Metric geometry and geometrically bounded Lagrangian submanifolds

(work in progress by)

Jean-Philippe Chassé

ETH Zürich

March 22nd, 2024

Outline

- Introduction
 - Main results
- 2 Preliminaries
 - Definitions
 - Prior results
- 3 Proofs
 - Proofs
 - Further exploration

Plan

- Introduction
 - Main results
- 2 Preliminaries
 - Definitions
 - Prior results
- 3 Proofs
 - Proofs
 - Further exploration

Main results

Objective: Study the space of all (say exact) Lagrangians $\mathcal L$ of some (say Liouville) symplectic manifold M under some natural metric d.

Objective: Study the space of all (say exact) Lagrangians $\mathcal L$ of some (say Liouville) symplectic manifold M under some natural metric d.

Problem: The metric space (\mathcal{L},d) is huge and not so well behaved metrically.

Objective: Study the space of all (say exact) Lagrangians $\mathcal L$ of some (say Liouville) symplectic manifold M under some natural metric d.

Problem: The metric space (\mathcal{L},d) is huge and not so well behaved metrically.

Idea: Restric ourselves to a smaller subspace \mathcal{L}_k of Lagrangians with "geometry bounded by k", where k > 0.

Plan

- Introduction
 - Main results
- 2 Preliminaries
 - Definitions
 - Prior results
- 3 Proofs
 - Proofs
 - Further exploration

A metric theorem

Theorem (A)

The space (\mathcal{L}_k, d) is totally bounded, i.e. for each $\varepsilon > 0$, \mathcal{L}_k can be covered by finitely many ε -balls.

A corollary from Theorem A

Corollary

The full space (\mathcal{L},d) is separable, i.e. it has a countable dense subset.

Indeed, totally bounded spaces are separable, and $\mathscr{L} = \cup_{k \in \mathbb{N}} \mathscr{L}_k$.

A corollary from Theorem A

Corollary

The full space (\mathcal{L},d) is separable, i.e. it has a countable dense subset.

Indeed, totally bounded spaces are separable, and $\mathscr{L} = \cup_{k \in \mathbb{N}} \mathscr{L}_k$.

Remarks (Humilière, Shelukhin)

When all Lagrangians in \mathscr{L} are Hamiltonian isotopic and $d \leq d_H$, then this is some folkloric result.

A symplectic theorem

Theorem (B)

The space (\mathcal{L}_k,d) is contains only finitely many Hamiltonian isotopy classes. Furthermore, there is some A=A(k)>0 such that

$$d(L, L') \ge A$$

whenever L and L' are not Hamiltonian isotopic.

Corollary

The full space (\mathscr{L},d) has at most countably many Hamiltonian isotopy classes.

Corollary

The full space (\mathscr{L},d) has at most countably many Hamiltonian isotopy classes.

Corollary

Let $L, L' \in \mathcal{L}$. If there exist a d-continuous path $t \mapsto L_t$ and a k > 0 such that

- (i) $L_0 = L$ and $L_1 = L'$;
- (ii) $L_t \in \mathscr{L}_k$ for (almost) all $t \in [0,1]$,

Corollary

The full space (\mathcal{L},d) has at most countably many Hamiltonian isotopy classes.

Corollary

Let $L, L' \in \mathcal{L}$. If there exist a d-continuous path $t \mapsto L_t$ and a k > 0 such that

- (i) $L_0 = L$ and $L_1 = L'$;
- (ii) $L_t \in \mathscr{L}_k$ for (almost) all $t \in [0,1]$,

then L and L' are Hamiltonian isotopic.

Corollary

Let ψ be an exact symplectomorphism, i.e. $\psi^*\lambda = \lambda + dF$ for some $F: M \to \mathbb{R}$, and let $L \in \mathscr{L}_k$ be such that $\psi^i(L) \in \mathscr{L}_k$ for all i.

