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Jean-Loup Dupret · Jérôme Barbarin · Donatien
Hainaut

Last update : June 25, 2022

Abstract The Rough Fractional Stochastic Volatility (RFSV) model of Gatheral et al. [26]
is remarkably consistent with financial time series of past volatility data as well as with
the observed implied volatility surface. Two tractable implementations are derived from the
RFSV with the rBergomi model of Bayer et al. [4] and the rough Heston model of El Euch
et al. [19]. We now show practically how to expand these two rough volatility models at
larger time scales, we analyze their implications for the pricing of long-term life insurance
contracts and we explain why they provide a more accurate fair value of such long-term
contacts. In particular, we highlight and study the long-term properties of these two rough
volatility models and compare them with standard stochastic volatility models such as the
Heston and Bates models. For the rough Heston, we manage to build a highly consistent cali-
bration and pricing methodology based on a stable regime for the volatility at large maturity.
This ensures a reasonable behavior of the model in the long run. Concerning the rBergomi,
we show that this model does not exhibit a realistic long-term volatility with extremely large
swings at large time scales. We also show that this rBergomi is not fast enough for calibration
purposes, unlike the rough Heston which is highly tractable. Compared to standard stochas-
tic volatility models, the rough Heston hence provides efficiently a more accurate fair value
of long-term life insurance contracts embedding path-dependent options while being highly
consistent with historical and risk-neutral data.
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Louvain-La-Neuve, Belgium. E-mail: donatien.hainaut@uclouvain.be

J. Barbarin
LIDAM, Institute of Statistics, Biostatistics and Actuarial Sciences, Université Catholique de Louvain,
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1 Introduction

Standard stochastic volatility (SV) models such as the well-known Heston or Bates mod-
els have been introduced long ago to address the shortcomings of the celebrated model of
Black & Scholes. However, such models are still limited and cannot reproduce some impor-
tant empirical facts of the historical volatility and of the observed implied volatility surface.

In their seminal paper, Gatheral et al. [26] propose a model called ”Rough Fractional
Stochastic Volatility” (RFSV) where the log-volatility process is modeled in terms of a frac-
tional Brownian motion. More precisely, a fractional Ornstein-Uhlenbeck process is used
with H < 1/2, in contrast with the ”Fractional Stochastic Volatility” model (FSV) previ-
ously introduced by Comte and Renault [15], where the Hurst index is assumed to satisfy
H > 1/2. Gatheral et al. [26] find a highly consistent model with empirical estimates of
the volatility time series. Moreover, the RFSV volatility process is stationary, which ensures
reasonableness of the model in the long run. However, due to the need of Monte-Carlo simu-
lations, this RFSV model does not provide rapidly option prices, nor an effective calibration
procedure. More tractable pricing models such as the rBergomi from Bayer et al. [4] or the
rough Heston from El Euch et al. [19] were then derived from the RFSV model to improve
the efficiency of model calibration and option pricing. These two models appear to be ex-
tremely good at fitting the implied volatility surface while still reproducing the empirical
properties of the historical volatility due to their rough sample paths. This paper shows how
to expand these two rough-type models at larger time scales in order to price long-term life
insurance contracts and explains why they provide a more accurate value of such contracts.

First, we will see that the stationary property of the volatility in the RFSV model will be lost
when considering the rBergomi and rough Heston models. Despite this non-stationary prop-
erty, we will manage to build for the rough Heston model a stable regime for the volatility in
the long-run so as to price consistently long-term life insurance claims. On the contrary, for
the rBergomi model, we will show that the generated volatility at large time scales will not
be realistic and will tend to exhibit extremely large swings. Moreover, since these long-term
properties of the rough Heston and rBergomi models depend heavily on the forward variance
curve, we will show how to extrapolate the values of this curve beyond the observed matu-
rities. In particular, we will derive a methodology based on a SSVI parametrization of the
volatility surface which allows the forward variance curve to be consistent with the absence
of static arbitrage and to be stable for large maturities. We will then verify practically these
long-term properties by valuating an equity-linked endowment embedding a cliquet option
(using four different models: Heston, Bates, rBergomi and rough Heston). This will allow
to highlight the added-value of using rough-volatility models (and especially the rough He-
ston) for pricing such long-term life insurance contracts.

The main contribution of this paper is therefore to propose a calibration and a pricing
methodology for long-term life insurance contracts using rough volatility models. We also
contribute with this work to highlight and study the divergent long-term properties between
rough volatility models and standard SV models. This way, we will be able to explain why
these rough volatility models provide a more consistent and accurate fair value of such long-
term claims. We will indeed find a significantly different fair value of our equity-linked en-
dowment with models incorporating rough volatility, especially at long time scales with the
rough Heston model. In fact, we will see that this rough Heston model exhibits the best
long-term properties while being highly tractable. This paper also aims to compare these
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models in terms of fit of the observed European option prices and implied volatility surface,
which will confirm the high robustness of rough volatility models (and especially of the
rough Heston model).

2 Life insurance contract

Our aim is thus to price the following equity-linked endowment using rough volatility mod-
els and compare them with standard SV models, such as the Heston and Bates models. We
thus consider an insurance contract that provides a lump sum payment at maturity T in case
of survival, or a payment at the time of death if it occurs before T . We first denote by τ0 the
random residual lifetime of the policyholder at time t = 0. We suppose an equity-linked case,
where payment amounts depend on the market value of a reference fund F(t) and where an
amount F(0) is invested in it at t = 0. We then introduce a yearly minimal guarantee κg for
the policyholder and a maximal yearly return κm that this policyholder can earn on the fund.
The survival benefit is then given by FT 1τ0≥T and the death benefit by Fτ0 1τ0<T , where Ft
is given by a series of guarantees (known as a cliquet option) for t ∈ [0,T ] :

Ft = F0

⌊t⌋

∏
u=1

min
{

eκm ; max
{

1+π

(
Su

Su−1
−1
)

; eκg

}}
×min

{
eκm(t−⌊t⌋) ; max

{
1+π

(
St

S⌊t⌋
−1
)

; eκg(t−⌊t⌋)
}}

. (1)

In the equation above, St is the price process of each fund unit defined on a filtration (Ft)t≥0.
The cliquet above implicitly assumes yearly resettlements. Moreover, the rate π identifies
the portion of yearly return recognized to the policyholder with π ∈ (0,1].

In this life insurance claim, we will model mortality using the following assumptions. We
first introduce the non-homogeneous Poisson process Nt := 1τ0<t defined on a filtration
(Gt)t≥0, which is equal to zero as long as the individual is alive and jumps to one at death. We
then assume independence between the mortality process Nt and the price process St . The
intensity of Nt is given by the deterministic Makeham force of mortality µx(t) = c+abx+t

for a policyholder aged x at time t = 0. Hence, her survival probability at time T , being alive
at t = 0, is equal to

T px = P(NT = 0 |G0) = exp
(
−
∫ T

0
µx(u)du

)
.

We now introduce the main characteristics of the RFSV model from Gatheral et al. [26] and
then derive two tractable models from it, the rBergomi and the rough Heston models, that
will help us to give a more consistent and accurate market value to this insurance contract.

3 Key features of the RFSV model

Gatheral et al. in [26] build the Rough Fractional Stochastic Volatility model (RFSV) with
the following SDE under the real-world measure P :

dSt = µ St dt +σt St dWt , (2)

d log(σt) = λ (θ − log(σt))dt +ν dBH
t , (3)



4 Jean-Loup Dupret et al.

where µ is a drift term, Wt a standard Brownian motion and BH
t is a fractional Brownian mo-

tion (fBm) with Hurst exponent H. Wt and BH
t are in general correlated through the constant

correlation ρ between Wt and the Brownian motion driving the Mandelbrot & Van Ness rep-
resentation [32] of BH

t . Recall that the sample paths of BH
t are Hölder-continuous of order β

for any β < H. Similarly, sample paths of BH
t are almost surely nowhere Hölder-continuous

of order β for any β > H. Therefore, the larger the Hurst exponent H, the smoother the
sample paths and the lower the H, the rougher they are. More precisely, when H < 1/2, the
sample paths of the fBm are called rough. Since log(σt) is driven in equation (3) by such
fBm, the sample paths of log(σt) are also Hölder-continuous of order β for any β < H and
exhibit the same regularity behavior as BH

t .

