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Abstract. Fix your favorite symplectic manifold. Can you pack un-
countably many Lagrangians in a given Hamiltonian isotopy class? We
address C∞ and C0 versions of this question.

1. Introduction

1.1. Lagrangian packing problems. Given a symplectic manifold M =
(M,ω), let Ham(M) ⊂ Diff0(M) be the group of compactly-supported
Hamiltonian diffeomorphisms ofM . By definition, the elements of Ham(M)
are those diffeomorphisms which occur as the time-1 flow of a compactly-
supported Hamiltonian function H : [0, 1]×M → R. Two (closed) subman-
ifolds L,L′ ⊂ M are said to be Hamiltonian isotopic if L′ = ϕ(L) setwise,
for some ϕ ∈ Ham(M).

A Lagrangian packing problem in symplectic geometry usually takes the
following form:

Fix a symplectic manifold M and a closed Lagrangian submanifold L ⊂
M . How many pairwise disjoint Hamiltonian isotopic copies of L can you
pack into M?

• Sometimes this number is 1: this happens e.g. if the Floer homology
is defined and nonzero, so that L is non-displaceable.

• Sometimes this number is finite but strictly greater than 1: this
holds trivially for small contractible Lagrangians for area reasons
whenever dim(M) = 2. Remarkably, Polterovich–Shelukhin exhib-
ited displaceable Lagrangian tori in a non-monotone S2 × S2 with
finite packing number [15, Theorem C], using asymptotic Hofer ge-
ometry.

• Sometimes this number is infinite: for instance, it follows from work
of Chekanov [6] that there are infinite packings of Lagrangian tori
in any Darboux ball of dimension at least six. In subsequent work,
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Chekanov–Schlenk [7, Theorem 1.5] give similar examples in dimen-
sion four. See also [2, 3] for constructions of such packings using
symmetric probes.

These results beg the following question:

Question 1.1. Do there exist uncountable Lagrangian packings?

As it turns out, the answer is no:

Proposition 1.2. The cardinality of any Lagrangian packing is at most
countable.

Proof. Let H = C∞(S1 ×M) ⊂ C2(S1 ×M) be endowed with the subspace
topology. Let ψ1

H denote the time-1 flow of H ∈ H and let d(−,−) be the
restriction of the C2-metric to H.

Suppose there exists an uncountable packing {Lα}, and choose Hamilto-
nians Hα ∈ H so that Lα = ψ1

Hα
(L). Note that, for each α, there exists

ϵα > 0 such that ψ1
Hα

(L) ∩ ϕ1K(L) ̸= ∅ whenever d(Hα,K) < ϵα. Indeed,

if two Hamiltonians are C2-close, then their associated Hamiltonian diffeo-
morphism must be C1-close, so that we can see one Lagrangian as a graph
over the other (in a Weinstein neighbourhood). Hence the balls of size ϵα/2
around each Hα must all be disjoint. But H is second countable (being
separable and metrizable), so does not admit an uncountable collection of
disjoint balls. □

Using classical results of Laudenbach–Sikorav [13], one can in fact show
that a (closed connected) half-dimensional submanifold L ⊂ M admits an
uncountable Hamiltonian packing if and only if L is not Lagrangian and its
normal bundle admits a nowhere vanishing section; see Proposition 3.2.1

1.2. The C0 setting. Question 1.1 can also be formulated in the context
of C0 symplectic geometry, where it intersects subtle questions related to
flux and C0-rigidity.

The study of C0 symplectic geometry was initiated by Gromov and Eliash-
berg’s discovery that the group of symplectomorphisms of a closed symplec-
tic manifold is C0-closed in the group of volume-preserving diffeomorphisms
[8,10]. Since then, a number of symplectic invariants and properties — such
as a submanifold being coisotropic, the closure of Ham(M) in Symp(M),
and continuity properties of spectral invariants — have been shown to ex-
tend in the C0 topology (see e.g. [4,5,12,14] and the references therein). We
briefly recall the relevant definitions below.