Corollary

Let ψ be an exact symplectomorphism, i.e. $\psi^*\lambda = \lambda + dF$ for some $F: M \to \mathbb{R}$, and let $L \in \mathscr{L}_k$ be such that $\psi^i(L) \in \mathscr{L}_k$ for all i. Then, there is some i such that $\psi^i(L)$ is Hamiltonian isotopic to L.

Corollary

Let ψ be an exact symplectomorphism, i.e. $\psi^*\lambda = \lambda + dF$ for some $F: M \to \mathbb{R}$, and let $L \in \mathscr{L}_k$ be such that $\psi^i(L) \in \mathscr{L}_k$ for all i. Then, there is some i such that $\psi^i(L)$ is Hamiltonian isotopic to L.

In particular, if L_1, \ldots, L_N (split-)generates the (closed exact) Fukaya category of M and $\psi^i(L_i) \in \mathscr{L}_k$ for all i, j, then

$$h_{\rm cat}(\psi) = 0.$$

Some last remarks

Remarks

There are Liouville manifolds with countably many Hamiltonian isotopy classes of exact Lagrangians.

We can take $M=T^*N$ and $d=\gamma$ to get some result towards the nearby Lagrangian conjecture.

Some last remarks

Remarks

There are Liouville manifolds with countably many Hamiltonian isotopy classes of exact Lagrangians.

We can take $M=T^*N$ and $d=\gamma$ to get some result towards the nearby Lagrangian conjecture.

Remarks

All the above results also applies to monotone Lagrangians in closed manifolds with some extra topological conditions, e.g. $H^1(M;\mathbb{R})=0$ or $H^1(L;\mathbb{R})=0$.

Plan

- 1 Introduction
 - Main results
- 2 Preliminaries
 - Definitions
 - Prior results
- 3 Proofs
 - Proofs
 - Further exploration

Plan

- Introduction
 - Main results
- 2 Preliminaries
 - Definitions
 - Prior results
- 3 Proofs
 - Proofs
 - Further exploration

The Lagrangian Hofer metric

Definition (Hofer,'90; Chekanov,'00)

The Lagrangian Hofer metric is given by

$$d_H(L,L') := \inf_{\substack{H \in C_c^\infty([0,1] \times M) \\ L' = \varphi_1^H(L)}} \int_0^1 \left(\max_{x \in M} H(t,x) - \min_{x \in M} H(t,x) \right) dt.$$

Here, $\inf \emptyset = +\infty$.

The Lagrangian Hofer metric

Definition (Hofer, '90; Chekanov, '00)

The Lagrangian Hofer metric is given by

$$d_H(L,L') := \inf_{\substack{H \in C_c^\infty([0,1] \times M) \\ L' = \varphi_1^H(L)}} \int_0^1 \left(\max_{x \in M} H(t,x) - \min_{x \in M} H(t,x) \right) dt.$$

Here, $\inf \emptyset = +\infty$.

Idea: Given two Hamiltonian isotopic Lagrangians L and L', $d_H(L,L')$ is the least amount of "energy" needed to send L to L'.

Chekanov-type metrics between Lagrangians

More generally, we will be working with a **Chekanov-type** metric d, i.e. essentially one of the following

- d_H: Lagrangian Hofer metric;
- γ : spectral metric;
- ullet $\hat{d}_S^{\mathscr{F},\mathscr{F}'}$: shadow metric associated to nice families \mathscr{F} and \mathscr{F}' ;
- ... and many variations on these themes.

Chekanov-type metrics between Lagrangians

More generally, we will be working with a **Chekanov-type** metric d, i.e. essentially one of the following

- d_H: Lagrangian Hofer metric;
- γ : spectral metric;
- $\hat{d}_S^{\mathscr{F},\mathscr{F}'}$: shadow metric associated to nice families \mathscr{F} and \mathscr{F}' ;
- ... and many variations on these themes.

