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Abstract

We extend Groman and Solomon’s reverse isoperimetric inequality to pseudoholo-
morphic curves with punctures at the boundary and whose boundary components
lie in a collection of Lagrangian submanifolds with intersections locally modelled on
R𝑛 ∩ (R𝑘 ×

√
−1R𝑛−𝑘) inside C𝑛 . Our construction closely follows the methods used by

Duval and Abouzaid and corrects an error appearing in the latter approach.
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I. Introduction

Groman and Solomon’s reverse isoperimetric inequality for 𝐽-holomorphic curves is an
important tool in the study of Floer cohomology of Lagrangian submanifolds. Let (𝑋, 𝜔, 𝐽)
be a 2𝑛-dimensional symplectic manifold with a choice of compatible almost complex
structure. Given a Lagrangian submanifold 𝐿 ⊂ 𝑋, [GS14, Theorem 1.1] states that there
exists a constant 𝐴 such that, for all 𝐽-holomorphic curves 𝑢 : (Σ, 𝜕Σ) → (𝑋, 𝐿) with
boundary in 𝐿, we have a reverse isoperimetric inequality:

Length(𝑢(𝜕Σ)) ≤ 𝐴 · Area(𝑢(Σ)), (1)

where length and area are given by the metric𝜔(·, 𝐽·). A different proof of this inequality was
subsequently given by Duval [Duv16], whose arguments were later adapted to the setting
of 𝐽-holomorphic polygons with boundary on a configuration of transversely intersecting
Lagrangian submanifolds by Abouzaid [Abo21].

An explicit computation of the constant appearing in (1) gives a quantitative bound between
the length and area of 𝐽-holomorphic curves in terms of the geometry of the Lagrangian 𝐿.
However, the existence of some constant 𝐴 bounding the length in terms of area is sufficient
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for many applications. For example, consider a Liouville domain 𝑋 and a Lagrangian 𝐿
that has a cylindrical end. If 𝑢 is a 𝐽-holomorphic curve with boundary on 𝐿 of bounded
energy, then (1) implies that the boundary of 𝑢 can only travel a fixed distance along the
cylindrical end. As a consequence, there is a Gromov-compactness result for curves of this
type. Such an idea has been used to ensure the compactness of moduli spaces appearing
in the definition of certain quilted Floer cohomology groups [Tor22]. Another application
comes from family Floer theory [Abo21], where the convergence of the Floer differential for
a nonunitary local system can be proven by showing that the norm of the monodromy of
the local system along the boundary of a curve is bounded from above by the perimeter.
Similarly, the reverse isoperimetric inequality is useful in adiabatic degeneration situations
for multi-graph Lagrangian submanifolds with caustics, where one needs to separate the
domain of holomorphic disks into regions that degenerate to Morse flow-trees and regions
near the caustics.

In some cases, we can derive tight bounds for the constant 𝐴 in (1), which endows Floer
cohomology with additional structure. For instance, in [Hic19], the second author noticed a
relationship between the areas of specific 𝐽-holomorphic strips with boundaries on tropical
Lagrangian submanifolds and the affine lengths in tropicalization. This observation can be
restated in terms of a bound for the constant 𝐴 in terms of tropical geometry.

When the boundary Lagrangian 𝐿 is an embedded Lagrangian submanifold, the constant
𝐴 roughly measures the radius of a standard symplectic neighborhood of 𝐿. In this note,
we replace 𝐿 with a collection {𝐿𝑖}𝑚𝑖=1 of Lagrangian submanifolds with pairwise disjoint
locally standard intersections (Definition II.1). We also provide a similar description of the
constant 𝐴 in this context.

A reverse isoperimetric inequality for 𝐽-holomorphic polygons with boundary on trans-
versely intersecting Lagrangian submanifolds had previously appeared in [Abo21, Ap-
pendix A.1]. However, the construction of a weakly plurisubharmonic function in that
paper contains an error which we describe in Remark II.6. Therefore, our result also cor-
rects the result appearing there.

Results and strategy of proof

The results that we prove and the method of proof follow closely that of Duval [Duv16].
Let (𝑋, 𝜔, 𝐽 , 𝑔) be a 2n-dimensional almost Kähler manifold. Let 𝑆 be a Riemann surface
with marked boundary points whose boundary arcs {𝐶𝑖}𝑚𝑖=1 are labelled by the collection
of embedded Lagrangian submanifolds {𝐿𝑖}𝑚𝑖=1.

Theorem A Let 𝐵 be small neighborhood of ∪𝑖 𝑗𝐿𝑖 ∩ 𝐿 𝑗 , and suppose that the intersections 𝐿𝑖 ∩ 𝐿 𝑗
are pairwise disjoint and locally standard (see Definition II.1). There exist constants 𝐾 > 0 and
𝑠0 > 0 so that, for any 𝐽-holomorphic curve 𝑢 : 𝑆 → 𝑋 sending the boundary arc 𝐶𝑖 of 𝜕𝑆 to 𝐿𝑖 ,
1 ≤ 𝑖 ≤ 𝑚, and for any 𝑠 < 𝑠0, we have that

𝑠 · Length𝑔(Im(𝜕𝑢) ∩ 𝐵𝑐) ≤ 𝐾 · Area𝑔(Im(𝑢) ∩𝑈𝑠).

Here, 𝑈𝑠 =
⋃
𝑖 𝑁𝑠(𝐿𝑖), where 𝑁𝑠(𝐿𝑖) is a tubular neighborhood of 𝐿𝑖 of radius 𝑠, and
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𝐵𝑐 = 𝑋 − 𝐵. By modifying the almost complex structure to make transverse intersections
locally standard (Proposition II.2), we get the following result.

Corollary B For any collection of Lagrangian submanifolds 𝐿1 , . . . , 𝐿𝑚 ⊂ 𝑋 which have pairwise
disjoint transverse intersections, there exists a choice of almost complex structure so that a reverse
isoperimetric inequality as in (1) holds.

Remark I.1 As one will see below, given Lagrangian submanifolds 𝐿1 , . . . , 𝐿𝑚 with pair-
wise disjoint transverse intersections and an 𝜔-compatible almost complex structure 𝐽′, the
almost complex structure 𝐽 satisfying the conclusions of Corollary B can be taken to be
𝐶0-close to 𝐽′ and equal to 𝐽′ outside 𝐵.

The proof of Theorem A follows the lines of [Duv16], who observes that the square of the
distance function 𝜌 : 𝑁𝐷𝑟 (𝐿) → R can be perturbed to give a strictly plurisubharmonic
function ℎ : 𝑁𝐷𝑟 (𝐿) → R which vanishes on 𝐿 with weakly plurisubharmonic square
root. In that vein, we produce a function ℎ : 𝑈𝑠 → R which is a small perturbation of
𝜌𝑖 : 𝑈𝑠 → R away from a neighborhood of the intersection locus ∪𝑖 , 𝑗𝐿𝑖 ∩ 𝐿 𝑗 and has weakly
plurisubharmonic square root in a neighborhood of the intersection locus. The proof of
Theorem A can be broken into three steps:

Section II.a Constructing local models for ℎ near the intersection locus. When 𝐿𝑖 and 𝐿 𝑗
have intersections of the form given by Definition II.1, we show that √𝜌𝑖𝜌 𝑗 is weakly
plurisubharmonic in a neighborhood of the intersection locus.

Section II.b Showing that we can interpolate between the local models near the intersection
and the function 𝜌𝑖 away from the intersection while remaining weakly plurisubhar-
monic.

Section II.c Modifying Duval’s proof to instead use the function ℎ : 𝑈𝑠 → R.

We delay the proofs in Section II.a that the local models of ℎ are plurisubharmonic until
Section III to improve readability.

Acknowledgements
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II. The reverse isoperimetric inequality

II.a. The local model near the intersection

We restrict ourselves to Lagrangian submanifolds whose intersections have particularly nice
local models.
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Definition II.1. We say that the intersection between Lagrangian submanifolds 𝐿, 𝐿′ is
locally standard if at every point 𝑥 ∈ 𝐿∩𝐿′, there exist a chart𝑈 ⊂ (C𝑛 , 𝜔C𝑛 , 𝐽C𝑛 ), 𝜙 : 𝑈 → 𝑋;
and choice of 0 ≤ 𝑘 ≤ 𝑛 so that

𝜙(0) = 𝑥 𝜙−1(𝐿) =
√
−1R𝑛 𝜙−1(𝐿′) = R𝑛−𝑘 ×

√
−1R𝑘

𝜙∗𝐽 = 𝐽C𝑛 𝜙∗𝜔 = 𝜔C𝑛 .

Since intersection points of transversely intersecting Lagrangian submanifolds admit stan-
dard neighborhoods, we directly get the following result.

Proposition II.2 For any pair of transversely intersecting Lagrangian submanifolds 𝐿 and 𝐿′ in
(𝑋, 𝜔), there exists a choice of compatible almost complex structure so that the intersection is locally
standard.

Observe that there exist locally standard clean intersections.

