
Beyond the symplectically aspherical setting
An unofficial appendix to Morse Theory and Floer homology by M. Audin and M. Damian

by Dr. Jean-Philippe Chassé

These are the notes for the final lecture of the course Introduction to Floer theory (401-
3584-25L) that I gave in the Spring 2025 semester at ETH Zürich. The course was based on
Audin and Damian’s book [AD14], and the purpose of the last lecture was to give a taste to the
students of what lies beyond. On top of that book, these notes are also intellectually indepted
to Chapter 12 of McDuff and Salamon’s modern classic on 𝐽-holomorphic curves [MS12].
Through discussions with some of the students attending that last lecture, I was motivated to
write these notes down for posterity. Nonetheless, to ease my work, I will make only minimal
effort to recall concepts or notations that have been introduced in Audin and Damian’s
book — the perplexed reader may use the index there to look up what I am talking about. I
hope that I will be forgiven for my simplifications and probable errors.

1. Additional structures
We start this appendix by introducing some additional structures on Floer homol-
ogy that had not appeared in the course before this point. Note that we stay, for this
section, in the setting of the book: spheres have vanishing area and Chern num-
ber. These structures are interesting in their own right but will take an additional
meaning once we remove these hypotheses.

1.1. Product
Since we always assume that 𝑀 is a closed (2𝑛-dimensional symplectic) manifold,
there is a natural product structure on singular homology with Z2 coefficients:

⊙ : 𝐻𝑖(𝑀;Z2) ⊗ 𝐻𝑗(𝑀;Z2) 𝐻𝑖+𝑗−2𝑛(𝑀;Z2)

𝛼 ⊗ 𝛽 PD−1 (PD(𝛼) ∪ PD(𝛽))
,

where PD : 𝐻𝑖(𝑀;Z2) → 𝐻2𝑛−𝑖(𝑀;Z2) is the isomorphism given by Poincaré
duality and ∪ : 𝐻 𝑖(𝑀;Z2) ⊗ 𝐻 𝑗(𝑀;Z2) → 𝐻 𝑖+𝑗(𝑀;Z2) is the cup product.
This is usually called the intersection product because, if 𝛼 is represented by a sub-
manifold𝐴, 𝛽 is represented by a submanifold 𝐵, and𝐴 and 𝐵 intersect transversally,
then 𝛼 ⊙ 𝛽 is represented by the submanifold 𝐴 ∩ 𝐵.
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There is an interpretation of the intersection product in purely Morse theoretical
terms [Fuk96]. Broadly, it is done so: for critical points 𝑥 and 𝑦 of a Morse function
𝑓 , the coefficient of 𝑥 ⊙ 𝑦 in the critical point 𝑧 is given by counting configurations
of the following form:

𝑥 𝑦

𝑧

¤𝛾1 = −grad 𝑓1 ¤𝛾2 = −grad 𝑓2

¤𝛾3 = −grad 𝑓3

Figure 1: The Y-shaped configurations contributing to the Morse product.

Here, we take generic choices of 𝑓𝑖 that agree with 𝑓 near its critical points, and the
point where all three paths intersect is not a critical point. The usual approach shows
that this is well-defined. Looking at possible breakings ensures that the resulting
product on the Morse complex respects the Leibniz rule and thus descends to
homology. However, showing that this is equal to the intersection product requires
more work.
There is then a natural question: can we do the same for Floer homology? But of
course!

Definition 1.1.1 Let 𝑆 := 𝑆2 \ {0, 1,∞}, and let 𝜉0 , 𝜉1 : (−∞, 0] × 𝑆1 → 𝑆 and 𝜉∞ :
[0,+∞) × 𝑆1 → 𝑆 be conformal charts in a neighbourhood of 0, 1, and ∞, respectively.
Take a nondegenerate Hamiltonian 𝐻 : [0, 1] × 𝑀 → R and a compatible almost complex
structure 𝐽 ∈ 𝒥𝑐(𝜔), and consider ℋ : 𝑆 × 𝑀 → R and 𝒥 : 𝑆 → 𝒥𝑐(𝜔) such that
ℋ𝜉𝑖(𝑠,𝑡) = 𝐻𝑡 and 𝒥𝜉𝑖(𝑠,𝑡) = 𝐽 for all above charts 𝜉𝑖 and all (𝑠, 𝑡) ∈ R × 𝑆1. Finally, let 𝑥,
𝑦, and 𝑧 be contractible 1-periodic orbits of the above Hamiltonian 𝐻.
The moduli space of pair of pants with asymptotics 𝑥, 𝑦, and 𝑧 is given by

ℳ(𝑥, 𝑦, 𝑧; 𝒥 ,ℋ) :=
{
𝑢 : 𝑆 → 𝑀

�� 𝑑𝑢𝑧 + 𝒥𝑧 ◦ 𝑑𝑢𝑧 ◦ 𝑗 + (gradℋ𝑧)𝑢(𝑧) = 0,
lim

𝑠→−∞
𝑢(𝜉0(𝑠)) = 𝑥, lim

𝑠→−∞
𝑢(𝜉1(𝑠)) = 𝑦,

lim
𝑠→+∞

𝑢(𝜉∞(𝑠)) = 𝑧, 𝑢 contractible
}

where 𝑗 is the unique complex structure on 𝑆2.
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𝑥 𝑦

𝑧

𝜕𝒥𝑢 = −gradℋ

Figure 2: A pair of pants.