Given that equation (3) models the log-volatility as a fractional Ornstein-Uhlenbeck (fOU)
process, we refer to Cheridito et al. [14] for the derivation of its stationary solution. One
important property of the RFSV is that the volatility process σt itself generated by this
model is again stationary, which ensures reasonableness of the model at large time scales
when pricing long-term claims on the underlying. The cornerstone of [26] is to impose the
Hurst exponent H of the fBm BH

t to be in
(
0, 1

2

)
and a very long reversion time scale with

λ ≪ 1/T . Such conditions aim to generate rough sample paths and to introduce short-range
dependence for the volatility process as explained by Gatheral et al. in [26]. Their findings
are extremely consistent at any time scales with empirical statistical properties of the ob-
served volatility time series as confirmed in Bennedsen et al. [7]. Firstly, Gatheral et al.
show, for λ ≪ 1/T and 0 < H < 1, that the log-volatility process logσt behaves locally as
a fBm. Indeed, as λ → 0, they prove that the log-volatility is close to the fBm BH

t under the
RFSV model (3). Therefore, this model approximately reproduces the well-known scaling
property of the fBm (cfr Karatzas and Shreve [30]). This scaling property is clearly verified
empirically for the discrete historical log-volatility process and allows us to estimate the
Hurst index H of the observed volatility process. Many studies (as in [7]) consistently find
H ≈ 0.1, which confirms the rough property of the historical volatility, i. e. a Hurst expo-
nent H < 1/2. Secondly, neither the autocovariance function cov(σt+∆ ,σt) of the volatility
process in the RFSV model nor the empirical counterpart of cov(σt+∆ ,σt) decay as a power
law (cfr Figure 12 on p. 941 in [26] with ∆ > 0). Therefore, these authors claim that histor-
ical volatility data are in accordance with the RFSV model, on the contrary to long memory
models such as the FSV model of Comte and Renault [15].

Finally, the RFSV model is not only consistent with empirical statistical properties of the
volatility time series but also with the observed implied volatility surface. Indeed, standard
stochastic volatility models such as the Hull and White and Heston models do not provide a
good fit of the volatility surface (especially for short expirations). Particularly, these models
generate a term structure of at-the-money (ATM) volatility skew1 under a risk-neutral mea-
sure P∗ that does not match the observed one for small time to maturity τ = T − t. Instead,
empirical studies show that this observed term structure of ATM skew is well approximated
by power-law functions of the form ψ(τ)∼ τH−1/2 with 0 < H < 1/2, which can be gener-
ated by stochastic volatility models where the log-volatility is driven by fBm with values of
the Hurst exponent in (0,1/2). The explosion of the volatility skew as τ → 0 can therefore be
modeled using fBm without introducing jumps in our model, as we will confirm in Section 5.

1 Recall that the term structure of ATM volatility skew is defined by ψ(τ) := | ∂

∂k σ̂
imp
t (k,τ)|k=0 where k is

the log strike k := logSt/K and where τ = T − t.
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Although empirically and theoretically grounded, the RFSV does not allow to price rapidly
option prices and therefore to calibrate effectively a pricing model. Indeed, we need Monte-
Carlo simulations which are fairly slow, especially for calibration. Therefore, we now show
how to adapt the RFSV to obtain more tractable models that can be used to price long-term
claims on the underlying. We first analyze in more detail a simple case of the RFSV model
when λ = 0, called the rBergomi model, built upon a forward variance curve. Secondly, we
study an extension of the classical Heston model incorporating a rough fractional volatility
process. This rough Heston model has the nice property of generating a realistic long-term
behavior for the volatility process and of having a characteristic function of the log-stock
price in quasi-closed form.

3.1 rBergomi model

First, let denote vu = σ2
u the instantaneous variance at time u and the forward variance curve

(also called variance swap curve) ξt(u) = E[vu|Ft ], u ≥ t. We can easily recover vt from
ξt(u) as vt = limu→t ξt(u). Following Bergomi and Guyon [9], forward variance models are
models that can be written as a function of this curve ξt(u).

From Bayer et al. [4], the rBergomi model is obtained from the RFSV model by setting
λ = 0 in the log-volatility dynamic (3). Under this assumption and from the Mandelbrot &
Van Ness representation [32] of the fBm, these authors show that the variance process vu in
the rBergomi model can be rewritten under the physical measure P as

vu = EP(vu|Ft)exp
(

η W̃t(u)−
1
2
EP
[
|ηW̃t(u)|2

])
= EP(vu|Ft)E

(
ηW̃t(u)

)
,

where W̃t(u) :=
√

2H
∫ u

t (u− s)H−1/2 dŴs is a square-integrable continuous martingale with
Ŵt a standard Brownian motion under P. We also define the stochastic exponential E :=
exp
(
Φ −1/2E[|Φ |2]

)
with Φ a zero-mean Gaussian process. Finally, we define η := 2ν CH/

√
2H

where CH :=
√

2H Γ (3/2−H)
Γ (H+1/2)Γ (2−2H) .

Under an equivalent risk-neutral measure P∗ (with a deterministic change of measure), the
authors in [4] finally find for variance process in the rBergomi model

vu = EP∗ [vu|Ft ] exp
{

η
√

2H
∫ u

t

1
(u− s)1/2−H dW ∗

s − η2

2
(u− t)2H

}
, (4)

where W ∗
t is a standard Brownian motion under P∗ and where EP∗ [vu|Ft ] is the forward

variance curve ξt(u) observed on the market. In equation (4), it is important to note the
presence at t = 0 of a Riemann-Liouville fBm

∫ u
0 CH (u− s)H−1/2 dW ∗

s as defined in [13],
with a Hurst index H that induces the rough behavior of the variance process vu. In particular,
its paths are (H − ε)-Hölder continuous, as classical fBm. Moreover, since EP∗ [vu|Ft ] ̸=
EP∗ [vu|vt ], this model is non-Markovian. Nevertheless, given the state vector ξt(u), which
can in principle be computed from observed option prices (cfr section 4.3), the dynamics of
the model are well-determined. Finally, the pricing model to be simulated under P∗ is

ST = S0 erT E
(∫ T

0

√
vu dW ∗,S

u

)
,

vt = ξ0(t)E
(
η W̃ ∗

t
)
= EP∗ [vt |F0]E

(
η W̃ ∗

t
)
, (5)
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where W ∗,S
t = ρ W ∗

t +
√

1−ρ2 W
′∗

t and W
′∗

t a Brownian motion under P∗, independent from
W ∗

t . We can hence model the leverage effect in the rBergomi model with ρ < 0. It is im-
portant to note that the assumption λ = 0 prevents us from having a stationary model for
the volatility and the variance processes. Long-term behavior of the rBergomi model will be
discussed more thoroughly in Section 3.3.

3.2 Rough Heston

A reminder of the standard Heston model is given in [24] for interested readers. Bergomi and
Guyon in [9] show that this Heston model can be written in terms of the forward variance
curve ξt(u) (cfr Appendix 11.3) by

dξt(u) = νe−λ (u−t)√vt dŴ ∗
t . (6)

Furthermore, from the classical Mandelbrot-van Ness [32] representation of the fBm, we
clearly see that the kernel (u− s)H−1/2 plays a central role in the rough dynamic of the
fBm with H < 1/2. Indeed, as said above, one can show that the Riemann-Liouville fBm∫ u

0 CH (u− s)H−1/2 dŴ ∗
s has Hölder regularity H − ε for any ε > 0. Therefore, in order to

allow for a rough behavior of the variance process in a Heston-type model, El Euch and
Rosenbaum [21] naturally introduce the kernel (u− s)H−1/2 in the risk-neutral stochastic
differential equation of the Heston model with CH := 1/Γ (H +1/2) as follows

vu = vt +
λ

Γ (H +1/2)

∫ u

t

θ t(s)− vs

(u− s)1/2−H ds+
ν

Γ (H +1/2)

∫ u

t

√
vs

(u− s)1/2−H dŴ ∗
s , (7)

where θ t(.) is assumed to be continuous, Ft -measurable and represents a time-dependent
mean reversion level. When H = 1/2, one can verify that we indeed recover the classical
Heston model. It can also be shown that the trajectories of the volatility itself are almost
surely Hölder-continuous of order H − ε , for any ε > 0.