Example II.3: The following construction comes from [CEL10, Remark, page 9]. Suppose
𝐾 = 𝐿0 ∩ 𝐿1 admits a flat metric. Realize the neighbourhood of 𝐾 as 𝑇∗𝐿0 and 𝐿1 as the
conormal 𝑁𝐾. Choose a metric 𝑔 on 𝐿 such that it is flat in the neighbourhood of 𝐾 in 𝐿0,
makes 𝐾 totally geodesic, and restricts to a globally flat metric on 𝐾. Let 𝐽 be the almost
complex structure on 𝑇∗𝐿0 induced by the connection on 𝑇∗𝐿0 given by 𝑔. Taking geodesic
normal coordinate sending 𝐾 to R𝑘 ⊂ R𝑛 , we get open charts satisfying the conditions in
Definition II.1.

By Bieberbach’s theorem, any compact flat Riemannian manifold is a finite quotient of the
torus. While this puts a restriction on the topology of the intersection, intersections of this
form naturally appear in computations motivated by mirror symmetry.

Example II.4: Following the notation from [Hic19]: let 𝑉1 , 𝑉1 ⊂ 𝑄 be two tropical subvari-
eties in an affine manifold 𝑄. Suppose that they intersect cleanly in a collection of points
𝑉1∩𝑉2 = {𝑞1 , . . . , 𝑞𝑘}. Whenever𝑉1 , 𝑉2 admit tropical Lagrangian lifts 𝐿𝑉1 , 𝐿𝑉2 ⊂ 𝑇∗𝑄/𝑇∗

Z𝑄,
then the intersection 𝐿𝑉1 ∩ 𝐿𝑉2 is locally standard and is the union of 𝑘 disjoint tori of di-
mension dim(𝑄) − dim(𝑉1) − dim(𝑉2).

For ease of exposition, we will now assume that we are studying 𝐽-holomorphic curves with
boundary on two Lagrangians 𝐿1, 𝐿2 with locally standard intersections. The local model
for this situation is the intersection in C𝑛 of the Lagrangian planes 𝐿1 = {𝑥𝑖 = 0 | 1 ≤ 𝑖 ≤ 𝑛}
and 𝐿2 = {𝑥𝑖 = 0, 𝑦𝑗 = 0 | 1 ≤ 𝑖 ≤ 𝑘, 𝑘 + 1 ≤ 𝑗 ≤ 𝑛} for some 0 ≤ 𝑘 ≤ 𝑛 — the case 𝑘 = 0
corresponds to a transverse intersection.

In what follows, we fix 𝑛 and 𝑘 as above and consider the functions

𝜌1(𝑥, 𝑦) :=
𝑛∑
𝑖=1

𝑥2
𝑖 and 𝜌2(𝑥, 𝑦) :=

𝑘∑
𝑖=1

𝑥2
𝑖 +

𝑛∑
𝑖=𝑘+1

𝑦2
𝑖 (2)

on C𝑛 = R𝑛𝑥 ⊕
√
−1R𝑛𝑦 . Note that 𝐿1 = {𝜌1 = 0} and 𝐿2 = {𝜌2 = 0}.
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Proposition II.5 The functions √
𝜌1𝜌2 and 𝜌1𝜌2 are weakly plurisubharmonic on the standard

chart𝑈𝑥 at 𝑥 ∈ 𝐿1 ∩ 𝐿2. Furthermore, outside of some variety𝑉 such that𝑉 ∩ (𝐿1 ∪ 𝐿2) = 𝐿1 ∩ 𝐿2,
𝜌1𝜌2 is strictly plurisubharmonic.

We delay the proof until Section III. We note however that the set𝑉 is the precise reason why
we need to suppose the existence of standard charts about intersections. Indeed, without
it, we do not have an obvious choice of plurisubharmonic function, since 𝜌1𝜌2 might no
longer be — even weakly — plurisubharmonic near 𝑉 .

Remark II.6 A different approach to constructing the local model was proposed in [Abo21,
Appendix A.1]; unfortunately, this approach contains a gap. The method uses a cutoff
function, which is employed to excise a small neighborhood of the intersections before
applying the argument from [Duv16]. The proposed local model for plurisubharmonic
function is 𝜌 = 𝜒(𝑥1) · |𝑦 |2, where 𝜒 is a cutoff function that is convex and non-negative.
Unfortunately, this will usually not be weakly plurisubharmonic. If we restrict to 𝑛 = 2, the
determinant of the Levi matrix of 𝜌 is

4𝜒2 − (2𝑦2𝜒
′)2 + 2|𝑦 |2𝜒𝜒′′

Restricting to where 𝑦1 = 0, 𝑦2 = 1 we obtain the necessary inequality 2𝜒2 + 𝜒𝜒′′ ≥ 2(𝜒′)2.
Since 𝜒′ dominates 𝜒 as 𝑥1 → 0, we can simplify to the condition that

𝜒𝜒′′ ≥ 2(𝜒′)2 ,

which is not satisfied, for example, by the standard choice of cutoff function exp(−𝑥−1). In
fact, there does not seem to exist a choice of cutoff function which could satisfy this relation.

II.b. Interpolating from local model near intersections to the distance function

Let 𝑟𝑖 > 0 be the radius of a small tubular neighbourhood 𝑁𝑟𝑖 (𝐿𝑖) of 𝐿𝑖 . Let 𝜌̃𝑖 be the square
of the normal distance from 𝐿𝑖 — this is well defined on 𝑁𝑟𝑖 (𝐿𝑖) for 𝑟𝑖 small enough. By
shrinking 𝑟𝑖 if necessary, we may assume that 𝜌̃𝑖 is (strictly) plurisubharmonic, and that on
𝑈𝑥 ∩ 𝑁𝑟1(𝐿1), 𝜌̃1 = |𝑦 |2 and similarly for 𝜌̃2. Here, for each 𝑥 ∈ 𝐿1 ∩ 𝐿2, 𝑈𝑥 denotes the
standard neighborhood provided by Definition II.1.

By taking the minimum, we set 𝑟1 = 𝑟2 = 𝑟. We will also assume that 𝑟 is less than both
half the minimal distance between connected components of the intersection locus, and the
Lipschitz constant (which is some 𝜖 > 0 such that for 𝑥 ∈ 𝐿, 𝐵𝜖(𝑥) ∩ 𝐿 is contractible, and
𝑑𝐿(𝑝, 𝑞) ≤ 𝐶𝑑𝑋(𝑝, 𝑞) for 𝑝, 𝑞 ∈ 𝐵𝜖(𝑥) ∩ 𝐿 for some uniformly finite constant 𝐶 > 0).

The restriction of the functions 𝜌̃𝑖 to 𝑈𝑥 are the functions 𝜌𝑖 from (2). Over 𝑈𝑥 , 𝑁𝑟(𝐿1) is
given by the set {𝜌1 ≤ 𝑟2} and 𝑁𝑟(𝐿2) is given by the set {𝜌2 ≤ 𝑟2}. Let 𝜒 be a smooth
nondecreasing function such that 𝜒(𝑡) = 𝑡 for 0 ≤ 𝑡 ≤ 1

2 and 𝜒(𝑡) = 1 for 𝑡 ≥ 3/4.

In a local chart 𝑈𝑥 ⊂ C𝑛 about 𝑥 ∈ 𝐿1 ∩ 𝐿2 as in Definition II.1, define 𝑉𝑟(𝑥) := ({√𝜌2 <
𝑟} ∪ {√𝜌1 < 𝑟}) ∩𝑈𝑥 .
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𝐿1

𝐿2

√
𝜌1 = 1

𝜒 ◦ 𝜌2
1

𝑉𝐷

√
𝜌2 = 1/2

√
𝜌2

Figure 1. Local model 𝑈𝑥 for the intersection between two Lagrangian submanifolds. The
red region represents 𝑉1. The blue regions is 𝑉𝐷1 , which is divided into three cases by the
dashed lines labelling when √

𝜌𝑖 = 1/2.

Proposition II.7 For 𝑟 > 0 small enough, there exists some 0 < 𝐷 < 1 and a nonnegative function
𝛽𝑟 : 𝑈𝑥 → R whose restriction to 𝑉𝐷𝑟(𝑥) is weakly plurisubharmonic for any 𝑥 and satisfies

𝛽𝑟 =

{
𝜌1 on {√𝜌2 ≥ 𝑟} ∩𝑉𝐷𝑟(𝑥)
𝜌2 on {√𝜌1 ≥ 𝑟} ∩𝑉𝐷𝑟(𝑥)

. (3)

Furthermore, 𝛽𝑟 vanishes at least up to first order on
√
−1R𝑛 and R𝑛−𝑘 ×

√
−1R𝑘 , and the pseudo-

metric obtained from 𝛽𝑟 is dominated above by 𝑔 everywhere and equivalent to 𝑔 on {√𝜌1 >
𝑟} ∩𝑉𝐷𝑟(𝑥) and {√𝜌2 > 𝑟} ∩𝑉𝐷𝑟(𝑥).

