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Abstract

We address the following problem: if a Hamiltonian diffeomorphism maps
a Lagrangian submanifold 𝐿 to a small Weinstein neighborhood of 𝐿, is the
image necessarily Hamiltonian isotopic to 𝐿 inside that neighborhood? On one
hand, we show that the question can have a negative answer in any symplectic
manifold of dimension at least six. On the other hand, we answer an a priori
weaker form of the question in the positive in various cases when 𝐿 satisfies a
rationality condition: we prove that the image of 𝐿 is often exact inside the We-
instein neighborhood. We provide applications to the Lagrangian counterpart
of the 𝐶0 flux conjecture, to 𝐶0-rigidity phenomena of Hamiltonian diffeomor-
phisms, and to topological properties of spaces of Lagrangians with the same
rationality constraint. Moreover, we state and prove cases of an analogue of
Viterbo’s spectral norm conjecture for non-exact Lagrangians; in the process,
we make progress on an old question of Viterbo regarding integer difference
vectors between points of Lagrangians.

1 Introduction

This paper aims to study the local topological properties of natural sets of
Lagrangians, most notably the Hamiltonian and symplectic orbits of a given
Lagrangian 𝐿, respectively

ℒHam(𝐿) := Ham(𝑀) · 𝐿 = {𝜑(𝐿) | 𝜑 ∈ Ham(𝑀)} ,
ℒSymp0(𝐿) := Symp0(𝑀) · 𝐿 = {𝜓(𝐿) |𝜓 ∈ Symp0(𝑀)} .
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Note that for the sake of conciseness, we will refer throughout the paper to a
closed connected Lagrangian submanifold of a connected symplectic manifold without
boundary as a “Lagrangian in a symplectic manifold”.

To enable our study, we first fix a metric 𝑔 on the underlying manifold 𝐿.
Recall that the Weinstein neighbourhood theorem ensures that there exist 𝑟 > 0
and a symplectomorphism Ψ : 𝐷∗

𝑟𝐿 → 𝒲𝑟(𝐿) from the codisk bundle of 𝐿 of
radius 𝑟 to a neighbourhood 𝒲𝑟(𝐿) of 𝐿 in 𝑀 which maps the 0-section to 𝐿.

Therefore, understanding ℒHam(𝐿) locally is intimately related to the
nearby Lagrangian conjecture (or NLC for short), which completely charac-
terizes Lagrangians which are in the Hamiltonian orbit of the 0-section in 𝑇∗𝐿.
Indeed, it states that those are precisely the exact Lagrangians. It is known
to hold for 𝑆1, 𝑆2 [Hin04], RP2 [HPW16, Ada22], and T2 [RGI16]. Without
restriction on the diffeomorphism type, the most advanced result in the di-
rection of the NLC states that the natural projection 𝜋 : 𝑇∗𝐿 → 𝐿 induces a
simple homotopy equivalence between any exact closed Lagrangian and the
0-section [AK18]. This latter result will play a crucial role in our study of the
local structure of ℒHam(𝐿).

Inspired by this conjecture, we propose that if 𝐿′ ∈ ℒHam(𝐿) is close to
𝐿, then there is an accordingly small Hamiltonian isotopy from 𝐿 to 𝐿′. More
precisely, we consider the following speculation.

Speculation A Let 𝐿 be a Lagrangian in a symplectic manifold 𝑀. There exists a
neighbourhood 𝑈 of 𝐿 with the following property. If 𝐿′ is Hamiltonian isotopic to 𝐿
in 𝑀 and 𝐿′ ⊆ 𝑈 , then there exists a Hamiltonian isotopy {𝜑𝑡}𝑡∈[0,1] supported in 𝑈
such that 𝜑1(𝐿) = 𝐿′.

If this holds for 𝐿, then its Hamiltonian orbit ℒHam(𝐿) is locally path
connected via Hamiltonian isotopies. Although this statement is new in the
Lagrangian context, there are some results towards its Hamiltonian counter-
part. More precisely, the group Ham𝑐(𝑀) of compactly supported Hamiltonian
diffeomorphisms of a symplectic manifold 𝑀 is locally path connected in the
𝐶0 topology (via Hamiltonian isotopies) if 𝑀 is a closed surface or the open
ball 𝐵2𝑛 . The 2-dimensional case case follows from Fathi’s work on homeomor-
phisms preserving a volume form [Fat80] and the folkloric fact that a path of
such homeomorphisms on a closed surface can be 𝐶0 approximated by a path
of symplectomorphisms, see [Sey13] for a proof. The case of the open ball was
proved by Seyfaddini, also in [Sey13].

Note that the local path connectedness of Ham(𝑀) does not yield Specu-
lation A for all Lagrangians of 𝑀. Theorem 1 below shows that, for instance
in the standard symplectic ball 𝑀 of dimension 6 or greater, there exist certain
irrational tori for which Speculation A fails. It does, however, imply Specula-
tion A for graphs of Hamiltonian symplectomorphisms of 𝑀. Conversely, note
that even if Speculation A holds for all graphs in 𝑀 × 𝑀, it does not imply
local path connectedness of Ham(𝑀), since the Hamiltonian isotopy given by
the speculation need not be through graphs.

In the positive direction, we prove the existence of neighbourhoods of local
exactness for several classes of Lagrangians, by which we mean a Weinstein
neighbourhood 𝒲(𝐿) of a Lagrangian 𝐿 so that any Lagrangian Hamiltonian
isotopic to 𝐿 contained in this neighbourhood is exact in 𝒲(𝐿). When the NLC
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is known to hold for 𝐿, we can then deduce that 𝐿 satisfies Speculation A. This
indicates, however, that Speculation A is likely extremely hard to prove in great
generality.

However, the following weaker form of the speculation holds in greater
generality and is easier to prove.

Speculation B Let 𝐿 be a displaceable Lagrangian in a symplectic manifold 𝑀. There
exists a neighbourhood𝑈 of 𝐿with the following property. If 𝐿′ is Hamiltonian isotopic
to 𝐿 in 𝑀 and 𝐿′ ⊆ 𝑈 , then 𝐿 ∩ 𝐿′ ≠ ∅.

The Lagrangians which admit a neighbourhood of local exactness as de-
scribed above obviously satisfy that weaker speculation. In fact, such La-
grangians must intersect 𝐿 in many points: for instance, if the intersection is
transverse, then there are at least

∑𝑛
𝑖=0 𝛽𝑖(𝐿) ≥ 2 intersection points, where 𝛽𝑖(𝐿)

is the 𝑖-th Betti number of 𝐿.
Actually, our methods allow us to prove that a large class of Lagrangians

satisfy a slightly strengthened version of Speculation B, namely that if 𝐿′ is the
image of 𝐿 under any symplectomorphism and 𝐿′ ⊆ 𝑈 , then 𝐿 ∩ 𝐿′ ≠ ∅. In
what follows, we will refer to satisfying Speculation B (respectively its sym-
plectic version) as having a neighbourhood of Hamiltonian nondisplacement
(respectively of symplectic nondisplacement).

To give an idea of the methods we use to prove our results, we introduce a
Viterbo-style conjecture. To do so, we need the following rationality notions.

Definition Let 𝐿 be a Lagrangian of a symplectic manifold (𝑀, 𝜔). We say that 𝐿 is
𝐻-rational in (𝑀, 𝜔) if the group of relative periods 𝜔(𝐻2(𝑀, 𝐿;Z)) = 𝜏𝐿Z ⊂ R is
a discrete subgroup. We call 𝜏𝐿 ≥ 0 the 𝐻-rationality constant of 𝐿. We say that 𝐿
is 𝐻-exact if 𝜏𝐿 = 0.

Restricting to disk classes, that is, the image 𝐻𝐷
2 (𝑀, 𝐿;Z) of 𝜋2(𝑀, 𝐿) under

the Hurewicz morphism, 𝐿 is called rational if 𝜔(𝐻𝐷
2 (𝑀, 𝐿;Z)) ⊂ R is a discrete

subgroup — weakly exact if it vanishes — and we define the rationality constant
of 𝐿 analogously.

We shall see in Section 3.2 below that the homological and homotopical
conditions are equivalent in many important cases, e.g. when 𝜋1(𝑀) = 0. With
these definitions in mind, we make the following conjecture, which we prove
in several cases below.

Conjecture C Let 𝐿 be a closed connected manifold. Suppose that 𝐾 is an 𝐻-rational
Lagrangian inside 𝐷∗

𝑟𝐿 such that the map (𝜋𝐾)∗ : 𝐻1(𝐾;R) → 𝐻1(𝐿;R) induced by
𝜋𝐾 = 𝜋|𝐾 is not surjective. Here, 𝜋 : 𝑇∗𝐿 → 𝐿 denotes the canonical projection.
Then, the 𝐻-rationality constant 𝜏𝐾 of 𝐾 satisfies

𝜏𝐾 ≤ 𝐶𝑟

for a constant 𝐶 depending only on 𝐿 and the choice of an auxiliary metric on it.

Remark 1. We note that the non-surjectivity of (𝜋𝐾)∗ can be replaced by the inequality
of first Betti numbers 𝑏1(𝐾;R) ≤ 𝑏1(𝐿;R).
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One can also pose a homotopy version of Conjecture C, where one replace
either 𝐻-rational with rationality or 𝐻1( · ;R) with 𝜋1 — or both. We will also
explore such variant below.

We remark that it would be interesting to see if there is a version of Con-
jecture C that also applies to irrational Lagrangians, with the role of 𝜏𝐾 being
replaced by ℏ(𝐾, 𝐽) = min{𝜔(𝑢) > 0}, where the minimum runs over all the
non-constant 𝐽-holomorphic disks 𝑢 : D→ 𝑀 with boundary on 𝐾 for a fixed
compatible almost complex structure 𝐽. We leave this question for future work.

1.1 Main results
The following result provides a counterexample to Speculations A and B (and
to Speculation D below, as well as its 𝐶1 variant). It is not, however, a coun-
terexample to the Viterbo-type conjecture. This shows that there is no hope to
prove the above speculations in full generality, and that a rationality condition
like above is required.

Theorem 1 In any symplectic manifold of dimension 2𝑛 ≥ 6, there exists a Lagrangian
torus whose Hamiltonian orbit

(i) admits arbitrarily Hausdorff-close disjoint elements,
(ii) is not closed in Hausdorff topology inside the set of Lagrangian tori.

Both claims actually hold for any reasonable notion of 𝐶1 topology — see
Section 2 below.

The existence of such tori follows directly from the characterization of prod-
uct tori in the Hamiltonian orbit of a given product Lagrangian torus in C𝑛 by
Chekanov [Che96] and in large enough balls by Chekanov and Schlenk [CS16].
We give the details in Section 2 below.

Again, we make the crucial observation that these Lagrangian tori are not
rational, and therefore do not contradict our positive results below.

1.1.1 Rationality bound on nearby Lagrangians

We first describe positive results related to Conjecture C.

Theorem 2 Conjecture C holds for 𝐿 = 𝐿0 × 𝐿1 × · · · × 𝐿𝑘 , where 𝐻1(𝐿0;R) = 0, and
𝐿𝑖 , 𝑖 ≥ 1, satisfies 𝐻1(𝐿𝑖 ;R) = R and admits a Lagrangian embedding in a Liouville
domain 𝑊𝑖 with 𝑆𝐻(𝑊𝑖) = 0. Furthermore, if 𝐿 is any manifold covered by a closed
connected manifold 𝐿′ for which Conjecture C holds, then it also holds for 𝐿.

Note that, in the above statement, 𝐿0 may be a point.

Remark 2. The homotopy version of Theorem 2 also holds, that is, when 𝐻-rationality
is replaced with rationality on disks and 𝐻1 with 𝜋1. When 𝐿 has the diffeomorphism
type of 𝐿0 × T𝑚 with 𝐻1(𝐿0;R) = 0, it is possible, via an alternative argument, to
prove a stronger version of the conjecture where 𝐾 is only assumed to be rational on
disks and (𝜋𝑘)∗ is not surjective on homology; this is proven in Section 4.5, as Theorem
39.



5

Theorem 39 and an examination of its proof implies the following result,
which is a partial answer to an old question of Viterbo. Consider the subset
𝑋 ⊂ R𝑛 given by 𝑋 = {(𝑝1 , . . . , 𝑝𝑛) | min𝑗 |𝑝 𝑗 | ≤ 1}.

Proposition 3 Let 𝐾 be a rational Lagrangian inside C𝑛 with rationality constant
𝜏𝐾 > 2. If 𝐾 is contained in R𝑛 + 𝑖𝑋 then there exist two distinct points on 𝐾 whose
difference vector is real with integer coordinates.

To provide context, Viterbo’s original question consists in proving the sim-
ilar statement that there exists a constant 𝐴 ≥ 1 such that every rational La-
grangian 𝐾 inside C𝑛 with rationality constant 𝜏𝐾 > 𝐴 must have two distinct
points whose difference vector has Gaussian integer coordinates. This is equiv-
alent to finding the maximal rationality constant of a nullhomotopic rational
Lagrangian in the standard torusC𝑛/(Z𝑛+ 𝑖Z𝑛). We prove a stronger statement
with the difference vector being also real, under the additional assumption that
𝐾 is contained in R𝑛 + 𝑖𝑋.

1.1.2 Existence of nondisplacement neighbourhoods

We denote by ℒ(𝜏) the space of all 𝐻-rational Lagrangian submanifolds of 𝑀
which have 𝐻-rationality constant 𝜏 ≥ 0, and by ℒ(𝐿, 𝜏) its subspace formed
by those Lagrangians which have the same diffeomorphism type as 𝐿.

We now study Speculations A and B. First, we prove the existence of neigh-
bourhoods of homological exactness for several classes of Lagrangians by re-
ducing it to Conjecture C — this is Theorem 4 below. Second, we show that such
neighbourhoods lead to Weinstein neighbourhoods of exactness for Hamilto-
nian isotopic Lagrangians. We also get such neighbourhoods for Lagrangians
with a given 𝐻-rationality constant under an extra homological condition —
this is the content of Theorem 5.

Theorem 4 Suppose that 𝐿 is a Lagrangian submanifold of (𝑀, 𝜔) for which Conjec-
ture C holds. Then, for each 𝜏 ≥ 0, there exists a Weinstein neighbourhood 𝒲(𝐿) of 𝐿
such that all 𝐿′ ∈ ℒ(𝐿, 𝜏) included in 𝒲(𝐿) is 𝐻-exact in 𝒲(𝐿).

Theorem 5 Let 𝐿 be a 𝐻-rational Lagrangian in (𝑀, 𝜔) and let 𝐿′ ∈ ℒHam(𝐿) be a
Lagrangian included in a Weinstein neighbourhood 𝒲𝑟(𝐿) of size 𝑟 > 0 such that 𝐿′
is 𝐻-exact in 𝒲𝑟(𝐿). Then, for a maybe smaller 𝑟, 𝐿′ is exact in 𝒲𝑟(𝐿).

Moreover, if the inclusion of 𝐿 into 𝑀 induces the 0-map 𝐻1(𝐿;R) → 𝐻1(𝑀;R),
then the same result holds with ℒHam(𝐿) replaced by ℒ(𝜏), where 𝜏 is the 𝐻-
rationality constant of 𝐿.

The existence of nondisplacement neighbourhoods follows, as a direct com-
bination of Theorems 4 and 5.

Corollary 6 A 𝐻-rational Lagrangian 𝐿 in a symplectic manifold 𝑀 satisfying the
assumptions of Theorem 2 admits a Hamiltonian nondisplacement neighbourhood. If
furthermore the map 𝐻1(𝐿;R) → 𝐻1(𝑀;R) is zero, then it also admits a neighbour-
hood of symplectic nondisplacement.
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In other words, such a Lagrangian 𝐿 satisfies Speculation B (or its slightly
strengthened symplectic version). Furthermore, if the nearby Lagrangian con-
jecture holds in 𝑇∗𝐿, we also get Speculation A.

Remark 3. We expect that one could use the McDuff–Siegel higher capacities to obtain
Theorem 4 for certain 𝐾(𝜋, 1) spaces, including the 𝑛-torus. Moreover, we expect a
slightly different approach to produce a class of examples invariant under all maps of
non-zero degree, rather than coverings. Finally, we expect to extend our results to a
large class of fibrations over tori. However, the arguments are quite involved and will
be investigated in further work.

Interestingly enough:

1. Yet another approach one could take to the above questions for 𝐿 = T2 is based
on the resolution [RGI16] in this case of the nearby Lagrangian conjecture.
However, since this does not fit in the general framework developed here, we omit
them from this version of the paper. Nonetheless, in Appendix A, we present a
standalone proof of 𝐻-exactness for Lagrangian Klein bottles in the cotangent
bundle of a Klein bottle as the proof is short and could be of independent interest.

2. In their work in progress on the 𝐶0 flux conjecture for Hamiltonian diffeomor-
phisms [AS24] the first and last named authors get a similar result of local
exactness for graphs in 𝑀 ×𝑀 of 𝐶0-small Hamiltonian diffeomorphisms for 𝑀
closed. In this case, there is no requirement that 𝑀 be rational, contrary to the
setup of the present work.

1.1.3 Lagrangian flux conjectures

We now move on to another speculation about Lagrangian submanifolds.

Speculation D (Lagrangian 𝐶0 flux conjecture) Let 𝐿 be a Lagrangian in a sym-
plectic manifold 𝑀. Its Hamiltonian orbit ℒHam(𝐿) is Hausdorff-closed in the space
ℒLag(𝐿) of all Lagrangians which are Lagrangian isotopic to 𝐿.

As far as the authors know, this version of the conjecture has not been
studied previously — we will talk about its 𝐶1 cousin, which has been stud-
ied, below. The name that we give it here is in analogy to the famous 𝐶0

flux conjecture for Hamiltonian diffeomorphisms, which states that the group
Ham(𝑀) of Hamiltonian diffeomorphisms of a closed symplectic manifold 𝑀
is 𝐶0 closed in the identity component Symp0(𝑀) of the group of symplecto-
morphisms of 𝑀. This conjecture is only known to hold in some fairly specific
cases [LMP98, Buh15] and further results in this direction will appear in [AS24],
which still do not resolve this question completely. This is in stark contrast with
its 𝐶1 cousin, which is known to hold in full generality [Ono06].