Moreover, El Euch et al. show in [20] and [19] that λθ t(.) can be directly inferred from
the forward variance curve observed at time t on the market ξt(u). By doing so, they can
rewrite the model (7) in the asymptotic setting λ → 0 by

vu = ξt(u)+
1

Γ (H +1/2)

∫ u

t
(u− s)H−1/2

ν
√

vs dŴ ∗
s . (8)

Since the forward variance curve ξ0(u) at time t = 0 is observed (or at least can be retrieved)
from the market, we only have three parameters left to estimate : H, ν and ρ . Reduction of
parameters for the rough Heston is of utmost importance for improving the efficiency of the
calibration methodology. Moreover, the fact that we consider λ = 0 implies that the average
long-term behavior of the variance process in the rough Heston will be ruled by the forward
variance curve ξ0(t) and not by the mean-reversion parameters λ and θ 0(·) anymore (see
Section 3.3 for more details). We also note that the limit u → t of the rough Heston makes no
sense. This reflects the fact that this model (as the rBergomi) is not Markovian with respect
to the current variance state vt . However, it is directly visible from equation (8) that the
rough Heston is Markovian in the forward variance curve ξt(u). Finally, the rough Heston
can also be expressed in the forward variance form as

dξt(u) =
ν

Γ (H +1/2)
(u− t)H−1/2√vt dŴ ∗

t ,
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which is highly similar to (6), with the presence of a Riemann-Liouville kernel in addition.

Furthermore, from Gatheral and Keller-Ressel [27], we have that the Heston and rough
Heston forward variance models are said to be affine. In both cases, they show that the
characteristic function of the log-asset price XT = logST at time t can be written as

Φt(a,T ) = E
[
eiaXT |Ft

]
= exp

(
ia(Xt + r(T − t))+

∫ T

t
ξt(s)g(T − s,a)ds

)
, (9)

where g(·,a) : R+ → R− is the unique global continuous solution of a convolution Riccati
equation (cfr [27]). In the classical Heston model, they find that

g(t,a) = ∂t h(t,a)+λ h(t,a) ,

where h(·,a) : R+ → R− is the unique C1-function solving the Riccati ODE

∂t h(t,a) =−1
2

a(a+ i)− (λ − iaρ ν )h(t,a)+
1
2

ν
2 h(t,a)2, h(0,a) = 0 . (10)

In the rough Heston model with λ = 0, we have this time that h(·,a) is the unique continuous
solution of the following fractional Riccati equation

g(t,a) = Dα h(t,a) =−1
2

a(a+ i)+ iaρ ν h(t,a)+
1
2

ν
2 h(t,a)2, I1−α h(0,a) = 0 , (11)

with Dα the Rieman-Liouville fractional derivative of order α = H + 1/2 and I1−α the
Rieman-Liouville fractional integral of order 1−α (cfr [19]). This equation is exactly the
same as in the classical Heston model (with zero-mean reversion) but with the time deriva-
tive replaced by a fractional derivative that makes the model rough.

We thus have a quasi-closed formula for the characteristic function in the rough Heston
model since it is given by the simple expression (9). Contrary to the classical Heston case,
the drawback is that there is no explicit solution to (11). However, this fractional Riccati
equation can be solved numerically quasi instantaneously using the method described in
Gatheral & Radoičić [28], built upon the combination of a short-time and an asymptotic
expansion of the solution h(t,a). As shown in [28], this method is particularly fast, simple
and accurate to compute the approximate solution of the fractional Riccati equation (11).
We refer to Section 5 of [28] for a more thorough discussion on the quality and conver-
gence of their approximation for h(a, t). Then, European option prices may be obtained
efficiently from the characteristic function (9) using standard Fourier techniques such as the
Carr-Madan formula [12]. Finally, this fractional Riccati ODE also allows to study portfolio
insurance strategies, as developed in [18].

3.3 Long-term behavior of rBergomi and rough Heston models

The Riemann-Liouville fBm in equation (5) for the rBergomi and in equation (8) for the
rough Heston is a non-stationary process with non-stationary increments (cfr [13]), which
thus also makes the variance process of both models non-stationary. Hence, we need to ver-
ify whether the variance process exhibits a reasonable long-term behavior in the rBergomi
and rough Heston models since we do not have this stationary property anymore as we have
in the RFSV model with λ ̸= 0 (which ensures reasonable and stable properties on the long-
run for the RFSV variance process, cfr [26]). More precisely, we have to make sure that
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this variance process (and particularly its two first conditional moments) do not explode for
large maturities.

First, as shown in [16] and in [2], the Riemann-Liouville fBm can be represented as an in-
finite superposition of Ornstein-Uhlenbeck processes with different mean reversion speeds.
Hence, even if λ = 0, authors in [1] show that there is an inherent mean reversion feature
around the forward variance curve in rough volatility models coming from the Riemann-
Liouville fBm. This mean-reversion property combined with an appropriate behavior of the
long-end of the forward variance curve may thus allow for a sufficiently well behaved vari-
ance process at large maturity in rough volatility models, as we will see. For both the rough
Heston and the rBergomi models, the fact that we consider λ = 0 implies that the aver-
age long-term behavior of the variance process will be ruled by the forward variance curve
ξ0(t) and not anymore by the mean-reversion parameters λ and θ t(·) of equation (7) for
the rough Heston, nor by the parameters λ and θ of equation (3) for the rBergomi. Indeed,
this simply comes from the fact that the conditional mean of the variance process is now
given by EP∗ [vu|Ft ] = ξt(u). Hence, we will discuss in Section 4.3 how to build such for-
ward variance curves with non-exploding long-term behavior. However, long-term behavior
of the variance process in both models is not solely driven by the form of this forward vari-
ance curve (since this curve only controls the average value of the variance process). The
non-stationary Riemann-Liouville fBm has also a strong impact on the conditional variance
of the variance process given by VP∗ [vu|Ft ], as explained in Appendix 12.2. Indeed, this
quantity VP∗ [vu|Ft ] increases exponentially with u in the rBergomi model and hence tends
to exhibit extreme values for large maturities (see Fig. 15). For the rough Heston model,
the rate of increase of this quantity is much slower and hence, we do not observe this ex-
ponential growth of VP∗ [vu|Ft ] for the considered maturities, as again depicted on Fig. 15.
The generated variance sample paths at large time scales are thus more reasonable and less
volatile in the rough Heston while they exhibit extremely large swings for the rBergomi.
This behavior will have an impact on the price of long-term life insurance claims as we will
see in the last section of this paper.

4 Calibration

In this section, we will show how to build a consistent calibration methodology. We will
then compare four models (Heston, Bates, rBergomi and rough Heston) in terms of fit of
the observed European option prices and implied volatility surface for the CAC 40 index.
We will mainly focus on the long-term behavior of such models and we will then use these
calibrated models to price our equity-linked endowment embedding the cliquet option (1).

As in [26], we first provide a statistical estimation of the RFSV parameters based on histor-
ical data for the CAC 40 index from January 2004 to July 2020 (obtained from the Oxford-
Man Institute). Using the scaling property of [26] to estimate the smoothness of the volatility
process for the CAC 40, we find an estimated value Ĥ = 0.13. The historical estimate of ν

is also derived from this scaling property and is equal to ν̂ = 0.31.