Remarks 1.1.2. A direct computation allows one to verify that the equation appearing
in the definition of ℳ(𝑥, 𝑦, 𝑧; 𝒥 ,ℋ) reduces to the Floer equation for (𝐽 , 𝐻) in the
charts 𝜉𝑖 . In particular, the asymptotic conditions appearing in the definition are
the usual ones, and all results on the asymptotics of Floer cylinders carry over to
pairs of pants.

Using similar techniques to what we have done so far, we get the following.

Theorem 1.1.3 ([PSS96]) For ℋ and 𝒥 generic, ℳ(𝑥, 𝑦, 𝑧; 𝒥 ,ℋ) is a smooth manifold
of dimension 𝜇(𝑥) + 𝜇(𝑦) − 𝜇(𝑧) − 𝑛. If the dimension is 0, then it is compact. If the
dimension is 1, it admits a compactification as a manifold with boundary

©­«
⊔

𝜇(𝑥)−𝜇(𝑤)=1
ℳ(𝑥, 𝑤; 𝐽 , 𝐻) ×ℳ(𝑤, 𝑦, 𝑧; 𝒥 ,ℋ)ª®¬ ⊔ ©­«

⊔
𝜇(𝑦)−𝜇(𝑤)=1

ℳ(𝑦, 𝑤; 𝐽 , 𝐻) ×ℳ(𝑥, 𝑤, 𝑧; 𝒥 ,ℋ)ª®¬
⊔ ©­«

⊔
𝜇(𝑤)−𝜇(𝑧)=1

ℳ(𝑥, 𝑦, 𝑤; 𝒥 ,ℋ) ×ℳ(𝑤, 𝑧; 𝐽 , 𝐻)ª®¬
.

The statement on 0-dimensional moduli spaces allows us to define a product via

𝑚(𝑥, 𝑦) :=
∑

𝜇(𝑧)=𝜇(𝑥)+𝜇(𝑦)−𝑛
(#2ℳ(𝑥, 𝑦, 𝑧)) · 𝑧,

while the statement on 1-dimensional moduli spaces ensures that this product
respects the Leibniz rule with respect to the Floer differential (of (𝐽 , 𝐻)). Therefore,
the product descends to homology. In fact, we have a much stronger statement:

Theorem 1.1.4 For (𝐻, 𝐽) generic and ( 𝑓 , 𝑔) Morse-Smale, the isomorphism of groups
Ψ : 𝐻𝐹•(𝐻, 𝐽) → 𝐻𝑀•+𝑛( 𝑓 , 𝑔) (obtained from Chapters 10 and 11 of [AD14]) is in fact
an isomorphism of rings, where 𝐻𝑀 has the intersection product.

We could go on like this and recreate higher operations on singular homology, e.g.
the Massey product, via Floer homology — in the symplectically aspherical setting,
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that is. However, to keep things relatively short, we will instead move on to another
structure.

1.2. Filtration
Although introducing the pair-of-pants product has required some extra analysis,
there are some additional structures where only a bit of algebra is required to get
us there. This is the case for the theory of filtered Floer homology.

Spectral invariants
The basic observation at the core of filtered Floer homology is that, for every 𝜆 ∈ R,
the (graded) vector subspace

𝐶𝐹≤𝜆
• (𝐻, 𝐽) := Z2 ⟨{𝑥 ∈ Crit(𝒜𝐻) | 𝒜𝐻(𝑥) ≤ 𝜆}⟩

of the Floer complex of (𝐻, 𝐽) is actually a subcomplex. Indeed, this is ensured
by the fact that the action is nonincreasing along its negative gradient trajectories.
Note that we take the convention that Z2⟨∅⟩ = 0.
In particular, we can define the filtered homology 𝐻𝐹≤𝜆

• (𝐻, 𝐽) as the homology of
the complex (𝐶𝐹≤𝜆

• (𝐻, 𝐽), 𝜕𝐻,𝐽). This is well defined whenever nonfiltered Floer
homology is. This observation has been central to the (sub)field of quantitative
symplectic topology, as it allows for the definition of various invariants.

Definition 1.2.1 ([Vit92, Oh05a]) The spectral invariant associated to a homology class
𝛼 ∈ 𝐻𝑀•(𝑀;Z2) is given by

𝑐(𝛼;𝐻) := inf
{
𝜆
��� 𝛼 ∈ Im

(
Ψ : 𝐻𝐹≤𝜆

• (𝐻, 𝐽) → 𝐻𝑀•+𝑛(𝑀;Z2)
)}

.

In other words, 𝑐(𝛼;𝐻) is the lowest action level at which (the preimage by Ψ of) 𝛼 can be
written as a linear combination of orbits of at most that action.

Remarks 1.2.2. As the notation suggests, spectral invariants do not depend on the
choice of almost complex structure. However, they very much depend on the choice
of Hamiltonian. In fact, it is this dependence that is at the heart of all applications.

Spectral invariants enjoy many properties, e.g. under perturbations of 𝐻 or product
of classes in Morse homology. We refer the interested reader to [Oh05a] for more
details, but we briefly note the following surprising consequence of these properties.