Proof: Observe that the scaling map (𝑥, 𝑦) →
(
𝑥
𝑟 ,

𝑦

𝑟

)
sends 𝑉𝑟 to 𝑉1 and that 𝑉𝑟 contains

𝑉𝑟′ for 0 < 𝑟′ < 𝑟 < 1. We set 𝛽1(𝑥, 𝑦) = 𝜒(𝜌2)𝜒(𝜌1) and 𝛽𝑟 = 𝑟2𝛽1( 𝑥𝑟 ,
𝑦

𝑟 ). We first show
that 𝛽1 satisfies Proposition II.7 on a region 𝑉𝐷 with 𝐷 < 1/2 by decomposing into three
subregions:

• Whenever √
𝜌2 < 1/2 and √

𝜌1 < 1/2, 𝛽1 = 𝜌2𝜌1, which is plurisubharmonic by
Proposition II.5.

• Suppose √
𝜌1 ≥ 1

2 and √
𝜌2 < 1

2 . Then 𝛽1 has the form 𝜌2𝜒(𝜌1). So we get

𝑑𝑑𝑐𝛽1(·,
√
−1·) =𝜒(𝜌1)𝑑𝑑𝑐(𝜌2) + 2√𝜌2

(
𝑑(𝜒(𝜌1)) ∧ 𝑑𝑐

√
𝜌2 + 𝑑

√
𝜌2 ∧ 𝑑𝑐(𝜒(𝜌1))

)
+ 𝜌2 · 𝑑𝑑𝑐(𝜒)

=2𝜒(𝜌1)𝐼𝑑 + 𝑂(√𝜌2). (4)

To show that the function 𝛽1 is plurisubharmonic after shrinking √
𝜌2, we need to

show that the form (4) is non-negative.
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But since 𝜒(𝜌1) ≥ 1
4 for √

𝜌1 ≥ 1
2 , we can choose 𝐷 sufficiently small so that (4) is

positive definitive when √
𝜌2 < 𝐷.

• The argument is exactly the same for √𝜌2 ≥ 1
2 and √

𝜌1 < 1
2 .

So we have shown that 𝛽1 is plurisubharmonic on 𝑉𝐷 for some 0 < 𝐷 < 1/2. Furthermore,
note that for √𝜌1 ≥ 1, 𝛽1 = 𝜌2 as desired. Likewise, 𝛽1 = 𝜌1 when √

𝜌2 ≥ 1.

Now observe that 𝛽𝑟 is plurisubharmonic in the intermediate region on 𝑉𝐷𝑟 since

𝛽𝑟 = 𝑟2𝛽1(𝑧/𝑟)

and so

𝜕2𝛽𝑟
𝜕𝑧𝑖𝜕𝑧̄ 𝑗

(𝑧) = 𝜕2𝛽1

𝜕𝑧𝑖𝜕𝑧̄ 𝑗
(𝑧/𝑟) (5)

because the 𝑟−1-scaling factor cancels out the contribution of 𝑟2. Furthermore, for √𝜌1 ≥ 𝑟

and √
𝜌2 < 𝐷𝑟

2 < 𝑟
4 , we have that 𝛽𝑟 = 𝜌2. We likewise have 𝛽𝑟 = 𝜌1 for √

𝜌2 ≥ 𝑟 and
√
𝜌1 < 𝐷𝑟

2 . The vanishing of 𝛽𝑟 along
√
−1R𝑛 and R𝑛−𝑘 ×

√
−1R𝑘 is unchanged by scaling.

Finally, the comparisons with 𝑔 follow from (4) and (5). For 𝛽1, the uniform metric compar-
ison is obvious, but (5) tells us that the metric coming from 𝛽𝑟 has the same components as
𝛽1. Therefore, the metric induced by 𝛽𝑟 must be also equivalent to 𝑔 on {√𝜌1 > 𝑟} ∩𝑉𝐷𝑟(𝑥)
and {√𝜌2 > 𝑟} ∩ 𝑉𝐷𝑟(𝑥). It follows that the metric equivalence constant can be chosen
independently of 𝑟. This finishes the proof. □

Choose a finite cover of 𝐿1 ∩ 𝐿2 by sets 𝑈𝑥′ given by Definition II.1. Pick 𝐷 sufficiently
small so that the construction of Proposition II.7 on 𝑈𝑥′ yields functions 𝛽𝑟,𝑥′ which agree
on the overlaps of𝑈𝑥′ ∩𝑈𝑥′′ . By shrinking𝐷 > 0 again, this gives us a nonnegative function
𝛽̃ : 𝑈 → R defined by

𝛽̃(𝑥) =
{
𝛽𝑟,𝑥′(𝑥) if 𝑥 ∈ 𝑈𝑥′

𝜌𝑖(𝑥) if 𝑥 ∈ 𝑁𝐷𝑟(𝐿𝑖) \ 𝐵𝑟
,

where 𝑈 :=
⋃
𝑖 𝑁𝐷𝑟(𝐿𝑖) and 𝐵𝑟 =

⋃
𝑥∈𝐿1∩𝐿2{𝑥′ ∈ 𝑈𝑥 | max{√𝜌1 ,

√
𝜌2} < 𝑟

2 } is a neighbor-
hood of the intersection locus. The function 𝛽̃ satisfies the following properties.

•
√
𝛽̃ =

√
𝜌1

√
𝜌2

𝑟 on 𝐵𝐷𝑟 . In particular,
√
𝛽̃ is weakly plurisubharmonic near the clean

intersection.

• On 𝑁𝐷𝑟(𝐿𝑖) \ 𝐵𝑟 , we have 𝛽̃ = 𝜌𝑖 .

We now modify 𝛽̃ so that it has weakly plurisubharmonic square root everywhere.

Proposition II.8 There exist some 𝐷 > 0, constants 𝐶1 , 𝐶2 , 𝐴1 > 0, and a nonnegative function
ℎ : 𝑈 → R such that the following holds:

(1) ℎ vanishes on 𝐿1 ∪ 𝐿2;
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(2)
√
ℎ is weakly plurisubharmonic on𝑈 , and ℎ is strictly plurisubharmonic on𝑈 \ 𝐵𝑟 ;

(3) the pseudometric 𝑘 = 𝑑𝑑𝑐ℎ(·,
√
−1·) is dominated by 𝐶1𝑔;

(4) on𝑈 \ 𝐵𝑟 , the pseudometric 𝑘 is metric-equivalent to 𝑔 with 𝐶−1
2 𝑔 ≤ 𝑘 ≤ 𝐶2𝑔;

(5) 𝐴1
√
ℎ ≥ |∇ℎ | outside 𝐵𝑟 .

The strategy of Duval tells us how to perform this modification over the region𝑈 \ 𝐵𝑟 , and
we already have weak plurisubharmonicity of 𝛽̃ over 𝐵𝐷𝑟 . To handle the remaining region,
i.e. 𝐵𝑟 \ 𝐵𝐷𝑟 , we need the following estimate in the local model.

Lemma II.9 There exist constants 𝐶0 , 𝐶
′
1 , 𝐶

′
2 > 0 and𝐷 > 0, independent of 𝑟, such that, for every

𝑥 ∈ 𝐿1 ∩ 𝐿2,
√
𝛽𝑟 + 𝐶0𝑟

−1𝛽𝑟 is weakly plurisubharmonic on each 𝑉𝐷𝑟(𝑥) for 𝑟 > 0 small enough,
the pseudometric induced by (

√
𝛽𝑟 + 𝐶0𝑟

−1𝛽𝑟)2 is 𝐶′
1-dominated by 𝑔 on 𝑉𝑟(𝑥), and 𝐶′

2-equivalent
to 𝑔 on 𝑉𝑟(𝑥) \ 𝐵𝑟 .

Proof: For √
𝜌2 < 𝑟

2 and √
𝜌1 < 𝑟

2 , the function
√
𝛽𝑟 is just equal to 𝑟−1√𝜌2

√
𝜌1 which is

plurisubharmonic by Proposition II.5. For √
𝜌1 < 𝐷𝑟

2 and √
𝜌2 > 𝑟,

√
𝛽𝑟 =

√
𝜌2 which is

plurisubharmonic. For 𝑟
2 <

√
𝜌2 < 𝑟 and √

𝜌1 < 𝐷𝑟
2 , the function

√
𝛽𝑟 has the form√

𝛽𝑟 =
√
𝜌1

√
𝜒

(𝜌2

𝑟2

)
,

so that

𝑑𝑑𝑐
√
𝛽𝑟 =

√
𝜒 · 𝑑𝑑𝑐√𝜌1 + 𝑑

√
𝜌1 ∧ 𝑑𝑐

√
𝜒 + 𝑑√𝜒 ∧ 𝑑𝑐√𝜌1 +

√
𝜌1𝑑𝑑

𝑐√𝜒.

We split the rest of the proof into two parts. We first show that there exists some 𝐶′
0

possibly dependent on 𝑟−1 but independent of √𝜌1 such that 𝑑𝑑𝑐
√
𝛽𝑟 + 𝐶′

0𝑑𝑑
𝑐𝛽𝑟 is positive-

semi-definitive. Then we show that such a 𝐶′
0 can be chosen to be of form 𝐶0𝑟

−1 where
𝐶0 > 0 is some constant.