Given a symplectic manifold M = (M,ω), let

Ham(M) ⊂ Homeoc(M)

1Note the following amusing consequence: if L admits an uncountable Hamiltonian
packing, then L admits a packing with the cardinality of the reals, independently of the
continuum hypothesis!
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the C0 closure of Ham(M) in the group of all compactly-supported homeo-
mophisms of M . Elements of Ham(M) are called Hamiltonian homeomor-
phisms.

Definition 1.3. Fix a smooth submanifold Σ ⊂ M . A C0 (Hamiltonian)
packing of Σ is a collection of pairwise disjoint smooth submanifolds {Σα}
such that Σα = ϕα(Σ) for some ϕα ∈ Ham(M,ω).

We can now ask:

Question 1.4. Do there exist uncountable C0 Lagrangian packings (i.e.
does there exist a (closed) Lagrangian submanifold L ⊂M which admits an
uncountable packing in the sense of Definition 1.3)?

A naive attempt to replicate the proof of Proposition 1.2 breaks down.
We of course know that Ham(M) is metrizable and second countable (since
it sits inside the space of continuous self maps of M). However, given ψ ∈
Ham(M), we do not know whether there exists a ball B centered at ψ with
the property that ψ′(L) ∩ ψ(L) ̸= ∅ whenever ψ′ ∈ B.2

Instead, we consider a different line of argument in the spirit of [1], which
involves an analysis of the flux morphism. This yields another elementary3

proof of Proposition 1.2, and also gives the harder:4

Theorem 1.5. Let M = (M,ω) be a symplectic manifold. Let L ⊂M be a
(closed connected) half-dimensional submanifold with the property that

(1.1) ⟨Γtop, ι∗(H1(L))⟩ ∩ ω(π2(M)) ⊂ R

is discrete. Then L admits an uncountable C0 packing if and only if L is
not Lagrangian and its normal bundle admits a nowhere vanishing section.

Here Γtop is the topological flux group of M , a notion which we review
in Section 2.3. In practice, (1.1) is reasonably checkable: it obviously holds
whenever ω(π2(M)) is discrete, or when ι∗ : H1(L;R) → H1(M ;R) is zero
(so e.g. it is enough for M to be simply connected). Nevertheless, we ex-
pect that the conclusion of Theorem 1.5 holds for all symplectic manifolds,
without any additional topological condition.

2. Preparations

2.1. Conventions. All rings are understood to be commutative and uni-
tal. All manifolds are by definition boundaryless, Hausdorff and second-
countable. Unless otherwise indicated, all manifolds and all maps between
them are assumed to be smooth.

2If L satisfies a rationality assumption, then this is proved in [1]; the general case is
essentially [1, Conjecture E].

3Meaning both that it is equally easy and that neither proof needs J-holomophic curves.
4Meaning both that the argument is more difficult and that it relies on J-holomorphic

curves (although these only enter indirectly, through results we quote).
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2.2. Some topological properties of the space of Lagrangians. The
purpose of this paragraph is to show that the space of compact Lagrangian
embeddings into some symplectic manifold (M,ω) is second-countable and
to deduce the following.

Lemma 2.1. Let M = (M,ω) be a connected symplectic manifold. Let X
be a set of pairwise disjoint, compact Lagrangian submanifolds of M . If X
is uncountable, then there exists K ∈ X and a Weinstein neighborhood of K
containing uncountably many elements of X .

To start, let L be a smooth, compact manifold, and let M be a smooth
manifold. Let C∞(L,M) be the set of infinitely differentiable maps from L
to M , endowed with the Whitney topology [9, II.§3]. Recall that a basis for
this topology is given by the preimages of all open subsets U ⊂ Jk(L,M), 1 ≤
k < ∞ under the natural map sending a function to its k-th jet. Since the
Jk(L,M) are manifolds and hence second-countable, C∞(L,M) is second-
countable. Let C∞

emb(L,M) ⊂ C∞(L,M) be the (open) subset of embeddings
and let

Σ∞(L,M) := C∞
emb(L,M)/Diff(L)

be the space of embedded smooth submanifolds of M which are diffeomor-
phic to L. Here Diff(L) acts on the right by precomposition. It follows that
Σ∞(L,M) is second-countable.