Theorem 1.2.3 ([Vit92, Oh05b]) The quantity

𝛾(𝐻) := 𝑐([𝑀];𝐻) − 𝑐([𝑝𝑡];𝐻)

only depends on 𝜑1
𝐻

. It defines a bi-invariant metric, called the spectral metric, on the
group of Hamiltonian diffeomorphisms of 𝑀.
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Persitence modules
If spectral invariants capture how Morse homology classes fit in Floer homology,
persistence modules capture all Floer homology classes, even those that eventually
do not appear in the full, unfiltered homology. This tool — originating from
applied mathematics — allows one to extract additional invariants beyond spectral
invariants, e.g. the boundary depth of Floer homology, which have been of great
use in contemporary research.
One can see Floer persistence modules as following from the following observation:
Not only do we have a homology for each 𝜆 ∈ R, but for a pair 𝜆 ≤ 𝜇, the inclusion
𝐶𝐹≤𝜆

• ⊆ 𝐶𝐹
≤𝜇
• induces a morphism 𝐻𝐹≤𝜆

• → 𝐻𝐹
≤𝜇
• . This defines a direct system

over R— whose limit is the unfiltered Floer homology. As mentionned above, this
system contains more information than the spectral invariants; it can also be also
be conveniently encoded into a nice multiset known as a barcode.
Because this could — and has been — a subject for a course of its own, we
will not dwell much more on the subject. We refer the interested reader to
Polterovich, Rosen, Samvelyan, and Zhang’s introductory book on persistence mod-
ules [PRSZ20], which also includes some applications to symplectic topology.

1.3. Coefficients
To close off this section, we finally address a question that has been staring at us this
entire time: Why are we working with Z2 coefficients? Replacing Z2 by any other
field K of characteristic 2 is trivial. However, when going to other characteristics,
we run into a very important problem: not all manifolds areK-orientable and, even
when an orientation exists, there are no canonical choice for one.
As it turns out, all the moduli spaces that we are concerned with are indeed ori-
entable — though this is not the case in all variations of Floer homology, e.g.
Lagrangian Floer homology. It is the second problem that troubles us. Indeed,
how does one pick orientations on all moduli spaces in such a manner that it is
compatible with breaking and between different choices of data? Although it is not
always the most technically complex modification of Floer homology, doing things
properly is famously headache-inducing. Therefore, we will not go further than
this and simply mention that it is possible to work over K = Q, for example — Ap-
pendix A.2 of [MS12] explains how to adapt Fredholm theory to that context. Going
to integer coefficients is also possible, but one needs to be even more careful.

2. Spheres

We now move to the main subject of this appendix: how to deal with spheres with
nonvanishing area or Chern number?
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2.1. Nonvanishing Chern class
A remark in class was already made to the effect of removing this assumption.
Indeed, it is only used in the definition of the Maslov index (in fact, only in· Sec-
tion 7.1.a of [AD14]). More precisely, it ensures that two choices of capping of the
same orbit induce homotopic paths in Symp(𝑛) and thus, in turn, the same Maslov
index.
In general, when we have ⟨𝑐1(𝑀),𝜋2(𝑀)⟩ = 𝑁Z for 𝑁 > 0, this can no longer be
ensured. However, if 𝑢 and 𝑢′ are cappings of the same orbit 𝑥, we can always write
𝑢′ = 𝑢#(𝑢#𝑢′), i.e. 𝑢′ is obtained from 𝑢 by gluing to it the sphere 𝑢#𝑢′. Therefore,
the Maslov index of an orbit only depends on the choice of capping up to recapping
by a sphere. Moreover, it follows from the definition of the Maslov index — and
some computations — that recapping by a sphere changes the Maslov class by twice
its Chern number. Therefore, the Maslov index of an orbit is well defined up to
twice the minimum Chern number of 𝑀. In other words, Floer homology is only
Z2𝑁 -graded in general.

Remarks 2.1.1. Even when 𝐶𝐹• is Z-graded, i.e. graded in the usual sense, we can
see it as being Z2𝑁 -graded by taking

𝐶𝐹
Z2𝑁
𝑘

=
⊕

𝑖≡𝑘 mod 2𝑁
𝐶𝐹Z𝑖 ,

where the exponents indicate what is the implied grading. This will be useful
below.

2.2. Nonvanishing area
The problems arising when ⟨𝜔,𝜋2(𝑀)⟩ ≠ 0 are much more complicated to resolve.
The point of this subsection is to explain those problems and offer paths toward
their solution. At the end, we also explain how the additional structures of Section 1
interact with spheres of nonvanishing area.
As mentioned in prior lectures, the action functional is now only defined on�ℒ𝑀 := {(𝑥, 𝑣) ∈ ℒ𝑀 × 𝐶∞(D, 𝑀) | 𝑣 |𝑆1 = 𝑥} /∼,

where (𝑥, 𝑣) ∼ (𝑦, 𝑤) if and only if 𝑥 = 𝑦, 𝜔(𝑣#𝑤) = 0, and 𝑐1(𝑣#𝑤) = 0. Note that
under the assumptions of [AD14], i.e. symplectical asphericity, �ℒ𝑀 = ℒ𝑀.

Remarks 2.2.1. Consider

Γ := 𝜋2(𝑀)
Ker 𝜔 ∩ Ker 𝑐1

.