We note that, similarly to Speculation A above, the Lagrangian 𝐶0 flux
conjecture does not imply the one for Hamiltonian diffeomorphisms. Indeed,
suppose that {𝜑𝑖} ⊆ Ham(𝑀) 𝐶0-converges to 𝜓 ∈ Symp0(𝑀). Then, all
that the Lagrangian flux conjecture ensures is that there is some Hamiltonian
diffeomorphism Φ of 𝑀 × 𝑀 such that graph(𝜓) = Φ(Δ), where Δ ⊆ 𝑀 × 𝑀
is the diagonal. However, we cannot be sure that Φ can be chosen of the form
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1×𝜑 for some 𝜑 ∈ Ham(𝑀), which is what the flux conjecture for Hamiltonian
diffeomorphisms would require.

To study this speculation, we can use the techniques developed to prove
Theorems 4 and 5. In fact, they imply the following continuity result.

Theorem 7 Let {𝐿𝑖} be a sequence of 𝐻-rational Lagrangians of a tame symplectic
manifold 𝑀 such that

(i) {𝐿𝑖} Hausdorff-converges to a 𝑛-dimensional smooth submanifold 𝐿;
(ii) inf 𝜏𝑖 > 0, where 𝜏𝑖 denotes the 𝐻-rationality constant of 𝐿𝑖 .

Then, 𝐿 is itself Lagrangian.
Moreover, if 𝐿𝑖 is 𝐻-exact in a Weinstein neighbourhood 𝒲(𝐿) for 𝑖 large, then

lim 𝜏𝑖 exists and is the 𝐻-rationality constant of 𝐿. This is in particular the case if the
𝐿𝑖 ’s respect the hypotheses of Theorem 4.

By tame, we mean that 𝑀 admits an almost complex structure 𝐽 making
𝑔𝐽 := 𝜔(·, 𝐽·) into a complete Riemannian metric whose sectional curvature is
bounded and whose injectivity radius is bounded away from zero.

The first part of the theorem is a fairly direct application of Lauden-
bach and Sikorav’s result on the displaceability of non-Lagrangian subman-
ifolds [LS94] — we mostly write it here for the reader’s convenience. Fur-
thermore, the second part of the theorem is very reminiscent of Theorem 1
of [MO21] — the proof is in fact very inspired by what appears in that paper.
The strength of our result is that it applies to sequences {𝐿𝑖 = 𝜑𝑖(𝐿)} where
the sequence of Hamiltonian diffeomorphisms {𝜑𝑖} need not 𝐶0-converge. See
Section 5.2 for more details.

Before moving on to corollaries of this result, note that, in the formulation
above, one could also ask for 𝐶0-closure of Ham(𝑀) in larger groups than
Symp0(𝑀), most notably in Symp(𝑀).

Following this logic, we can replace ℒLag(𝐿) in Speculation D with larger
spaces. Most notably, we will also be interested in the spaces SMan(𝐿), of all
submanifolds of 𝑀 with the same diffeomorphism type as 𝐿, and SMan𝑛 , of all
𝑛-dimensional submanifolds of𝑀2𝑛 . By Theorem 7, closure of ℒHam(𝐿) in the
two latter spaces is equivalent to closure in the subspace formed by Lagrangian
submanifolds.

To address these many spaces, we will make use of the following weaker
form of Theorem 5.

Proposition 8 Let 𝐿 be a𝐻-rational Lagrangian submanifold of𝑀 with𝐻-rationality
constant 𝜏. There exists 𝑟0 > 0 with the following property. Assume that 𝐿′ ∈ ℒ(𝜏) is
a Lagrangian included in a Weinstein neighbourhood 𝒲𝑟(𝐿) of radius 𝑟 ∈ (0, 𝑟0] such
that 𝐿′ is 𝐻-exact in 𝒲𝑟(𝐿). Then, there is a symplectic isotopy {𝜓𝑡}𝑡∈[0,1] of 𝑀 such
that 𝜓1(𝐿′) is exact in 𝒲𝑟(𝐿). Furthermore, the size of the isotopy is controlled by 𝑟.

The last sentence corresponds in actuality to a precise estimate on the flux
of the Lagrangian isotopy {𝜓𝑡(𝐿′)}, but we do not want to get into all the details
here. We refer the interested reader to Section 5.3.

Combining Theorem 4, Theorem 5, and Proposition 8, we thus get the
following — again, the precise proof is in Section 5.3.
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Corollary 9 Suppose that 𝐿 satisfies the hypotheses of Theorem 2 or that𝐻1(𝐿;R) = 0.
If the nearby Lagrangian conjecture holds in 𝑇∗𝐿, then we have the following. Suppose
that 𝐿′ is a𝐻-rational Lagrangian diffeomorphic to 𝐿. Its Hamiltonian orbitℒHam(𝐿′)
and symplectic orbit ℒSymp0(𝐿′) are Hausdorff-closed in ℒ(𝐿).

In fact, we can prove the equivalence of the NLC and the Lagrangian 𝐶0

flux conjecture in some cases — we refer the interested reader to Section 5.3.

Remark 4. Note that one can upgrade from ℒ(𝐿) to SMan(𝐿) under the additional
condition that the ambient symplectic manifold is tame.

Furthermore, one can upgrade from SMan(𝐿) to SMan𝑛 in some contexts as, for
example, if 𝑛 = 2. Indeed, any 𝐻-exact Lagrangian in the cotangent bundle of a
surface has the same diffeomorphism type as that surface (see Lemma 24 below). This is
a nontrivial update: Polterovich [Pol93] constructed Lagrangian tori in the cotangent
bundle of any flat manifold; these tori can be made to be arbitrarily close to the zero-
section. We discuss these examples in more details at the very end of Section 3.2.

We will explore in Section 1.2 below examples where these conditions are
all satisfied.

The Lagrangian 𝐶1 flux conjecture A natural variant of Speculation D is
obtained by replacing closedness in the Hausdorff topology with closedness in
the 𝐶1 topology. We call this the Lagrangian 𝐶1 flux conjecture.

By 𝐶1 topology, we mean the one constructed as follows. Fix a Riemannian
metric 𝑔 on 𝑀. We say that a closed connected half-dimensional submanifold
𝑁′ is 𝜀-𝐶1-close to another one 𝑁 if 𝑁′ is in a tubular neighbourhood of 𝑁 and
there is a normal vector field 𝜈 along 𝑁 such that ∥𝜈∥ < 𝜀 and exp(𝜈(𝑁)) = 𝑁′.
We then set

𝐵(𝑁, 𝜀) :=
{
𝑁′ �� 𝑁′ is 𝜀-𝐶1-close to 𝑁 & vice-versa

}
.

The 𝐶1 topology on SMan𝑛 is then the topology generated by the 𝐵(𝑁, 𝜀)’s. One
can easily check that this is independent of the choice of Riemannian metric.

With our methods, we get the following.

Corollary 10 Let 𝐿 be a 𝐻-rational Lagrangian in a tame symplectic manifold 𝑀.
Then, ℒHam(𝐿) and ℒSymp0(𝐿) are 𝐶1-closed in SMan𝑛 .

The reason there is no restriction on the diffeomorphism type as in Corol-
lary 9 is because Lagrangians which are 𝐶1-close to 𝐿 are graphs of 1-forms in
𝒲(𝐿), and graphs are necessarily 𝐻-exact. Likewise, the NLC is not needed
since exact graphs are Hamiltonian isotopic to the zero-section in 𝒲(𝐿). Note
that 𝐶1-close Lagrangians are necessarily diffeomorphic so that closure in
SMan𝑛 is the same as closure in SMan(𝐿).

The Lagrangian 𝐶1 flux conjecture has been studied previously by
Ono [Ono08] and Solomon [Sol13] in the case when 𝑀 is closed or a cotangent
bundle. They proved that it holds when 𝐿 has Maslov class zero and is un-
obstructed in the sense of [FOOO09] and when the so-called Lagrangian flux
group of 𝐿 is discrete, respectively. When 𝐿 is 𝐻-rational, the Lagrangian flux
group is automatically discrete. Therefore, our improvement with regards to
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Solomon’s result is that we allow 𝑀 to be open — otherwise, we only have
proved a subcase. As for Ono’s, our condition is somewhat orthogonal to his:
he needs no bad disks, but we ask for a lot of them.

1.2 Examples
We give a few examples where Speculation B follows from the results above. We
will only specify a Lagrangian submanifold in a symplectic manifold without
worrying about it being rational or not, since given an irrational Lagrangian
submanifold 𝐿′ of a rational symplectic manifold, we can construct a nearby
rational Lagrangian 𝐿 by an arbitrarily 𝐶1-small perturbation.

First, from Theorem 2 we know that Conjecture C holds for closed connected
manifolds 𝐿which are covered by 𝐿0×T𝑚 , where𝐻1(𝐿0;R) = 0 and𝑚 is allowed
to be equal to zero. For example, this includes every manifold admitting a flat
metric by Bieberbach’s theorem. Curiously, such manifolds also include every
mapping torus 𝐿 of a diffeomorphism 𝑓 ∈ Diff(𝐿0) of a simply connected
manifold 𝐿0 that has finite order in the smooth mapping class group, i.e. 𝑓 𝑘
is smoothly isotopic to id for some integer 𝑘. Indeed, the multiplication by 𝑘
map 𝑆1 → 𝑆1 pulls the bundle 𝐿 → 𝑆1 to a bundle diffeomorphic to 𝐿0 × 𝑆1.
Furthermore, note that the class of manifolds covered by 𝐿0×T𝑚 (where𝑚 and
𝐿0 are not fixed) is also closed under products, so that Conjecture C also holds
for all products of the above examples.

Second, we give a few examples of Lagrangian submanifolds 𝐿where Spec-
ulation B holds. By Corollary 6, this includes those 𝐿 such that 𝐻1(𝐿;R) = R
which admit embeddings to a Liouville domains 𝑊 with 𝑆𝐻(𝑊) = 0. For in-
stance if 𝑇𝐿0 ⊗ C is trivial and 𝐻1(𝐿0;R) = 0, then 𝐿 = 𝐿0 × 𝑆1 embeds as a
Lagrangian in C𝑛 by the Gromov–Lees ℎ-principle [Gro70, Lee76] and a result
of Audin, Lalonde, and Polterovich [ALP94]. In another direction, Ekholm,
Eliashberg, Murphy, and Smith [EEMS13] showed that, given any 3-manifold
𝐿0, 𝐿 = 𝐿0#(𝑆1 × 𝑆2) embeds as a Lagrangian in C3. But, by the van Kampen
theorem, 𝜋1(𝐿) = 𝜋1(𝐿0) ∗ 𝜋1(𝑆1 × 𝑆2), so that 𝐻1(𝐿;R) = 𝐻1(𝐿0;R) ⊕R. There-
fore, Corollary 6 covers 𝐿 = 𝐿0#(𝑆1 × 𝑆2) with 𝐻1(𝐿0;R) = 0, e.g. 𝐿0 can be a
(connected sum of) lens spaces. Finally, the Lagrangian Grassmannian 𝐿 = Λ𝑛

admits a Lagrangian embedding in Sym(C𝑛) = C𝑛(𝑛+1)/2 (see, for example,
[ALP94]), and 𝜋1(Λ𝑛) = Z.

Specializing to the case of the 2-torus, where the NLC is indeed known to
hold [RGI16], we get the following.

Corollary 11 Speculations A and D hold for all 𝐻-rational Lagrangian 2-tori.

Again, recall that the class for which Corollary 6 holds is closed under
covering. But note that the Klein bottle admits a displaceable Lagrangian
embedding in 𝑆2 × C. It is obtained from the usual Lagrangian Klein bottle
in 𝑆2 × 𝑆2 (see, for example, [Eva22] and [AE24]) by removing a point on the
second copy of 𝑆2 and identifying 𝑆2\{𝑝𝑡}withD ⊆ C. Again, it is displaceable,
because D is. In fact, the Klein bottle can even be made to be monotone.

We conclude with one additional case when we can establish Speculation A:
when 𝐿 is a 2-sphere or a projective plane. Indeed, any other such Lagrangian
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in 𝒲(𝐿) is then automatically exact in that neighbourhood, so there is no need
for Theorems 4 or 5. Since the NLC is known to hold in 𝑇∗𝑆2 [Hin04] and
𝑇∗R𝑃2 [HPW16], we thus directly get the following.

Corollary 12 Speculations A and D hold for Lagrangian 2-spheres or projective
planes.

1.3 Applications
We end this introduction with applications of our results. These are divided in
four parts: additional rigidity results on Lagrangians with regards to Hamilto-
nian diffeomorphisms, further study on the local topology of ℒHam(𝐿), new
results on the space of (H-)rational Lagrangians with a fixed rationality con-
stant, and some computations of numerical invariants. The next to last part has
further implications when it comes to the space of all Lagrangians of a given
symplectic manifold.

Except for a couple of references to further results, this last part of the
introduction is intended to be self-contained; we directly give the proofs when
these are not direct.

𝐶0 rigidity of Hamiltonian diffeomorphisms There is a natural variant
of Speculation B where we ask not that 𝐿′ be close to 𝐿, but rather that the
Hamiltonian diffeomorphism sending 𝐿 to 𝐿′ be small. More precisely, we can
make the following conjecture.

Conjecture E Let 𝐿 be a displaceable Lagrangian in a symplectic manifold 𝑀. There
exists 𝛿 > 0 with the following property. If 𝜑 is a Hamiltonian diffeomorphism of 𝑀
and 𝑑𝐶0(1, 𝜑) < 𝛿, then 𝐿 ∩ 𝜑(𝐿) ≠ ∅.

In other words, any Hamiltonian diffeomorphism displacing 𝐿 is uniformly
𝐶0-bounded away from 0.

The existence of such a bound is not at all trivial: if 𝐿 is a displaceable
𝑛-dimensional submanifold which is not Lagrangian, then it can be displaced
by an arbitrarily 𝐶0-small Hamiltonian diffeomorphism [LS94]. Moreover, this
does not follow from the fact that Lagrangians have positive displacement
energy, since there are Hamiltonian diffeomorphisms which are arbitrarily 𝐶0-
small, but arbitrarily Hofer-large.

However, this is not expected to be the case for the spectral metric, that
is, 𝐶0-small Hamiltonian diffeomorphisms should also have small spectral
norm. More precisely, Conjecture E follows from the fact that Lagrangians have
positive spectral displacement energy [AAC23] in the cases where it is known
that the spectral metric is 𝐶0-continuous, i.e. when 𝑀 is C𝑛 [Vit92], a closed
surface [Sey13], closed and symplectically aspherical [BHS21], C𝑃𝑛 [She22], or
closed and negative monotone [Kaw22] or symplectically Calabi-Yau [SW].

In the context of this paper, Conjecture E is implied by Speculation A or
by the Hamiltonian version of Speculation B above when it holds. However, it
turns out to be much easier to prove than either one of these speculations. This
is because we have the following lemma.
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Lemma 13 For every Lagrangian 𝐿, there exists 𝛿 > 0 with the following property.
Suppose that 𝜓 : 𝑀 → 𝑀 is a map such that 𝑑𝐶0(1,𝜓) < 𝛿 and 𝜓(𝐿) is Lagrangian.
Then, 𝜓(𝐿) is 𝐻-exact in some 𝒲(𝐿).

Proof. Take a Riemannian metric 𝑔 on𝑀 which corresponds to a Sasaki metric
on𝑇∗𝐿 on a Weinstein neighbourhood𝒲(𝐿). With such a metric, the geodesics
starting at 𝐿 and going to 𝐿′ = 𝜓(𝐿) stay in 𝒲(𝐿) (see Lemma A.4 of [Cha24]
for example). Therefore, if we assume that 𝛿 is smaller than the injectivity
radius 𝑟inj(𝑇𝑀 |𝐿) of the Riemannian exponential of 𝑔 restricted to 𝑇𝑀 |𝐿, we
get for every 𝑥 ∈ 𝐿 a unique geodesic 𝛾𝑥 : [0, 1] → 𝑀 such that 𝛾𝑥(0) = 𝑥,
𝛾𝑥(1) = 𝜓(𝑥), and 𝛾𝑥([0, 1]) ⊆ 𝒲(𝐿). Moreover, 𝛾𝑥 smoothly depends on
𝑥. Therefore, (𝑥, 𝑡) ↦→ 𝛾𝑥(𝑡) defines a smooth homotopy in 𝒲(𝐿) from the
inclusion 𝜄 : 𝐿 ↩→ 𝒲(𝐿) to 𝜓𝜄. Since 𝜄 is a homotopy equivalence, then so must
be 𝜓𝜄. In particular, 𝐻2(𝒲(𝐿), 𝐿′) = 0, and 𝐿′ is 𝐻-exact. □

Then, it suffices to use Theorem 5 to get the following.

Corollary 14 Conjecture E holds for all 𝐻-rational Lagrangians.

In fact, at the price of making the constant 𝛿 depend on the size of the
compact support of 𝜑, a similar, more careful approach proves much more.
We delay the proof of the Section 5.4 below.

Proposition 15 Let 𝐿 be a displaceable Lagrangian of 𝑀, and take a compact 𝐾
containing 𝐿 in its interior. Suppose furthermore that one of the following holds:

(a) 𝑀 is rational, i.e. 𝜔(𝜋2(𝑀)) is discrete, or
(b) the image of 𝜋1(𝐿) → 𝜋1(𝑀) is torsion.

Then, there exists 𝛿 > 0 with the following property. If 𝜑 is a Hamiltonian diffeomor-
phism supported in 𝐾 and 𝑑𝐶0(1, 𝜑) < 𝛿, then 𝐿 ∩ 𝜑(𝐿) ≠ ∅.

Furthermore, we get a rigidity result for sequences of Hamiltonian or sym-
plectic diffeomorphisms from Theorem 7 and Corollary 9.

Corollary 16 Let {𝜓𝑖} be a sequence of symplectomorphisms with (weak) 𝐶0 limit
𝜓 ∈ 𝐶0(𝑀,𝑀), and let 𝐿 ∈ ℒ(𝜏). If 𝜓(𝐿) is a smooth 𝑛-submanifold, then 𝜓(𝐿) ∈
ℒ(𝜏).