We first note that the only term that might become unbounded as √
𝜌1 → 0 is √

𝜒𝑑𝑑𝑐
√
𝜌1

since its expression can contain negative powers of 𝜌1. However, it is known that the
form 𝑑𝑑𝑐

√
𝜌1(·,

√
−1·) ≤ 2√𝜒𝑑𝑑𝑐

√
𝜌1(·,

√
−1·) is positive semidefinite. So the only term that

contains negative powers of √𝜌1 must already be positive semi-definite. Furthermore, the
last three terms may be negative, but they do not contain negative powers of√𝜌1. Therefore,
their negative contribution may be canceled out by adding some multiple of 𝑑𝑑𝑐𝛽𝑟 .

In other words, for 𝐶′
0 large enough, there exists a choice of 𝐷 > 0 so that both terms on the

right hand side of

𝑑𝑑𝑐
√
𝛽𝑟 + 𝐶′

0𝑑𝑑
𝑐𝛽𝑟 =

√
𝜒 · 𝑑𝑑𝑐√𝜌1

+
(
𝐶′

0𝑑𝑑
𝑐𝛽𝑟 + 𝑑

√
𝜌1 ∧ 𝑑𝑐

√
𝜒 + 𝑑√𝜒 ∧ 𝑑𝑐√𝜌1 +

√
𝜌1𝑑𝑑

𝑐√𝜒
)
.
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are positive semidefinite on 𝑉𝐷𝑟 . This proves the first part of the claim.

We are now left with showing the 𝑟-dependence of 𝐶′
0. Note that each differentiation of √𝜒

gives a 𝑟−1 contribution since √
𝜌2 is of the order of 𝑟 in this region. Since √

𝜌1 < 𝐷𝑟
2 and

|𝑑√𝜌1 | is uniformly bounded in 𝑟, this means that the terms

𝑑
√
𝜌1 ∧ 𝑑𝑐

√
𝜒 + 𝑑√𝜒 ∧ 𝑑𝑐√𝜌1 +

√
𝜌1𝑑𝑑

𝑐√𝜒

behave like 𝑟−1 with regard to the radius 𝑟. Therefore, we may take 𝐶′
0 of the form 𝐶0

𝑟 for
𝐶0 ≥ 0 independent of 𝑟. Hence, it follows that

√
𝛽𝑟 + 𝐶0𝑟

−1𝛽𝑟 is weakly plurisubharmonic
for 𝐶0 independent of 𝑟.

We now show that the resulting pseudometric is dominated by 𝐶′
1𝑔 on 𝑈 as we vary 𝑟.

Observe first that when we square the function
√
𝛽𝑟 + 𝐶0𝑟

−1𝛽𝑟 , we obtain

𝜌1𝜒
(𝜌2

𝑟2

)
+ 𝐶2

0𝑟
−2𝜌2

1𝜒
(𝜌2

𝑟2

)2
+ 𝐶0𝑟

−1𝜒3/2
(𝜌2

𝑟2

) √
𝜌1

3
. (6)

To show that 𝐶′
1 can be chosen independent of negative powers of 𝑟, we show that the

second derivatives of terms in (6) are of size 𝑂(𝑟0). Observe as above that each differen-
tiation introduces a 𝑟−1-contribution. For instance, the term 𝜌1𝜒

(
𝜌2
𝑟2

)
is of size 𝑂(𝑟2) but

differentiation of the 𝜌1 term reduces the size to 𝑂(𝑟), and the differentiation of the term
𝜒

(
𝜌2
𝑟2

)
gives 𝜒′

(
𝜌2
𝑟2

)
·
√
𝜌2
𝑟2 which is of size 𝑂(𝑟−1). Continuing in this manner, it follows that

the second derivatives of each of the terms in (6) are of size 𝑂(𝑟0). This shows the claim
on metric domination in the intermediate region. Near the intersection itself, the same
argument can be applied to show that the pseudometric is dominated by some 𝐶′

1𝑔.

For equivalence with 𝐶′
2𝑔 on𝑈 \ 𝐵𝑟 , observe that for √𝜌2 > 𝑟 (6) becomes

𝜌1 + 𝐶2
0𝑟

−2𝜌2
1 + 𝐶0𝑟

−1√𝜌1
3
.

The argument above tells us that each differentiation introduces a 𝑟−1 contribution but since
the expression is of size 𝑂(𝑟2), it follows that the size of the second derivatives is again,
𝑂(𝑟0). The crucial ingredient now is that 𝜒 > 1/2 in the intermediate region 1

2 <
√
𝜌2 < 1.

This implies that the Hessian of (
√
𝛽𝑟 +𝐶0𝑟

−1𝛽𝑟)2 is of the form 𝐼𝑑+𝑂(𝑟0), and we can make
the 𝑂(𝑟0) contribution small enough by taking √

𝜌1 < 𝛿𝑟 for some small constant 𝛿 > 0.
We see that we have neither lost the metric domination nor the metric equivalence for say,√
𝜌2 > 𝑟. We then just need to take 𝐷 ≤ 𝛿. □

We now finally have every tool necessary to prove Proposition II.8.

Proof of Proposition II.8: Following Duval’s approach [Duv16], we prove that there is

some constant 𝐶0, here independent of 𝑟, such that ℎ =

(√
𝛽̃ + 𝐶0𝑟

−1𝛽̃

)2
respects conditions

(1)–(5) and that the constants in II.8 are also independent of 𝑟. The only subtlety comes
from checking the 𝑟-independence; the rest of the proof is the same.
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Lemma II.9 implies that conditions (1)–(5) already hold in the neighbourhood𝑉𝑟 = ∪𝑥∈𝐿1∩𝐿2𝑉𝑟(𝑥)
of the intersection locus — Item (5) being vacuously true there. Therefore, it suffices to show
these conditions hold on 𝑁𝑟(𝐿𝑖) \ 𝐵𝑟 , where 𝛽̃ = 𝜌𝑖 . These proofs are essentially those of
Duval [Duv16], but we need to be especially careful, so as to make sure that the metric
equivalence constants do not get a 𝑟−1-contribution.

We follow the proof of Duval closely. We first start by taking good coordinates in a Weinstein
neighborhood of a Lagrangian 𝐿 = 𝐿𝑖 constructed as follows. Given 𝑥 ∈ 𝐿 and a small
neighbourhood 𝑉 of 𝑥 in 𝑀, take 𝑊 = 𝑉 ∩ 𝐿. By making 𝑉 smaller if necessary, we can
take 𝑊 to be a geodesic normal coordinate chart 𝜙 : 𝑊 → R𝑛 which extends to a relative
chart 𝜓 : (𝑉,𝑊) → (C𝑛 ,R𝑛) via

𝜓−1(𝑥 + 𝑖𝑦) = exp𝜙−1(𝑥)

(
𝐽(𝜙−1(𝑥))𝑑𝜙−1

𝑥 (𝑦)
)
.

We have made use of the fact that 𝐿 is Lagrangian, so that 𝐽 sends its tangent bundle to its
normal one. Along 𝑊 , this identifies 𝐽 with 𝐽0, and the 𝐶𝑘-norms of 𝜓 depends only on
𝐽 and 𝑊 . The distance function to 𝐿 is of the form |𝑦 | + 𝑂(|𝑦 |2) and the almost complex
structure, of the form 𝐽 = 𝐽0 + 𝑂(|𝑦 |). The scheme then follows the logic of the proof of
Proposition II.7, but we give here some details.

We first check Item (2). The Taylor expansion of
√
𝛽̃ + 𝐶0𝑟

−1𝛽̃ is
√
ℎ = |𝑦 | + 𝐶𝑟−1 |𝑦 |2 + 𝐶(𝑥)𝑂(|𝑦 |2) + 𝑟−1𝑂(|𝑦 |3). (7)

Now, we already know that |𝑦 | is weakly plurisubharmonic, and since 𝐶0𝑟
−1 is already

quite large and 𝑑𝑑𝑐(𝐶𝑟−1 |𝑦 |2)(·,
√
−1·) = 2𝐶𝑟−1𝐼𝑑, the possible negativity coming from the

remaining two terms of (7) can be controlled. This shows the first part of Item (2).

Now we show the second part of Item (2) and Item (3). The Taylor expansion of
(√

𝛽̃ + 𝐶0𝛽̃

)2

gives
ℎ = |𝑦 |2 + 𝐶2

0𝑟
−2 |𝑦 |4 + 𝑟−1 |𝑦 |3 + 𝑟−1𝑂(|𝑦 |3) + 𝑟−2𝑂(|𝑦 |6).

As before, differentiating once can create at most an 𝑟−1 contribution; since all the terms
are of 𝑂(|𝑦 |2), by differentiating twice, we reduce to terms of size 𝑂(𝑟0). So shrinking to
|𝑦 | < 𝛿𝑟 for some small 𝛿 > 0, we see that

𝑑𝑑𝑐ℎ(·,
√
−1·) = 2 · 𝐼𝑑 + 𝑂(𝛿2 , 𝑟0),

again since 𝑑𝑑𝑐 |𝑦 |2(·,
√
−1·) = 2 · 𝐼𝑑. This shows both (strict) plurisubharmonicity and metric

equivalence to 𝑔.