Note that it acts on �ℒ𝑀 via recappings: 𝐴 · [𝑥, 𝑣] = [𝑥, 𝐴#𝑣]. In fact, we even have
that ℒ𝑀 = �ℒ𝑀/Γ. In particular, there is a cover 𝑝 : �ℒ𝑀 → ℒ𝑀 with fiber Γ.
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But recall from Exercise 26 of Chapter 6 of [AD14] that there is always a closed
1-form 𝛼𝐻 on ℒ𝑀 that is locally the differential of the action functional. The cover
𝑝 is precisely the minimal one such that 𝑝∗𝛼𝐻 is exact, i.e. such that there is some
𝒜 : �ℒ𝑀 → Rwith the property that 𝑑𝒜 = 𝑝∗𝛼𝐻 .

We now explain the main problems encountered when trying to define Floer ho-
mology without any assumptions on 𝜔 (or 𝑐1).

The algebraic problem. By analogy to our previous efforts, we consider

ℳ([𝑥, 𝑣], [𝑦, 𝑤]; 𝐽 , 𝐻) :=
{
𝑢 : R × 𝑆1 → 𝑀

��� 𝜕𝑢
𝜕𝑠

+ 𝐽(𝑢)𝜕𝑢
𝜕𝑡

+
(
grad𝐻

)
𝑢
= 0,

lim
𝑠→−∞

𝑢(𝑠) = 𝑥, lim
𝑠→+∞

𝑢(𝑠) = 𝑦,

[𝑦, 𝑤] = [𝑥, 𝑣#𝑢]
}
.

The last compatibility condition should be thought of as the equivalent in the general
setting to the one that 𝑢 be contractible in the symplectically aspherical case.
Suppose that, magically, all moduli spaces between capped orbits of Maslov indices
differing by at most 2 are smooth manifolds of the right dimension with appropriate
compactifications. Then, we would be tempted to define

𝐶𝐹𝑘(𝐻, 𝐽) “=′′ Z2 ⟨{[𝑥, 𝑣] ∈ Crit(𝒜𝐻) | 𝜇(𝑥, 𝑣) = 𝑘 mod 2𝑁}⟩

and

𝜕[𝑥, 𝑣] =
∑

𝜇(𝑥,𝑣)−𝜇(𝑦,𝑤)=1

(
#ℒ([𝑥, 𝑣], [𝑦, 𝑤])

)
· [𝑦, 𝑤],

where ℒ denotes the quotient of ℳ under the natural R-action.
However, there is one big problem with this approach: the sum appearing in the
definition of the differential 𝜕 might be infinite, but 𝐶𝐹𝑘(𝐻, 𝐽) only contains finite
sums.
One would be tempted to simply allow all formal series in the Floer complex to
avoid this problem. However, the result has quite poor algebraic properties; see
Remark 2.2.3 below. Therefore, a less drastic approach is required.
Solution: Define the Floer complex as the following space of formal series.

𝐶𝐹𝑘(𝐻, 𝐽) :=


∑

[𝑥,𝑣]∈Crit(𝒜𝐻 )
𝜇(𝑥,𝑣)=𝑘 mod 2𝑁

𝜆[𝑥,𝑣][𝑥, 𝑣]

�������� #
{
[𝑥, 𝑣]

�� 𝜆[𝑥,𝑣] ≠ 0, 𝒜𝐻(𝑥, 𝑣) ≤ 𝑐
}
< ∞, ∀𝑐 ∈ R


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Here, 𝜆[𝑥,𝑣] are coefficients in Z2.
That this space is indeed closed under the differential follows from the following
compactness result.

Theorem 2.2.2 (Gromov–Floer compactness) Let 𝐶 > 0. The space

{𝑢 ∈ ℳ(𝐻, 𝐽) | 𝐸(𝑢) ≤ 𝐶}

is compact in the 𝐶∞
𝑙𝑜𝑐

topology.

The proof is essentially that of Theorem 6.5.4 of [AD14]. The reason for the weaker
result is that, without the symplectical asphericity assumption, there is no longer a
uniform bound on the gradient of Floer cylinders (Proposition 6.6.2 of [AD14]).

Remarks 2.2.3. As a vector space overZ2,𝐶𝐹𝑘(𝐻, 𝐽) is, in general, infinite-dimensional.
However, it has dimension #Crit(𝛼𝐻), which is finite for 𝐻 nondegenerate, over the
Novikov field of 𝑀:

Λ𝜔 :=

{∑
𝐴∈Γ

𝜆𝐴𝑞
𝐴

����� # {𝐴 | 𝜆𝐴 ≠ 0, 𝜔(𝐴) ≤ 𝑐} < ∞, ∀𝑐 > 0

}
.

Here, the action of Λ𝜔 on 𝐶𝐹•(𝐻, 𝐽) is defined via 𝑞𝐴 · [𝑥, 𝑣] := [𝑥, 𝐴#𝑣]. Finite
dimensionality is the main algebraic argument for using this definition of the Floer
complex rather than allowing every formal series.
Alternatively, this allows us to see 𝐶𝐹𝑘(𝐻, 𝐽) as the free Λ𝜔-vector space generated
by Crit(𝛼𝐻). This also explains theZ2𝑁 -grading: even though we could make sense
of a Z-grading over Z2, we can only talk of a Z2𝑁 -grading over Λ𝜔.
Finally, we note that this approach was already implicit in Floer’s original papers but
was spelled out by Hofer and Salamon [HS95]. The name comes from Novikov’s
work [Nov81] on a version of Morse theory for closed, nonexact 1-forms on a
manifold, which also leads to a version of the above field. In general, there are
many versions of “the” Novikov field, each better suited to one setting.