If, furthermore, the NLC holds on 𝑇∗𝐿 and
(a) if {𝜓𝑖} ⊆ Ham(𝑀), then 𝜓(𝐿) ∈ ℒHam(𝐿);
(b) if {𝜓𝑖} ⊆ Symp0(𝑀), then 𝜓(𝐿) ∈ ℒSymp0(𝐿).

Note that a similar result about the continuity of the area spectrum under
𝐶0 limits was shown by Membrez and Opshtein [MO21].

Local contractibility of ℒHam(𝐿) in the Hausdorff topology While
we need the NLC in all cases where we can prove Speculation A, the fact that
ℒHam(𝐿) is locally path connected in the Hausdorff topology turns out to be
easier to prove. More precisely, we get the following.

Corollary 17 Suppose that 𝐿 is 𝐻-rational and respects the hypotheses of Theorem 4.
Then ℒHam(𝐿) is locally contractible in the Hausdorff topology.
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Note that this is not quite the type of results we mentioned earlier in the
introduction. Indeed, we do not claim that the Hausdorff-continuous path
from 𝐿′ to 𝐿 (as subsets of the symplectic manifold) in a small neighbourhood
of 𝐿 is generated by an actual Hamiltonian isotopy, simply that it consists at all
times of elements of ℒHam(𝐿).
Proof. Note that it suffices to prove this statement at 𝐿. Fix a Weinstein neigh-
bourhood Ψ : 𝐷∗

𝑟𝐿 → 𝒲(𝐿) as given by the conclusions of Theorems 4 and 5.
Then, every 𝐿′ ∈ ℒHam(𝐿) which is in 𝒲(𝐿) is exact in that neighbourhood.
We can thus take

(𝐿′, 𝑡) ↦→ Ψ(𝑡Ψ−1(𝐿′))

to be the contraction. Indeed, exactness in 𝒲(𝐿) ensures that this is a Hamil-
tonian isotopy for all 𝑡 > 0. In particular Ψ(𝑡Ψ−1(𝐿′)) is Hamiltonian isotopic
to 𝐿′ and hence it is in ℒHam(𝐿). But exactness also implies that the projection
Ψ−1(𝐿′) → 𝑇∗𝐿 → 𝐿 is a homotopy equivalence [AK18]. In particular, that
projection must be surjective, otherwise 𝐻𝑛(𝐿′) → 𝐻𝑛(𝐿) ≠ 0 would be zero.
Therefore, 𝐿′ being close to 𝐿 implies that 𝐿 is close to 𝐿′ and hence that 𝐿′ and
𝐿 are Hausdorff-close. This means that the Hausdorff limit of Ψ(𝑡Ψ−1(𝐿′)) as
𝑡 → 0 is precisely 𝐿, i.e. the above contraction is indeed Hausdorff-continuous.

□

Spaces of Lagrangians with fixed 𝐻-rationality constant We now turn
our attention to the space ℒ(𝐿, 𝜏) of all Lagrangians of 𝑀 with the diffeomor-
phism type of 𝐿 and 𝐻-rationality constant 𝜏.

From Theorems 4 and 5, we get the following.

Corollary 18 Let 𝐿 be a 𝐻-rational Lagrangian in a symplectic manifold, and denote
by 𝜏 its 𝐻-rationality constant. Then, ℒSymp0(𝐿) is open in ℒ(𝐿, 𝜏) in the 𝐶1

topology. If moreover 𝐿 respects the hypotheses of Theorem 4 or 𝐻1(𝐿;R) = 0 and the
NLC holds on 𝑇∗𝐿, then the same holds in the Hausdorff topology.

Proof. Note that it suffices to prove that there is an open neighbourhood of
𝐿 in ℒ(𝐿, 𝜏) which is fully in ℒSymp0(𝐿). Let thus Ψ : 𝐷∗

𝑟𝐿 → 𝒲𝑟(𝐿) be
the Weinstein neighbourhood given by Proposition 8. Then, every graph in
𝒲(𝐿) must be, up to a global symplectic isotopy, exact. Since exact graphs
are Hamiltonian isotopic to the zero-section, such a graph must thus be in
ℒSymp0(𝐿). This proves the 𝐶1 case.

For the Hausdorff case, suppose that 𝑟 is also small enough so that The-
orem 4 and Proposition 8 hold in 𝒲𝑟(𝐿). Then, any 𝐿′ ∈ ℒ(𝐿, 𝜏) such that
𝐿′ ⊆ 𝒲(𝐿) must be, up to some global symplectic isotopy, exact in 𝒲(𝐿) — we
still denote by 𝐿′ its image under the isotopy. As in the proof of Corollary 17,
we note that the path 𝑡 ↦→ Ψ(𝑡Ψ−1(𝐿′)), 𝑡 ∈ [0, 1], is continuous in the Haus-
dorff topology. Furthermore, it is a Hamiltonian isotopy for all 𝑡 > 0. In
particular, 𝐿 must be in the Hausdorff closure of ℒHam(𝐿′) ⊆ ℒSymp0(𝐿′).
But ℒSymp0(𝐿′) is Hausdorff closed by Corollary 9 and the hypotheses on 𝐿.
Therefore, 𝐿′ ∈ ℒSymp0(𝐿). □

Together with the Lagrangian flux conjectures, this yields the following
result.
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Corollary 19 Let 𝐿 and 𝜏 be as above. The (path) connected components of ℒ(𝐿, 𝜏)
in the 𝐶1 topology are precisely the orbits of Symp0(𝑀). In particular, the quotient
ℒ(𝐿, 𝜏)/Symp0(𝑀) is discrete in the induced topology. If moreover 𝐿 respects the
hypotheses of Theorem 4 or 𝐻1(𝐿;R) = 0 and the NLC holds on 𝑇∗𝐿, then the same
holds in the Hausdorff topology.

For example, this means that a 𝜌-monotone Clifford torus can never be
reached from a Chekanov torus (or any monotone special torus) by a Hausdorff-
continuous path in ℒ(T2 , 2𝜌). Contrast this with the fact that all these tori are
Lagrangian isotopic [RGI16].

Proof. Combining Corollaries 10 and 18, we get that for all 𝐿 ∈ ℒ(𝐿, 𝜏), the
orbit ℒSymp0(𝐿) is both closed and open in ℒ(𝐿, 𝜏) with the 𝐶1 topology.
Therefore, ℒSymp0(𝐿)must be a union of connected components of 𝐿 ∈ ℒ(𝐿, 𝜏)
by point-set topology. Since ℒSymp0(𝐿) is obviously path connected, it must be
both a connected component and a path connected component of 𝐿 ∈ ℒ(𝐿, 𝜏).
The proof in the Hausdorff setting is completely analogous. □

Note that, when 𝐻1(𝐿;R) → 𝐻1(𝑀;R) is zero, the role of ℒSymp0(𝐿) in
the above proof can be replaced by ℒHam(𝐿). In particular, both ℒSymp0(𝐿)
and ℒHam(𝐿) are the connected component of ℒ(𝜏) containing 𝐿 in the 𝐶1

topology, so they must be equal. This can be seen as a generalization that
Symp0(𝑀) = Ham(𝑀) for closed manifolds with 𝐻1(𝑀;R) = 0.

Corollary 20 Let 𝐿 be 𝐻-rational and such that 𝐻1(𝐿;R) → 𝐻1(𝑀;R) is zero.
There is a symplectic isotopy {𝜓𝑡} of 𝑀 such that 𝜓1(𝐿) = 𝐿′ if and only if there is
a Hamiltonian isotopy {𝜑𝑡} such that 𝜑1(𝐿) = 𝐿′. In other words, ℒSymp0(𝐿) =
ℒHam(𝐿).

We also have the following.

Corollary 21 The space ∪𝜏≥0ℒ(𝐿, 𝜏)/Symp0(𝑀) is Hausdorff in the topology in-
duced by the 𝐶1 topology. In particular, the quotient ℒLag(𝐿)/Symp0(𝑀) can only
be non-Hausdorff at orbits corresponding to𝐻-irrational Lagrangians. The same holds
for Symp0(𝑀) replaced by Ham(𝑀).

The part on Symp0(𝑀) follows directly from Corollary 19. The part with
Ham(𝑀) is a finer result that also makes use of the local description of 𝐿 in
ℒ(𝐿, 𝜏) given by Corollary 43 below.

It has been proven by Ono [Ono08] and Solomon [Sol13] that the quotient
ℒLag(𝐿)/Ham(𝑀) is Hausdorff in the 𝐶1 topology in different settings. Most
notably, they both ask that 𝐻1(𝐿;R) → 𝐻1(𝑀;R) be injective, which makes
𝐿 automatically 𝐻-exact. Corollary 21 shows the difficulty of relaxing the
condition that 𝐻1(𝐿;R) → 𝐻1(𝑀;R) be injective: 𝐻-irrational Lagrangians can
create non-Hausdorff points in the quotient. In fact, Theorem 1 shows that in
dimension 2𝑛 ≥ 6, this always happens. That this is a problem was already
mentioned by Ono in his work on the subject.
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Quantitative symplectic topology When Theorem 4 holds, it allows for
a new measurement associated with a Lagrangian embedding 𝑄 ↩→ 𝑀 with
image 𝐿 and a Riemannian metric 𝑔 on 𝑄:

𝑐𝑒(𝑀,𝐿)(𝑄, 𝑔) := sup
{
𝑟 ≥ 0

�� all 𝐿′ ∈ ℒHam(𝐿) in 𝑊
𝑔
𝑟 (𝐿) are exact

}
.

By writing 𝒲𝑔
𝑟 (𝐿), we want to underline that it is the image of a Weinstein

neighbourhood Ψ : 𝐷∗
𝑟𝑄 → 𝒲𝑟(𝐿), where the radius 𝑟 of the codisk bundle

is computed using 𝑔. We write 𝑐𝑒(𝑀,𝐿)(𝑄, 𝑔) = 0 if 𝐿 has no neighbourhood of
local exactness, e.g. for the example given by Theorem 1.

Note that 𝑐𝑒(𝑀,𝐿)(𝑄, 𝑔) is invariant under symplectomorphisms, so it is truly
a symplectic quantity. Furthermore, 𝑐𝑒(𝑀,𝐿)(𝑄, 𝑔) is bounded from above by
the size of the largest Weinstein neighbourhood of 𝐿 in 𝑀, i.e. by the relative
capacity

𝑐𝒲(𝑀,𝐿)(𝑄, 𝑔) := sup
{
𝑟 > 0

�� 𝐿 admits a neighbourhood 𝒲𝑔
𝑟 (𝐿)

}
.

This can in turn be bounded in terms of Poisson bracket invariants of 𝐿 in
𝑀 [MO21].

When 𝐿 = 𝑆1, a direct computation gives the following estimate.

Corollary 22 Let 𝐿 be a closed curve in a surface 𝑀. If 𝐿 bounds an embedded disk,
let 𝐴 be the smallest area of such a disk. If there are no such disks, we set 𝐴 = +∞. We
have that

𝑐𝑒(𝑀,𝐿)(𝑆
1 , 𝑔0) = min

{
𝐴

2 , 𝑐
𝒲
(𝑀,𝐿)(𝑆

1 , 𝑔0)
}
,

where 𝑔0 is the flat metric so that 𝑆1 has length 1.

Note that 𝐴
2 is precisely half the radius of the largest Weinstein neigh-

bourhood of the circle 𝑇(𝐴) enclosing area 𝐴 in C, i.e. 𝑐𝑒(C,𝑆1(𝐴))(𝑆
1 , 𝑔0) =

1
2 𝑐

𝒲
(C,𝑆1(𝐴))(𝑆

1 , 𝑔0).
In general, however, it is hard to get an estimate on 𝑐𝑒(𝑀,𝐿)(𝑄, 𝑔), as it is hard

to get one on the neighbourhood for which Theorem 4 holds. One exception
to this is when 𝑄 = 𝐾 is the Klein bottle: in this case, the theorem holds on
every Weinstein neighbourhood (see Theorem 45 below). Therefore, the bound
comes only from the proof of Theorem 5 — more precisely, from Lemma 40
and Proposition 41. In particular, we have the following bound.

Corollary 23 Let 𝐿 be a 𝐻-rational Lagrangian Klein bottle with 𝐻-rationality con-
stant 𝜏. We have that

𝑐𝑒(𝑀,𝐿)(𝐾, 𝑔) ≥ min

{
𝜏

ℓmin
𝑔 (𝛽)

, 𝑐𝒲(𝑀,𝐿)(𝐾, 𝑔)
}
,

where ℓmin
𝑔 (𝛽) denotes the minimal length in 𝑔 of a curve representing the generator 𝛽

of the free factor of 𝐻1(𝐾;Z) = Z ⊕ Z2.
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Remark 5. There are of course many variations of 𝑐𝑒(𝑀,𝐿)(𝑄, 𝑔) that one could take.
For example, one could be interested in 𝑐𝐴(𝑀,𝐿)(𝑄, 𝑔) or 𝑐𝐵(𝑀,𝐿)(𝑄, 𝑔), the largest neigh-
bourhood on which Speculation A or Speculation B, respectively, holds. However, if
one believes in the NLC, then we should always have 𝑐𝐴 = 𝑐𝑒 . Moreover, we have not
found an example where 𝑐𝐵 ≠ 𝑐𝒲 . Therefore, 𝑐𝑒 seems to be the more fruitful version
of the relative capacity.
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2 Irrational counterexamples

We now explain the construction of the Lagrangian tori from Theorem 1. These
tori support the fact that we need in general to require some type of rationality
condition on our Lagrangians for Speculations A, B or D to hold.

We start with the case when 𝑀 = C3. Consider the product torus 𝐿 =

𝑇(1, 2, 1 + 𝛼) := 𝑇(1) × 𝑇(2) × 𝑇(1 + 𝛼), where 𝛼 > 0 is an irrational number
and 𝑇(𝐴) ⊆ C denotes the round circle enclosing area 𝐴 > 0. By work of
Chekanov [Che96], another product torus 𝑇(𝑎, 𝑎 + 𝑏, 𝑎 + 𝑐) with 𝑎, 𝑏, 𝑐 > 0
is Hamiltonian isotopic to 𝐿 in C3 if and only if 𝑎 = 1 and spanZ{𝑏, 𝑐} =

spanZ{1, 𝛼} =: 𝐺.
Let 𝑝𝑖/𝑞𝑖 be the 𝑖th convergent to 𝛼 obtained from its infinite continued

fraction. In particular 𝑝𝑖 , 𝑞𝑖 are coprime and |𝑝𝑖 − 𝑞𝑖𝛼 | < 1
𝑞𝑖+1

. Fix 𝜀 > 0. Then
for all 𝑖 ≥ 𝑖0 sufficiently large |𝑝𝑖 − 𝑞𝑖𝛼 | < 𝜀. Moreover, the matrix(

𝑝𝑖 𝑞𝑖
𝑝𝑖+1 𝑞𝑖+1

)
has determinant ±1 and hence for 𝑖 ≥ 𝑖0 , 𝑏 = 𝑝𝑖 − 𝑞𝑖𝛼, 𝑐 = 𝑝𝑖+1 − 𝑞𝑖+1𝛼 satisfy
spanZ{𝑏, 𝑐} = 𝐺 while also |𝑏 | < 𝜀, |𝑐 | < 𝜀. By changing the signs of 𝑏, 𝑐 if
necessary, which preserves both conditions, we can ensure that 𝑏 > 0, 𝑐 > 0.

This means that we can take𝑇(1, 1+𝑏, 1+𝑐)which are all in the Hamiltonian
orbit of 𝐿 but are arbitrarily 𝐶1-close to the monotone torus 𝑇(1, 1, 1). This
proves (ii) of Theorem 1 inC3 and shows that, without the𝐻-rational hypothesis
on 𝐿, not even the Lagrangian 𝐶1 flux conjecture is true in C3.

Note that a similar argument as above actually implies that the set of 𝑏, 𝑐 > 0
such that𝑇(1, 1+𝑏, 1+𝑐) is Hamiltonian isotopic to 𝐿 is dense inR2

>0. This means
that any neighbourhood 𝑈 of such a torus 𝑇(1, 1 + 𝑏, 1 + 𝑐) contains infinitely
many 𝑇(1, 1 + 𝑏′, 1 + 𝑐′) in the same Hamiltonian orbit. But 𝑇(1, 1 + 𝑏, 1 + 𝑐) ∩
𝑇(1, 1 + 𝑏′, 1 + 𝑐′) = ∅ if 𝑏 ≠ 𝑏′ or 𝑐 ≠ 𝑐′. This proves (i) of Theorem 1 in C3 and
shows that, without the 𝐻-rational hypothesis on 𝐿, not even Speculation B
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is true in C3. Note that this also shows that the Lagrangian flux group of
Lagrangian isotopies need not be discrete since that of 𝑇(1, 2, 1 + 𝛼) is not.

We now explain how to generalize the result to any manifold of dimension
2𝑛 ≥ 6. First note that by taking a product with 𝑇(1)𝑛−3, we get a counterex-
ample to our speculations in C𝑛 whenever 𝑛 ≥ 3. Furthermore, by Theo-
rem 1.1(ii) of [CS16], the Hamiltonian isotopy from 𝑇(1, . . . , 1, 1 + 𝑏, 1 + 𝑐) to
𝑇(1, . . . , 1, 1 + 𝑏′, 1 + 𝑐′) can be taken to be fully supported in the ball 𝐵2𝑛(𝐴) of

capacity𝐴 = 𝑛+1+max{𝑏+𝑐, 𝑏′+𝑐′}, i.e. of radius
√

𝐴
𝜋 . In particular, for 𝑏, 𝑏′, 𝑐,

and 𝑐′ small enough, it can be supported in the ball of capacity 𝑛+2. Therefore,
we get a counterexample in 𝑀 = 𝐵2𝑛(𝑛 + 2) But then, by simply rescaling the
ball, we get a counterexample in the ball 𝐵2𝑛(𝐴) for any 𝐴 > 0. By the Darboux
theorem, any symplectic manifold 𝑀2𝑛 admits a symplectic embedding of the
ball 𝐵2𝑛(𝐴) for 𝐴 small enough, which gives the counterexample for every 𝑀
with dim𝑀 ≥ 6.