The key property is that, for any $x\in L\cup L'$, there exists a J-holomorphic polygon $u:S_r\to M$ with boundary along Lagrangians in $\{L,L'\}\cup \mathscr{F}\cap \mathscr{F}'$ passing through x such that

$$\omega(u) \le d(L, L').$$

The second fundamental form

Definition

The **second fundamental form** B_L of a submanifold L of a Riemannian manifold (M,g) is given fiberwise by

$$(B_L)_x \colon T_x L \otimes T_x L \otimes (T_x L)^{\perp} \longrightarrow \mathbb{R}$$

 $(X, Y, N) \longmapsto g(\nabla_X Y, N).$

Its **norm** is then defined to be

$$||B_L|| := \sup_{x \in L} |(B_L)_x|.$$

The tameness condition

Definition (Sikorav, '94; Groman-Solomon, '14)

Let L be a submanifold of (M,g), and let $\varepsilon\in(0,1)$. We say that L is **strongly** ε -tame if

$$\frac{d(x,y)}{\min\{1,d^L(x,y)\}} > \varepsilon \qquad \forall x \neq y \in L,$$

where d is the distance function on M induced by g, and d^L is the distance function on L induced by $g|_L$.

The Hausdorff metric

Definition

Let A and B be closed subsets of (M,g). Consider the quantity

$$s(A,B) := \sup_{x \in A} d(x,B) = \sup_{x \in A} \inf_{y \in B} d(x,y).$$

The Hausdorff metric between closed subsets is defined as

$$\delta_H(A, B) := \max \{ s(A, B), s(B, A) \}.$$

The Hausdorff metric

Definition

Let A and B be closed subsets of (M,g). Consider the quantity

$$s(A,B) := \sup_{x \in A} d(x,B) = \sup_{x \in A} \inf_{y \in B} d(x,y).$$

The Hausdorff metric between closed subsets is defined as

$$\delta_H(A, B) := \max \{ s(A, B), s(B, A) \}.$$

The inequality $\delta_H(A,B) < \varepsilon$ means that A is in a ε -neighborhood of B and vice-versa.

• $(M, d\lambda, J)$ is a Liouville manifold with a compatible a.c.s. which is convex at infinity.

- $(M, d\lambda, J)$ is a Liouville manifold with a compatible a.c.s. which is convex at infinity.
- $W_1 \subsetneq W_2 \subsetneq \dots$ is an exhaustion of M by Liouville domains.

- $(M, d\lambda, J)$ is a Liouville manifold with a compatible a.c.s. which is convex at infinity.
- $W_1 \subsetneq W_2 \subsetneq \dots$ is an exhaustion of M by Liouville domains.
- $\mathcal{L} := \{ \text{closed connected } \lambda \text{-exact Lagrangians in } M \}$

- $(M, d\lambda, J)$ is a Liouville manifold with a compatible a.c.s. which is convex at infinity.
- $W_1 \subsetneq W_2 \subsetneq \dots$ is an exhaustion of M by Liouville domains.
- $\mathcal{L} := \{ \text{closed connected } \lambda \text{-exact Lagrangians in } M \}$
- $\mathscr{L}_k := \{L \in \mathscr{L} \mid L \subseteq \mathring{W}_k, \ ||B_L|| < k, \ L \ \mathrm{str.} \ (k+1)^{-1} \mathrm{-tame} \}$

- $(M, d\lambda, J)$ is a Liouville manifold with a compatible a.c.s. which is convex at infinity.
- $W_1 \subsetneq W_2 \subsetneq \dots$ is an exhaustion of M by Liouville domains.
- $\mathcal{L} := \{ \text{closed connected } \lambda \text{-exact Lagrangians in } M \}$
- $\mathscr{L}_k := \{ L \in \mathscr{L} \mid L \subseteq \mathring{W}_k, \ ||B_L|| < k, \ L \ \text{str.} \ (k+1)^{-1} \text{-tame} \}$
- d is a Chekanov-type metric on $\mathscr L$ which is bounded from above by d_H .