The transversality problem. In general, we cannot ensure that ℳ([𝑥, 𝑣], [𝑦, 𝑤]) is
indeed a manifold of the right dimension, no matter how much we perturb (𝐻, 𝐽).
Solution: The simplest solution to this problem is to restrict the type of symplectic
manifolds that we study. This is the approach that we have adopted so far and
that Floer [Flo89] also did; we will see below this allows us to deal with monotone
symplectic manifolds.
If we want to study more general symplectic manifolds, however, we need to de-
velop some theory of a “generalized manifold”, where things like counting in
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0-dimensional objects still makes sense. A first step in that direction is the notion
of pseudocycles, as it appears in McDuff and Salamon’s book [MS12], which is a
natural continuation of what we have done so far. This allows us to deal with
all semisimple symplectic manifolds, which include all symplectic manifolds of
dimension at most six.
However, to truly deal with general symplectic manifold, a fundamental break from
everything that we have done so far is needed. Although we will not give a complete
bibliography here, we should note that there are three important approaches to do
it: the Kuranishi structures of Fukaya, Oh, Ohta, and Ono [FOOO09], the theory
of polyfolds of Hofer, Wysocki, and Zehnder [HWZ07, HWZ09b, HWZ09a], and
the implicit atlases of Pardon [Par16]. It is important to note that the completeness,
rigorousness, and acceptance of each approach vary; it is best to talk to a professional
before delving into these methods.

The compactness problem. Even if ℳ([𝑥, 𝑣], [𝑦, 𝑤]) is a manifold of the right
dimension, we could have a problem with its compactification.
In fact, that problem was already present in the proof of Proposition 6.6.2 of [AD14]:
along a sequence of Floer cylinders, the gradient at a point could explode, which
leads to the existence of a 𝐽-holomorphic sphere in the limit. Without any symplectic
asphericity assumption, there is no way to avoid this phenomenon. Despite this,
there is still a version of Gromov–Floer compactness, where (portions of) cylinders
can now be reparametrized to converge to spheres.

𝑥

𝑦

𝑥

𝑦

𝑧

𝜕𝐽𝑢
𝑖 = −grad𝐻

𝜕𝐽𝑣
𝑘 = 0

Figure 3: A typical limit with both cylinders 𝑢 𝑖 and spheres 𝑣𝑘 .

Solution: In general, the compactification ℒ([𝑥, 𝑣], [𝑦, 𝑤]) will now include stable
maps. Broadly speaking, these are broken Floer trajectories, together with a finite
number of 𝐽-holomorphic spheres, fitting together appropriately.
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To still be able to conclude that 𝜕2 = 0 however, we then need to show that either
these new contributions cancel each other out, or that they somehow do not matter
for the relevant counts, e.g. they appear in strata of codimension at least two. To do
the latter, we need to use one of the technologies mentioned in the above paragraph.

The isomorphism problem. In view of Section 2.1 and Remark 2.2.3, the best that
we can hope for is an isomorphism

𝐻𝐹𝑘(𝐻, 𝐽) �
⊕

𝑖≡𝑘 mod 2𝑁
𝐻𝑀𝑖+𝑛( 𝑓 , 𝑔) ⊗ Λ𝜔

for every 𝑘 ∈ Z2𝑁 and any (𝐻, 𝐽) and ( 𝑓 , 𝑔) generic.
We could try a similar approach to what has been done when 𝐻 is a 𝐶2-small Morse
function and 𝐽 is generic. However, even when 𝑀 is a nice symplectic manifold,
some heavy machinery is required to make things work. In some sense, this should
not be too surprising: the isomorphism with Morse homology was probably one of
the least direct proofs that we have done.
Solution: We build an isomorphism — without any smallness or Morse hypotheses
on 𝐻 — by counting “half cylinders”. This approach was initiated by Piunikhin,
Salamon, and Schwarz [PSS96], and thus, the resulting map is called the PSS
isomorphism.
More precisely, we fix a nonincreasing function 𝛽 : R→ [0, 1] such that 𝛽(𝑠) = 1 if
𝑠 ≤ 0 and 𝛽(𝑠) = 0 if 𝑠 ≥ 1. For [𝑥, 𝑣] ∈ Crit(𝒜𝐻) and 𝑦 ∈ Crit( 𝑓 ), we consider the
moduli space

ℳ
𝑃𝑆𝑆([𝑥, 𝑣], 𝑦; 𝐽 , 𝐻, 𝑓 , 𝑔) :=

{
(𝑢, 𝛾) ∈ 𝐶∞(R × 𝑆1 , 𝑀) × 𝐶∞([0,+∞), 𝑀)

���
𝜕𝑢

𝜕𝑠
+ 𝐽(𝑢)𝜕𝑢

𝜕𝑡
+ 𝛽

(
grad𝐻

)
𝑢
= 0,

𝑑𝛾

𝑑𝑠
+ (grad 𝑓 )𝛾 = 0

lim
𝑠→−∞

𝑢(𝑠) = 𝑥, lim
𝑠→+∞

𝑢(𝑠) = 𝛾(0), lim
𝑠→+∞

𝛾(𝑠) = 𝑦

[𝑥, 𝑣] = [𝑥, 𝑢]
}
.