Remark 6. Interestingly enough, the above counterexample does not work in dimension
4. Indeed, Chekanov’s classification of product tori implies that every product torus
𝐿 in C2 has a 𝐶1 neighbourhood 𝑈 such that ℒHam(𝐿) ∩ 𝑈 = {𝐿}. In particular,
the 𝐶1 version of Speculation A holds for 𝐿, and if its Hamiltonian orbit is not closed,
then the limit cannot be a product or a Chekanov torus. By Theorem 1.3 of [CS16], the
same holds for product tori in small enough Darboux balls in subtame symplectically
aspherical symplectic 4-manifolds.

However, we expect that one can use Theorem 1.5 of [CS16] to construct — in
a similar fashion as above — a counterexample to Speculation B in any (spherically)
irrational symplectic 4-fold.

3 Relations between homological rationality and
exactness and their standard counterparts

In this section, we discuss relations between standard rationality/exactness and
𝐻-rationality/𝐻-exactness. In Section 3.1, we prove the general following fact:
for a closed Lagrangian of the cotangent bundle, being 𝐻-exact is equivalent to
being isotopic to an exact Lagrangian. In Section 3.2, we explain some specific
situations in which𝐻-rationality reduces to rationality. Finaly in Section 3.3, we
give an example which illustrates why we generally work with the𝐻-rationality
condition rather than the standard rationality one.

3.1 The central lemma
The following lemma will prove to be quite useful in order to prove the main
results of this work.

Lemma 24 Let 𝐿 be a closed Lagrangian in 𝑇∗𝑄, the following are equivalent:
(i) 𝐿 is 𝐻-exact;
(ii) the Liouville form [𝜆0 |𝐿] is in the image of the map in 𝐻1(·;R) induced by the

composition 𝐿→ 𝑇∗𝑄 → 𝑄;
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(iii) the composition 𝐿→ 𝑇∗𝑄 → 𝑄 is a homotopy equivalence;
(iv) 𝐿 is isotopic to an exact Lagrangian through Lagrangian submanifolds;
(v) 𝐿 is symplectically isotopic to an exact Lagrangian;
(vi) 𝐿 is a shift of an exact Lagrangian by a closed one-form on 𝑄.

Proof. We first show that (i) and (ii) are equivalent. To see this, note that
𝐻-exactness is equivalent to 𝜆0 |𝐿 vanishes on the image of 𝐻2(𝑇∗𝑄, 𝐿;R) →
𝐻1(𝐿;R). But this is equivalent to 𝛿∗[𝜆0 |𝐿] = 0, where 𝛿∗ : 𝐻1(𝐿;R) →
𝐻2(𝑇∗𝑄, 𝐿;R) is the coboundary operator. By the long exact sequence in coho-
mology, this is equivalent to [𝜆0 |𝐿] being in the image of the map induced by
the inclusion 𝑖 : 𝐿 ↩→ 𝑇∗𝑄. We then conclude using the fact that the projection
𝜋 : 𝑇∗𝑄 → 𝑄 is a homotopy equivalence.

Suppose we have (ii). This means that there exists a closed 1-form 𝜎 ∈ Ω1(𝑄)
such that [𝑖∗𝜆] = [𝑖∗(𝜋∗𝜎)]. Now, 𝜎 induces a fibrewise symplectomorphism 𝜓𝜎

of 𝑇∗𝑄 which satisfies [𝜓∗
𝜎(𝑖∗𝜆)] = 0 so that 𝜓𝜎 maps 𝐿 to an exact Lagrangian.

Furthermore, 𝜓𝜎 generates a shift by 𝜎. This shows that (ii) yields (vi), which
obviously yields (v) and thus (iv).

Note also that (iv) implies by definition that the inclusion 𝑖 : 𝐿 ↩→ 𝑇∗𝑄 is
homotopic to the inclusion of an exact Lagrangian. Indeed, 𝐿 being Lagrangian
isotopic to 𝐿′ means precisely that there is a smooth map 𝐹 : [0, 1] × 𝐿 → 𝑇∗𝑄
such that 𝐹0 = 𝑖 , 𝐹𝑡 for all 𝑡 is a Lagrangian embedding, and 𝐹1(𝐿) = 𝐿′, where
𝐹𝑡 : 𝐿 → 𝑇∗𝑄 is given by 𝐹𝑡(𝑥) = 𝐹(𝑡 , 𝑥). But, when 𝐿 is exact, the composition
𝐿 → 𝑇∗𝑄 → 𝑄 is a (simple) homotopy equivalence [AK18], i.e. (iii) holds.
Finally, note that (iii) directly implies (ii). □

Remark 7. The notions (vi) and (ii) appear in [AS24] under the names of almost exact
and 𝐻1-standard Lagrangians in 𝑇∗𝑄, respectively.

3.2 When does 𝐻-rationality reduce to rationality?
Obviously, 𝐻-rationality implies usual rationality, i.e. 𝜔(𝐻2(𝑀, 𝐿)) being dis-
crete implies that 𝜔(𝜋2(𝑀, 𝐿)) also is. Furthermore, in many cases, these con-
ditions are equivalent. This is the case, for example, when 𝜋1(𝑀) = 0. Indeed,
in this case, the relative Hurewicz morphism 𝜋2(𝑀, 𝐿) → 𝐻2(𝑀, 𝐿;Z) can be
shown to be surjective. Expanding on this idea, we get the following.

Lemma 25 Suppose that [𝜋1(𝑀),𝜋1(𝑀)] is finite. Then, we have that

𝑁𝜔(𝐻2(𝑀, 𝐿;Z)) ⊆ 𝜔(𝜋2(𝑀, 𝐿)) + 𝜔(𝐻2(𝑀;Z)),

where 𝑁 is the order of [𝜋1(𝑀),𝜋1(𝑀)]. In particular, if 𝜋1(𝑀) is abelian, then we
have equality.

Proof. We consider the following commutative diagram.

𝜋2(𝑀) 𝜋2(𝑀, 𝐿) 𝜋1(𝐿) 𝜋1(𝑀)

𝐻2(𝑀) 𝐻2(𝑀, 𝐿) 𝐻1(𝐿) 𝐻1(𝑀)

𝑗

ℎ2

𝜕

ℎ′′2

𝑖

ℎ′1 ℎ1

𝑗 𝜕 𝑖
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Here, the rows are the long exact sequences of the pair (𝑀, 𝐿) in homotopy
and homology with integer coefficients, respectively, and the columns are the
various Hurewicz morphisms; it commutes by naturality of the Hurewicz map.

The proof follows from a straightforward diagram chasing argument, but
we still give the details. Let 𝐴 ∈ 𝐻2(𝑀, 𝐿). Since ℎ′1 is surjective — the
Hurewicz morphism in first degree is simply the abelianization morphism —
there is some 𝑎 ∈ 𝜋1(𝐿) such that 𝜕(𝐴) = ℎ′1(𝑎). But note that

ℎ1𝑖(𝑎) = 𝑖ℎ′1(𝑎) = 𝑖𝜕(𝐴) = 0.

Therefore, 𝑖(𝑎) ∈ Ker ℎ1 = [𝜋1(𝑀),𝜋1(𝑀)]. By hypothesis, 𝑖(𝑁𝑎) = 0. There-
fore, there is some 𝑢 ∈ 𝜋2(𝑀, 𝐿) such that 𝜕(𝑢) = 𝑁𝑎. But note that

𝜕(𝑁𝐴 − ℎ′′2 (𝑢)) = ℎ′1(𝑁𝑎) − ℎ
′
1(𝜕𝑢) = 0.

There is thus some 𝐵 ∈ 𝐻2(𝑀) such that 𝑁𝐴 = 𝑗(𝐵) + ℎ′′2 (𝑢). To conclude, we
only note that 𝜔(𝑗(𝐵)) = 𝜔(𝐵) and 𝜔(ℎ′′2 (𝑢)) = 𝜔(𝑢). □

Note that this corollary recovers the statement at the start of the subsection
that 𝐻-rationality and rationality are the same when 𝜋1(𝑀) = 0. In the case
𝑀 = 𝐷∗

𝑟𝐿, the condition that 𝜔(𝐻2(𝑀;Z)) = 0 is automatically satisfied since
𝜔 is exact, and the condition on the commutator subgroup of 𝜋1(𝑀) becomes
that [𝜋1(𝐿),𝜋1(𝐿)] be finite. Therefore, we get directly the following result.

Corollary 26 Suppose that [𝜋1(𝐿),𝜋1(𝐿)] is finite. Then, Conjecture C is equivalent
to its homotopical version, i.e. the one where 𝐾 is only rational, and we get a bound on
its rationality constant.

Remark 8. The homotopical version of Theorem 2, that is, Theorem 39 below, proves
the homotopical version of Conjecture C when 𝐿 = 𝐿0 ×T𝑚 with 𝐻1(𝐿0;R) = 0. This
intersects with the above corollary precisely in the case when 𝜋1(𝐿0) is finite.

Using Corollary 26, we can obtain a homotopical version of Theorem 4.
However, the proof of Theorem 5 truly requires 𝐻-exactness. One exception
to this is when 𝜋2(𝑀, 𝐿) → 𝜋1(𝐿) is surjective, but an argument similar to
the above shows that rationality is then equivalent to 𝐻-rationality as long as
𝑞𝜔(𝐻2(𝑀;Z)) = 𝜔(𝜋2(𝑀, 𝐿)) for some 𝑞 ∈ Q, which is the case generically (and
is always the case if [𝜋1(𝐿),𝜋1(𝐿)] is finite).

3.3 Why 𝐻-rationality in general?
We end this section with an example which showcases the need to work with𝐻-
rational Lagrangians and not just rational Lagrangians for many applications.
Note that this example is such that [𝜋1(𝐿),𝜋1(𝐿)] is not finite.

In [Pol93], Polterovich constructs for any vector 𝑣 ∈ R𝑛 and any flat manifold
𝑄 a Lagrangian torus 𝐿𝑣 in 𝑇∗𝑄. This torus has the property that

(i) for a contractible open𝑈 ⊆ 𝑄, 𝐿𝑣 ∩ 𝑇∗𝑄 |𝑈 = 𝑈 × {𝑣} ⊆ 𝑈 ×R𝑛 ;
(ii) the map 𝐿𝑣 → 𝑄 given by restriction of 𝜋 : 𝑇∗𝑄 → 𝑄 is a covering.
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We concentrate our efforts on the simplest case: 𝑛 = 2 and 𝑄 = 𝐾 is the Klein
bottle. In that case, 𝐿𝑣 → 𝐾 is the 2:1 cover.

First note that 𝐿𝑣 is weakly exact in𝑇∗𝐾. To see this, denote by 𝑝 : T2 → 𝐾 the
2:1 cover and take �̃� : 𝑇∗T2 → 𝑇∗𝐾 to be its lift using the flat metrics on T2 and
𝐾. Point (i) gives that �̃�−1(𝐿𝑣) = T2×{𝑣} ⊆ 𝑇∗T2 = T2×R2. But any disk 𝑢 with
boundary along 𝐿𝑣 admits a lift �̃� in 𝑇∗T2 with boundary alongT2 × {𝑣}. Since
T2 × {𝑣} ↩→ 𝑇∗T2 is a homotopy equivalence, 𝜋2(𝑇∗T2 ,T2 × {𝑣}) = 0, and the
lift �̃� is contractible. But then, so must be 𝑢, and we have that 𝜋2(𝑇∗𝐾, 𝐿𝑣) = 0.

On the other hand, 𝐿𝑣 is not 𝐻-exact. Indeed, let 𝛾 : 𝑆1 → 𝐾 be a loop
admitting a lift to 𝐿𝑣 , that is, [𝛾] ∈ 𝑝∗(𝜋1(T2)). Since 𝐿𝑣 → 𝐾 is a 2:1 cover, there
are two lifts �̃�1 and �̃�2 of 𝛾. Furthermore, each lift �̃�𝑖 defines a cylinder𝐶𝑖 in𝑇∗𝐾
by taking 𝐶𝑖(𝑠, 𝑡) = 𝑡 �̃�𝑖(𝑠), (𝑠, 𝑡) ∈ 𝑆1 × [0, 1]. Note that 𝜕𝐶𝑖 = �̃�𝑖 ⊔ −𝛾, where
the minus sign denotes the reversal of orientation. Therefore, 𝐶 := 𝐶1 ∪𝛾 −𝐶2
is a cylinder in 𝑇∗𝐾 with boundary along 𝐿𝑣 . Furthermore, it has area

𝜔0(𝐶) = 𝜆0(�̃�1) − 𝜆0(−�̃�2) = 2
∫
𝑆1
⟨𝑣, ¤𝛾(𝑠)⟩𝑑𝑠,

where ⟨·, ·⟩ denotes the Euclidean scalar product. In particular, if we take 𝛾 to
be a simple loop corresponding to a straight line in the fundamental domain
of R2 defining 𝐾 = R2/𝜋1(𝐾) and 𝑣 to be positively proportional to ¤𝛾, then
𝜔0(𝐶) = 2|𝑣 | > 0. Therefore, such an 𝐿𝑣 is indeed not 𝐻-exact.

Finally, note that, as 𝑣 → 0, 𝐿𝑣 → 𝐾 in the Hausdorff topology. Therefore,
however small we take a neighbourhood of the zero-section of 𝑇∗𝐾, there is a
weakly exact Lagrangian in that neighbourhood which is not exact. Therefore,
there is no homotopical equivalent of Theorem 5 withℒHam(𝐿) replaced by the
space of all 𝜏-rational Lagrangians if [𝜋1(𝐿),𝜋1(𝐿)] is not finite. In particular,
many applications in the introduction do not have equivalents in spaces of
𝜏-rational Lagrangians.

4 Proofs of Theorems 2 and 4

We now turn our attention to Theorem 2. To obtain a proof, we first in-
troduce some capacities inspired by work of Cieliebak and Mohnke [CM18]
(Section 4.1), and we explain how their finiteness implies the first half of the
theorem (Section 4.2). We show that this straightforwardly yields Theorem 4
(Section 4.3). We then prove that Conjecture C is closed under covering, which
concludes the proof of Theorem 2 (Section 4.4). Finally, we state and prove its
homotopical variant (Section 4.5). Note that the methods developed here will
also be central to the proof of Theorem 7.

4.1 Some capacities à la Cieliebak–Mohnke
In [CM18], Cieliebak and Mohnke introduce — and compute in some cases —
a capacity which measures, in a given domain, the largest possible area of a
minimal disk with boundary along a Lagrangian torus. We start by introducing
a small tweak in their definition, which will turn out to be quite useful in our
setting.
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Let𝑄 be a closed connected 𝑛-manifold. For any 2𝑛-dimensional symplectic
manifold (𝑋, 𝜔), we define three classes of Lagrangians:

ℒ𝑄(𝑋) := {𝐿 = Im( 𝑓 : 𝑄 ↩→ 𝑋) | 𝑓 ∗𝜔 = 0, 𝜔(𝐻2(𝑋, 𝐿;Z)) ≠ 0}
ℒ

′
𝑄(𝑋) := {𝐿 = 𝑓 (𝑄) ∈ ℒ𝑄(𝑋) | im(𝐻1( 𝑓 ) ⊗ R) ≠ 𝐻1(𝑋;R) or 𝐻1(𝑋;R) = 0}

ℒ
0
𝑄(𝑋) := {𝐿 = 𝑓 (𝑄) ∈ ℒ𝑄(𝑋) | 𝐻1( 𝑓 ) ⊗ R = 0}

where 𝐻1( 𝑓 ) ⊗ R is the map induced by 𝑓 on first homology with real coeffi-
cients.

Lemma 27 We always have the inclusions ℒ0
𝑄
(𝑋) ⊂ ℒ

′
𝑄
(𝑋) ⊂ ℒ𝑄(𝑋).

Moreover, we have the following particular cases.
• If 𝐻1(𝑋;R) = 0, we have ℒ0

𝑄
(𝑋) = ℒ

′
𝑄
(𝑋) = ℒ𝑄(𝑋).

• If dim𝐻1(𝑄;R) = 1 and 𝑋 is exact, we have ℒ0
𝑄
(𝑋) = ℒ

′
𝑄
(𝑋) = ℒ𝑄(𝑋).

• If dim𝐻1(𝑄;R) ≤ dim𝐻1(𝑋;R) and 𝑋 is exact, we have ℒ′
𝑄
(𝑋) = ℒ𝑄(𝑋).

Proof. The general statement and the first point are obvious.
Now, we fix 𝑄 and 𝑋 as in the second point. We can assume that there

is a Lagrangian embedding 𝑓 : 𝑄 ↩→ 𝑋; otherwise all sets are empty. Since
dim𝐻1(𝑄;R) = 1, 𝐻1( 𝑓 ) ⊗R is either 0 or injective. Suppose that it is injective.
By the long exact sequence in homology, we then get that the boundary map
𝜕 : 𝐻2(𝑋, 𝐿;R) → 𝐻1(𝐿;R) is zero, where 𝐿 = 𝑓 (𝑄). Since 𝜔(𝐻2(𝑋, 𝐿;R)) =
𝜆(𝜕(𝐻2(𝑀, 𝐿;R))) whenever 𝜔 = 𝑑𝜆, we then conclude that 𝐿 is 𝐻-exact. In
particular, 𝐿 ∉ ℒ𝑄(𝑋). Therefore, we have that ℒ𝑄(𝑋) = ℒ

0
𝑄
(𝑋).

Finally, for the third point, 𝜔(𝐻2(𝑋, 𝐿;Z)) ≠ 0 implies by the long ex-
act sequence of a pair that 𝐻1( 𝑓 ) ⊗ R has non-trivial kernel and therefore
dim im(𝐻1( 𝑓 ) ⊗ R) ≤ dim𝐻1(𝑋;R) − 1. □

In turn, this defines three capacities:

𝑐𝑄(𝑋) := sup{𝐴𝐻min(𝐿, 𝑋) | 𝐿 ∈ ℒ𝑄(𝑋)} ∈ [0,+∞];
𝑐
′
𝑄(𝑋) := sup{𝐴𝐻min(𝐿, 𝑋) | 𝐿 ∈ ℒ

′
𝑄(𝑋)} ∈ [0,+∞];

𝑐0
𝑄(𝑋) := sup{𝐴𝐻min(𝐿, 𝑋) | 𝐿 ∈ ℒ

0
𝑄(𝑋)} ∈ [0,+∞],

where

𝐴𝐻min(𝐿, 𝑋) := inf{𝜔(𝑢) | 𝑢 ∈ 𝐻2(𝑋, 𝐿;Z), 𝜔(𝑢) > 0}.