The aim of the calibration method is to find, for each model, the model parameters that
match derivative model prices as best as possible with the observed market prices of vanilla
derivatives in the market. It then boils down to an optimization problem where we have to
find the minimum distance between model prices/model-based implied volatility and market
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prices/market implied volatility. In this paper, we choose to minimize the distance between
model-based implied volatility σ̂

imp
j and market implied volatility σ

imp
j since it leads to

more stable results. Finally, we introduce the weighted Root Mean Square Error as the loss
function, which is defined as

RMSE =

√√√√ N

∑
j=1

w j

N

(
σ

imp
j − σ̂

imp
j

)2
, (12)

where w j =
1

Ask j−Bid j
, i. e. the weight is the inverse of the bid-ask spread, expressed in terms

of implied volatility. This way, we give more importance to observations with small bid-ask
spread. Indeed, if an option is liquid, then its bid-ask spread is supposed to be small and its
price/implied volatility is more accurate. Mathematically, it boils down to find the optimal
set Θ ∗ ∈ Rp of the p model parameters such that

Θ
∗ = argmin

Θ
L
(
σ

imp, σ̂ imp(Θ)
)
,

where L is the RMSE loss function. Finally, we highlight the fact that the results of the
optimization methodology can be highly dependent on the initial parameters. Even for the
Heston model, there is no consensus among researchers on whether the objective function
for the calibration is convex or not, as explained in [17]. In any case, to overcome this prob-
lem of guessing the initial parameters, we use a global optimizer2 combined with a local
optimizer (the standard nlminb function in R). Indeed, global optimizers can find a solution
on their own even without any initial guess while local optimizer need a suitable starting
point. Therefore, we use the approach described in [35] which takes the final parameters
provided by the global optimizer as initial values for the local optimization. This combina-
tion of global and local optimizers allows to refine the final parameters of the calibration
and minimize the loss function, as explained and shown in [35]. However, even with this
technique, we will see that the rBergomi model still appears to be highly unstable due to the
need of Monte-Carlo simulations for this model.

4.1 Market data

We first choose as starting date t = 0, the 6th of July 2020. The maturity of vanilla options
as well as the risk-free term structure will be defined with respect to this date.

Firstly, the risk-free rates used for pricing purposes are derived from the observed swap
term structure. The technique for constructing this swap term structure divides the curve
into two term buckets. The short end of the swap term structure is built using interbank de-
posit rates. We will here consider EURIBOR rates from one day to 12 months. The long end
of the risk-free interest rate curve (maturity above 1 year) will be based on the European
swap term structure available from the EIOPA for the month of July3. Table12 in Appendix
provides a summary of the risk-free rates used between 0 and 20 years. The dividend yield
is chosen to be 1% but this assumption does not have a significant impact on the results and
conclusions of this paper.

2 More precisely here, the Simulated Annealing (SA) algorithm of [37] with the package GenSA in R.
3 Further information on risk-free rates computation can be found at : https://www.eiopa.europa.

eu/tools-and-data/risk-free-interest-rate-term-structures_en

https://www.eiopa.europa.eu/tools-and-data/risk-free-interest-rate-term-structures_en
https://www.eiopa.europa.eu/tools-and-data/risk-free-interest-rate-term-structures_en
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Secondly, we have that the price S0 at time 0 of the CAC40 index is equal to 5028.56 e . As
mentioned above, we also need market prices of European options on the CAC40 in order
to calibrate later our model since these are the most traded financial instrument in the equity
world. Indeed, there are no liquid long-term products traded on the market on which we
can calibrate our models for large maturities. The best we can hope so as to be the most-
market consistent is therefore to reproduce as best as possible the observed implied volatility
surface (and hence prices of European options) and then extrapolate the obtained trend for
large maturities. In particular, we will see two methods below for obtaining the values of the
forward variance curve beyond the available maturities. From Bloomberg, we thus gather a
database that includes 366 European options with the option bid price and the option ask
price for different strikes and maturities. The true market price is here considered as the mid
value between the bid price and the ask price, which is a common assumption. Using the
one-to-one relationship between market prices and implied volatility from the Black and Sc-
holes formula, we can build a database with the bid, ask and mid implied volatility for each
strike and maturity. We then apply the following common filters as in Moyaert and Petitjean
[34] and select the following options :

- Out-of-the-money options : Since out-of-the-money options are more actively traded
than in-the-money options (as a protection), the quotes on out-of-the-money options are
usually more reliable.

- The bid-ask spread (on the option prices) is less than 5%. Otherwise, we consider that
there is no sufficient liquidity to take the option into account.

- Maturity : We reject options with maturity equal to 0.9 year due to data quality issue
for this particular maturity.

We have a final database of 145 OTM options for which we can observe the strike, the
maturity, the bid, ask and mid implied volatility. We now turn to the specific calibration
method for each model. Indeed, even if the general methodology is the same, the way we
price our European options will vary depending on the model.

4.2 Heston and Bates models

We have at disposal for these two models a closed-form expression for their characteristic
function, as reviewed in [24]. Then, for a given maturity, the Carr-Madan formula [12] gen-
erates prices of European options for a whole range of strikes in one run very fast using
Fourier inversion. By calling many times this pricing algorithm on the available maturities
in the data, we can thus find the optimal parameters of each model.

- Heston :

A reminder of the standard Heston model is given in [24]. The set of initial parameters ob-
tained from the Simulated Annealing algorithm is given by (0.2898, 2.9176, 0.0966, 1.4703,
-0.7010). Using the local optimizer nlminb in R, we then find a minimal RMSE of 0.11694
with the following final parameter values Θ ∗:

σ∗
0 λ ∗ θ ∗ ν∗ ρ∗

0.28992 2.91760 0.09664 1.47027 -0.7010
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We see that we have a high speed of mean reversion λ ∗ and a high level of the vol-of-var
parameter ν∗ which implies large swings in the variance process. We also obtain a large
negative correlation between the stock process and the variance process, which is consistent
with the leverage effect. Finally, the mean reversion level θ ∗ towards which the variance
will converge is 9.66% (which represents a volatility of 31,09%). It is no wonder to obtain
this high level of volatility as well as vol-of-var parameter given the state of the economy
due to the COVID-19 outbreak in July 2020. Finally, the Heston model with the parameters
obtained above leads to Fig. 1 when compared to market prices of European options on the
CAC 40 index.

Fig. 1 Comparison of Heston option prices in red crosses vs. market option prices in black dots (CAC 40)

The calibration of the forward-variance specification of the Heston model, as described in
[9] and [10], is provided in Appendix 11.3. This appendix will allow to compare more
thoroughly the Heston model with rough volatility models which are also based on this
forward variance curve.

- Bates :

For a reminder of the Bates (or SVJ) model, we refer to [24]. The set of initial parameters
obtained from the SA global optimizer is given by (0.27, 0.62, 0.12, 1.24, -0.66, -0.10,
0.11, 0.82). Using our local optimizer, we then find a minimal RMSE of 0.08465 with the
following final parameter values Θ ∗:

σ∗
0 λ ∗ θ ∗ ν∗ ρ∗ µ∗

j σ∗
j λ ∗

j
0.2589 0.1555 0.2709 1.1593 -0.6640 -0.1004 0.1072 0.9080

Firstly, the RMSE is substantially lower than the one obtained with the Heston model, which
means that the Bates model provides a better fit of the observed European option prices.
The mean-reversion speed λ ∗ and the volatility of variance parameters ν∗ are also lower,
which implies that the swings in the variance process are less pronounced than in the Heston
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model. Moreover, we now observe jumps in the price process that are on average negative
since eµ j+σ2

j /2 − 1 < 0. The annual frequency of these jumps is equal to 90.8%. Finally,
we observe that the long-run variance θ ∗ is higher than in the Heston model. This Bates
models leads to Fig. 2 when compared to the observed market prices. The fit is clearly
better than in the Heston model as said above. More precisely, we see that this improvement
comes from the better fit of OTM call options with large maturities when using the Bates
model. However, we also observe on Fig. 2 that option prices with the third largest maturity
(T = 0.45) are still significantly out-of-market.