Here, we can see 𝑢 as a capping of 𝑥 because of the asymptotic lim𝑠→+∞ 𝑢(𝑠) = 𝛾(0).
In other words, elements of ℳ𝑃𝑆𝑆 are pairs (𝑢, 𝛾), where 𝑢 is a disk solving some
interpolation between the Floer and Cauchy–Riemann equations and 𝛾 is a negative
gradient trajectory of the Morse function 𝑓 on 𝑀.
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𝑥
𝑦

𝜕𝐽𝑢 = −grad𝐻 𝜕𝐽𝑢 = 0

¤𝛾 = −grad 𝑓

Figure 4: Visualization of an element of ℳ𝑃𝑆𝑆([𝑥, 𝑣], 𝑦; 𝐽 , 𝐻, 𝑓 , 𝑔).

We can then define a morphism Ψ𝑃𝑆𝑆 : 𝐶𝐹•(𝐻, 𝐽) → 𝐶𝑀•+𝑛( 𝑓 , 𝑔) via

Ψ𝑃𝑆𝑆(𝑥, 𝑣) :=
∑

𝜇(𝑥,𝑣)=|𝑦 |−𝑛

(
#2ℳ

𝑃𝑆𝑆([𝑥, 𝑣], 𝑦)
)
· 𝑦.

By reversing the roles of [𝑥, 𝑣] and 𝑦, we can similarly define a morphism Φ𝑃𝑆𝑆 :
𝐶𝑀•( 𝑓 , 𝑔) → 𝐶𝐹•−𝑛(𝐻, 𝐽). Looking at 0-dimensional moduli spaces ℳ

𝑃𝑆𝑆 and
ℳ𝑃𝑆𝑆 ensure that these maps are well defined, while looking at (the compactifi-
cation) of 1-dimensional ones ensures that they are chain morphisms. One then
needs to consider composite moduli spaces — where the analysis notably complex-
ifies — to conclude that Ψ𝑃𝑆𝑆 ◦ Φ𝑃𝑆𝑆 and Φ𝑃𝑆𝑆 ◦Ψ𝑃𝑆𝑆 are chain homotopic to the
identity. This finally ensures that Ψ𝑃𝑆𝑆 and Φ𝑃𝑆𝑆 induce inverse isomorphisms on
homology.

Remarks 2.2.4. Even though the isomorphism to Morse homology becomes increas-
ingly more complicated to construct as we relax the hypotheses on 𝑀, we can build
the continuation maps 𝐶𝐹•(𝐻𝑎 , 𝐽𝑎) → 𝐶𝐹•(𝐻𝑏 , 𝐽𝑏) in a similar manner to that of
Chapter 11 of [AD14]. Therefore, proving the invariance of Floer homology does
not require the use of the PSS isomorphism.

Additional structures
We end this subsection by exploring the interaction between the structures of Sec-
tion 1 with spheres of nonvanishing area and Chern number.

Product. The PSS isomorphism to Morse homology is only an isomorphism of
groups. Indeed, in the presence of nontrivial elements in Γ, a pair of pants might not
degenerate to a𝑌-shaped Morse diagram like that in Figure 1. More precisely, we can
construct a moduli space of configurations consisting of three Morse flow trajectories
with endpoints on a sphere solving some perturbed, parametrized Floer equation.
Then, looking at its compactification, we can show that this forms a cobordism
between the moduli space appearing in the formula for Ψ𝑃𝑆𝑆 ◦ 𝑚 ◦ (Φ𝑃𝑆𝑆 ⊗ Φ𝑃𝑆𝑆)
and a moduli space of 𝑌-shaped Morse diagram, but where the triple intersection
has been replaced by a 𝐽-holomorphic sphere — see Figure 5 below. Therefore,
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counting 0-dimensional moduli spaces associated to either configuration gives the
same product.

𝑥 𝑦

𝑧

𝑥′ 𝑦′

𝑧′

𝜕𝐽𝑢 = −grad𝐻

(a) The configuration counted by the
composition of the pair-of-pants product
with PSS isomorphisms.

𝑥 𝑦

𝑧

𝜕𝐽𝑢 = 0

(b) The Y-shaped configuration with a 𝐽-
holomorphic sphere in the middle giving
the same count.

Figure 5: Configurations appearing on each end of the moduli space.

Intuitively, if 𝐴 is the homology class of the sphere in Figure 5b, then such a
configuration should contribute to the term 𝑧⊗ 𝑞𝐴 in 𝐶𝑀•( 𝑓 , 𝑔)⊗Λ𝜔. But that term
does not appear in the usual intersection product. Note however that if 𝐴 = 0, then
we do recover the previous product.
Therefore, the appropriate product on 𝐶𝑀•( 𝑓 , 𝑔) ⊗ Λ𝜔 should be a deformation of
the usual intersection product, taking into account these extra configurations. More
precisely, we take

𝑞(𝑥, 𝑦) :=
∑
𝐴∈Γ

𝐺𝑊𝐴(𝑥, 𝑦, 𝑧) 𝑧 ⊗ 𝑞𝐴

and call it the quantum product. Here, 𝐺𝑊𝐴(𝑥, 𝑦, 𝑧) are called Gromov–Witten
invariants; they count moduli spaces of 𝐽-holomorphic spheres with 3 marked
points laying in the un/stable manifolds of 𝑥, 𝑦, and 𝑧. The resulting homology
is denoted 𝑄𝐻•(𝑀) and is called the quantum homology. As we shall see below,
there are times were this is fundamentally different from the usual homology.