Plan

- Introduction
 - Main results
- 2 Preliminaries
 - Definitions
 - Prior results
- 3 Proofs
 - Proofs
 - Further exploration

From d to δ_H

Theorem (C., 2023)

There exist constants $C_1,R_1>0$ with the following property. For all $L,L'\in\mathscr{L}_k$ such that $d(L,L')< R_1$, we have that

$$\delta_H(L, L') \le C_1 \sqrt{d(L, L')}.$$

From δ_H to d

Theorem (C., 2024)

For all L in \mathscr{L}_k , there exist constants $C_2, R_2 > 0$ with the following property. Whenever $L' \in \mathscr{L}_k$ is such that $\delta_H(L,L') < R_2$, there exists a C^2 -small function $f:L \to \mathbb{R}$ such that $L' = \operatorname{graph} df$ in a Weinstein neighborhood of L, and

$$d(L, L') \le C_2 \delta_H(L, L').$$

From δ_H to d

Theorem (C., 2024)

For all L in \mathscr{L}_k , there exist constants $C_2, R_2 > 0$ with the following property. Whenever $L' \in \mathscr{L}_k$ is such that $\delta_H(L,L') < R_2$, there exists a C^2 -small function $f:L \to \mathbb{R}$ such that $L' = \operatorname{graph} df$ in a Weinstein neighborhood of L, and

$$d(L, L') \leq C_2 \delta_H(L, L').$$

Moreover, if a sequence $\{L_i\}\subseteq \mathscr{L}_k$ has Hausdorff limit N, then N is an embedded C^1 -Lagrangian submanifold, and there exist diffeomorphisms $f_i:N\stackrel{\sim}{\to} L_i$ for i large such that $f_i\to \mathbb{1}$ in the C^1 -topology.

Plan

- 1 Introduction
 - Main results
- 2 Preliminaries
 - Definitions
 - Prior results
- 3 Proofs
 - Proofs
 - Further exploration

Plan

- Introduction
 - Main results
- 2 Preliminaries
 - Definitions
 - Prior results
- 3 Proofs
 - Proofs
 - Further exploration

Main technical result

The main technical idea is to strengthen the inequality in the second theorem so that it holds on the completion. More precisely, we prove the following.

Main technical result

The main technical idea is to strengthen the inequality in the second theorem so that it holds on the completion. More precisely, we prove the following.

Proposition

On \mathscr{L}_k , d and δ_H have the same Cauchy sequences. Furthermore, two Cauchy sequences are equivalent in d if and only if they are in δ_H .

(1) By the proposition, (\mathcal{L}_k, d) and $(\mathcal{L}_k, \delta_H)$ have homeomorphic completions.

- (1) By the proposition, (\mathcal{L}_k, d) and $(\mathcal{L}_k, \delta_H)$ have homeomorphic completions.
- (2) The metric completion of $(\mathcal{L}_k, \delta_H)$ is compact, as it is a closed subspace of the space of all closed subsets of the compact W_k .

- (1) By the proposition, (\mathcal{L}_k, d) and $(\mathcal{L}_k, \delta_H)$ have homeomorphic completions.
- (2) The metric completion of $(\mathcal{L}_k, \delta_H)$ is compact, as it is a closed subspace of the space of all closed subsets of the compact W_k .
- (3) Thus, (\mathcal{L}_k, d) is precompact in its completion, which is equivalent to being totally bounded in complete metric spaces.

(1) Suppose there exist infinitely many Hamiltonian isotopy classes in \mathcal{L}_k , and let $\{L_i\} \subseteq \mathcal{L}_k$ be such that L_i and L_j are not Hamiltonian isotopic in $i \neq j$.

- (1) Suppose there exist infinitely many Hamiltonian isotopy classes in \mathcal{L}_k , and let $\{L_i\} \subseteq \mathcal{L}_k$ be such that L_i and L_j are not Hamiltonian isotopic in $i \neq j$.
- (2) Since (\mathcal{L}_k, d_H) is precompact, there is a converging subsequence, still denoted $\{L_i\}$.

- (1) Suppose there exist infinitely many Hamiltonian isotopy classes in \mathcal{L}_k , and let $\{L_i\} \subseteq \mathcal{L}_k$ be such that L_i and L_j are not Hamiltonian isotopic in $i \neq j$.
- (2) Since (\mathcal{L}_k, d_H) is precompact, there is a converging subsequence, still denoted $\{L_i\}$.
- (3) But then L_i and L_{i+1} must be Hamiltonian isotopic for i large. Hence, we have a contradiction.