We now show the final condition: Item (5). Using that 𝑑 |𝑦 |4 = 4|𝑦 |2𝑦𝑖𝑑𝑦𝑖 , and that 𝑑 |𝑦 |3 =

3𝑦𝑖 |𝑦 |𝑑𝑦𝑖 , we obtain
|𝑑(𝑟−2 |𝑦 |4 + 𝑟−1 |𝑦 |3)| ≤ 𝐶 |𝑦 |.

But 𝑑(|𝑦 |2) = 2𝑦𝑖𝑑𝑦𝑖 and so it follows that

(∇ℎ) ≤ 𝐶′ |𝑦 |.
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𝐿1

𝐿2

𝐿3

𝑠

𝑈𝑠

𝐵

Figure 2. The neighborhood𝑈𝑠 is highlighted in blue, while the region 𝐵 (which is excluded
in computing the length) has red hash lines.

for some constant 𝐶′ > 0. But for this local form, we can find some constant 𝐶′′ > 0 such
that |𝑦 | ≤ 𝐶′′√ℎ. So we have proved Item (5). This finishes the proof of Proposition II.8.

□

Remark II.10 In view of the above, we see that the 𝐿𝑖 ’s in Theorem A can be allowed to be
immersed as long as the self-intersection locus is disjoint from ∪𝑖 𝑗𝐿𝑖 ∩ 𝐿 𝑗 and also locally
standard. We then only need to modify 𝛽̃ on 𝑁𝑠(𝐿𝑖) away from ∪𝑖 𝑗𝐿𝑖 ∩ 𝐿 𝑗 to be 𝜌̃𝑖 away from
the self-intersection locus and of the form √

𝜌1
√
𝜌2 inside its standard charts. The set 𝐵 will

then need to be a neighborhood of the entire intersection locus, not just ∪𝑖 𝑗𝐿𝑖 ∩ 𝐿 𝑗 .
Likewise, we can allow 𝐿𝑖 = 𝐿𝑖+1 = 𝐿with the corresponding marked point of 𝜕𝑆 being sent
to a self-intersection point. For example, this implies that Theorem A gives an estimate for
teardrops.

II.c. Proof of Theorem A

Let𝑈𝑠 = ∪𝑖𝑁𝑠(𝐿𝑖) and𝑈 ℎ
𝑠 := {ℎ ≤ 𝑠2} for 𝑠 < 𝐷𝑟.

Corollary II.11 There exists some 𝐾 > 0 such that

𝐾

𝑠
Area𝑔(𝐶 ∩𝑈𝑠) ≥ Length𝑔(𝜕𝐶 ∩ 𝐵𝑐) (8)

Proof: First, observe that there exists some 𝑙1 > 0 such that 𝑈𝑠 contains 𝑈 ℎ
𝑙1𝑠

. By metric
domination, we then see that

𝐶1 Area𝑔(𝐶 ∩𝑈𝑠) ≥ Areaℎ(𝐶 ∩𝑈 ℎ
𝑙1𝑠
).
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But just as in [Duv16], we can show that the function 1
𝑡 Areaℎ(𝐶∩𝑈 ℎ

𝑡 ) is monotone increasing.
We can also show that 1

𝑠 Areaℎ(𝐶∩𝑈 ℎ
𝑙1𝑠
) is bounded below by 𝐶3 Length𝑔(𝜕𝐶∩𝐵𝑐) for some

constant 𝐶3 > 0. Indeed, for all 𝑡 ≤ 𝑙1𝑠,

1
𝑡

∫
𝐶∩𝑈 ℎ

𝑡

𝑑𝑑𝑐ℎ =
1
𝑡2

∫
𝐶∩𝑈 ℎ

𝑡

𝑡𝑑𝑑𝑐ℎ

≥ 1
𝑡2

∫
𝐶∩𝑈 ℎ

𝑡 ∩𝐵𝑐
𝑡𝑑𝑑𝑐ℎ ≥ 𝐴−1

𝑡2

∫
𝐶∩𝑈 ℎ

𝑡 ∩𝐵𝑐
|∇ℎ |𝑑𝑑𝑐ℎ

≥ 𝐶3

𝑡2

∫ 𝑡2

0
Lengthℎ(𝐶 ∩ {ℎ = 𝜏} ∩ 𝐵𝑐)𝑑𝜏. (9)

The constant 𝐴 is chosen so that |∇ℎ | ≤ 𝐴 · 𝑡 in𝑈 ℎ
𝑡 . To pass from the first line to the second

line, use the plurisubharmonicity of ℎ, and for the second inequality on the second line, use
the final condition in Proposition II.8. Finally, to pass from the second line to the third line,
use the coarea formula. Note that the limit of (9) as 𝑡 → 0 is 𝐶3 Lengthℎ(𝜕𝐶 ∩ 𝐾𝑐). Using
the 𝐶2-metric equivalence of 𝑑𝑑𝑐ℎ(·,√·) and 𝑔 to pass to the 𝑔-length, we get (8). □

III. Proof of Proposition II.5

We give here the full computations necessary to the proof of Proposition II.5 in the general
clean case. To retrieve the transverse case, i.e. the case 𝑘 = 0, one can ignore the computations
for 𝑖 ≤ 𝑘 and set 𝛿𝑖≤𝑘 = 0 and 𝛿𝑖>𝑘 = 1 in the notation below.

To reduce the number of subscripts in this section, we adopt the notation that 𝛼 := 𝜌1 , 𝛽 :=
𝜌2. We will need the following two technical lemmata, which we will prove later on. To
enunciate them, we introduce the following notation:

𝛿𝑖≤𝑘 =

{
1 if 𝑖 ≤ 𝑘

0 if 𝑖 > 𝑘
and 𝛿𝑖>𝑘 =

{
1 if 𝑖 > 𝑘

0 if 𝑖 ≤ 𝑘
.

Lemma III.1 Set 𝑣0 :=
∑
𝑖(𝛼𝑦𝑖𝛿𝑖>𝑘 𝜕

𝜕𝑥𝑖
+ (𝛽 − 𝛼𝛿𝑖≤𝑘)𝑥𝑖 𝜕

𝜕𝑦𝑖
) and 𝑤0 := −𝐽C𝑛𝑣0, where 𝐽C𝑛 is the

(2𝑛 × 2𝑛)-matrix representing multiplication by
√
−1 in C𝑛 = R2𝑛 . The matrix 𝑀0 representing

the form 𝑑𝑑𝑐
√
𝛼𝛽(·,

√
−1·) in the standard basis { 𝜕

𝜕𝑥1
, . . . , 𝜕

𝜕𝑥𝑛
, 𝜕
𝜕𝑦1
, . . . , 𝜕

𝜕𝑦𝑛
} is equal to

(a)
2
∑
𝑖≤𝑘 𝑥

2
𝑖√

𝛼𝛽
𝐼𝑑 on spanR{𝑣0 , 𝑤0};

(b)
𝛼 + 𝛽√
𝛼𝛽

𝐼𝑑 on the orthogonal complement spanR{𝑣0 , 𝑤0}⊥

outside of 𝐿1 ∪ 𝐿2. Here, we take the convention that
∑
𝑖≤𝑘 𝑥

2
𝑖
= 0 if 𝑘 = 0. In particular,

√
𝛼𝛽𝑀0

is a multiple of the identity matrix precisely on 𝐿1 ∪ 𝐿2 ∪ 𝑆0, where 𝑆0 := {𝑥𝑖 = 𝑦𝑖 = 0|𝑖 > 𝑘}.
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Lemma III.2 Set 𝑣1 :=
∑
𝑖(𝛼𝑦𝑖𝛿𝑖>𝑘 𝜕

𝜕𝑥𝑖
− (𝛽 + 𝛼𝛿𝑖≤𝑘)𝑥𝑖 𝜕

𝜕𝑦𝑖
) and 𝑤1 := 𝐽C𝑛𝑣1. The matrix 𝑀1

representing the form (𝑑
√
𝛼𝛽∧ 𝑑𝑐

√
𝛼𝛽)(·,

√
−1·) in the standard basis { 𝜕

𝜕𝑥1
, . . . , 𝜕

𝜕𝑥𝑛
, 𝜕
𝜕𝑦1
, . . . , 𝜕

𝜕𝑦𝑛
}

is equal to

(a)

(
2
∑
𝑖≤𝑘

𝑥2
𝑖 + 𝛼 + 𝛽

)
𝐼𝑑 on spanR{𝑣1 , 𝑤1};

(b) 0 on the orthogonal complement spanR{𝑣1 , 𝑤1}⊥.

In particular, 𝑀1 is 0 precisely on 𝐿1 ∪ 𝐿2.