Fig. 2 Comparison of Bates option prices in red crosses vs. market option prices in black dots (CAC 40)

Note that the presence of jumps makes the calibration of the forward-variance specification
of the Bates model really difficult and time-consuming. Indeed, the characteristic function
of the Bates model cannot be written as an integral of the forward variance curve as in
the Heston and rough Heston case with equation (9) since the Bates model is not an affine
forward variance model due to its jump term (cfr [27]). We will therefore not consider this
specification in this paper.

4.3 Rough Heston calibration

As explained above, we have a quasi-closed form for the characteristic function of the log-
price Xt under the rough Heston model (8). We can then apply exactly the same calibration
technique as for the Heston and Bates models described in the previous section. However,
recall that the rough Heston is not Markovian in the current variance state vt but Marko-
vian in the (forward) variance swap curve ξt(u). Hence, the rough Heston’s characteristic
function depends on this variance swap curve. In practice however, the variance swap curve
ξ0(u) at time t = 0 is not obtained directly from the financial markets. Indeed, it is hard to
obtain high-quality variance swap data since variance swaps are OTC contracts as explained
in [4]. We thus choose to proxy the value of a variance swap of maturity T by the value of a
log-contract (also of maturity T ), as described for example in Chapter 11 of Gatheral [24].
Therefore, even if variance swaps are OTC contracts, we can obtain variance swap prices
directly from the observed European options which are heavily traded on the market. This
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way, we can consider in this context that variance swap quotes derived from our European
options are also reliable. The first method to obtain the initial variance swap curve is there-
fore to calibrate it based on our dataset of observed option prices for the CAC 40. We hence
obtain in Fig. 3 the following market variance swap curve, denoted ξ mkt

0 (t), between 0 and
1.2 years when interpolated between observed maturities.

Fig. 3 Initial market forward variance curve ξ mkt
0 (t) between 0 and 1.2 years

However, we only have European options with observed maturities until 1.2 years. In order
to price long-term claims on the underlying, we need to extrapolate the values of ξ mkt

0 (t) be-
yond 1.2 years and hence, we need to consider a term-structure parametrization of ξ mkt

0 (t).
Since the forward variance curve is estimated from the data and is not an output of the
model, the average long-time behavior of the variance process is embedded in this forward
variance curve parametrization (cfr Section 3.3). Indeed, recall that the forward variance
curve controls the average value of the variance process vt since ξ0(t) := EP∗ [vt |F0]. The
long-end of this curve will thus have a strong impact on the behavior of the model for large
maturities and we hence need to avoid parametrizations generating explosive or unrealistic
forward variance curves. Otherwise, the variance process (and hence also the price process)
will tend to explode when the maturity increases. The easiest way to achieve this is to im-
pose a constant long-term value for the initial forward variance curve ξ mkt

0 (t). Therefore, it
is reasonable to choose a parametrization with asymptotic line such that

lim
t→∞

ξ
mkt
0 (t) = cst .

This assumption allows the variance process of the rough Heston to be in a stable regime for
large maturities. A classical choice for such parametrization is the Gompertz function

ξ
mkt
0 (t) = z1e−z2 e−z3 t

, (13)

where z1 is the asymptote, z2 sets the displacement along the x-axis (here, the time to ma-
turity) and z3 sets the growth rate. Fitting the Gompertz function to the observed forward
variance curve, we find :

z1 = 0.03954 z2 =−0.7992 z3 = 0.5672
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Therefore, the asymptotic level of the volatility is given by
√

0.03954 = 19.88%. Finally,
combining the curve obtained in Fig. 3 with the Gompertz fit for τ > 1.2, we obtain the ini-
tial market forward variance curve ξ mkt

0 (t) in Fig. 4. We can observe that we enter a stable
regime as of the 6th year.

Fig. 4 Initial market forward variance curve ξ mkt
0 (t) until t = 20 years

Yet, we are aware that calibrating such Gompertz function based on only 6 different maturity
points can seem dubious. Indeed, estimating an asymptotic value for the forward variance
from the information carried out by short-maturity option data does not provide a lot of con-
fidence in our results. Moreover, this way of building and extrapolating the forward variance
curve does not ensure to avoid static arbitrage. Therefore, we now show how to tackle both
of these issues. A better alternative to estimate the forward variance curve is to fit the SSVI
parametrization [25] of the observed implied volatility surface and compute the forward
variance curve associated with this parametrization. A brief reminder of such arbitrage-free
SSVI parametrization is given in Appendix 10. The advantage of this procedure is to ensure
that the estimated forward variance curve is consistent with the absence of calendar spread
and butterfly arbitrages. Furthermore, the extrapolation of the forward variance curve does
not require to specify a particular function for this curve anymore since its extrapolation
beyond 1.2 years in the SSVI parametrization only relies on an arbitrage-free argument,
as explained in Appendix 10. We therefore do not need anymore to determine a long-term
value of ξ0(t) based solely on short-term maturity data. We obtain this way the following
SSVI forward variance curve ξ SSV I

0 (t) depicted on Fig. 5. We see that this forward variance
curve ξ SSV I

0 (t) tends to approximately exhibit the same shape as the market forward vari-
ance curve between 0 and 80 years. Moreover, the SSVI forward variance curve appears to
be stable and does not explode for large maturities, which also ensures a stable regime and
a reasonable average behavior of the rough Heston model on the long-term.

The last alternative we will consider is to use a constant forward variance curve denoted
ξ cst

0 (t). We decide arbitrarily to fix ξ cst
0 (t) = ξ mkt

0 (0) = 0.0925 , ∀t. Note that this constant
level is very close to the long-term mean θ ∗ obtained in the Heston calibration (= 0.0966).
This parametrization for the forward variance curve will hence allow to compare more thor-
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Fig. 5 Initial SSVI forward variance curve ξ SSV I
0 (t) until t = 80 years. Black circles are the variance swap

values for the available maturities

oughly rough volatility models with the latter. Results for calibration and pricing with ξ cst
0 (t)

are given in Appendix 11.1.

The SSVI forward variance curve being arbitrage-free, more reliable and more consistent,
we now perform the calibration of the rough Heston model based on ξ SSV I

0 (t). Results for
the market and the constant forward variance curves are given in Appendix 11. Using the
Carr-Madan formula [12] and the numerical approximation of Gatheral & Radoičić [28]
for the fractional Riccati equation (11), we obtain in a first step the following set of initial
parameters from the SA global optimizer : (0.1702, 0.6241, -0.6724). Using our local opti-
mizer, we then find a minimal RMSE of 0.08457 with the following (same) final parameter
values Θ ∗:

H∗ ν∗ ρ∗

0.1703 0.6241 -0.6725

Based on the RMSE, we then have a slightly better fit than with the Bates model. It is
impressive knowing that the rough Heston model in the asymptotic setting λ → 0 has only
3 effective parameters to estimate while the Bates model has 8 parameters ! We will also
analyze in the next section which of the models best fits the behavior of the implied volatility
surface (and particularly the term structure of ATM skews). Moreover, it is important to note
that the Hurst index H∗ obtained via the risk-neutral calibration method is consistent with
the Hurst index obtained via statistical estimation (under the real-world measure) equal to
0.13. Yet, we have a higher ν∗ than the one estimated based on the historical time series
(= 0.31) due to the market price of risk included in the risk-neutral valuation. Finally, we
obtain a leverage effect of the same order as in the Heston and Bates models. Fig. 6 depicts
the fit of the rough Heston options prices compared with the observed market prices of
European options.
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Fig. 6 Comparison of rough Heston option prices vs. market option prices (CAC 40)

4.4 rBergomi Calibration

The calibration of this model departs significantly from the three models described above.
Indeed, no characteristic function is available in (quasi-)closed form. We then rely on Monte-
Carlo simulations with the Hybrid scheme of [8], as applied in [33], to calibrate the param-
eters ρ, η and H of the rBergomi model under P∗. More precisely, since the Riemann-
Liouville fBm is a special case of Brownian Semistationary (BSS) processes, we follow the
papers of Bennedsen et al. [8] and of McCrickerd et al. [33] in order to improve the effi-
ciency of simulations in the rBergomi model. Note that the initial forward variance curve is
exactly the same as the one derived in the calibration of the rough Heston model. Hence, we
will again use ξ SSSI

0 (t) in this section.