Now let (M,ω) be a symplectic manifold and denote by Σ∞
Lag(L,M) ⊂

Σ∞
emb(L,M) the subset of Lagrangian embeddings of L into M . It follows

that Σ∞
Lag(L,M) is second-countable.

Definition 2.2. Let (M,ω) be a symplectic manifold and let ι : L → M
be a Lagrangian embedding. A Weinstein neighborhood subordinate to the
embedding ι is the data (U , ι̃) of an open subset U ⊂ T ∗L containing the
zero section, and a symplectic embedding ι̃ : U →M extending ι.

Let ι : L → (M,ω) be a Lagrangian embedding. Fix a Weinstein neigh-
borhood (U , ι̃) and let

(2.1) OLag(U , ι̃) ⊂ Σ∞
Lag(L,M)

be the subset of those elements K ∈ Σ∞
Lag(L,M) such that there exists a

1-form αK ∈ Ω1(L) on L such that graph(αK) ⊂ U and ι̃(graphαK) = K.
Since K is Lagrangian, any such 1-form is necessarily closed, dαK = 0. The
sets OLag(U , ι̃) are open. We are now in a position to prove the lemma.

Proof of Lemma 2.1. Since there are countably many diffeomorphism
types, we may assume all elements of X are diffeomorphic to some compact
manifold L. In other words, X is a subset of Σ∞

Lag(L,M). If we endow X
with the subspace topology, it is second-countable, since Σ∞

lag(L,M) is. For

eachK ∈ X , choose a Weinstein neighborhood (UK , ι̃K), where ιK : K ↪→M
is the tautological inclusion. The O(UK , ι̃K) are open in Σ∞

lag(L,M); hence



A NOTE ON THE CARDINALITY OF LAGRANGIAN PACKINGS 5

their restriction to X is also open. Hence they form an open cover of X . By
second-countability, there exists a countable subcover. Hence there exists
someK ∈ X such that uncountably many of the elements of X are contained
in O(UK , ι̃K). □

2.3. Notions of flux. There are several notions of “flux” in symplectic
geometry which all arise from variants of the same construction. We briefly
review (some of) these here.

LetM = (M,ω) be a symplectic manifold. Let {Lt}t∈[0,1] be a Lagrangian
isotopy. The (Lagrangian) flux of the isotopy is the class Flux(Ls) ∈
H1(L;R) defined as follows: let ξ be (a representative of) any cycle in
H1(L;R). Let Zξ : [0, 1]×S1 →M be the trace of ξ under the isotopy. Then
Flux(Ls) ∈ H1(L;R) is the unique class satisfying ⟨ω,Zξ⟩ = ⟨Flux(Ls), ξ⟩.
It is a basic fact that the Lagrangian flux of an isotopy induced by an am-
bient Hamiltonian isotopy on M vanishes.

One can similarly define the (symplectic) flux of a symplectic isotopy
{ψs} to be the unique class Flux(ψs) of H1(M ;R) such that ⟨ω,Zξ⟩ =
⟨Flux(ψs), ξ⟩ for all loops ξ of M . Alternatively, it is the Lagrangian flux
of the Lagrangian isotopy {graphψs} in (M ×M,ω ⊕−ω). The symplectic

flux induces a homomorphism Flux : S̃ymp(M) → H1(M ;R). Its image is
called the flux group of M and denoted by Γω ⊂ H1(M ;R).

More generally, let fs : N → M, s ∈ [0, 1], be a continuous family of
continuous maps and set F : [0, 1] × N → M, (s, n) 7→ fs(n). There is a
natural map H1(N ;Z) → R sending a cycle ξ to ⟨ω, F ([0, 1] × ξ)⟩ which
induces a homomorphism Flux : π1(C

0(N,M)) → H1(N ;R).