We take the convention that 𝑐𝑄(𝑋) = 0 (respectively 𝑐0
𝑄
(𝑋) = 0, 𝑐′

𝑄
(𝑋) = 0) if

ℒ𝑄(𝑋) = ∅ (respectively ℒ
0
𝑄
(𝑋) = ∅, ℒ′

𝑄
(𝑋) = ∅). Obviously, we have that

𝑐0
𝑄
≤ 𝑐′

𝑄
≤ 𝑐𝑄 . Finally, we set

𝑐all(𝑋) := sup 𝑐𝑄(𝑋),
𝑐
′

all(𝑋) := sup 𝑐′𝑄(𝑋), and

𝑐0
all(𝑋) := sup 𝑐0

𝑄(𝑋),

where the supremum runs over all closed connected 𝑛-dimensional manifolds.
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Remark 9. The main differences between our definition and Cieliebak–Mohnke’s are
that we work with homology instead of homotopy, we allow any𝑄 and not only tori, and
we only look at Lagrangians which do bound some homology class with nonvanishing
area. The latter is central to our argument, as we will mainly be interested in the case
𝑋 = 𝐷∗𝑄, but such a manifold obviously admits an exact Lagrangian 𝑄. Therefore,
without this restriction, 𝑐𝑄(𝐷∗𝑄) would be infinite for trivial reasons, which runs
counter to our purpose here.

However, we could develop an entirely analogous theory using homotopy and get
some homotopical version of Theorem 4 — see Section 3.2 for a discussion.

The following properties follow directly from the definition of the capacities.

Lemma 28 Let 𝑐 denote 𝑐𝑄 , 𝑐′
𝑄

, 𝑐0
𝑄

, 𝑐all, 𝑐′all or 𝑐0
all. We have the two following

properties.
(i) For all 𝛼 ≠ 0, we have that 𝑐(𝑋, 𝛼𝜔) = |𝛼 |𝑐(𝑋, 𝜔).
(ii) If there is a 0-codimensional symplectic embedding 𝜄 : 𝑋 ↩→ 𝑋′ such that

𝐻2(𝑋′, 𝜄(𝑋);R) = 0, then 𝑐(𝑋) ≤ 𝑐(𝑋′).

The problem with the monotonicity property (ii) when 𝐻2(𝑋′, 𝜄(𝑋);R) ≠ 0
is that there could then be homology classes in 𝑋′ with smaller area than those
in 𝑋 — thus inverting the expected direction of the inequality. However, the
capacity 𝑐0

𝑄
partially goes around that issue.

Lemma 29 If there exists a 0-codimensional symplectic embedding 𝜄 : 𝑋 ↩→ 𝑋′ and
𝑋′ is exact, then 𝑐0

𝑄
(𝑋) ≤ 𝐵𝑐0

𝑄
(𝑋′), where 𝐵 ≥ 1 only depends on the torsion part of

𝐻1(𝑋;Z).

Proof. Let 𝜆′ be a primitive of the symplectic form of 𝜔′ on 𝑋′. Then, 𝜆 = 𝜄∗𝜆′

is a primitive of 𝜔 on 𝑋. Fix 𝐿 = 𝑓 (𝑄) ∈ ℒ
0
𝑄
(𝑋). Since 𝐻1( 𝑓 ) ⊗ R = 0, we must

have that 𝑓∗(𝐻1(𝑄;Z)) is a torsion subgroup of𝐻1(𝑋;Z). Take 𝐵 to be the order
of the torsion of 𝐻1(𝑋;Z) if it is nonzero, i.e. if

𝐻1(𝑋;Z) = Z𝑏 ⊕ Z
𝑝
𝑘1
1
⊕ · · · ⊕ Z

𝑝
𝑘ℓ
ℓ

,

then 𝐵 = 𝑝
𝑘1
1 . . . 𝑝

𝑘ℓ
ℓ

. If 𝐻1(𝑋;Z) has no torsion, then we simply set 𝐵 = 1. We
thus have 𝐵 · 𝑓∗(𝐻1(𝑄;Z)) = 0. By the homology long exact sequence of the pair
(𝑋, 𝐿), this is equivalent to saying that 𝜕𝐻2(𝑋, 𝐿;Z) ⊇ 𝐵 · 𝐻1(𝐿;Z). Therefore,
we have that

𝐴𝐻min(𝐿, 𝑋) = inf
𝑎∈𝜕𝐻2(𝑋,𝐿;Z)

𝜆(𝑎)>0

𝜆(𝑎)

≤ inf
𝑎∈𝐵·𝐻1(𝐿;Z)

𝜆(𝑎)>0

𝜆(𝑎)

= 𝐵 · inf
𝑎′∈𝐻1(𝜄(𝐿);Z)

𝜆′(𝑎′)>0

𝜆′(𝑎′)

≤ 𝐵 · 𝐴𝐻min(𝜄(𝐿), 𝑋
′).

Since 𝜄(ℒ0
𝑄
(𝑋)) ⊆ ℒ

0
𝑄
(𝑋′), this gives the desired inequality. □
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From Lemma 27 above, we directly get.

Lemma 30 • If 𝐻1(𝑋;R) = 0, we have 𝑐𝑄(𝑋) = 𝑐′
𝑄
(𝑋) = 𝑐0

𝑄
(𝑋).

• If dim𝐻1(𝑄;R) = 1 and 𝑋 is exact, we have 𝑐𝑄(𝑋) = 𝑐′
𝑄
(𝑋) = 𝑐0

𝑄
(𝑋).

• If dim𝐻1(𝑄;R) ≤ dim𝐻1(𝑋;R) and 𝑋 is exact, we have 𝑐′
𝑄
(𝑋) = 𝑐𝑄(𝑋).

We end this short list of properties of our capacities by proving that they
behave relatively well under products.

Lemma 31 Suppose that 𝑄′ admits a 𝐻-exact Lagrangian embedding in 𝑋′. Then,
𝑐𝑄(𝑋) ≤ 𝑐𝑄×𝑄′(𝑋 × 𝑋′). In particular, 𝑐all(𝑋) ≤ 𝑐all(𝑋 × 𝑋′) as soon as 𝑋′ admits
a 𝐻-exact Lagrangian. The same holds for the corresponding 𝑐′ capacities

If 𝑄′ admits any Lagrangian embedding in an exact 𝑋′ and 𝐻1(𝑄′;R) = 0, then
we have that 𝑐0

𝑄
(𝑋) ≤ 𝑐0

𝑄×𝑄′(𝑋 × 𝑋′). In particular, 𝑐0
all(𝑋) ≤ 𝑐0

all(𝑋 × 𝑋′) as soon
as 𝑋′ admits a Lagrangian with vanishing first Betti number.

Proof. Let 𝐿 be the image of a Lagrangian embedding of 𝑄 in 𝑋, and let
𝐿′ be the image of a 𝐻-exact Lagrangian embedding in 𝑋′. Note that we
can suppose that 𝐿 bounds some homology class, otherwise the inequality is
trivial. Let thus 𝑣 : (Σ, 𝜕Σ) → (𝑋 ×𝑋′, 𝐿× 𝐿′) for some compact surface Σ with
boundary. Projecting on each component gives maps 𝑢 : (Σ, 𝜕Σ) → (𝑋, 𝐿) and
𝑢′ : (Σ, 𝜕Σ) → (𝑋′, 𝐿′). Furthermore, if 𝜔 is the symplectic form of 𝑋 and 𝜔′ of
𝑋′, we then have that

(𝜔 ⊕ 𝜔′)(𝑣) = 𝜔(𝑢) + 𝜔(𝑢′) = 𝜔(𝑢),

since 𝐿′ is 𝐻-exact. Taking infima over all 𝑣, we thus get

𝑐𝑄×𝑄′(𝑋 × 𝑋′) ≥ 𝐴𝐻min(𝐿 × 𝐿
′, 𝑋 × 𝑋′) = inf

𝑢=𝑝𝑟1◦𝑣
𝜔(𝑢)>0

𝜔(𝑢) ≥ 𝐴𝐻min(𝐿, 𝑋).

We then get the inequality by taking the supremum over all possible 𝐿’s.
The case𝐻1(𝑄′;R) = 0 is proven in much the same way. Indeed, exactness of

𝑋′ along with 𝐻1(𝑄′;R) = 0 ensures that we also have (𝜔 ⊕𝜔′)(𝑣) = 𝜔(𝑢). Fur-
thermore, the vanishing of the first Betti number ensures that 𝐻1(𝑄 ×𝑄′;R) →
𝐻1(𝑋 × 𝑋′;R) vanishes if and only if 𝐻1(𝑄;R) → 𝐻1(𝑋;R) does. □

4.2 Finiteness of the capacities
Having enunciated the main properties of our capacities, we now explain how
one can get the first part of Theorem 2 from their finiteness.

Proposition 32 Let 𝐿 be a closed connected manifold. There exists 𝑅 > 0 such that
𝑐
′

all(𝐷
∗
𝑅
𝐿) is finite if and only if Conjecture C holds.

Proof. Suppose that 𝑐′all(𝐷
∗
𝑅
𝐿) is finite, and set 𝐶 := 𝑐′all(𝐷

∗
𝑅
𝐿)/𝑅. It follows from

Property (i) of Lemma 28 that

𝑐′all(𝐷
∗
𝑟𝐿) =

𝑟

𝑅
𝑐′all(𝐷

∗
𝑅𝐿) = 𝐶𝑟.
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Here, we have made use of the fact that (𝐷∗
𝑟𝐿, 𝜔0) is symplectomorphic to

(𝐷∗
𝑟/𝑎𝐿, 𝑎𝜔0) via the map (𝑞, 𝑝) ↦→ (𝑞, 𝑎𝑝). Note that Property (ii) of Lemma 28

implies that our capacity is invariant under symplectomorphisms. Let 𝐾 be a
𝐻-rational Lagrangian in 𝐷∗

𝑟𝐿, with 𝐻-rationality constant 𝜏𝐾 , such that (𝜋𝐾)∗
is not surjective on 𝐻1( · ;R), i.e. 𝐾 is in ℒ

′
𝐾
(𝐷∗

𝑟𝐿). Then

𝜏𝐾 = 𝐴𝐻min(𝐾, 𝐷
∗
𝑟𝐿) ≤ 𝑐′all(𝐷

∗
𝐿) = 𝐶𝑟,

which is what we wanted to show.
On the other hand, if Conjecture C holds, then 𝐴𝐻min(𝐾, 𝐷∗

𝑅
𝐿) ≤ 𝐶𝑅 for all

𝐻-rational Lagrangians in 𝐷∗
𝑅
𝐿 such that (𝜋𝐾)∗ is not surjective on 𝐻1( · ;R).

Since 𝐴𝐻min(𝐾, 𝐷∗
𝑅
𝐿) = 0 when 𝐾 is 𝐻-irrational, we directly get a bound on the

capacity. □

Therefore, proving Theorem 2 reduces to proving finiteness of some capac-
ity in cotangent bundles. In general, this turns out to be nontrivial, since even
𝑐T𝑛 (𝑋) — the best-behaved version of our capacities — is only well understood
when 𝑋 is a convex or concave toric domain, which is far from the case we
need. We will explore this further down, but we already note some interesting
cases where finiteness is achievable.

Proposition 33 If 𝑐𝑄×𝑄′(𝐷∗
𝑅
(𝑄 × 𝑄′)) < ∞, then we have that 𝑐𝑄(𝐷∗

𝑅
𝑄) < ∞ and

𝑐𝑄′(𝐷∗
𝑅
𝑄′) < ∞.

Proof. It follows from Lemma 31 that

𝑐𝑄(𝐷∗
𝑅𝑄) ≤ 𝑐𝑄×𝑄′(𝐷∗

𝑅𝑄 × 𝐷∗
𝑅𝑄

′).

But𝐷∗
𝑅
𝑄×𝐷∗

𝑅
𝑄′ embeds symplectically in𝐷∗

2𝑅(𝑄×𝑄′) and that embedding is a
homotopy equivalence. The proposition then follows directly from Property (ii)
of Lemma 28, since finiteness for some 𝑅 > 0 implies finiteness for every 𝑅 > 0
by Property (i) of that lemma. □

Note that if 𝐿 is a displaceable Lagrangian in a tame symplectic manifold,
𝐴𝐻min(𝐿) is a lower bound for its displacement energy — this follows from
Chekanov’s famous estimate [Che98]. In particular, 𝑐all(𝐵2𝑛) is bounded by the
displacement energy of 𝐵2𝑛 , and thus it is finite. Zhou [Zho20] proved a broad
generalization of this result using a truncated version of Viterbo’s transfer map.

Theorem 34 ([Zho20]) Let 𝑋 be a Liouville domain with 𝑆𝐻(𝑋) = 0. We have that
𝑐all(𝑋) < ∞.

Note that 𝑆𝐻(𝐷∗
𝑅
𝐿) ≠ 0 because of Viterbo’s isomorphism [Vit99]. There-

fore, Zhou’s theorem never directly implies Theorem 4. However, in some
cases, we still manage to compare 𝑐𝑄(𝐷∗𝐿) to 𝑐all(𝑋) as we shall see below.

Remark 10. Zhou actually works with homotopy — not homology like us — and allows
for the possibility of weakly exact Lagrangians. He also allows some nonexact Liouville
domains, but it will not be needed here. Therefore, his result is actually more general
than what is cited here.
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Theorem 35 Let 𝐿1, ..., 𝐿𝑘 be closed manifolds with dim𝐻1(𝐿𝑖 ;R) = 1 such that 𝐿𝑖
embeds as a Lagrangian in a Liouville domain 𝑊𝑖 such that 𝑆𝐻(𝑊𝑖) = 0. Let 𝐿0 be a
closed manifold with 𝐻1(𝐿0;R) = 0. We have that

𝑐
′

all
(
𝐷∗
𝑟0𝐿0 × · · · × 𝐷∗

𝑟𝑘
𝐿𝑘
)
< ∞

for small enough 𝑟𝑖 ’s. Moreover, the same is true for 𝑐𝑄 for a closed connected manifold
𝑄 with dim𝐻1(𝑄;R) ≤ 𝑘.

Proof of Theorem 35. We start with the case 𝐿0 is a point and remove it from
the notation for now. Let 𝐿 be a Lagrangian in the product of codisk bundles
𝑋 diffeomorphic to 𝑄 and such that 𝜔(𝐻2(𝑋, 𝐿)) ≠ 0. Further suppose that
𝑓∗ : 𝐻1(𝑄;R) → 𝐻1(𝑋;R) is not surjective. Denote by

𝑝𝑖 : 𝐿1 × · · · × 𝐿𝑘 → 𝐿1 × · · · × 𝐿𝑖 × · · · × 𝐿𝑘

the projection onto the product of all 𝐿 𝑗 ’s except 𝐿𝑖 and by Π𝑖 its lift between
products of cotangent bundles.

Since 𝑓∗ is not surjective, its image 𝐼 is a vector subspace of 𝐻1(𝑋;R) of
dimension less than or equal to 𝑘 − 1. Therefore, there exists at least one
𝑖 ∈ {1, . . . , 𝑘} such that, under the identification 𝐻1(𝑋;R) � R𝑘 , the projection
𝜋𝑖 : R𝑘 → 𝑅𝑖 = {𝑥 ∈ R𝑘 | 𝑥𝑖 = 0} is injective on 𝐼. Note that (Π𝑖)∗ is naturally
identified with 𝜋𝑖 . Therefore, for that 𝑖, we have that ker 𝑓∗ = ker(Π𝑖 ◦ 𝑓 )∗.

Take 𝑟𝑖 small enough so that 𝐷∗
𝑟𝑖
𝐿𝑖 symplectically embeds in 𝑊𝑖 as in the

statement of the theorem. Denote by

Ψ𝑖 : 𝑋 ↩→ 𝑋′
𝑖 := 𝐷∗

𝑟1𝐿1 × · · · ×𝑊𝑖 × · · · × 𝐷∗
𝑟𝑘
𝐿𝑘

the symplectic embedding it induces and by 𝜔′
𝑖

the symplectic form on 𝑋′
𝑖
.

Note that ker(Π𝑖 ◦ 𝑓 )∗ = ker(Ψ𝑖 ◦ 𝑓 )∗.
Suppose 𝑢′ ∈ 𝐻2(𝑋′

𝑖
, 𝐿;Z) such that 𝜔′

𝑖
(𝑢′) ≠ 0. This implies that 𝜕𝑢′ is

in ker(Ψ𝑖 ◦ 𝑓 )∗ = ker 𝑓∗ in 𝐻1(𝑄;R). In particular, there is some 𝑁 ∈ Z and
some 𝑢 ∈ 𝐻2(𝑋, 𝐿;Z) such that 𝜕𝑢 = 𝑁𝜕𝑢′. Furthermore, some diagram
chasing gives that 𝑁 must divide the order 𝐵𝑖 of the torsion part of 𝐻𝑖(𝐷∗

𝑟𝑖
𝐿𝑖).