We find a RMSE of 0.08631 with the initial set of parameters equal to (0.15, 1.67, -0.92).
This leads to the following final values Θ ∗:

H∗ η∗ ρ∗

0.1515 1.6803 -0.9275

First, the RMSE is slightly higher compared with the rough Heston and Bates models but
lower than the Heston model. We see that the calibrated Hurst exponent H∗ is lower than
the one found in the rough Heston model and closer to the historical estimate (= 0.13).
Based on a η∗ = 1.6803, we find the corresponding ν∗ equal to η∗√2H∗/(2CH) = 0.9969.
Therefore, the volatility of variance parameter ν∗ clearly needs to be much higher than the
historical ν̂ to better fit the European option data (again due to the volatility of variance
risk premium). The anti-correlation between the stock process and the variance process is
stronger than the ρ∗ derived from the rough Heston. Moreover, it is important to add that
these results are quite unstable from simulation to simulation. The hybrid scheme is indeed
not yet fast enough to provide a reliable calibration method, at least in our implementation.
We used m = 1,000,000 and ∆ t = tk − tk−1 = T/n with n = 400 and the optimization was
done in more than 5 hours with these parameters. We need to increase m and decrease ∆ t
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to obtain more precise and stable results but it then requires far more computing time and
memory, which is not suitable and tractable in practice. We then obtain Fig. 7 where we can
see that the OTM puts are substantially off-market with this model.

Fig. 7 Comparison of rBergomi option prices vs. market option prices (CAC 40)

Finally, recall that the SSVI parametrization of the forward variance curve ensures that in the
long term we have on average a stable and non-exploding variance process in the rBergomi
and rough Heston models (cfr Figure 5). Nevertheless, we said that the presence of the non-
stationary Riemann-Liouville fBm in both models also impacts the long-term behavior of
the variance process. More precisely, if we now compare the conditional variance of the
variance process VP∗ [vu|Ft ], we obtain an increasing quantity in u with divergent properties
between the two models as shown and explained with Fig. 15 in Appendix 12.2 and with
the corresponding equations 17 and 18. Clearly, the exponential growth of VP∗ [vu|Ft ] in the
rBergomi model does not allow for a reasonable behavior of the variance process in the long
term with the calibrated parameters above. The same extreme behavior is obtained using the
parameters of the rBergomi model found in the initial paper [4] and in [6]. On the contrary,
the conditional variance VP∗ [vu|Ft ] in the rough Heston exhibits an almost constant behavior
for large times to maturity and is hence more appropriate for long-term pricing. This stable
regime of the rough Heston model is also obtained using standard parameters such as in
[19]. The impact of the quantity VP∗ [vu|Ft ] on the price of life insurance claims for large
maturities u will be analyzed more thoroughly in the last section.

5 Volatility surface fit

We now compare the Heston, Bates, rough Heston and rBergomi models in terms of implied
volatility surface fit. More precisely, we will look at the fit of the term structure of ATM
volatility skew ψ(τ) and confirm that rough volatility models provide a better fit.

From our market option prices database, we can build the term structure of ATM volatil-
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ity skew ψ(τ). First, recall that ψ(τ) :=
∣∣∣ ∂

∂k σ̂
imp
t (τ,k)

∣∣∣
k=0

with k being the log-strike and
τ = T − t the time to maturity. We can approximate it by

ψ̂(τ) =

∣∣∣∣∣ σ̂ imp
0 (τ,k+δ )− σ̂

imp
0 (τ,k−δ )

2δ

∣∣∣∣∣
k=0

,

for small enough δ and for each available time to maturity τ . We then obtain in Fig. 8 the
term structure of ATM volatility skew for our data at time t = 0. The red dots are the esti-

Fig. 8 Red dots are the ATM volatility skews ψ̂(τ) estimated for the available maturities. The power-law fit
is superimposed in blue

mated ATM skews for each of the available maturities. We clearly see that we obtain a term
structure of ATM volatility skew which is consistent with the power-law function. Indeed,
the blue line is the power-law fit to the data, obtained by the following linear regression :

logψ(τ) =−α logτ .

We find α̂ = 0.4546. From Section 3, we know that ψ(τ) ∼ τH−1/2 holds for the RFSV
model. Hence, we have that ĤAT M = 1/2− α̂ = 0.0452, which is lower than the Hurst ex-
ponent estimated with historical data (but again rough !). However, we do not have a lot
of different maturities in our option data set, which prevents us from having a consistent
estimator ĤAT M using this power-law fit. Therefore, we will mainly focus our analysis on
the shape of the ATM skew term structure and on whether our different models are able to
approximate this blue line rather than on the exact fit.

5.1 Comparison of the fit

We now compare the empirical term structure of ATM volatility skew with the term struc-
tures derived from each model. We first analyze the fit of the standard Heston and Bates
model thanks to Fig. 16 in Appendix. The blue line is again the power-law fit of the ob-
served ATM skews (with α̂ = 0.4546). The green dots are the ATM skews ψ̂(τ) derived
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from the different models for the available maturities. For the Heston model, we clearly ob-
serve that it does not allow to capture the high values of ATM skews for short maturities
and hence, it cannot reproduce the power-law shape of ψ̂(τ). This was indeed one of the
issues of this model that we rose in Section 3. For T > 0.20, we can however note that the
Heston fit approximates quite well the empirical blue line. Concerning the Bates model, the
presence of jumps only provides a slightly better fit of the ATM skews ψ̂(τ) compared with
the Heston model. Indeed, the Bates model is still not able to capture the explosion of the
ATM skews for very short time to maturity. This is due to the fact that the parameter λ j
controlling the frequency of jumps is only of 0.91 and that the average size of the jumps is
also rather low. A higher value of λ j or of |µ j| would allow to better capture this explosion
phenomenon for τ → 0.

We now analyze the fit of the rough Heston and the rBergomi models since we said that
rough volatility models should be able to better capture the high curvature of ψ̂(τ) for small
time to maturity thanks to the rough behavior of their volatility process. We obtain Fig. 17
in Appendix. We clearly see that the green dots of both figures (i. e. the rough Heston and
rBergomi fit for available maturities) exhibit the same shape as the blue line and can there-
fore be fitted by a power-law function of the form τH−1/2. If we had at disposal even shorter
maturities, the rough Heston and rBergomi models would likely better capture the explosion
of ψ̂(τ) for τ → 0. We can finally conclude that rough volatility models are more consistent
with the observed term structure of ATM volatility skew than standard SV models.

6 Simulation and discretization methodology

In order to price the above equity-linked life insurance contract, we first need to explain how
we can discretize and simulate sample paths of the price process and the variance process
under our different models.

- Heston :
Once the Heston model has been calibrated and the optimal parameters σ0,λ ,θ ,ν and ρ

have been found, we can use a Monte Carlo approach to simulate the sample paths of the
Heston model. We first simulate the stock price process and the variance process by gen-
erating correlated N(0,1) random numbers εS and εv (with correlation ρ). The relationship
between εS and εv can be written as

εv,ti = ρ εS,ti +
√

1−ρ2 ε
′
ti ,

where εS,ti and ε ′ti are independent N(0,1) random variables. Using an Euler discretization
scheme for the price process and the variance process, we have

Sti+1 = Sti

(
1+ r∆ t +

√
vti

√
∆ t εS,ti

)
, (14)

vti+1 = vti +λ (η − vti)∆ t +ν
√

vti

√
∆ t εv,ti , (15)

for i = 0, ...,n−1, with t0 = 0 and tn = T , where n is the number of time steps and ∆ t = T/n,
for a given maturity T . We then simulate m sample paths of this stock price process and of
this variance process. Now that we have the full path of (Sti)i=0,...,n for each m, we can price
path-dependent options, such as the cliquet option (1). In practice, the variance can become
negative under a simulation because of the discretization. We then use the full truncation
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scheme of Lord et. al [31] to tackle this problem since it overcomes other Euler fixes (ab-
sorption, relfection, etc.) and quasi-second order schemes (Milstein scheme, Ninomiya and
Victoir scheme [36], etc.) in terms of positive bias. The full truncation scheme therefore bet-
ter reproduces the true properties of the CIR process. This simulation methodology gives us
the following Fig. 9, depicting one sample path of the variance process under the standard
Heston model over 10 years. We can clearly see the effect of the high volatility of variance
(vol-of-var) parameter ν with large swings in the variance process.