Definition 2.3. The image of of the map Flux : π1(C
0(N,M)) → H1(N ;R)

is called topological flux group and is denoted by Γtop ⊂ H1(N ;R).

3. Proofs

We first record an elementary linear algebra lemma which will be used
later.

Lemma 3.1. Let L be a finite dimensional lattice and set V := L⊗Z R. If
S ⊂ V ∗ is a subset with the property that for every ξ ∈ L ⊂ V , the set

(3.1) {⟨s, ξ⟩ | s ∈ S} ⊂ R
is countable, then S is countable. (Here ⟨−,−⟩ : V ∗ × V → R denotes the
natural pairing of V with its dual.)

Proof. Choose a basis for V and let s = (s1, . . . , sn) ∈ S. By testing against
the dual basis, we find that the coordinates si take values in a countable
set.5 □

5So in particular, it is enough to know (3.1) on any subset of lattice elements which
form a real basis for V .
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3.1. The C∞ case. As a warm-up for the proof of Theorem 1.5, we give
an alternative proof of Proposition 1.2 based on the Lagrangian flux as
discussed in Section 2.3.

Second proof of Proposition 1.2. Suppose for contradiction that P is an un-
countable packing. By Lemma 2.1, we may assume without loss of gener-
ality that P is entirely contained in OLag(U , ι̃) for some Weinstein neigh-
borhood (U , ι) of L. For each K ∈ P, there is a 1-form αK ∈ Ω1(L) so
that K = graph(αK). It is enough to prove that the set of 1-forms αK

representing elements of P is countable.
The first step is to construct a piecewise smooth path of Lagrangians

(Ks)s∈[0,1] as follows:

(1) first apply the linear isotopy [0, 1/2] ∋ s 7→ φ̃(graph(2sαK))
(2) then let {Ks}s∈[1/2,1] be any Hamiltonian isotopy taking K back to

L setwise (this exists since K ∈ P)

Now fix a curve ξ : S1 → L representing a cycle [ξ] ∈ H1(L;Z). Let
Zξ : [0, 1]×S1 →M be the cylinder swept out by the family (Ks). We write

Zξ = Z
(1)
ξ ∪ Z(2)

ξ , where Z
(i)
ξ is the cylinder from step (i) of the isotopy.

Finally, we compute

(3.2) ⟨Flux(Ks), ξ⟩ =
∫
Zξ

ω =

∫
Z

(1)
ξ

ω +

∫
Z

(2)
ξ

ω =

∫
Z

(1)
ξ

ω = ⟨αK , ξ⟩

where
∫
Z

(2)
ξ

ω = 0 because (Ks)s∈[1/2,2] is a Hamiltonian isotopy.

Since Zξ has boundary on L for all such ξ, it follows that ⟨[αK ], ξ⟩ is
contained in the image of the evaluation map ω : H2(M,L;Z) → R, which is
a countable set. By Lemma 3.1, it follows that only countably many classes
[αK ] ∈ H1(L;R) can be represented by elements in P. Recall however that
if [αK ] = [αK′ ], then K and K ′ intersect. The conclusion follows. □

Recall that a submanifold N ⊂ M is called instantaneously displaceable
if there is a Hamiltonian vector field of M that is nowhere tangent to N .

Proposition 3.2. Let N be a (closed) submanifold of M2n of dimension
k ≤ n. The following statements are equivalent.

(a) N admits an uncountable packing.
(b) N is instantaneously displaceable.
(c) N is not Lagrangian and its normal bundle admits a nowhere van-

ishing section.

We first note:

Lemma 3.3. If a submanifold N of M admits an uncountable packing by
smooth isotopies, then its normal bundle has a nowhere vanishing section.

