of [3], dH(L0, Ln) is bounded from below by

the area of a strip. However, it is clear that such a strip must have area at least 2
n .

On the other hand, as Fig. 6 suggests, Ln tends to the full band {−1 ≤ y ≤ 1}
in the Hausdorff metric δH induced by the flat metric. Therefore, even though the

sequence converges in both metric, the limits are quite different. Actually, we have

that δH(L0, Ln) ≡ 1.

The conjecture does not apply to this sequence of Lagrangian submanifolds, as

the norm of the second fundamental form is clearly unbounded. Actually, a quick

calculation gives that

||BLn || = max
p∈Kn

|κ(p)| = n,

where κ denotes the geodesic curvature.

Note that this example can easily be generalized to higher dimensional tori.

Likewise, by multiplying Hn by a cutoff function, this example can be transposed

to any symplectic manifold using a Darboux chart. Finally, since dH bounds from

above every other metric mentioned in the introduction, this problem applies to

every known metric for which Theorem A holds. In other words, this is a universal

example.

However, it is possible to get a sequence of Lagrangian submanifolds with ex-

ploding curvature, but where limits in a Chekanov-type metric and the Hausdorff

metric coincide. For example, one can do the analogous construction as above, but

with Hamiltonians Gn := 1√
n
Hn. Indeed, the associated Hamiltonian flows are

ψtn(x, y) =

(
x, y +

t√
n

cos(nx)

)
,
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and we get the Lagrangian submanifolds

Kn := ψ1
n(L0) =

{
y =

1√
n

cos(nx)

}
.

By arguments similar to the above, one gets dH(L0,Kn) = 2n−3/2 and

δH(L0,Kn) = n−1/2. Therefore, Kn tends to L0 in both the Lagrangian Hofer

and the Hausdorff metric. However, it is easy to calculate that the maximum of the

curvature of Kn is given by

max
p∈Kn

|κ(p)| =
√
n.

This, of course, tends to infinity as n tends to infinity.

Remark 4.1. Note that, in the sequence {Ln} above, not only does ||BLn || tend

to infinity, but it is also impossible to uniformly tame the Lagrangian submanifolds

in the sequence. Indeed, the distance between two successive zeroes of y = cos(nx)

is π
n in M , but is at least 2 in Ln. Therefore,

lim
n→∞

inf
x 6=y∈Ln

dM (x, y)

min{1, dL(x, y)}
= 0.

We expect this phenomenon to be general: when M is simply connected, control

over the second fundamental form should give enough control over tameness for the

proof of Theorem 2.1 to still work. It would then be possible to pass to the universal

cover to get the desired result, just as we have done in the proof of Theorem 3.1.

In order to clarify our intuition, let us note that L being ε-tame is equivalent to

the following condition: for all x ∈ L, and for all y ∈ Bε(x) ∩ L, we have that

dM (x, y) ≤ 1

ε
dL(x, y). (4.1)

It is quite clear that any type of bound on curvature cannot stop ε from being

arbitrarily small at some point x ∈ L. On the hand, as Fig. 4 from the previous

section suggests, having this condition at every x ∈ L should force a certain lower

bound on ||BL||. Therefore, for any L ∈ L ?
Λ(M), there should be some x ∈ L where

the optimal epsilon appearing in (4.1) is bounded from below by some constant

e = e(K0, r0,Λ) > 0. We could then apply Proposition 2.1 on some appropriate

metric ball centered at this x; the size of the ball would only depend on K0, r0, and

Λ.
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