Fig. 9 One sample path of the variance process under the standard Heston model

- Bates :
We again use the Euler scheme with a full truncation fix for the variance process as in the
Heston model. However, the discretization scheme of the price process is replaced by

Sti+1 = Sti

(
1+ r∆ t +

√
vti

√
∆ t εS,ti +(Yi −1)∆Nti

)
, (16)

where Yi ∼ LogN(µ j,σ
2
j ) and ∆Nti ∼ Poi(λ∆ t).

- Rough Heston :
The discretized price process is exactly the same as in the Heston model with (14). However,
due to the non-Markovian nature of the variance process under the rough Heston, an Euler
discretization scheme for simulating vt is very slow and does not allow to use the full trunca-
tion fix in order to deal with negative variance. A more time-efficient simulation scheme for
the rough Heston can be found instead in [1] with a lifted version of the Heston model. This
lifted Heston model appears to be a multi-factor approximation of the rough Heston model
built as an infinite superposition of square-root (CIR) processes with the same dynamic but
mean reverting at different speeds (cfr Section 3.3). Such infinite-dimensional Markovian
representation of the limiting rough variance process is an appealing trade-off between flex-
ibility and tractability, as explained in [1]. In practice, only few factors are sufficient which
drastically speeds up the simulation procedure compared to an Euler discretization scheme.
Moreover, this representation in terms of square-root processes allows to use the full trunca-
tion fix of [31] described above in order to avoid negative variance and to better reproduce
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the true properties of the variance process. For simulating our rough Heston model, we take
the suggested values of the lifted Heston model defined in [1] : ñ = 20 factors and r20 = 2.5.
The function gñ

0(t) of this lifted Heston model is chosen so as to match the forward variance
curve ξ0(t) and the speed of mean-reversion λ is again set to 0 since mean reversions at dif-
ferent speeds are inherent in the lifted Heston model. This parametrization allows to recover
the rough Heston model (8) with its 3 effective parameters.

One sample path of the variance process over 10 years under our calibrated rough Hes-
ton model with SSVI forward variance curve is plotted in Fig. 10. We clearly see the rough
behavior of the variance process compared to the sample paths of the Bates and Heston mod-
els. We also have that the vol-of-var parameter ν is quite high, leading to large movements
in the variance process.

Fig. 10 One sample path of the variance process under the rough Heston model

- rBergomi :
The price process is again given by (14). However, the variance process is now simply given
by

vti = ξ0(ti)E
(
η W̃ ∗

ti

)
,

where we use the SSVI forward variance curve for ξ0(ti)(= EP∗ [vti ]) and the hybrid scheme
of [33] and [8] for the simulation of W̃ ∗

ti , with i = 0, ...,n. The way the variance process
is defined in (5) under the rBergomi model prevents us by definition from having negative
variance. You can also find in Fig. 11, one simulated sample path of the rBergomi variance
process using this Hybrid scheme. Due to the huge vol-of-var parameter η , the variance
paths tend to explode and exceed 100%. Generated sample paths with the rBergomi are
therefore not realistic. Furthermore, if we compute the sample variance VP∗ [vt ], we would
obtain the exact same shape as in Fig. 15, which confirms the extreme variability of the
rBergomi variance process for large maturities. The roughness of the variance process is
again clearly visible in Fig. 11.
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Fig. 11 One sample path of the variance process under the rBergomi model

7 Conclusion of the fit

From the analyses of the implied volatility surface, we can conclude that rough volatility
models with the rough Heston and the rBergomi clearly outperform standard SV models
in terms of goodness of fit of the observed term structure of ATM volatility skew. There-
fore, with the lowest RMSE (0.0846) and a good fit of the implied volatility surface, we
conclude that the rough Heston model is the best of the considered models at reproducing
the observed risk-neutral data. Secondly, since the rough Heston exhibits a rough variance
process (with a H close to the historical estimate), this model can also better reproduce at
any time scales numerous statistical properties of the historical volatility process. Therefore,
the fact that this model exhibits rough volatility and hence better reproduces the empirical
properties of the historical volatility will lead to a better price of insurance contracts at large
time scales. More precisely, the parameter H controlling the roughness/memory of the vari-
ance process has a direct impact on long-term life insurance contracts since the generated
sample paths of the fund’s underlying price process St will strongly vary in function of this
index H (as shown below in Section 8 and Appendix 11). In fact, the larger the maturity,
the more important will be the effect of the roughness of the variance process on the fair
value of such contracts. Moreover, as shown in Section 4.3, we can build at large time scales
a stable regime for the variance process in the rough Heston, which ensures a reasonable
long-term behavior of the model. Combined with the fact that the SSVI forward variance
curve ξ SSV I

0 (t) is consistent with the absence of arbitrage at any time scales, we will ob-
tain in the next section a very reliable and consistent fair value of long-term life insurance
contracts. Finally, the rough Heston is also particularly tractable (only three parameters to
calibrate and a characteristic function available in quasi-closed form) which is very impor-
tant in practice for time-efficient calibration and option pricing.

Concerning the rBergomi model, even with calibrated parameters, it provides a slightly
higher RMSE than the rough Heston model and hence a less good fit of the observed option
prices (at least in our implementation with the SSVI forward variance curve). Secondly, the
rBergomi does not provide realistic variance sample paths in the long run due to the huge
level of the vol-of-var parameter and an exponentially increasing quantity VP∗ [vu|Ft ] (lead-
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ing to extreme values for large u). Furthermore, this model is fairly slow in terms of running
time, which appears problematic for calibration and option pricing. To quote El Euch et al.
[19]: ”Even with the introduction of the efficient hybrid scheme [of Bennedsen et al. [8]],
practical implementation [of the rBergomi model ] has proved to be difficult.” One solution
to improve the stability and efficiency of this pricing model is to use asymptotics such as
in Fukasawa [23], in Forde and Zhang [22] or in Bayer et al. [5]. Finally, Bayer et al. [6]
propose a neural network approach to calibrate more accurately the rBergomi and to ap-
proximate the implied volatility surface. We will however not deepen these methods in this
paper.

8 Life insurance contract valuation

Although all models are well calibrated and hence vanilla options have approximately the
same prices under all models, exotic option prices can differ dramatically. It is important
to point out that vanilla options determine the marginal distribution (at maturity T of the
option), not the process. Indeed, the underlying fine-grain properties of the process have an
important impact on path-dependent option prices. We now highlight the impact of exotic
price ranges between our four calibrated models by valuating our endowment life insurance
contract described in section 2. This way, we also emphasize the impact of rough volatility
models on long-term insurance contracts and compare more thoroughly the rBergomi model
(5) and the rough Heston model (8) in terms of long-term properties. For further reference
on equity-linked endowment valuation, we refer to Bacinello et al. [3].

8.1 Valuation

By the first fundamental theorem of asset pricing, the fair value at time t = 0 of the cash-flow
Ft in (1) is given by its discounted expected value under a risk-neutral measure P∗. However,
this cash flow also depends on the path of the Poisson process Nt which is not known at time
t = 0. Therefore, we take the following expectation conditionally to the filtration G0 to obtain
the fair value of our equity-linked endowment contract

FV0 = E
[
(1−NT )e−rT EP∗ [FT |F0]+

∫ T

0
e−rt EP∗ [Ft |F0]dNt

∣∣∣∣ G0

]
.

The processes Nt and St being independent, we obtain that

FV0 = T px e−rT EP∗ [FT ]+
∫ T

0
e−rt EP∗ [Ft ] t px µx(t)dt .