Proof. In the C∞ topology, every element of Σ∞(N,M) admits a neigh-
bourhood such that every element in it can be represented by the graph of
a section of the normal bundle of N in M . Let {Nα} be an uncountable
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packing ofN . By second countability of Σ∞(N,M), there is a countable sub-
packing {Nαi}∞i=1 such that

⋃
αNα is covered by neighbourhoods as above,

centered at Nαi . But then, there is some α /∈ {αi} such that Nα is in the
neighbourhood associated to some Nαj . Therefore, there is a section ν of the
normal bundle of Nαj such that Nα is the graph of ν. Since Nα ∩Nαj = ∅,
ν does not vanish at any point. □

Proof of Proposition 3.2. We first show that (a) implies (c). Assume that
(a) holds. By Lemma 3.3, N has a nowhere vanishing normal vector field.
Moreover, N cannot be Lagrangian by Proposition 1.2.

We now deduce (b) from (c). Assume that (c) holds. If k = n, then N is
instantaneously displaceable by the main result of Laudenbach–Sikorav [13].
If k < n, this is folklore (see also [11] for a formal proof of a more general
result).

Finally, (b) clearly implies (a): if {ϕt} is the flow of the Hamiltonian
vector field that is nowhere tangent to N , then ϕt(N) ∩ ϕs(N) = ∅ for all
s, t small enough. □

3.2. Proof of Theorem 1.5. We deduce Theorem 1.5 by combining Propo-
sition 3.2 with the following:

Proposition 3.4. Let M = (M,ω) be a closed symplectic manifold. Let
L ⊂M be a Lagrangian submanifold with the property that

(3.3) ⟨Γtop, ι∗(H1(L))⟩ ∩ ω(π2(M)) ⊂ R
is discrete. The packing cardinality of L is at most countable.

We will need the following lemma, whose proof is an elementary exercise
using the exponential map.

Lemma 3.5. Let (M, g) be a Riemannian manifold with injectivity radius
r0 > 0. Suppose that f0, f1 :M →M are compactly supported smooth maps
with the property that dist(f0(x), f1(x)) < ϵ < r0 for all x. Then there exists
a smooth homotopy {ht :M →M}t∈[0,1], h0 = f0, h

1 = f1, with the property

that s 7→ dist(hs(x), h0(x)) is non-decreasing for all x ∈M . □

We also need the following pieces of notation:

Notation. If {Ψt : N → M}t∈[0,ai] is a continuous family of continuous

maps, we write Ψ
t
:= Ψ1−t.

If {Φt
i : N → M}t∈[0,ai] is a continuous family of continuous maps with

Φa1
1 = Φ0

2, we let {(Φ1#Φ2)
s}s∈[0,a1+a2] be the “concatenation from left to

right” of these families. In other words, (Φ1#Φ2)
s(−) = Φs

1(−) for s ∈ [0, a1]

and (Φ1#Φ2)
s(−) = Φ1−s

2 (−) for s ∈ [a1, a1 + a2].

We now begin the proof of Proposition 3.4. Arguing as in the second
proof of Proposition 1.2, let us suppose again for contradiction that P is
an uncountable packing. We may again assume without loss of generality
that P is entirely contained in OLag(U , ι̃) for some Weinstein neighborhood
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(U , ι) of L. For each K ∈ P, there is a 1-form αK ∈ Ω1(L) so that K =
ι̃(graph(αK)). It is enough to prove that the set of 1-forms αK representing
elements of P is countable.

Fix an auxiliary compatible complex structure on M ; henceforth we will
always measure distances with respect to the induced metric. For r ≥ 1,
let V be a Weinstein neighborhood of K of radius 1/r. By choosing r large
enough, we can assume V ⊂ U .

Let ϕ be a compactly-supported Hamiltonian homeomorphism of M such
that ϕ(L) = K, and let {ϕk} be a sequence of compactly-supported Hamil-
tonian diffeomorphisms that C0-converges to ϕ. Without loss of generality,
we may assume that ϕk(L) ⊂ V. Finally, we fix for each k a compactly-
supported Hamiltonian isotopy {ϕtk}t∈[0,1] from the identity to ϕ1k = ϕk.