Proof of Proposition II.5: Since weak plurisubharmonicity of a function 𝑓 is equivalent
to the positive semidefinitiveness of the form 𝑑𝑑𝑐 𝑓 (·,

√
−1·), weak plurisubharmonicity of√

𝛼𝛽 follows directly from Lemma III.1.

For the weak plurisubharmonicity of 𝛼𝛽, note that

𝑑𝑑𝑐𝛼𝛽 = 2
√
𝛼𝛽

(
𝑑𝑑𝑐

√
𝛼𝛽

)
+ 2

(
𝑑
√
𝛼𝛽 ∧ 𝑑𝑐

√
𝛼𝛽

)
(10)

outside of 𝐿1 ∪ 𝐿2. One can also directly check that the formula holds also on 𝐿1 ∪ 𝐿2 by
taking limits. Since the sum of positive semidefinite matrices is still positive semidefinite,
weak plurisubharmonicity of 𝛼𝛽 then follows from Lemmata III.1 and III.2.

It also follows from (10) that there exists a vector 𝑣 ∈ 𝑇(𝑥,𝑦)R2𝑛 = R2𝑛 such that 𝑑𝑑𝑐𝛼𝛽(𝑣,
√
−1𝑣) =

0 if and only if the kernels of
√
𝛼𝛽𝑀0 and𝑀1 intersect nontrivially. In view of Lemmata III.1

and III.2, this means one of two things:

(a) either (𝑥, 𝑦) ∉ 𝐿1 ∪ 𝐿2 ∪ 𝑆0, 𝑥𝑖 = 0 for all 𝑖 ≤ 𝑘, and spanR{𝑣0 , 𝑤0} ∩ spanR{𝑣1 , 𝑤1}⊥ ≠

{0};

(b) (𝑥, 𝑦) ∈ 𝐿1 ∪ 𝐿2 ∪ 𝑆0 and 𝛼 + 𝛽 = 0.

In option (b), note that (𝑥, 𝑦) ∈ 𝐿1 ∪ 𝐿2 and 𝛼 + 𝛽 = 0 is equivalent to (𝑥, 𝑦) ∈ 𝐿1 ∩ 𝐿2. But
(𝑥, 𝑦) ∈ 𝑆0 and 𝛼+𝛽 = 0 is also equivalent to (𝑥, 𝑦) ∈ {𝑥𝑖 = 𝑦 𝑗 = 0|1 ≤ 𝑖 ≤ 𝑛, 𝑗 > 𝑘} = 𝐿1∩𝐿2.
Therefore, option (b) reduces to (𝑥, 𝑦) ∈ 𝐿1 ∩ 𝐿2.

Suppose now that we are in option (a). Since spanR{𝑣𝑖 , 𝑤𝑖} is a 1-dimensional complex
subspace, spanR{𝑣0 , 𝑤0} ∩ spanR{𝑣1 , 𝑤1}⊥ ≠ {0} is equivalent to 𝑣0 ⊥ 𝑣1, 𝑣0 ⊥ 𝑤1, and
𝑣0 , 𝑣1 ≠ 0. However, the fact that (𝑥, 𝑦) ∉ 𝐿1 ∪ 𝐿2 ∪ 𝑆0 ensures precisely that the last
condition is automatically satisfied. Therefore, option (a) reduces to

𝑥𝑖 = 0 ∀𝑖 ≤ 𝑘∑
𝑖>𝑘 𝑥𝑖𝑦𝑖 = 0

𝛼 = 𝛽

since 𝛼, 𝛽 ≠ 0 here.
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Noting that points respecting option (b) also respect these equations, we thus get that the
set where 𝑑𝑑𝑐𝛼𝛽 is degenerate, i.e. where 𝛼𝛽 is not strictly plurisubharmonic, is the variety

𝑉 =

{
𝑥𝑖 = 0,

∑
𝑗>𝑘

𝑥 𝑗𝑦 𝑗 = 0, 𝛼 = 𝛽
��� 𝑖 ≤ 𝑘

}
.

□

Remark III.3 When 𝑛 − 𝑘 ≤ 1, we simply have that 𝑉 = 𝐿1 ∩ 𝐿2. However, when 𝑛 − 𝑘 ≥ 2,
𝑉 will be a bigger (𝑘 + 2)-codimensional variety of R2𝑛 . For example, when 𝑛 − 𝑘 = 2, it is
the union of the two 𝑛-planes {𝑥𝑖 = 0, 𝑥𝑛 = ±𝑦𝑛−1 , 𝑦𝑛 = ∓𝑥𝑛−1 |𝑖 ≤ 𝑘}.

Proof of Lemma III.1: The bilinear form 𝑑𝑑𝑐
√
𝛼𝛽(·,

√
−1·) can be computed in coordinates

to be

(√
𝛼
𝛽
+

√
𝛽

𝛼

)
𝑛∑
𝑖=1

(𝑑𝑥𝑖 ⊗ 𝑑𝑥𝑖 + 𝑑𝑦𝑖 ⊗ 𝑑𝑦𝑖) (11)

+
𝑛∑

𝑖 , 𝑗=1

[(
𝛿𝑖≤𝑘 + 𝛿 𝑗≤𝑘√

𝛼𝛽
−

√
𝛼

𝛽3 𝛿𝑖≤𝑘𝛿 𝑗≤𝑘

√
𝛽

𝛼3

)
𝑥𝑖𝑥 𝑗 −

√
𝛼

𝛽3 𝑦𝑖𝑦 𝑗𝛿𝑖>𝑘𝛿 𝑗>𝑘

]
× (𝑑𝑥𝑖 ⊗ 𝑑𝑥 𝑗 + 𝑑𝑦𝑖 ⊗ 𝑑𝑦 𝑗)

+
𝑛∑

𝑖 , 𝑗=1

[(
1√
𝛼𝛽

−
√

𝛼

𝛽3 𝛿𝑖≤𝑘

)
𝑥𝑖𝑦 𝑗𝛿 𝑗>𝑘 −

(
1√
𝛼𝛽

−
√

𝛼

𝛽3 𝛿 𝑗≤𝑘

)
𝑥 𝑗𝑦𝑖𝛿𝑖>𝑘

]
× (𝑑𝑥𝑖 ⊗ 𝑑𝑦 𝑗 + 𝑑𝑦 𝑗 ⊗ 𝑑𝑥𝑖).

Putting the expression for 𝑣0 in (11) gives, for 𝑗 ≤ 𝑘, that

𝑑𝑑𝑐
√
𝛼𝛽

(
𝑣0 ,

√
−1 𝜕

𝜕𝑥 𝑗

)
=

∑
𝑖>𝑘

(√
𝛼
𝛽
−

√
𝛽

𝛼

)
𝑥𝑖𝑥 𝑗𝑦𝑖 +

∑
𝑖>𝑘

(√
𝛽

𝛼
−

√
𝛼
𝛽

)
𝑥𝑖𝑥 𝑗𝑦𝑖 = 0
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and

𝑑𝑑𝑐
√
𝛼𝛽

(
𝑣0 ,

√
−1 𝜕

𝜕𝑦 𝑗

)
=

(√
𝛽3

𝛼
−

√
𝛼3

𝛽

)
𝑥 𝑗

+
∑
𝑖≤𝑘

(
3
√

𝛽

𝛼
− 3

√
𝛼
𝛽
+

√
𝛼3

𝛽3 −
√

𝛽3

𝛼3

)
𝑥2
𝑖 𝑥 𝑗

+
∑
𝑖>𝑘

[(√
𝛽

𝛼
−

√
𝛽3

𝛼3

)
𝑥2
𝑖 𝑥 𝑗 −

(√
𝛼
𝛽
−

√
𝛼3

𝛽3

)
𝑥 𝑗𝑦

2
𝑖

]
= 2

(√
𝛽

𝛼
−

√
𝛼
𝛽

)
𝑥 𝑗

∑
𝑖≤𝑘

𝑥2
𝑖 +

(√
𝛽3

𝛼
−

√
𝛼3

𝛽

)
𝑥 𝑗

+
(√

𝛽

𝛼
−

√
𝛽3

𝛼3

)
𝛼𝑥 𝑗 −

(√
𝛼
𝛽
−

√
𝛼3

𝛽3

)
𝛽𝑥 𝑗

=
2
∑
𝑖≤𝑘 𝑥

2
𝑖√

𝛼𝛽
𝑏 𝑗 .