Moreover, since Ψ𝑖 is an exact symplectic embedding, we have 𝜔(𝑢) = 𝑘𝜔′(𝑢′).
Hence

𝐴𝐻min(𝐿, 𝑋) ≤ 𝐵𝑖𝐴
𝐻
min(𝐿, 𝑋

′
𝑖 ) ≤ 𝐵𝑖𝑐all(𝑋′

𝑖 )

Taking the supremum over all possible 𝐿, we thus get

𝑐
′
𝑄(𝑋) ≤ max

𝑖
𝐵𝑖𝑐all(𝑋′

𝑖 ),

and finiteness follows from Zhou’s theorem.
When 𝐿0 is not a point, one can check that the entire proof above follows in

the same way. □

4.3 Proof of Theorem 4
For completeness, we now give a quick proof of how Theorem 4 follows from
Conjecture C when it holds.
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Proof of Theorem 4. For all sufficiently small 𝑟 > 0, there is a Weinstein neigh-
bourhood 𝑊𝑟(𝐿) � 𝐷∗

𝑟𝐿 of 𝐿 in 𝑀. Let 𝐿′ ∈ ℒ(𝐿, 𝜏), and suppose that the
map (𝜋|𝐿′)∗ : 𝐻1(𝐿′;R) → 𝐻1(𝐿;R), induced by the restriction of the projection
𝜋 : 𝐷∗𝐿 → 𝐿 to 𝐿′ is not surjective. Then, there is some positive integer 𝑘
such that 𝐿′ has rationality constant 𝑘𝜏 in 𝒲𝑟(𝐿). If Conjecture C holds, then
we have that 𝑘𝜏 ≤ 𝐶𝑟 for some 𝐶 = 𝐶(𝐿) > 0. We thus get a contradiction if
𝑟 < 𝜏/𝐶.

For such 𝑟, (𝜋|𝐿′)∗ : 𝐻1(𝐿′;R) → 𝐻1(𝐿;R) must thus be surjective whenever
𝐿′ ⊆ 𝒲𝑟(𝐿). Since 𝐻1(𝐿′;R) � 𝐻1(𝐿;R), this means that it is an isomorphism,
and the result follows from the central lemma (Lemma 24). □

We remark that using the methods above and the 𝑐0 variant of the capacities,
we can show the following interesting partial result.

Theorem 36 Let 𝐿 be a Lagrangian submanifold in 𝑀. Suppose that, as an abstract
manifold, 𝐿 admits a Lagrangian embedding in a Liouville domain𝑊 with 𝑆𝐻(𝑊) = 0.
For every 𝜏 ≥ 0, there exists a Weinstein neighbourhood 𝒲(𝐿) of 𝐿 in 𝑀, such that if
𝐿′ ∈ ℒ(𝜏) is included in 𝒲(𝐿), then the map 𝜋∗ : 𝐻1(𝐿′;R) → 𝐻1(𝐿;R) induced by
the projection is nonzero.

Sketch of proof. By adapting the proof of Proposition 32, one can see that finite-
ness of 𝑐0

all(𝐷
∗
𝑅
𝐿) for some 𝑅 > 0 is equivalent to the following version of

Conjecture C: if 𝐾 is an 𝐻-rational Lagrangian inside 𝐷∗
𝑟𝐿 such that the map

(𝜋|𝐾)∗ : 𝐻1(𝐾;R) → 𝐻1(𝐿;R) is zero, then the 𝐻-rationality constant 𝜏𝐾 of 𝐾
satisfies 𝜏𝐾 ≤ 𝐶𝑟 for a constant 𝐶 = 𝐶(𝐿).

However, the finiteness of 𝑐0
all(𝐷

∗
𝑅
𝐿) for some 𝑅 > 0 follows directly from

the Weinstein neighbourhood theorem, the monotonicity of the 𝑐0 capacities
(Lemma 29), and Zhou’s Theorem.

Replicating the proof of Theorem 4, one gets the existence of a neigh-
bourhood 𝒲(𝐿) such that whenever 𝐿′ ∈ ℒ(𝜏) is in 𝒲(𝐿), then 𝐻1(𝐿′;R) →
𝐻1(𝐿;R) is nonzero. □

Remark 11. Since 𝐿 embeds as a Lagrangian in a Liouville domain with 𝑆𝐻(𝑊) = 0,
so does any nearby 𝐿′. The Viterbo transfer morphism then implies that 𝐻1(𝐿;R) and
𝐻1(𝐿′;R) are nonzero (see [Rit13]). Therefore, 𝐻1(𝐿′;R) → 𝐻1(𝐿;R) being nonzero
is consistent with the hypotheses on 𝐿 and 𝐿′.

4.4 Conjecture C and covering spaces
The condition on the Lagrangian 𝐾 ⊂ 𝐷∗

𝑟𝐿 in Conjecture C, i.e. non-surjectivity
of (𝜋𝐾)∗, while technical, has the advantage of behaving well with covering
spaces. This is highlighted by the following proposition, which proves the
second part of Theorem 2.

Proposition 37 Suppose that Conjecture C holds for a closed connected manifold 𝐿′,
then it holds for all 𝐿 such that there exists a covering map 𝜋 : 𝐿′ → 𝐿.

Before we prove Proposition 37, we require the following lemma from group
theory. For a group 𝐺, denote by Ab(𝐺) = 𝐺/[𝐺, 𝐺] its abelianization.
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Lemma 38 Suppose 𝐻 is a subgroup of finite index in a group 𝐺. Then the inclusion
𝑖 : 𝐻 → 𝐺 induces a surjection

Ab(𝐻) ⊗ Q→ Ab(𝐺) ⊗ Q.

Proof. Observe that rank Ab(𝐺) = dimQ Hom(𝐺,Q). It thus suffices to prove
that the restriction map

𝑟 : Hom(𝐺,Q) → Hom(𝐻,Q)

is injective. Suppose 𝜈 ∈ ker(𝑟), i.e. 𝜈 |𝐻 ≡ 𝑒𝐻 . Let𝐻 = 𝑎1𝐻, 𝑎2𝐻, . . . , 𝑎𝑘𝐻 be the
right cosets of 𝐻 in 𝐺. Then im(𝜈) = {𝑒𝐻 , 𝜈(𝑎2), ..., 𝜈(𝑎𝑘)} ⊂ Q is a finite subset.
Since Q has no non-zero elements of finite order, this yields that 𝜈 ≡ 𝑒𝐻 . □

Proof of Proposition 37. First, extend the covering 𝑝 : 𝐿′ → 𝐿 to a covering

𝑝 : 𝑊 ′
𝑟 = 𝐷∗

𝑟𝐿
′ →𝑊𝑟 = 𝐷∗

𝑟𝐿

for the metric 𝑔′ = 𝑝∗𝑔 on 𝐿′. Look at a connected component 𝐾′ of 𝑝−1(𝐾).
Then 𝑝𝐾′ = 𝑝 |𝐾′ : 𝐾′ → 𝐾 is a covering of 𝐾. Denote by 𝜔′ = 𝑝∗𝜔 and 𝜆′ = 𝑝∗𝜆
the symplectic and Liouville forms on 𝑊 ′

𝑟 , and set 𝜆′
𝐾′ = 𝜆′ |𝐾′ , 𝜆𝐾 = 𝜆|𝐾 . It is

easy to see that 𝐾′ is 𝐻-rational in 𝐷∗
𝑟𝐿

′. Indeed, given 𝐴 ∈ 𝐻2(𝐾′,𝑊 ′
𝑟 ), we have

⟨𝜔′, 𝐴⟩ = ⟨𝜔, 𝑝∗𝐴⟩, which is an integer multiple of 𝜏𝐾 . Hence for a suitable
integer 𝑚 ≥ 1, 𝜏𝐾′ = 𝑚𝜏𝐾 ≥ 𝜏𝐾 .

It is now sufficient to prove that if (𝜋𝐾′)∗ : 𝐻1(𝐾′;Q) → 𝐻1(𝐿′;Q) is surjective,
then (𝜋𝐾)∗ : 𝐻1(𝐾;Q) → 𝐻1(𝐿;Q) also is. Note that as covering maps, 𝑝 and
𝑝𝐾′ , induce injective homomorphisms at the level of fundamental groups. As
𝐻1(𝑋) = Ab𝜋1(𝑋) for any path connected space 𝑋, Corollary 38 implies that
𝑝∗ : 𝐻1(𝐿′;Q) → 𝐻1(𝐿;Q) and (𝑝𝐾)∗ : 𝐻1(𝐾′;Q) → 𝐻1(𝐾;Q) are surjective.
Hence if (𝜋𝐾′)∗ : 𝐻1(𝐾′;Q) → 𝐻1(𝐿′;Q) is surjective, then (𝑝◦𝜋𝐾′)∗ = 𝑝∗◦(𝜋𝐾′)∗ :
𝐻1(𝐾′;Q) → 𝐻1(𝐿′;Q) is surjective. However, as 𝑝 ◦ 𝜋𝐾′ = 𝜋𝐾 ◦ 𝑝𝐾′ the image
of (𝑝 ◦𝜋𝐾′)∗ = (𝜋𝐾 ◦ 𝑝𝐾′)∗ = (𝜋𝐾)∗ ◦ (𝑝𝐾′)∗ is contained in that of (𝜋𝐾)∗. Therefore
(𝜋𝐾)∗ is surjective. □

4.5 Homotopy version of Theorem 2
The argument in Proposition 37 implies that the homotopy version of Con-
jecture C is also invariant under coverings: if the rationality constant of all
𝐾′ ⊆ 𝐷∗

𝑟𝐿
′ with (𝜋𝐾′)∗ : 𝐻1(𝐾′;Q) → 𝐻1(𝐿′;Q) nonsurjective· is uniformly

bounded and 𝐿′ → 𝐿 is a covering, then the rationality constant of all 𝐾 ⊆ 𝐷∗
𝑟𝐿

with (𝜋𝐾)∗ : 𝐻1(𝐾;Q) → 𝐻1(𝐿;Q) nonsurjective is uniformly bounded by the
same constant. As noted in Remark 8, this thus gives the homotopy version of
Conjecture C for anything covered by 𝐿0 ×T𝑚 with 𝜋1(𝐿0) finite.

Let us however finally give a direct proof of the homotopy version of Theo-
rem 2, which we now state precisely.

Theorem 39 Suppose that 𝐿 is diffeomorphic to the product 𝐿0 × T𝑚 of a closed
manifold 𝐿0 with𝐻1(𝐿0;R) = 0 and a𝑚-torus. Suppose that𝐾 is a rational Lagrangian
in 𝐷∗

𝑟𝐿 with rationality constant 𝜏𝐾 and such that (𝜋𝐾)∗ is not surjective, then

𝜏𝐾 ≤ 𝐶𝑟
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for a constant 𝐶 > 0 depending only on a choice of an auxiliary metric on 𝐿. Moreover,
the same is true for any closed 𝐿′ which is covered by 𝐿.

Proof of Theorem 39. Suppose 𝑓 is a rational Lagrangian embedding of 𝐾 into

𝐷∗
𝑎(𝑇𝑚 ×𝑄) � (𝐷∗

𝑎𝑆
1)𝑚 × 𝐷∗

𝑎𝑄,

with rationality constant 𝜏𝐾 > 0. Observe that, as an open symplectic manifold,
𝐷∗
𝑎𝑆

1 = (−𝑎, 𝑎) × 𝑆1 is symplectomorphic to the punctured disk 𝐷2(2𝑎)′ =

𝐷2(2𝑎) \ {0} of area 2𝑎. The symplectomorphism is given by

𝜓 : 𝐷∗
𝑎𝑆

1 → 𝐷2(2𝑎)′, (𝑝, 𝑞) ↦→ (𝑟, 𝜃)

where 𝜋𝑟2 = 𝑎 + 𝑝 and 𝜃 = 2𝜋𝑞 — this identifies the zero section 0𝑆1 = {0} × 𝑆1

with the circle 𝑆(𝑎) = 𝜕𝐷(𝑎). In particular (𝐷∗
𝑎𝑆

1)𝑚 ×𝐷∗
𝑎𝑄 is symplectomorphic

via 𝜓𝑚 × id to 𝑉 = (𝐷2(2𝑎)′)𝑚 × 𝐷∗
𝑎𝑄.

Consider the induced map 𝑓∗ : 𝐻1(𝐾) → 𝐻1(𝑉). If 𝑅 = ker( 𝑓∗) = 0, then 𝐾
is 𝐻-exact by the central lemma (Lemma 24), and 𝜏𝐾 = 0; see also Remark 1.
Suppose therefore that 𝑅 = ker( 𝑓∗) ≠ 0. Let

𝑉𝑖 = (𝐷2(2𝑎)′)𝑖−1 × 𝐷2(2𝑎) × (𝐷2(2𝑎)′)𝑚−𝑖 × 𝐷∗
𝜀𝑄

for 1 ≤ 𝑖 ≤ 𝑚. Let 𝑔𝑖 : 𝑉 → 𝑉𝑖 denote the inclusion. We claim that 𝑅 =

ker( 𝑓∗) = ker((𝑔𝑖 ◦ 𝑓 )∗) for at least one index 𝑖 ∈ {1, . . . , 𝑚}. Indeed, as the
image 𝐼 ⊂ Z𝑚 of 𝑓∗ is a free abelian subgroup of rank at most 𝑚− 1, there exists
at least one such 𝑖 with the projection 𝜋𝑖 : Z𝑚 → 𝑍𝑖 = {𝑘 ∈ Z𝑚 | 𝑘𝑖 = 0} being
injective on 𝐼.

However (𝑔𝑖)∗ : 𝐻1(𝑉) → 𝐻1(𝑉𝑖) is naturally identified with 𝜋𝑖 . This means
that the period groups

𝒫𝑉,𝐾 =
〈
[𝜔], 𝐻𝐷

2 (𝑉, 𝐾;Z)
〉
, 𝒫𝑉𝑖 ,𝐾 =

〈
[𝜔], 𝐻𝐷

2 (𝑉𝑖 , 𝐾;Z)
〉
,

coincide. In particular 𝐾 is rational in𝑉𝑖 with the same rationality constant 𝜏𝐾 .
For topological considerations, the same is true for 𝐾 inside

𝑉𝑖 = (𝐷2(2𝑎)′)𝑖−1 × C × (𝐷2(2𝑎)′)𝑚−𝑖 × 𝐷∗
𝜀𝑄.

Now, as 𝐾 ⊂ 𝑉𝑖 , the displacement energy of 𝐾 inside 𝑉𝑖 is at most 2𝑎. By
[Che98], this yields 𝜏𝐾 ≤ 2𝑎. □

Note that we directly get Proposition 3 for rational Lagrangians in R𝑛 ×
[−1, 1]𝑛 by setting 𝑎 = 1 and considering by contradiction the embedded copy
of the rational Lagrangian 𝐾 inside R𝑛/Z𝑛 × [−1, 1]𝑛 . Note, however, that in
this case the map 𝑓∗ from the proof above vanishes identically, whence we may
choose any index 𝑖 to run the argument. This implies that one may replace
[−1, 1]𝑛 by 𝑋 as in Proposition 3.

5 Theorem 5 and the Lagrangian 𝐶0 flux conjecture

We start this section by proving Theorem 5 (Section 5.1). We then turn to the
Lagrangian 𝐶0 flux conjecture and first give a short proof of Theorem 7 (Sec-
tion 5.2), which follows almost directly from the proof of Theorem 5. Finally,
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we prove a refined version of Proposition 8 and use it to properly show Corol-
lary 9, that is, the Lagrangian 𝐶0 flux conjecture (Section 5.3). We conclude the
section with a proof of Proposition 15 (Section 5.4).

5.1 Proof of Theorem 5

We consider a 𝐻-rational Lagrangian submanifold 𝐿 of (𝑀, 𝜔) of rationality
constant 𝜏 ≥ 0. We fix a Riemannian metric 𝑔 on 𝐿 and a Weinstein neigh-
bourhood 𝒲𝑟(𝐿) in 𝑀 of size 𝑟 > 0. Let 𝐿′ ∈ ℒ(𝜏) be a Lagrangian entirely
contained and 𝐻-exact in 𝒲𝑟(𝐿).

We want to prove that there exists 𝑟′ > 0, such that 𝐿′ is exact in 𝒲𝑟′(𝐿)
whenever one of the following conditions hold:

(a) 𝐿′ ∈ ℒHam(𝐿), or

(b) the map 𝐻1(𝑖) ⊗ R induced by the inclusion 𝑖 : 𝐿′ ↩→ 𝑀 vanishes.

To do so, we first claim that under any of these assumptions, the rationality
constant of 𝐿′ in 𝒲𝑟(𝐿), seen as a subset of 𝑇∗𝐿, is a fraction of that of 𝐿′ in 𝑀.

Lemma 40 Let 𝐿 and 𝐿′ be as above, and denote by Ψ : 𝐷∗
𝑟𝐿 → 𝒲𝑟(𝐿) a Weinstein

neighbourhood of 𝐿. There exists an integer 𝑘 = 𝑘(𝑀, 𝐿) such that𝜆0(𝐻1(Ψ−1(𝐿′))) ⊆
𝜏
𝑘
Z.

This lemma, whose proof we postpone to § 5.1.2 below, directly shows that,
when 𝜏 = 0, 𝐻-exactness yields exactness.

When 𝜏 > 0, we conclude by using the following additional estimate.

Proposition 41 Let 𝐿 ↩→ (𝐷∗
𝑟𝐿, 𝑑𝜆0) be a Lagrangian embedding whose image 𝐿′ is

𝐻-exact. We have that

∀𝛽′ ∈ 𝐻1(𝐿′), |𝜆0(𝛽′)| ≤ 𝑟ℓmin
𝑔 (𝜋∗𝛽

′)

where ℓmin
𝑔 (𝛽) denotes the length of the shortest geodesic loop for 𝑔 in 𝐿 representing

the class 𝛽.

Indeed, we choose a basis {𝛽′1 , . . . 𝛽′𝑚} of 𝐻1(𝐿′) and we fix 𝑟′ < 𝜏
𝑘ℓ

where

ℓ = max{ℓmin
𝑔 (𝜋∗𝛽

′
𝑖) | 1 ≤ 𝑖 ≤ 𝑚} .

The proposition above gives that, for all 𝑖, |𝜆0(𝛽′𝑖)| ≤ 𝑟′ℓ < 𝜏
𝑘
. Because of Lemma

40, we then get that 𝜆0 vanishes on 𝐻1(𝐿′), which proves the exactness of 𝐿′.

It only remains to prove the lemma and proposition above to conclude the
proof of Theorem 5.
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5.1.1 Proof of Proposition 41

We start with the proposition. First, let us remark that when 𝐿 = T𝑛 , the
estimate follows directly from Eliashberg’s result on the shape of subsets of
𝑇∗T𝑛 [Eli91]. With the additional hypothesis that 𝐿 is also contained in a We-
instein neighbourhood of 𝐿′, this is a result of Membrez and Opshtein [MO21].
However, as they themselves point out, there should be a proof of this result
without their additional constraint using the theory of graph selectors — they
even sketch out a proof, which we mostly follow here.