- (1) Suppose there exist infinitely many Hamiltonian isotopy classes in \mathcal{L}_k , and let $\{L_i\} \subseteq \mathcal{L}_k$ be such that L_i and L_j are not Hamiltonian isotopic in $i \neq j$.
- (2) Since (\mathcal{L}_k, d_H) is precompact, there is a converging subsequence, still denoted $\{L_i\}$.
- (3) But then L_i and L_{i+1} must be Hamiltonian isotopic for i large. Hence, we have a contradiction.

The proof that $d(L, L') \ge A$ whenever L and L' are not Hamiltonian isotopic follows a similar logic.

One side is evident, since we always have $\delta_H \leq C\sqrt{d}$. We give the idea on how to prove the other side. Let $\{L_i\}$ thus be δ_H -Cauchy.

One side is evident, since we always have $\delta_H \leq C\sqrt{d}$. We give the idea on how to prove the other side. Let $\{L_i\}$ thus be δ_H -Cauchy.

- (1) Fix $\varepsilon > 0$. We take Hamiltonian perturbations L_i' of L_i such that
 - (i) $d_H(L_i, L_i') \leq \varepsilon$;
 - (ii) $L_i' \xrightarrow{\delta_H} L'$ is smooth.

One side is evident, since we always have $\delta_H \leq C\sqrt{d}$. We give the idea on how to prove the other side. Let $\{L_i\}$ thus be δ_H -Cauchy.

- (1) Fix $\varepsilon>0$. We take Hamiltonian perturbations L_i' of L_i such that
 - (i) $d_H(L_i, L_i') \leq \varepsilon$;
 - (ii) $L_i' \xrightarrow{\delta_H} L'$ is smooth.
- (2) Since $d(L_i',L') \leq C_2(L')\delta_H(L_i',L')$, $\{L_i'\}$ is d-Cauchy. In particular,

$$d(L_i', L_j') \le \varepsilon$$

for i, j large.

(3) We thus have

$$d(L_i,L_j) \le d_H(L_i,L_i') + d(L_i',L_j') + d_H(L_j',L_j) \le 3\varepsilon$$

for i, j large, and $\{L_i\}$ is d-Cauchy.

(3) We thus have

$$d(L_i, L_j) \le d_H(L_i, L_i') + d(L_i', L_j') + d_H(L_j', L_j) \le 3\varepsilon$$

for i, j large, and $\{L_i\}$ is d-Cauchy.

The statement on equivalences follows essentially from the same proof. \Box

Plan

- Introduction
 - Main results
- 2 Preliminaries
 - Definitions
 - Prior results
- 3 Proofs
 - Proofs
 - Further exploration

Other results

One can prove some further results on \mathcal{L}_k , which might be of independent interest.

Other results

One can prove some further results on \mathcal{L}_k , which might be of independent interest.

(1) If the metric is nice near L or if $\dim M=2$, we can show that each $L\in \mathscr{L}_k$ possesses a system of contractible neighborhoods in \mathscr{L}_k . I suspect that \mathscr{L}_k is in general locally homeomorphic around L to $(C^\infty(L), d_{C^{1,1}})$.

Other results

One can prove some further results on \mathcal{L}_k , which might be of independent interest.

- (1) If the metric is nice near L or if $\dim M=2$, we can show that each $L\in \mathcal{L}_k$ possesses a system of contractible neighborhoods in \mathcal{L}_k . I suspect that \mathcal{L}_k is in general locally homeomorphic around L to $(C^\infty(L), d_{C^{1,1}})$.
- (2) Everything above also holds if \mathscr{L} is the space of graphs of Hamiltonian diffeomorphisms of some monotone symplectic manifold M. From this, we can exclude something similar to Ostrover's example in the corresponding \mathscr{L}_k .

Introduction Preliminaries Proofs

Thank you for your attention!

I will be happy to answer your questions.