Likewise, for 𝑗 > 𝑘, one gets from (11) that

𝑑𝑑𝑐
√
𝛼𝛽

(
𝑣0 ,

√
−1 𝜕

𝜕𝑥 𝑗

)
=

(√
𝛼3

𝛽
+

√
𝛼𝛽

)
𝑦 𝑗 −

∑
𝑖≤𝑘

(√
𝛽

𝛼
− 2

√
𝛼
𝛽
+

√
𝛼3

𝛽3

)
𝑥2
𝑖 𝑦 𝑗

−
∑
𝑖>𝑘

[√
𝛽

𝛼
𝑥𝑖𝑥 𝑗𝑦𝑖 +

√
𝛼3

𝛽3 𝑦
2
𝑖 𝑦 𝑗 +

√
𝛽

𝛼
𝑥2
𝑖 𝑦 𝑗 −

√
𝛽

𝛼
𝑥𝑖𝑥 𝑗𝑦𝑖

]
= 2

√
𝛼
𝛽
𝑦 𝑗

∑
𝑖≤𝑘

𝑥2
𝑖 −

√
𝛽

𝛼
𝛼𝑦 𝑗 −

√
𝛼3

𝛽3 𝛽𝑦 𝑗 +

√
𝛼3

𝛽
𝑦 𝑗 +

√
𝛼𝛽𝑦 𝑗

=
2
∑
𝑖≤𝑘 𝑥

2
𝑖√

𝛼𝛽
𝑎 𝑗
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and

𝑑𝑑𝑐
√
𝛼𝛽

(
𝑣0 ,

√
−1 𝜕

𝜕𝑦 𝑗

)
=

(√
𝛼𝛽 +

√
𝛽3

𝛼

)
𝑥 𝑗 +

∑
𝑖≤𝑘

(√
𝛽

𝛼
−

√
𝛼
𝛽
−

√
𝛽3

𝛼3 +
√

𝛽

𝛼

)
𝑥2
𝑖 𝑥 𝑗

−
∑
𝑖>𝑘

[√
𝛽3

𝛼3 𝑥
2
𝑖 𝑥 𝑗 +

√
𝛼
𝛽
𝑥𝑖𝑦𝑖𝑦 𝑗 −

√
𝛼
𝛽
𝑥𝑖𝑦𝑖𝑦 𝑗 +

√
𝛼
𝛽
𝑥 𝑗𝑦

2
𝑖

]
= 2

√
𝛽

𝛼
𝑥 𝑗

∑
𝑖≤𝑘

𝑥2
𝑖 +

(√
𝛼𝛽 +

√
𝛽3

𝛼

)
𝑥 𝑗 −

√
𝛼
𝛽
𝛽𝑥 𝑗 −

√
𝛽3

𝛼3 𝛼𝑥 𝑗

=
2
∑
𝑖≤𝑘 𝑥

2
𝑖√

𝛼𝛽
𝑏 𝑗 .

Therefore, when nonzero, 𝑣0 is an eigenvector of𝑀0 with associated eigenvalue 2
∑
𝑖≤𝑘 𝑥

2
𝑖√

𝛼𝛽
. But

note that 𝑀0 commutes with 𝐽0, the 2𝑛 × 2𝑛 matrix representing multiplication by 𝑖, since
𝑑𝑑𝑐

√
𝛼𝛽

(
·,
√
−1·

)
is a C-sesquilinear form. Therefore, 𝑤0 := −𝐽0𝑣0 =

∑
𝑖((𝛽 − 𝛼𝛿𝑖≤𝑘)𝑥𝑖 𝜕

𝜕𝑥𝑖
−

𝛼𝑦𝑖𝛿𝑖>𝑘
𝜕
𝜕𝑦𝑖

) must also be an eigenvector with the same eigenvalue.

Suppose now that 𝑣 =
∑
𝑗(𝑎 𝑗 𝜕

𝜕𝑥 𝑗
+ 𝑏 𝑗 𝜕

𝜕𝑦𝑗
) is orthogonal to both 𝑣0 and 𝑤0, i.e.∑

𝑖>𝑘

(𝛼𝑦𝑖𝛼𝑖 + 𝛽𝑥𝑖𝑏𝑖) + (𝛽 − 𝛼)
∑
𝑖≤𝑘

𝑥𝑖𝑏𝑖 = 0 (12)

and

(𝛽 − 𝛼)
∑
𝑖≤𝑘

𝑥𝑖𝑎𝑖 +
∑
𝑖>𝑘

(𝛽𝑥𝑖𝑎𝑖 − 𝛼𝑦𝑖𝑏𝑖) = 0. (13)

Denote by 𝑚 the matrix representing the form 𝑑𝑑𝑐
√
𝛼𝛽

(
·,
√
−1·

)
− (

√
𝛼
𝛽 +

√
𝛽
𝛼 )(·, ·), where

(·, ·) is the usual inner product. Using again (11), we get for 𝑗 ≤ 𝑘 that(
𝑚𝑣,

𝜕

𝜕𝑥 𝑗

)
=

∑
𝑖≤𝑘

(
2√
𝛼𝛽

−
√

𝛼

𝛽3 −
√

𝛽

𝛼3

)
𝑥𝑖𝑥 𝑗𝑎𝑖 +

∑
𝑖>𝑘

(
1√
𝛼𝛽

−
√

𝛽

𝛼3

)
𝑥𝑖𝑥 𝑗𝑎𝑖

+
∑
𝑖>𝑘

(
1√
𝛼𝛽

−
√

𝛼

𝛽3

)
𝑥 𝑗𝑦𝑖𝑏𝑖

=
∑
𝑖≤𝑘

(
2√
𝛼𝛽

−
√

𝛼

𝛽3 −
√

𝛽

𝛼3

)
𝑥𝑖𝑥 𝑗𝑎𝑖 −

∑
𝑖≤𝑘

(𝛽 − 𝛼)
(

1√
𝛼𝛽3

− 1√
𝛼3𝛽

)
𝑥𝑖𝑥 𝑗𝑎𝑖

= 0,
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where we have used (13) to get the second equality. We analogously get (𝑚𝑣, 𝜕
𝜕𝑦𝑗

) = 0 from
(12). For 𝑗 > 𝑘, we instead have

(
𝑚𝑣,

𝜕

𝜕𝑥 𝑗

)
=

∑
𝑖≤𝑘

(
1√
𝛼𝛽

−
√

𝛽

𝛼3

)
𝑥𝑖𝑥 𝑗𝑎𝑖 −

∑
𝑖>𝑘

(√
𝛽

𝛼3 𝑥𝑖𝑥 𝑗 +
√

𝛼

𝛽3 𝑦𝑖𝑦 𝑗

)
𝑎𝑖

−
∑
𝑖≤𝑘

(
1√
𝛼𝛽

−
√

𝛽

𝛼3

)
𝑥𝑖𝑦 𝑗𝑏𝑖 −

∑
𝑖>𝑘

(
𝑥𝑖𝑦 𝑗√
𝛼𝛽

−
𝑥 𝑗𝑦𝑖√
𝛼𝛽

)
𝑏𝑖

=
∑
𝑖≤𝑘

[(
1√
𝛼𝛽

−
√

𝛽

𝛼3

)
(𝑥𝑖𝑥 𝑗𝑎𝑖 − 𝑥𝑖𝑦 𝑗𝑏𝑖) +

𝛽 − 𝛼√
𝛼3𝛽

𝑥𝑖𝑥 𝑗𝑎𝑖 +
𝛽 − 𝛼√
𝛼𝛽3

𝑥𝑖𝑦 𝑗𝑏𝑖

]
= 0,

where we get the second equality using both (12) and (13). We get that (𝑚𝑣, 𝜕
𝜕𝑦𝑗

) = 0
similarly.

In other words, when restricted to the orthogonal complement of spanR{𝑣0 , 𝑤0}, the form

𝑑𝑑𝑐
√
𝛼𝛽

(
·,
√
−1·

)
is just (

√
𝛼
𝛽 +

√
𝛽
𝛼 )(·, ·). This proves the first part of the lemma.

For the second part, note that there are two ways in which
√
𝛼𝛽𝑀0 becomes a multiple of

the identity: either both possible eigenvalues become the same, or 𝑣0 = 0. The first situation
happens precisely on 𝑆0, while the second one happens precisely on 𝐿1∪𝐿2∪(𝑆0∩{𝛼 = 𝛽}).
The union of these spaces is of course 𝐿1 ∪ 𝐿2 ∪ 𝑆0. □

Proof of Lemma III.2: The proof follows the same structure as that of Lemma III.1; we give
here the details. The bilinear form 𝑑

√
𝛼𝛽 ∧ 𝑑𝑐

√
𝛼𝛽(·,

√
−1·) can be computed in coordinates

to be

𝑛∑
𝑖 , 𝑗=1

[(
𝛽

𝛼
+ 𝛿𝑖≤𝑘 + 𝛿 𝑗≤𝑘 +

𝛼
𝛽
𝛿𝑖≤𝑘𝛿 𝑗≤𝑘

)
𝑥𝑖𝑥 𝑗 +

𝛼
𝛽
𝑦𝑖𝑦𝑗𝛿𝑖>𝑘𝛿 𝑗>𝑘

]
(𝑑𝑥𝑖 ⊗ 𝑑𝑥 𝑗 + 𝑑𝑦𝑖 ⊗ 𝑑𝑦𝑗) (14)

+
𝑛∑

𝑖 , 𝑗=1

[(
1 + 𝛼

𝛽
𝛿𝑖≤𝑘

)
𝑥𝑖𝑦𝑗𝛿 𝑗>𝑘 −

(
1 + 𝛼

𝛽
𝛿 𝑗≤𝑘

)
𝑥 𝑗𝑦𝑖𝛿𝑖>𝑘

]
(𝑑𝑥𝑖 ⊗ 𝑑𝑦𝑗 + 𝑑𝑦𝑗 ⊗ 𝑑𝑥𝑖).