By Lemma 3.5, we may assume after possibly forgetting finitely many
terms in the sequence {ϕk} that there exists a homotopy

{f tk :M →M}t∈[0,1]
such that f0k = ϕk, f

1
k = ϕ. We can further assume that f tk(L) ⊂ V for all

t ∈ [0, 1] and that dist(f t0k (x), f t1k (x)) < 1/r for all t1, t2 ∈ [0, 1].

Construction 3.6. Fix a loop ξ : S1 → L. We construct a closed cycle
Zk,ξ by concatenating three cylinders,6 as follows:

(1) Let Cξ be the cylinder swept by ξ through the Lagrangian isotopy

t 7→ ι̃(graph(tαK)). Let ℓ+C resp. ℓ−C be the positive resp. negative

boundary components; by construction, we have ℓ−C = ξ.

(2) Let Dk,ξ be the cylinder swept by ℓ+C through the homotopy {f tk}.
By construction, Dk,ξ is contained in V. We let ℓ±D,k be the posi-

tive/negative boundary components; by construction ℓ−D,k = ℓ+C,k.

(3) Let Ek,ξ be the cylinder swept by ℓ+D,k by the Hamiltonian isotopy

{ϕk}. We let ℓ±E,k be the positive/negative boundary components;

by construction ℓ−E,k = ℓ+D,k and ℓ+E,k = ϕ−1
k (ϕk(ξ)) = ξ.

We let Zk,ξ“ := ”Cξ#Dξ,k#Eξ,k be the cyclic concatenation of Cξ, Dξ,k, Eξ,k

along their common boundary components ℓ+C = ℓ−D,k, ℓ
+
D,k = ℓ−E,k, ℓ

+
E,k =

ξ = ℓ−C .

Lemma 3.7. We have ⟨[αK ], ξ⟩ = limk ω(Zk,ξ).

Proof. Note that

⟨[αK ], ξ⟩ = ω(Cξ) = ω(Zk,ξ)− ω(Dk,ξ)− ω(Ek,ξ).(3.4)

But note that Ek,ξ is swept out by a Hamiltonian isotopy and thus ω(Ek,ξ) =
0. Finally, by [14, Thm. 2], we have that

|ω(Dk,ξ)| ≤ rℓmin
g (π∗ℓ

+
D,k) = rℓmin

g (ℓ−D,k),

6The terms loop/cylinder always refer to maps with domain S1 × S1 or [0, 1] × S1,
which need not be embeddings. The positive (resp. negative) boundary of a cylinder
[0, 1]×S1 → M is understood to be the restriction of the map to {1}×S1 (resp. {0}×S1.
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where ℓmin
g (β) is the minimal length of a geodesic loop in (K, g) representing

β and π : ϕk(L) → K is the projection induced by the inclusion of ϕk(L)
into the Weinstein neighbourhood V of K. But, as k tends to infinity,
we may take r above tending to zero, so that ω(Dk,ξ) → 0. Therefore,
⟨[αK ], ξ⟩ = limω(Zk,ξ). □

Lemma 3.8. We have

ω(Zk,ξ)− ω(Zℓ,ξ) ∈ ⟨Γtop, H1(L)⟩.

Proof. Note that

ω(Zk,ξ)− ω(Zℓ,ξ) = ω(Zℓ,ξ#Zk,ξ) = ω(Eℓ,ξ#Dℓ,ξ#Dk,ξ#Ek,ξ),

where # denotes concatenation and · the reversal of orientation. By con-
struction, Eℓ,ξ#Dℓ,ξ#Dk,ξ#Ek,ξ is the torus swept out by ξ under the con-

catenation of smooth maps {ϕℓ#fℓ#fk#ϕk}. □

Lemma 3.9. We have

ω(Zk,ξ)− ω(Zℓ,ξ) ∈ ω(π2(M)).