Proof of Proposition 41. In Theorem 6.1 of [PPS03], Paternain, Polterovich, and
Siburg show that, for every Lagrangian submanifold 𝐿′ ⊆ 𝑇∗𝐿 Lagrangian
isotopic to the zero-section and every fiberwise-convex neighbourhood 𝑊 of
𝐿′, there is a closed 1-form 𝜎 of 𝐿 such that graph(𝜎) ⊆ 𝑊 and [𝜎] = [𝜆0 |𝐿′].
However, inspecting the proof of that statement, we see that all that is truly
required is the existence of a symplectic isotopy preserving fibres sending 𝐿′
to an exact Lagrangian submanifold admitting a graph selector — we refer to
that paper for the definition of a graph selector. On the one hand, we have
shown in Lemma 24 that 𝐻-exact Lagrangians in 𝑇∗𝐿 indeed have associated
symplectic isotopies preserving fibres which send them to exact ones. On the
other hand, it is now known that every exact Lagrangian submanifold of 𝑇∗𝐿
admits a graph selector. This was proven using Floer theory by Amorim, Oh,
and Dos Santos [AOS18] and using microlocal sheaves by Guillermou [Gui23].
Therefore, the result applies as is in our case.

But it follows from this that{
[𝜄∗𝜆0]

�� 𝜄 : 𝐿 ↩→ 𝐷∗
𝑟𝐿 is 𝐻-exact

}
=
{
[𝜎] ∈ 𝐻1(𝐿;R)

�� |𝜎 | < 𝑟
}
.

In particular, for every 𝐻-exact Lagrangian embedding 𝜄 : 𝐿 ↩→ 𝐷∗
𝑟𝐿 and every

loop 𝛾 : 𝑆1 → 𝐿, we have that

|𝜆0(𝜄 ◦ 𝛾)| < 𝑟ℓ𝑔(𝛾),

where ℓ𝑔 denotes the length in the metric 𝑔. By taking the infimum over all
loops representing a class 𝛽 = 𝜋∗𝛽′, we get the desired inequality. □

5.1.2 Proof of Lemma 40

Recall that 𝐿 is a 𝐻-rational Lagrangian with rationality constant 𝜏 ≥ 0, that
Ψ : 𝐷∗

𝑟𝐿 → 𝒲𝑟(𝐿) is a Weinstein neighbourhood of 𝐿 in 𝑀 of size 𝑟 > 0, and
that 𝐿′ ∈ ℒ(𝜏) is a Lagrangian entirely contained and 𝐻-exact in 𝒲𝑟(𝐿). The
lemma states that, under one of the following conditions,

(a) 𝐿′ ∈ ℒHam(𝐿), or
(b) the map 𝐻1(𝑖) ⊗ R induced by the inclusion 𝑖 : 𝐿′ ↩→ 𝑀 vanishes

there exists an integer 𝑘 = 𝑘(𝑀, 𝐿) such that 𝜆0(𝐻1(Ψ−1(𝐿′))) ⊆ 𝜏
𝑘
Z.

For convenience, we denote by 𝑋 the object in 𝑇∗𝐿 corresponding to 𝑋 via
Ψ−1, e.g. Ψ−1(𝐿) = 𝐿.
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Proof of Lemma 40. Fix a representative 𝛽 : 𝑆1 → 𝐿 of a class in 𝐻1(𝐿). Since 𝐿′
is 𝐻-exact in 𝐷∗

𝑟𝐿, the projection 𝐿′ ↩→ 𝑇∗𝐿 → 𝐿 is a homotopy equivalence by
Lemma 24. Therefore, there exist a loop 𝛽′ in 𝐿′ and a cylinder 𝐶 in 𝐷∗

𝑟𝐿 such
that 𝜋∗(𝛽′) = 𝛽 and 𝜕𝐶 = 𝛽′ ⊔ (−𝛽). By Stokes Theorem and exactness of the
0-section 𝐿 in 𝑇∗𝐿, we thus have that

𝜔(𝐶) = 𝑑𝜆0(𝐶) = 𝜆0(𝛽′) − 𝜆0(𝛽) = 𝜆0(𝛽′) .

In case (a), take a Hamiltonian isotopy {𝜑𝑡}𝑡∈[0,1] starting at identity and
such that 𝜑1(𝐿) = 𝐿′. Then 𝐶′(𝑠, 𝑡) := 𝜑−1

𝑡 (𝛽′(𝑠)) defines a cylinder in 𝑀 and
𝐶′′ := 𝐶 ∪𝛽′ 𝐶

′ represents a class in 𝐻2(𝑀, 𝐿). In particular, 𝜔(𝐶) + 𝜔(𝐶′) =
𝜔(𝐶′′) ∈ 𝜏Z. But note that, since {𝜑−1

𝑡 } is Hamiltonian,

𝜔(𝐶′) = Flux({𝜑−1
𝑡 })(𝛽′) = 0 .

Therefore, 𝜔(𝐶) = 𝜆0(𝛽′) ∈ 𝜏Z, and we can take 𝑘 = 1.
In case (b), note that 𝐻1(𝐿;R) → 𝐻1(𝑀;R) being zero is equivalent to the

image of 𝐻1(𝐿) → 𝐻1(𝑀) being finite, since 𝐻1( · ;R) = 𝐻1( · ) ⊗R. By the long
exact sequence of the pair (𝑀, 𝐿), this is in turn equivalent to𝐻2(𝑀, 𝐿) → 𝐻1(𝐿)
having finite cokernel, whose size we denote by 𝑘. Then, 𝑘𝛽 bounds some
𝑢 ∈ 𝐻2(𝑀, 𝐿), and we have that

𝑘𝜆0(𝛽′) = 𝑘𝜔(𝐶) = 𝜔(𝑢#𝑘𝐶) − 𝜔(𝑢) ∈ 𝜏Z,

because 𝑢#𝑘𝐶 ∈ 𝐻2(𝑀, 𝐿′), and 𝐿 and 𝐿′ belong to ℒ(𝜏). Therefore, 𝜆0 |𝐿′ must
take values in 𝜏

𝑘
Z. □

5.2 Proof of Theorem 7
We now turn our attention to Theorem 7 on limits of 𝐻-rational Lagrangians.
As we shall see, the theorem follows pretty directly from the techniques that
we developed to prove Theorem 4 and 5.

Proof of Theorem 7. We start with the first part of the statement: if 𝐿𝑖 converges
to 𝐿 with 𝐿 smooth and 𝑛-dimensional and 𝐿𝑖 ∈ ℒ(𝜏𝑖) with inf 𝜏𝑖 > 0, then 𝐿 is
Lagrangian. This follows pretty directly from Laudenbach and Sikorav’s result
on displacement of non-Lagrangians [LS94].

Indeed, suppose 𝐿 is not Lagrangian. Then, 𝐿 × 𝑆1 ⊆ 𝑀 × 𝑇∗𝑆1 is also
not Lagrangian and its normal bundle admits a nowhere vanishing section.
Therefore, it follows from [LS94] that, for every 𝜀 > 0, there is a Hamiltonian
diffeomorphism 𝜑 of 𝑀 ×𝑇∗𝑆1 such that 𝜑(𝐿×𝑆1)∩𝐿×𝑆1 = ∅ and with Hofer
norm | |𝜑 | |𝐻 < 𝜀. But then, there is a neighbourhood 𝑈 of 𝐿 × 𝑆1 such that
𝜑(𝑈) ∩ 𝑈 = ∅. In particular, for 𝑖 large enough, 𝜑(𝐿𝑖 × 𝑆1) ∩ (𝐿𝑖 × 𝑆1) = ∅.
Therefore, if 𝑒(𝐿𝑖 × 𝑆1) is the displacement energy of 𝐿𝑖 × 𝑆1, we have that

𝜀 ≥ lim sup 𝑒(𝐿𝑖 × 𝑆1) ≥ lim sup 𝜏𝑖 ≥ inf 𝜏𝑖 > 0,

where the second inequality follows from Chekanov’s estimate on displace-
ment energy [Che98]. We get a contradiction by taking the limit 𝜀 → 0.
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The second part — that is, for when we know that the 𝐿𝑖 ’s are 𝐻-exact in
𝒲(𝐿) for 𝑖 large — is proved in a very similar way as Theorem 5. Indeed, we
know that the projection 𝐿𝑖 → 𝐿 is a homotopy equivalence by Lemma 24. In
particular, any homology class 𝐴 ∈ 𝐻2(𝑀, 𝐿;Z) can be obtained by gluing a
class 𝐴𝑖 ∈ 𝐻2(𝑀, 𝐿𝑖 ;Z) to a (union of) cylinder 𝐶𝑖 with 𝜕𝐶 = 𝜕𝐴𝑖 − 𝜕𝐴 and
𝜕𝐴𝑖 = (𝜋|𝐿𝑖 )−1(𝜕𝐴). Here, we identify 𝐿𝑖 with its preimage in 𝑇∗𝐿 under a
Weinstein neighbourhood of 𝐿. If 𝐿𝑖 ⊆ 𝐷∗

𝑟𝑖
𝐿, then Proposition 41 gives

lim |𝜆0(𝜕𝐴𝑖)| ≤ lim 𝑟𝑖ℓ
min
𝑔 (𝜕𝐴) = 0,

where we have made use of the fact that we may take lim 𝑟𝑖 = 0 since {𝐿𝑖}
Hausdorff-converges to 𝐿. Therefore,

|𝜔(𝐴)| = lim inf |𝜔(𝐴𝑖) + 𝜆0(𝜕𝐴𝑖)| = lim inf |𝜔(𝐴𝑖)|.

But by rationality, |𝜔(𝐴𝑖)| = 𝑛𝑖𝜏𝑖 for some 𝑛𝑖 ∈ Z≥0. Since inf 𝜏𝑖 > 0, {𝑛𝑖}
must be bounded. Therefore, by passing to a subsequence if necessary, we
may suppose that 𝑛𝑖 ≡ 𝑛 for all 𝑖. Thus, if 𝜏 := lim inf 𝜏𝑖 , then 𝜔(𝐴) ∈ 𝜏Z. In
particular, 𝐿 is 𝐻-rational and its rationality constant 𝜏𝐿 is a multiple of 𝜏.

We now prove that this multiple must be in fact 1. Pick a base {𝐴1 , . . . , 𝐴𝑘}
of the free part of𝐻2(𝑀, 𝐿;Z) such that𝜔(𝐴 𝑗) = 𝜏𝐿 for all 𝑗, and construct𝐴 𝑗

𝑖
and

𝐶
𝑗

𝑖
as above. By the same logic as above, we may suppose that |𝜔(𝐴 𝑗

𝑖
)| = 𝑛 𝑗𝜏𝑖

for all 𝑖. Therefore, we get that

𝑛 𝑗𝜏𝑖 − 𝑟𝑖ℓ ≤ 𝜏𝐿 ≤ 𝑛 𝑗𝜏𝑖 + 𝑟𝑖ℓ ,

where ℓ := max𝑗 ℓmin
𝑔 (𝜕𝐴 𝑗). Since inf 𝜏𝑖 > 0, for 𝑖 large enough, 𝑟𝑖ℓ < 𝜏, and thus

we must have 𝜏𝐿 = 𝑛 𝑗𝜏 for all 𝑗, i.e. 𝑛 ≡ 𝑛 𝑗 . But since the projection 𝐿𝑖 → 𝐿 is a
homotopy equivalence, {𝐴1

𝑖
, . . . , 𝐴𝑘

𝑖
} is a basis of the free part of 𝐻2(𝑀, 𝐿𝑖 ;Z).

This is only possible if 𝑛 = 1 as |𝜔(𝐴 𝑗

𝑖
)| = 𝑛𝜏𝑖 and 𝜔(𝐻2(𝑀, 𝐿𝑖 ;Z)) = 𝜏𝑖Z. This

thus implies that 𝜏𝐿 = 𝜏.
Finally, to conclude that lim 𝜏𝑖 must exists, note that the contrary would

imply the existence of two subsequences of {𝐿𝑖} — thus still converging to
𝐿 — such that their corresponding subsequences of {𝜏𝑖} converge to different
values. But then, both these values would need to be equal to 𝜏𝐿, which is not
possible. □

5.3 Proof of Proposition 8 and Corollary 9
We now turn to the proof of Proposition 8, i.e. the partial result one gets instead
of Theorem 5 when one does not know that 𝐻1(𝐿;R) → 𝐻1(𝑀;R) is zero. In
fact, we prove the following stronger statement.

Proposition 42 Let 𝐿 be a𝐻-rational Lagrangian submanifold of𝑀with𝐻-rationality
constant 𝜏. There is some 𝑟0 > 0 and some 𝐶 > 0 with the following property. Assume
that 𝐿′ ∈ ℒ(𝜏) is a Lagrangian included in a Weinstein neighbourhood 𝒲𝑟(𝐿) of size
𝑟 ∈ (0, 𝑟0] such that 𝐿′ is 𝐻-exact in 𝒲𝑟(𝐿). Then, there is a symplectic isotopy
{𝜓𝑡}𝑡∈[0,1] of 𝑀 with |Flux({𝜓𝑡(𝐿′)})| ≤ 𝐶𝑟 such that 𝜓1(𝐿′) is exact in 𝒲𝑟(𝐿).
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By Flux({𝐿𝑡}) ∈ 𝐻1(𝐿;R), we mean the Lagrangian flux of the Lagrangian
isotopy {𝐿𝑡}; it is defined as follow. Take 𝐹 : [0, 1] × 𝐿→ 𝑀 such that 𝐹(𝐿, 𝑡) =
𝐿𝑡 . Then, 𝐹∗𝜔 = 𝑑𝑡 ∧ 𝛼𝑡 for some time-dependent 1-form 𝛼𝑡 on 𝐿, and we
set Flux({𝐿𝑡})(𝛾) :=

∫ 1
0 𝛼𝑡(𝛾)𝑑𝑡 for any loop 𝛾 : 𝑆1 → 𝐿. This is precisely the

area swept by 𝛾 through the isotopy — in particular, it is independent of the
parametrization 𝐹 of {𝐿𝑡}.

Proof. Denote by𝑉 the image of the boundary map𝐻2(𝑀, 𝐿′;R) → 𝐻1(𝐿′;R).
Pick a complement 𝑊 of 𝑉 in 𝐻1(𝐿′;R), and take loops {𝛾1 , . . . , 𝛾𝑘} which
induce a basis of 𝑊 . Similarly to Section 5.2 above, the proof of Theorem 5
still implies that 𝜆0 |𝐿′(𝑉) = 0 for 𝑟 small enough. Therefore, we can take 𝑟0 to
ensure this is true for all 𝑟 ≤ 𝑟0.

We divide our isotopy in two parts. First, we consider the Lagrangian
isotopy 𝐹 : 𝑡 ↦→ [(𝛼 − 1)𝑡 + 1] · 𝐿′ induced by the multiplication along the fibers
of𝑇∗𝐿, where 𝛼 ∈ [0, 1]. A direct computation gives that 𝐹∗𝜔 = (𝛼−1)𝜆0 |𝐿′∧𝑑𝑡,
so that the flux associated to the isotopy is (𝛼−1)[𝜆0 |𝐿′]. Note that, by the above
paragraph, this cohomology class is in the annihilator 𝑉0 of 𝑉 , which we can
identify with the dual𝑊 ∗ of𝑊 in 𝐻1(𝐿′;R) = Hom(𝐻1(𝐿′;R),R).

Second, take a closed 1-form 𝜎 on 𝐿 such that 𝜎(𝑉) = 0 and 𝜎(𝜋◦𝛾𝑖) = 𝜆0(𝛾𝑖)
for all 𝑖. It exists, since the projection 𝐿′ → 𝐿 is a homotopy equivalence by
Lemma 24. Consider the symplectic isotopy {𝜓′

𝑡} of 𝑇∗𝐿 generated by 𝑋 such
that 𝜄𝑋𝜔0 = −𝜋∗𝜎, where 𝜋 : 𝑇∗𝐿 → 𝐿 is the canonical projection. It is easy to
check that

(i) 𝜓′
1(𝐿′) is exact in 𝑇∗𝐿,

(ii) if 𝐿′ ⊆ 𝐷∗
𝑟𝐿, then 𝜓′

𝑡(𝐿′) ⊆ 𝐷∗
𝑟+|𝜎 |𝐿 for all 𝑡 ∈ [0, 1],

(iii) Flux({𝜓′
𝑡(𝐿′)}) = (𝜄′)∗Flux({𝜓′

𝑡}) = −(𝜄′)∗𝜋∗[𝜎] = −[𝜆0 |𝐿′].
We have made here the slight abuse of notation of identifying 𝐿′ with its
preimage in 𝑇∗𝐿 via the Weinstein neighbourhood. Again, (iii) implies that the
flux of the isotopy is in𝑊 ∗.

The Lagrangian isotopy {𝐿′𝑡} from 𝐿′ to an exact Lagrangian 𝐿′′ that we are
interested in is the (smoothing of the) concatenation of Lagrangian isotopies as
above. More precisely, start with 𝐿′ ⊆ 𝐷∗

𝑟𝐿 and 𝜎 as above. Then, the first half of
the isotopy is given by the scaling from 𝐿′ to 𝛼𝐿′ for 𝛼 = 𝑟

𝑟+|𝜎 | . Note that then, 𝛼𝜎
is a closed 1-form on 𝐿 having the same properties as above for the Lagrangian
𝛼𝐿′. We thus get from it a symplectic isotopy {𝜓′

𝑡} with properties (i)–(iii) for
𝛼𝐿′. In particular, 𝜓′

𝑡(𝛼𝐿′) ⊆ 𝐷∗
𝛼𝑟+|𝛼𝜎 |𝐿 = 𝐷∗

𝑟𝐿 and Flux({𝜓′
𝑡(𝐿′)}) = −𝛼[𝜆0 |𝐿′].