Filtration. Using the PSS isomorphism, we can define spectral invariants similarly
to what was done in Section 1.2. The main difference is that the class 𝛼 in 𝑐(𝛼;𝐻) is
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seen as an element of quantum homology, not Morse homology.
Defining persistence modules is however a bigger problem. Essentially, for the
algebra to work, we need to work on a finite-dimensional vector space, and thus
over the Novikov field. This causes problems since, when acting by an element
of Λ𝜔, the action of an orbit shifts. This means that we can only define when a
class “appears” up to a certain translation. Under the hypothesis that 𝜔(𝜋2(𝑀)) be
discrete, Usher and Zhang [UZ16] have nonetheless managed to define an analogue
to the Floer persistence module and have extracted from it many results.

2.3. The monotone case
We close this appendix by dealing with one case beyond the symplectically aspher-
ical world where we can handle spheres of nonvanishing area and Chern number
without heavy machinery.
Definition 2.3.1 A symplectic manifold (𝑀, 𝜔) is called monotone if there exists 𝜏 > 0
such that

𝜔 = 𝜏𝑐1 over 𝜋2(𝑀),
i.e. the area of a sphere is positively proportional to its Chern number.

The main example of a monotone symplectic manifold is C𝑃𝑛 with the Fubini-
Study form. In general, (partial) flag manifolds can be equipped with monotone
symplectic forms.
We now explain how this case interacts with the various problems presented in
Section 2.2.

Algebra. Note that, in a monotone symplectic manifold, the element that 𝐴 ∈
𝜋2(𝑀) represents in the group Γ (see Remark 2.2.1) can be identified by its Chern
number. Therefore, as soon as there is a sphere of nonvanishing area, the Novikov
field of 𝑀 (see Remark 2.2.3) is the field of Laurent series in one variable:

Λ𝜔 � Z2[𝑞−1 , 𝑞]].
Here, 𝑞 has degree |𝑞 | = −2𝑁 , where we recall that 𝑁 is the minimal Chern number
of 𝑀. In other words, we can identify 𝐶𝐹•(𝐻, 𝐽) with the free Z2[𝑞−1 , 𝑞]]-vector
space generated by Crit(𝛼𝐻).

Transversality. To not extend an already long note, we will simply note that
transversality works in much the same way as what we have done before — with-
out any of the heavy machinery mentioned above. The main difference is the
perturbation scheme: Instead of starting with a pair (𝐻, 𝐽) and taking small per-
turbations of 𝐻 to achieve transversality, we may need to perturb both 𝐻 and 𝐽 to
achieve it.
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Compactness. Consider a sequence {𝑢𝑘} ⊆ ℳ([𝑥, 𝑣], [𝑦, 𝑤]), where 𝜇(𝑥, 𝑣) −
𝜇(𝑦, 𝑤) = 1. By Gromov–Floer compactness, this sequence of cylinders cannot
break in the limit but could a priori bubble off. Suppose that there are some non-
constant bubbles 𝑣𝑖 : 𝑆2 → 𝑀 in the limit, and denote by 𝑢 the limit cylinder.
Gromov–Floer compactness then also gives that the capping 𝑤 = 𝑣#𝑢𝑘 of 𝑦 must
be homotopic relative boundary to the connected sum of 𝑣#𝑢 with all spheres
𝑣𝑖 . Therefore, 𝑢 is in ℳ([𝑥, 𝑣], [𝑦, (−∑

𝑖[𝑣𝑖])#𝑤]). But recall from Section 2.1 that
recapping by a sphere changes the Maslov index by (minus) twice its Chern number.
Therefore,

𝜇(𝑥, 𝑣) − 𝜇(𝑦, (−
∑
𝑖

[𝑣𝑖])#𝑤) = 1 − 2
∑
𝑖

𝑐1(𝑣𝑖) < 0,

since 𝑐1(𝑣𝑖) ≥ 1 for any sphere with 𝜔(𝑣𝑖) > 0 on a monotone symplectic manifold.
Indeed, recall that nonconstant 𝐽-holomorphic spheres have positive area.
But this is of course a contradiction, since 𝜇(𝑥, 𝑣) − 𝜇(𝑦, (−∑

𝑖[𝑣𝑖])#𝑤) is the di-
mension of ℳ([𝑥, 𝑣], [𝑦, (−∑

𝑖[𝑣𝑖])#𝑤]); the above inequality implies that it must be
empty.
We can similarly argue that sequences of cylinders with 𝜇(𝑥, 𝑣)−𝜇(𝑦, 𝑤) = 2 cannot
bubble off — we still have that the only nonempty (parametrized) moduli spaces of
dimension 0 are the constant ones. Therefore, 𝜕 is well defined, and 𝜕2 = 0.

Isomorphism. The PSS isomorphism can be shown to be well-defined and indeed
an isomorphism of groups without the use of heavy machinery. However, it will not
be an isomorphism of rings in general. To showcase this, we explore the example
of the complex projective space.

Example (11.1.12 of [MS12]1): From standard algebraic topology, we know that the
homological ring of C𝑃𝑛 is given by

𝐻2𝑛−•(C𝑃𝑛 ;Λ𝜔) �
Z[𝑝]

(𝑝𝑛+1 = 0)
⊗Z Z2[𝑞−1 , 𝑞]] = Z2[𝑝, 𝑞−1 , 𝑞]]

(𝑝𝑛+1 = 0)
.