Putting the expression for 𝑣1 in (14) gives, for 𝑗 ≤ 𝑘, that

𝑑
√
𝛼𝛽 ∧ 𝑑𝑐

√
𝛼𝛽

(
𝑣1 ,

√
−1 𝜕

𝜕𝑥 𝑗

)
=

∑
𝑖>𝑘

(
𝛽

𝛼
+ 1

)
𝛼𝑥𝑖𝑥 𝑗𝑦𝑖 −

∑
𝑖>𝑘

(
1 + 𝛼

𝛽

)
𝛽𝑥𝑖𝑥 𝑗𝑦𝑖 = 0
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and

𝑑
√
𝛼𝛽 ∧ 𝑑𝑐

√
𝛼𝛽

(
𝑣0 ,

√
−1 𝜕

𝜕𝑦 𝑗

)
= −

∑
𝑖≤𝑘

(
𝛽

𝛼
+ 2 + 𝛼

𝛽

)
(𝛼 + 𝛽)𝑥2

𝑖 𝑥 𝑗 −
∑
𝑖>𝑘

(
𝛽

𝛼
+ 1

)
𝛽𝑥2

𝑖 𝑥 𝑗

−
∑
𝑖>𝑘

(
1 + 𝛼

𝛽

)
𝛼𝑥 𝑗𝑦

2
𝑖

= −2(𝛼 + 𝛽)
∑
𝑖≤𝑘

𝑥2
𝑖 𝑥 𝑗 −

(
𝛽 + 𝛽2

𝛼

)
𝛼𝑥 𝑗 −

(
𝛼2

𝛽
+ 𝛼

)
𝛽𝑥 𝑗

=

(
2
∑
𝑖≤𝑘

𝑥2
𝑖 + 𝛼 + 𝛽

)
𝑏 𝑗 .

Likewise, for 𝑗 > 𝑘, one gets from (14) that

𝑑
√
𝛼𝛽 ∧ 𝑑𝑐

√
𝛼𝛽

(
𝑣1 ,

√
−1 𝜕

𝜕𝑥 𝑗

)
=

∑
𝑖>𝑘

[
𝛽

𝛼
𝛼𝑥𝑖𝑥 𝑗𝑦𝑖 +

𝛼
𝛽
𝛼𝑦2

𝑖 𝑦 𝑗 + 𝛽𝑥2
𝑖 𝑦 𝑗 − 𝛽𝑥𝑖𝑦 𝑗𝑦𝑖

]
+

∑
𝑖≤𝑘

(
1 + 𝛼

𝛽

)
(𝛼 + 𝛽)𝑥2

𝑖 𝑦 𝑗

= 2𝛼
∑
𝑖≤𝑘

𝑥2
𝑖 𝑦 𝑗 + 𝛼𝛽𝑦 𝑗 + 𝛼2𝑦 𝑗

=

(
2
∑
𝑖≤𝑘

𝑥2
𝑖 + 𝛼 + 𝛽

)
𝑎 𝑗

and

𝑑
√
𝛼𝛽 ∧ 𝑑𝑐

√
𝛼𝛽

(
𝑣1 ,

√
−1 𝜕

𝜕𝑦 𝑗

)
= −

∑
𝑖≤𝑘

(
𝛽

𝛼
+ 1

)
(𝛼 + 𝛽)𝑥2

𝑖 𝑥 𝑗

−
∑
𝑖>𝑘

[
𝛽

𝛼
𝛽𝑥2

𝑖 𝑥 𝑗 +
𝛼
𝛽
𝛽𝑥𝑖𝑦𝑖𝑦 𝑗 − 𝛼𝑥𝑖𝑦𝑖𝑦 𝑗 + 𝛼𝑥 𝑗𝑦

2
𝑖

]
= −2𝛽

∑
𝑖≤𝑘

𝑥2
𝑖 𝑥 𝑗 −

𝛽2

𝛼
𝛼𝑥 𝑗 − 𝛼𝛽𝑥 𝑗

=

(
2
∑
𝑖≤𝑘

𝑥2
𝑖 + 𝛼 + 𝛽

)
𝑏 𝑗 .

Therefore, when nonzero, 𝑣1 is an eigenvector of 𝑀1 with associated eigenvalue (2∑
𝑖≤𝑘 𝑥

2
𝑖
+

𝛼+ 𝛽). But note that 𝑀1 commutes with 𝐽0 since 𝑑
√
𝛼𝛽∧ 𝑑𝑐

√
𝛼𝛽

(
·,
√
−1·

)
is a C-sesquilinear

form. Therefore, 𝑤1 := 𝐽0𝑣1 =
∑
𝑖((𝛽 + 𝛼𝛿𝑖≤𝑘)𝑥𝑖 𝜕

𝜕𝑥𝑖
+ 𝛼𝑦𝑖𝛿𝑖>𝑘

𝜕
𝜕𝑦𝑖

) must also be an eigenvector
with the same eigenvalue.
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Suppose now that 𝑣 =
∑
𝑗(𝑎 𝑗 𝜕

𝜕𝑥 𝑗
+ 𝑏 𝑗 𝜕

𝜕𝑦𝑗
) is orthogonal to both 𝑣1 and 𝑤1, i.e.∑

𝑖>𝑘

(𝛼𝑦𝑖𝛼𝑖 − 𝛽𝑥𝑖𝑏𝑖) − (𝛼 + 𝛽)
∑
𝑖≤𝑘

𝑥𝑖𝑏𝑖 = 0 (15)

and

(𝛼 + 𝛽)
∑
𝑖≤𝑘

𝑥𝑖𝑎𝑖 +
∑
𝑖>𝑘

(𝛽𝑥𝑖𝑎𝑖 + 𝛼𝑦𝑖𝑏𝑖) = 0. (16)

Using again (14), we get for 𝑗 ≤ 𝑘 that

𝑑
√
𝛼𝛽 ∧ 𝑑𝑐

√
𝛼𝛽

(
𝑣,

√
−1 𝜕

𝜕𝑥 𝑗

)
=

∑
𝑖≤𝑘

(
𝛽

𝛼
+ 2 + 𝛼

𝛽

)
𝑥𝑖𝑥 𝑗𝑎𝑖 +

∑
𝑖>𝑘

(
𝛽

𝛼
+ 1

)
𝑥𝑖𝑥 𝑗𝑎𝑖

+
∑
𝑖>𝑘

(
1 + 𝛼

𝛽

)
𝑥 𝑗𝑦𝑖𝑏𝑖

=
∑
𝑖≤𝑘

(
𝛽

𝛼
+ 2 + 𝛼

𝛽

)
𝑥𝑖𝑥 𝑗𝑎𝑖 −

∑
𝑖≤𝑘

(𝛼 + 𝛽)
(

1
𝛼
+ 1

𝛽

)
𝑥𝑖𝑥 𝑗𝑎𝑖

= 0,

where we have used (16) to get the second equality. We analogously get 𝑑
√
𝛼𝛽∧𝑑𝑐

√
𝛼𝛽(𝑣, 𝜕

𝜕𝑦𝑗
) =

0 from (15). For 𝑗 > 𝑘, we instead have

𝑑
√
𝛼𝛽 ∧ 𝑑𝑐

√
𝛼𝛽

(
𝑣,

√
−1 𝜕

𝜕𝑥 𝑗

)
=

∑
𝑖≤𝑘

(
𝛽

𝛼
+ 1

)
𝑥𝑖𝑥 𝑗𝑎𝑖 +

∑
𝑖>𝑘

[
𝛽

𝛼
𝑥𝑖𝑥 𝑗 +

𝛼
𝛽
𝑦𝑖𝑦 𝑗

]
𝑎𝑖

−
∑
𝑖≤𝑘

(
1 + 𝛼

𝛽

)
𝑥𝑖𝑦 𝑗𝑏𝑖 −

∑
𝑖>𝑘

[
𝑥𝑖𝑦 𝑗 −

𝛼
𝛽
𝑥 𝑗𝑦𝑖

]
𝑏𝑖

= 0,

where we get the second equality using both (15) and (16). We get that 𝑑
√
𝛼𝛽∧𝑑𝑐

√
𝛼𝛽(𝑣,

√
−1 𝜕

𝜕𝑦𝑗
) =

0 similarly.

In other words, when restricted to the orthogonal complement of spanR{𝑣1 , 𝑤1}, the form
𝑑
√
𝛼𝛽 ∧ 𝑑𝑐

√
𝛼𝛽(·,

√
−1·) is just 0. This proves the first part of the lemma.

For the second part, note that there are two ways in which 𝑀1 becomes the 0 matrix: either
both possible eigenvalues become the same, or 𝑣1 = 0. The first situation happens precisely
on 𝐿1 ∩ 𝐿2, while the second one happens precisely on 𝐿1 ∪ 𝐿2. The union of these spaces
is of course 𝐿1 ∪ 𝐿2. □
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