Therefore,

Flux({𝐿′𝑡}) = (𝛼 − 1)[𝜆0 |𝐿′] − 𝛼[𝜆0 |𝐿′] = −[𝜆0 |𝐿′] ∈𝑊 ∗ ,

where we have made use of the additivity of the flux under concatenation.
Furthermore, Proposition 41 then implies that |Flux({𝐿′𝑡})| ≤ 𝑟max𝑖 ℓmin

𝑔 (𝛾𝑖),
and it suffices to take 𝐶 := max𝑖 ℓmin

𝑔 (𝛾𝑖).
We now show how {𝐿′𝑡} comes from a symplectic isotopy of 𝑀 — this is es-

sentially Lemma 6.6 of [Sol13]. Note that in the splitting𝐻1(𝐿′;R) = 𝑉∗⊕𝑊 ∗,𝑊 ∗

corresponds to the image of the restriction homomorphism Ψ∗ : 𝐻1(𝑀;R) →
𝐻1(𝒲𝑟(𝐿);R) under the restriction isomorphism 𝐻1(𝒲𝑟(𝐿);R) → 𝐻1(𝐿′;R).
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Here, we make use of the fact that 𝐿′ is isotopic to an exact Lagrangian of 𝑇∗𝐿,
so that the inclusion 𝐿′ → 𝒲(𝐿) induces an isomorphism on cohomology. In
particular, since [𝜆0 |𝐿′] belongs to 𝑊 ∗, there is a closed 1-form 𝜃′ of 𝑀 such
that 𝜃′ |𝐿′ = 𝜆0 |𝐿′ + 𝑑𝐹 for some function 𝐹 : 𝐿′ → R. We then pick an extension
𝐹′ : 𝑀 → R of 𝐹 and set 𝜃 := 𝜃′ − 𝑑𝐹′. Taking {𝜓𝑡} generated by 𝜃 gives the
desired symplectic isotopy in 𝑀. □

Corollary 43 By taking 𝑟0 smaller if necessary, we have the following. If we have that
Flux({𝜓𝑡(𝐿′)}) ≠ 0, then 𝐿′ and 𝜓1(𝐿′) are in different Hamiltonian isotopy class in
𝑀.

Moreover, if the NLC holds on 𝑇∗𝐿, then 𝐿′, 𝐿′′ ∈ ℒ(𝜏) with 𝐿′, 𝐿′′ ⊆ 𝒲𝑟(𝐿),
𝑟 ≤ 𝑟0, are Hamitlonian isotopic in 𝑀 if and only if their associated isotopy to an exact
Lagrangian has the same flux.

Proof. Suppose that there is a Hamiltonian isotopy {𝜑𝑡} of 𝑀 sending 𝐿′ to
𝜓1(𝐿′). Then, the concatenation {𝐿′′𝑡 } of {𝜓𝑡(𝐿′)} and {𝜑−1

𝑡 (𝜓1(𝐿′))} is a loop,
so that Flux({𝐿′′𝑡 }) ∈ 𝐻1(𝐿′; 𝜏Z). Indeed, for every loop 𝛾 of 𝐿′, Flux({𝐿′′𝑡 })(𝛾) ∈
𝜏Z, since it is the area of a cylinder with boundary in 𝐿′. If we take 𝑟0 < 𝜏

𝐶 , then
this is only possible if Flux({𝐿′′𝑡 }) = 0. Since the flux of a Hamiltonian isotopy
is zero, this implies the first result.

If the NLC holds on𝑇∗𝐿, we get an extension {𝜓𝑡}𝑡∈[0,2] of {𝜓𝑡}𝑡∈[0,1] to a sym-
plectic isotopy with𝜓2(𝐿′) = 𝐿 and same flux. Let {𝜓′

𝑡}𝑡∈[0,2] be the correspond-
ing isotopy for 𝐿′′. If 𝐿′ and 𝐿′′ are Hamiltonian isotopic, we can construct a loop
similarly to above using that Hamiltonian isotopy, {𝜓𝑡} and {𝜓′

𝑡}. We then again
get that the flux of this loop is zero, so that Flux({𝜓𝑡(𝐿′)}) = Flux({𝜓′

𝑡(𝐿′′)}).
If the fluxes are the same, then extension and concatenation as above give a
symplectic isotopy in 𝑇∗𝐿 from 𝐿′ to 𝐿′′ with zero flux. By Proposition 2.3
of [Ono08] or Lemma 6.7 of [Sol13], that isotopy must be Hamiltonian. □

The Lagrangian 𝐶0 flux conjecture We now give a proof of Corollary 9.
To do so we first prove the following more technical, but stronger, version of
the corollary.

Corollary 44 Suppose that 𝐿 = 𝐿0 × 𝐿1 × · · · × 𝐿𝑘 , where 𝐻1(𝐿0;R) = 0 and, for
𝑖 ≥ 1, 𝐿𝑖 satisfies 𝐻1(𝐿𝑖 ;R) = R and admits a Lagrangian embedding in a Liouville
domain𝑊𝑖 with 𝑆𝐻(𝑊𝑖) = 0. Here, we allow 𝐿0 to be a point or 𝑘 = 0. The following
statements are equivalent.

(a) The nearby Lagrangian conjecture holds in 𝑇∗𝐿.
(b) Suppose that 𝐿′ is a Lagrangian diffeomorphic to 𝐿 in a symplectic manifold 𝑀

and that 𝐿′ is in the Hausdorff closure of ℒHam(𝐿′′) of a𝐻-rational Lagrangian
𝐿′′ in 𝑀. Then, 𝐿′ ∈ ℒHam(𝐿′′). The same holds if ℒHam(𝐿′′) is replaced by
ℒSymp0(𝐿′′).

Proof. Suppose that we are in Case (a). The case of ℒSymp0(𝐿′′) follows
directly from Proposition 42 together with Theorems 4 and 7. For the case of
ℒHam(𝐿′′), take a sequence {𝐿𝑖} in that space with limit 𝐿′ diffeomorphic to 𝐿.
By Theorem 7, 𝐿′′ is a 𝐻-rational Lagrangian with same rationality constant as
the 𝐿𝑖 ’s — the 𝐿𝑖 ’s respect the hypotheses of Theorem 4, so that they are𝐻-exact



34

in 𝒲(𝐿′) for 𝑖 large. Since all 𝐿𝑖 are Hamiltonian isotopic to each other, their
associated symplectic isotopy from Proposition 42 must all have the same flux
by Corollary 43. But by that proposition, that flux must tend to 0 as 𝐿𝑖 → 𝐿′.
Therefore, for 𝑖 large, there is a symplectic isotopy in 𝑇∗𝐿′ sending 𝐿𝑖 to 𝐿′

with zero flux; again, we suppose that the NLC holds here. By Proposition 2.3
of [Ono08] or Lemma 6.7 of [Sol13], that isotopy must be Hamiltonian, and we
have closure, i.e. (a) implies (b).

Suppose that we are in Case (b), and let 𝐿′′ be an exact Lagrangian of 𝑇∗𝐿.
Then, 𝐿𝑖 := 1

𝑖 𝐿
′′ defines a sequence of Lagrangians whose Hausdorff limit is

the zero-section 𝐿. But note that 𝐿𝑖 is Hamiltonian isotopic to 𝐿′′ since it is the
image of the exact Lagrangian 𝐿′′ by the Liouville flow of𝑇∗𝐿. Since ℒHam(𝐿′′)
is Hausdorff closed, 𝐿 ∈ ℒHam(𝐿′′), i.e. the NLC holds in 𝑇∗𝐿. □

The Lagrangian 𝐶0 flux conjecture then follows directly.

Proof of Corollary 9. Case (b) of Corollary 44 implies the Hausdorff closure of
ℒHam(𝐿′) andℒSymp(𝐿′) inℒ(𝐿)whenever 𝐿′ is𝐻-rational and diffeomorphic
to 𝐿. □

Remark 12. Suppose that all exact Lagrangians of𝑇∗𝐿 are known to be diffeomorphic
to the zero-section. Then, the equivalence of (a) and (b) in Corollary 44 actually proves
that the NLC for 𝐿 and the Lagrangian 𝐶0 flux conjecture for 𝐻-rational Lagrangians
diffeomorphic to 𝐿 are equivalent. This hypothesis is satisfied when simple homotopy
type is enough to determine diffeomorphism type, e.g. when dim 𝐿 ≤ 3, 𝐿 = 𝑆2𝑘+1/Z𝑚
for 𝑚 ≥ 3 (see [Mil66]), or 𝐿 = 𝑆𝑛 for 𝑛 ∈ {1, 2, 3, 5, 6, 12, 56, 61} (see [WX17]).

Remark 13. If NLC holds for 𝑇∗𝐿, Corollary 43 actually allows us to identify a Haus-
dorff neighbourhood of 𝐿 in ℒ(𝜏) with a neighbourhood of (𝐿, 0) in ℒHam(𝐿) ×
𝑊 ∗, where we recall that 𝑊 is a complement of the image of the boundary map
𝐻2(𝑀, 𝐿;R) → 𝐻1(𝐿;R). We do not know how much this extends to a global homeo-
morphism.

5.4 Proof of Proposition 15
We now give a proof of Proposition 15, which appeared in the introduction.
The proof is essentially an amalgam of the one of Lemma 13 and of Theorem 5.

Proof of Proposition 15. As in Lemma 13, take a Riemannian metric 𝑔 on 𝑀
which corresponds to a Sasaki metric on 𝑇∗𝐿 on a Weinstein neighbourhood
𝒲𝑟(𝐿) contained in𝐾. Let 𝑟inj(𝑇𝑀 |𝐾)be the injectivity radius of the Riemannian
exponential of 𝑔 restricted to 𝑇𝑀 |𝐾 , and take 𝛿 = min{𝑟, 𝑟inj(𝑇𝑀 |𝐾)}. For
𝜑 ∈ Ham(𝑀), we then get a homotopy { 𝑓𝑡} from 𝑓0 = 1 to 𝑓1 = 𝜑 using
geodesics as in that lemma. Furthermore, by geodesic convexity of 𝒲𝑟(𝐿),
𝑓𝑡(𝐿) ⊆ 𝒲𝑟(𝐿) for all 𝑡 and 𝑓1(𝐿) = 𝜑(𝐿) is 𝐻-exact in the neighborhood.

Pick a Hamiltonian isotopy {𝜑𝑡} with 𝜑1 = 𝜑 and denote by 𝑐 : 𝑆1 →
𝐶∞(𝑀,𝑀) the loop of smooth maps given by the concatenation of { 𝑓𝑡} with
{𝜑1−𝑡}. Let 𝑥0 be a fixed point of 𝜑 such that 𝑡 ↦→ 𝜑𝑡(𝑥0) is contractible — this
always exists by Floer theory. Then, 𝑓𝑡(𝑥0) = 𝑥0 for all 𝑡 so that 𝑡 ↦→ 𝑐(𝑡)(𝑥0) is
a contractible loop. But if 𝑥 is any point in 𝑀, there is a path 𝛼 from 𝑥 to 𝑥0, so
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that (𝑡 , 𝑠) ↦→ 𝑐(𝑡)(𝛼(𝑠)) defines a free homotopy from the loop defined by 𝑥 to
the one defined by 𝑥0. In particular, all loops 𝑡 ↦→ 𝑐(𝑡)(𝑥) are contractible.

Given a loop 𝛾 of 𝜑(𝐿), we consider the map 𝑔 : T2 → 𝑀 defined by 𝑔(𝑡 , 𝑠) =
𝑐(𝑡)(𝛾(𝑠)). This decomposes into two cylinders: { 𝑓𝑡(𝛾(𝑠))} and {𝜑1−𝑡(𝛾(𝑠))}.
Since 𝑓𝑡(𝐿) ⊆ 𝒲𝑟(𝐿) for all 𝑡 and 𝐿 is exact in 𝒲𝑟(𝐿), the area of the first
cylinder is 𝜆0(𝛾). But the area of the second cylinder is the flux of the isotopy
{𝜑1−𝑡} on 𝛾, which is zero since the isotopy is Hamiltonian. Therefore, 𝑔 has
area 𝜆0(𝛾).

If we are in Case (a), then note that the loop 𝑡 ↦→ 𝑔(𝑡 , 0) is contractible by
the above discussion, so that the area of 𝑔 is actually the area of a sphere. We
then conclude similarly to Theorem 5: pick a base {𝛾𝑖} of 𝐻1(𝜑(𝐿))free, then the
corresponding 𝑔𝑖 respect

𝜔(Ker 𝑐1 |𝜋2(𝑀)) ∋ |𝜔(𝑔𝑖)| = |𝜆0(𝛾𝑖)| ≤ 𝑟ℓmin
𝑔 (𝜋∗𝛾𝑖)

by Proposition 41. It thus suffices to take 𝑟 — and thus 𝛿 — small enough so
that 𝑟max𝑖 ℓmin

𝑔 (𝜋∗𝛾𝑖) is smaller than the positive generator of 𝜔(Ker 𝑐1 |𝜋2(𝑀)).
This ensures that 𝜆0 |𝜑(𝐿) vanishes, i.e. 𝜑(𝐿) is exact in 𝒲𝑟(𝐿).

If we are in Case (b), then note that for every 𝛾, there is some 𝑘 such that 𝛾𝑘
is contractible in 𝑀. In particular, there is a homotopy 𝛼 from 𝛾𝑘 to 𝑥0. Then,
(𝑡 , 𝑠) ↦→ 𝑐(𝑡)(𝛼(𝑠)) defines a homotopy from 𝑔𝑘 defined to the loop 𝑡 ↦→ 𝜑𝑡(𝑥0),
which is contractible by hypothesis. Therefore,

𝜆0(𝛾) =
1
𝑘
𝜆0(𝛾𝑘) =

1
𝑘
𝜔(𝑔𝑘) = 0

for all loops 𝛾, i.e. 𝜑(𝐿) is again exact in 𝒲𝑟(𝐿). □

Appendix A: Lagrangian Klein bottles in cotangent bundles

We now focus our efforts on the case of Conjecture C where 𝐿 is the Klein
bottle 𝐾. This case is already covered by Theorem 2, but we give a more direct,
stronger proof of it, which is of independent interest. The proof relies on the
deep fact that there is no Lagrangian Klein bottle in C2 [She09, Nem09].

Theorem 45 Every Lagrangian Klein bottle in 𝑇∗𝐾 is 𝐻-exact. In other words,
𝑐𝐾(𝑇∗𝐾) = 0.

Proof. Let 𝐿 be a Lagrangian Klein bottle in 𝑇∗𝐾. We equip 𝐾 and the 2-torus
T2 with the flat metric, so that the covering 𝑝 : T2 → 𝐾 is a local isometry.
By rescaling if necessary, we can suppose that 𝐿 ⊆ 𝐷∗

𝑟𝐾 for 𝑟 arbitrarily small.
In particular, we may choose 𝑟 small enough so that there exists a Weinstein
neighbourhood Ψ : 𝐷∗

𝑟T
2 → C2 of the standard Clifford torus 𝑆1 × 𝑆1.

Using the flat metric on T2 and 𝐾, the 2:1 covering 𝑝 : T2 → 𝐾 lifts
to another 2:1 covering �̃� : 𝑇∗T2 → 𝑇∗𝐾 which is also a local isometry and
symplectomorphism. Therefore, 𝐿 := �̃�−1(𝐿) must be a (possibly disconnected)
Lagrangian submanifold of𝐷∗

𝑟T
2. Since �̃� |

𝐿
is also a 2:1 covering, 𝐿must either

be two disconnected copies of a Klein bottle or a 2-torus. However, if the former
was the case, then each connected component of Ψ(𝐿) would be a Lagrangian
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Klein bottle in C2, which does not exist [She09, Nem09]. Therefore, 𝐿 must be
a 2-torus. In other words, the composition

T2 𝐿 𝑇∗𝐾2:1 𝑖

admits a lift to 𝑇∗T2, but the composition

𝐾 𝐿 𝑇∗𝐾∼ 𝑖

does not.
We now interpret these statements in algebraic terms. To do so, we first look

at the fundamental groups𝜋1(𝑇∗𝐾) = ⟨𝑎, 𝑏 |𝑎𝑏 = 𝑏−1𝑎⟩ and𝜋1(𝐿) = ⟨𝑎′, 𝑏′ |𝑎′𝑏′ =
(𝑏′)−1𝑎′⟩. With these presentations, the subgroups associated to the coverings
𝑇∗T2 → 𝑇∗𝐾 and T2 → 𝐿 are those generated by {𝑎2 , 𝑏} and {(𝑎′)2 , 𝑏′}, respec-
tively. Denote 𝑖∗(𝑎′) = 𝑎𝑘𝑏ℓ and 𝑖∗(𝑏′) = 𝑎𝑚𝑏𝑛 . Here, we have made use of the
presentation above to conclude that any element of 𝜋1(𝑇∗𝐾) can be written in
that way. Given the lifting criterion for coverings, the fact that the composition
T2 → 𝐿 → 𝑇∗𝐾 admits a lift is equivalent to 𝑚 being even. Indeed, we have
that

𝑖∗
(
(𝑎′)2

)
= (𝑖∗(𝑎′))2 = 𝑎2𝑘𝑏(1+(−1)𝑘 )ℓ ,

so that this element always admits a lift to 𝑇∗T2. In turn, this forces 𝑘 to
be odd, since the composition 𝐾 → 𝐿 → 𝑇∗𝐾 does not admit a lift. In
particular, 𝑘 is nonzero. But 𝑎 generates the free factor and 𝑏 the torsion
factor of 𝐻1(𝑇∗𝐾;Z) = Z ⊕ Z2 under the Hurewicz morphism (and anal-
ogously for 𝑎′ and 𝑏′ in 𝐻1(𝐿;Z)). Therefore, 𝑖 induces a monomorphism
𝑖∗ : 𝐻1(𝐿;Z)free → 𝐻1(𝑇∗𝐾;Z)free between the free part of the homologies. But
then 𝑖∗ : 𝐻1(𝐿;R) → 𝐻1(𝑇∗𝐾;R) is also injective. By the long exact sequence in
homology, this implies that the boundary map 𝜕 : 𝐻2(𝑇∗𝐾, 𝐿;R) → 𝐻1(𝐿;R) is
zero. Since 𝜔0(𝐻2(𝑇∗𝐾, 𝐿)) = 𝜆0(𝜕(𝐻2(𝑇∗𝐾, 𝐿))), 𝐿 must be 𝐻-exact. □
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