Note that, because of the twist in the grading, |𝑝 | = 2 and |𝑞 | = −2(𝑛 + 1) here.
However, spheres of nonvanishing area do contribute nontrivially to the quantum
product. This exceptionally can be computed somewhat easily because the standard
complex structure on C𝑃𝑛 is regular (see, for example, Proposition 7.4.3 of [MS12]),
so that everything follows from complex algebraic geometry. We will skip these
computations, but we note that the only relevant relation· is [C𝑃𝑛−1]𝑛+1 = [C𝑃𝑛]⊗ 𝑞,

1They work with the cohomological convention and overZ[𝑞], instead ofZ2[𝑞−1 , 𝑞]], but that does
not affect the relevent computations.
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where [C𝑃𝑛−1] is the class of a hyperplane in C𝑃𝑛 . In other words, we instead have
an isomorphism

𝑄𝐻2𝑛−•(C𝑃𝑛) � Z2[𝑝, 𝑞−1 , 𝑞]]
(𝑝𝑛+1 = 𝑞)

,

where the equality in the quotient makes sense in the Z2(𝑛+1)-grading of quantum
homology.



16

References

[AD14] Michele Audin and Mihai Damian. Morse theory and Floer homology.
Universitext. Springer London, 2014.

[Flo89] Andreas Floer. Symplectic fixed points and holomorphic spheres. Com-
munications in Mathematical Physics, 120(4):575–611, 1989.

[FOOO09] Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono. La-
grangian intersection floer theory—anomaly and obstruction, parts i
& ii. 46, 2009.

[Fuk96] Kenji Fukaya. Morse homotopy and its quantization. In William H.
Kazez, editor, Geometric topology: 1993 Georgia international topology con-
ference, AMS/IP Studies in Advanced Mathematics, pages 409–440. 1996.

[HS95] Helmut Hofer and Dietmar A. Salamon. Floer homology and Novikov
rings. In Helmut Hofer, Clifford H. Taubes, Alan Weinstein, and Eduard
Zehnder, editors, The Floer Memorial Volume, volume 133 of Progress in
Mathematics, pages 483–524. Birkhäuser Basel, 1995.

[HWZ07] Helmut W Hofer, Kris Wysocki, and Eduard Zehnder. A general Fred-
holm theory I: A splicing-based differential geometry. Journal of the
European Mathematical Society, 9(4):841–876, 2007.

[HWZ09a] Helmut Hofer, Kris Wysocki, and Eduard Zehnder. A general Fred-
holm theory III: Fredholm functors and polyfolds. Geometry & Topology,
13(4):2279–2387, 2009.

[HWZ09b] Helmut Hofer, Krzysztof Wysocki, and Eduard Zehnder. A general
Fredholm theory II: implicit function theorems. Geometric and Functional
Analysis, 19(1):206–293, 2009.

[MS12] Dusa McDuff and Dietmar Salamon. 𝐽-holomorphic curves and symplectic
topology, volume 52 of Colloquium Publications. American Mathematical
Society, 2nd edition, 2012.

[Nov81] Sergei P. Novikov. Multivalued functions and functionals. an analogue
of the Morse theory. 24(2):222–226, 1981.

[Oh05a] Yong-Geun Oh. Construction of spectral invariants of Hamiltonian
paths on closed symplectic manifolds. In Jerrold Marsden and Tudor S.
Ratiu, editors, The Breadth of Symplectic and Poisson Geometry: Festschrift
in Honor of Alan Weinstein, Progress in Mathematics, pages 525–570.
Birkhäuser Boston, 2005.



17

[Oh05b] Yong-Geun Oh. Spectral invariants, analysis of the Floer moduli space,
and geometry of the Hamiltonian diffeomorphism group. Duke Mathe-
matical Journal, (130):199–295, 2005.

[Par16] John Pardon. An algebraic approach to virtual fundamental cycles on
moduli spaces of pseudo-holomorphic curves. Geometry & Topology,
20(2):779–1034, 2016.

[PRSZ20] Leonid Polterovich, Daniel Rosen, Karina Samvelyan, and Jun Zhang.
Topological persistence in geometry and analysis, volume 74 of University
Lectures Series. American Mathematical Society, 2020.

[PSS96] Sergey Piunikhin, Dietmar Salamon, and Matthias Schwarz. Symplec-
tic Floer–Donaldson theory and quantum cohomology. In Charles B.
Thomas, editor, Contact and symplectic geometry, Publications of the New-
ton Institute, pages 171–200. Cambridge University Press, 1996.

[UZ16] Michael Usher and Jun Zhang. Persistent homology and Floer–Novikov
theory. Geometry & Topology, 20(6):3333–3430, 2016.

[Vit92] Claude Viterbo. Symplectic topology as the geometry of generating
functions. Mathematische Annalen, 292(1):685–710, 1992.

J.-P. Chassé, Department of Mathematics, ETH Zürich

E-mail address: jeanphilippe.chasse@math.ethz.ch


	Additional structures
	Product
	Filtration
	Spectral invariants
	Persitence modules

	Coefficients

	Spheres
	Nonvanishing Chern class
	Nonvanishing area
	Additional structures

	The monotone case