Proof. The argument is inspired by the proof of [1, Prop. 15]. Observe that
it suffices to show that there is some point x in the image the loop ξ such
that the loop t 7→ (ϕℓ#fℓ#fk#ϕk)

t(x) is contractible.
Now, since {ϕtℓ} is Hamiltonian, there exists some point y ∈M (possibly

far away from L) such that [0, 1] ∋ t 7→ ϕtℓ(y) is a contractible loop: this
follows from the (now-classical) well-definedness of Floer homology for non-
degenerate Hamiltonians on closed symplectic manifolds.7

Without loss of generality, M is connected. Hence we can joint x and y
by a path σ : [0, 1] →M and σ(0) = x, σ(1) = y. But now the family

(ϕℓ#fℓ#fk#ϕk)
t(σ(s))

defines a free homotopy from the loop

t 7→ (ϕℓ#fℓ#fk#ϕk)
t(x)

to the loop
t 7→ (ϕℓ#fℓ#fk#ϕk)

t(y) = (fℓ#fk)
t(y).

But by construction of the f tℓ , the loop (fℓ#fk)(z) must be fully contained
in a geodesic ball centered at z = ϕℓ(y). Therefore, this last loop – and thus
the original one — is contractible.

□

Proof of Proposition 3.4. Choose a class H1(L,Z) and let ξ be a loop on L
representing it. By combining Lemma 3.7, Lemma 3.8 and Lemma 3.9, we
have ⟨[αK ], ξ⟩ = ω(Zk,ξ) for all k large enough.

Hence
⟨[αK ], ξ⟩ ∈ {im(ω(−) : H2(M,L;Z) → R} ⊂ R,

7If M is non-compact, then by construction {ϕt
ℓ} is compactly-supported, so the con-

clusion is obvious.



10 JOÉ BRENDEL∗, JEAN-PHILIPPE CHASSÉ†, AND LAURENT CÔTÉ‡

which is manifestly countable. So the conclusion follows from Lemma 3.1.
□

Remark 3.10. Tracing through the above argument, the only place where
we used the assumption that (3.3) is discrete was to ensure that ω(Zk,ξ)
is eventually independent of k. Instead, it would also be enough to assume
that ϕ can be “well approximated” by Hamiltonian diffeomorphisms, i.e. the
approximating sequence {ϕk} may be chosen so that the relative homotopy
class of the path ϕk#fk in C0(M,M) is constant.

This can always be done if, on a C0-neighbourhood of the identity in
Ham(M), every Hamiltonian diffeomorphism is the time-1 map of a Hamil-
tonian isotopy {ϕtH} such that maxt dC0(id, ϕtH) ≤ CdC0(id, ϕ1H)α, for some
C,α > 0 independent of the isotopy. In general, this is a very hard property
to prove, but it is known to hold when M is a closed surface or the Eu-
clidean ball (see Remark 3.4 and Lemma 3.2 of [16], respectively). However,
in those examples, ω(π2(M)) is discrete so Proposition 3.4 already does the
trick as currently stated.

4. Further questions

(1) A Legendrian variant: let (V, ξ) be a contact manifold. Can one find
uncountably many closed Legendrian submanifolds which are pair-
wise Legendrian isotopic, no two of which are connected by a Reeb
chord?

(2) Let (M2n, ω) be symplectic and let K ⊂ M,dim(K) ≥ n be a
submanifold whose normal bundle has a nowhere vanishing section.
Prove or disprove: K admits an uncountable packing if and only if
it K is not coisotropic.

The case dim(K) = n is handled by Proposition 1.2 and Proposi-
tion 3.2. See Gürel [11] for a partial result when dim(K) > n.

(3) Other variants of Definition 1.3 are certainly possible, in fact ar-
guably more natural. For example, one could define a C0-packing as
any collection of arbitrary subsets {Σα} such that Σα = ϕα(Σ) for
some ϕα ∈ Ham(M,ω).
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ETH Zürich, Zurich, Switzerland
Email address: joe.brendel@math.ethz.ch
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