We now want to price this insurance contract with the four models we calibrated above
(Heston, Bates, rBergomi and rough Heston). We can then use a Monte-Carlo approach to
simulate their price process St (and variance process vt ) and take the average of the paid
benefit under each simulation j = 1, ...m in order to derive the expectation under P∗, i. e. :

FV0 =
1
m

m

∑
j=1

(
e−rtn Ftn, j1

{
n

∑
i=0

∆Nti, j = 0

}
+

n

∑
i=0

e−rti ∆Nti, j Fti, j1

{
i−1

∑
k=0

∆Ntk , j = 0

})
,

where the underlying price process in Ft is defined by the risk-neutral pricing equation of
each model. The discretization of their price process and variance process is given in the
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previous Section 6. Moreover, the use of a Poisson process above makes it easy to add
the mortality effect in the simulations to compute FV0. Indeed, for each simulation j ∈ m,
we generate n = T/∆ t = 5/0.001 = 5000 Poisson random variables ∆Nti, j with parameter
λ = µx(ti)∆ t for i = 0, ...,n. For the first i where ∆Nti, j = 1, we compute a death benefit Fti, j
and if ∆Nti, j = 0 for all i, we compute a survival benefit Ftn, j.

We consider the following contracts :

- A female policyholder aged x = 50 or x = 65 at time t = 0.
- We use the Belgian regulatory life table FR for the Makeham force of mortality µx(t).
- The initial amount F0 invested in the fund equals 10 000 e .
- The policyholder pays a unique premium P at time t = 0. Note that we could have

imposed in the following that FV0 = P = F0 = 10 000 e so as to make the contract
fair and then determine the corresponding κg, κm or π in (1) that verifies this condition.
However, since we aim to compare the contract’s value FV0 between models, we prefer
to fix arbitrary values for κg, κm and π and then derive the corresponding value of the
contract.

- We then assume the following parameters in Table 1 when valuating the contract :

Table 1 Parameters of the equity-linked endowments

N° of contract Gender Initial age κg κm π Maturity T

1) Female 50 0.01 0.2 0.8 5
2) Female 50 0.01 0.2 0.8 10
3) Female 50 0.01 0.2 0.4 10
4) Female 50 0.01 0.4 0.8 10
5) Female 65 0.01 0.2 0.8 15

We obtain in Table 2 the fair values of the endowments with our different models4 using
Monte-Carlo simulations with m = 200000 and working with the SSVI forward variance
curve ξ SSV I

0 (t) for the rBergomi and rough Heston models :

Table 2 Fair value of the endowment contracts with ξ SSV I
0 (t)

N° of contract Heston Bates rBergomi rough Heston
1) 14017.18 e 13442.93 e 12365,27 e 12363.09 e
2) 19353.14 e 17649.19 e 14893.48 e 14130.58 e
3) 14980.08 e 14291.13 e 12916.11 e 12755.05 e
4) 20853.01 e 19079.05 e 15412.74 e 15070.89 e
5) 24 909.56 e 21 770.53 e 16 846.11 e 15 425.45 e

We can compare Table 2 with the following Table 3 computed using the constant forward
variance curve ξ cst

0 (t) = 0.0925. We first see that the Heston model leads to a higher price
than the Bates model in both tables. Indeed, even if the long-term variance is higher in
the Bates model, the negative average jumps combined with a lower initial variance v0 and
a lower speed of mean reversion λ lead to a lower price in the Bates model. Secondly,
we have that rough-type models have a lower price than standard SV models. This can be
partly explained in Table 2 by the long-term variance (equal on average in rough models

4 Note that we consider here the standard version of the Heston model. Similar results are given in Ap-
pendix 11.3 with the forward-variance specification of the Heston model.
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Table 3 Fair value of the endowment contracts with ξ cst
0 (t)

N° of contract Heston Bates rBergomi rough Heston
1) 14017.18 e 13442.93 e 12527.35 e 12836.3 e
2) 19353.14 e 17649.19 e 15499.17 e 15430.33 e
3) 14980.08 e 14291.13 e 13261.24 e 13386.86 e
4) 20853.01 e 19079.05 e 16294.61 e 16762.31 e
5) 24 909.56 e 21 770.53 e 17 925.66 e 17 513.7 e

to ξ SSV I
0 (t)), which is lower than the long-term mean θ ∗ in the Heston and Bates model as

depicted on Fig. 5. However, if we analyze Table 3, we still have lower prices for rough
volatility models even if the average long-term variance is this time comparable. This re-
maining difference can thus be explained by the very long reversion time scale in rough
volatility models (λ → 0) and by the rough properties of the variance process (i.e. the pa-
rameter H). Moreover, we can see that the rBergomi model tends to have a higher fair value
than the rough Heston due to its lower Hurst index H and the extreme values of VP∗ [vu|Ft ]
when u is large. This is especially true at long time scales and when the participation rate π

is high. Finally, comparing the different contracts, we clearly see that the larger the maturity,
the higher is the difference between rough volatility models and standard SV models. This
will be confirmed with Table 5 below. Moreover, when the participation rate π decreases,
the fair value of the contract is logically lower since the policyholder earn a lower portion of
the yearly returns. This lower π also lead to less pronounced differences between rough and
standard SV models since their divergent sample paths properties play a lesser role. We ob-
serve the same effect when the maximal yearly return κm increases, with higher differences
in fair value between rough and standard SV models due to their divergent sample paths.

Since we said that the rough Heston model is the most consistent with risk-neutral data
while enjoying the best long-term properties, we retain the fourth column of Table 2 as be-
ing the contracts’ prices which are the most market-consistent. We confirm these effects with
the two following tables, displaying the fair value FV0 in function of the minimum yearly
guaranteed rate kg and the maturity of the contract T . These two tables are computed using
the SSVI forward variance curve but similar tables derived from ξ cst

0 (t) and from ξ mkt
0 (t)

can be found in Appendix 11 with Tables 6 and 7 and Tables 8 and 9, respectively. These
tables in Appendix 11 are also consistent with the following analyses.

Table 4 Fair value FV0 for various kg with maturity T = 10 and with ξ SSV I
0 (t)

T = 10 Heston Bates rBergomi rough Heston
kg = 0.5% 18931.16 e 17255.14 e 14494.43 e 13696.86 e
kg = 1% 19353.14 e 17649.19 e 14893.48 e 14130.58 e
kg = 2% 20262.77 e 18498.54 e 15795.31 e 15130.80 e
kg = 5% 23644.91 e 21649.22 e 19418.47 e 19072.87 e

We observe the highest differences between rough and standard SV models when kg tends
to be small. Indeed, in this case, the minimum yearly guarantee is exercised less often and
therefore the yearly returns, which are highly influenced by the sample paths, play a more
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important role. This thus leads to stronger differences in fair value between models with
divergent sample path properties.

Table 5 Fair value FV0 for various maturities T with kg = 1% and with ξ SSV I
0 (t)

kg = 1% Heston Bates rBergomi rough Heston
T = 5 14017.18 e 13442.93 e 12365.27 e 12363.09 e
T = 10 19353.14 e 17649.19 e 14893.48 e 14130.58 e
T = 20 35618.91 e 29613.34 e 20126.21 e 17677.04 e

The differences in fair value between models are also the most exacerbated when the ma-
turity of the contract is large. The impact of the sample paths properties of each model is
indeed stronger at longer time scales. In particular, the differences in long-term behavior of
the variance process are exacerbated when the maturity is large, as explained in the previous
sections and in 12.2. Combined with the fact that rough volatility models better reproduce
the statistical properties of the historical volatility thanks to their memory properties, this
confirms the importance and the added value of using rough volatility models at large time
scales (and especially the rough Heston). Particularly, the importance of the Hurst index
(controlling the roughness and memory of the variance process) is emphasized in Appendix
11 when comparing the fair values obtained with the different forward variance curves and
with the forward-variance specification of the Heston model. We indeed show that this Hurst
index has a huge impact on the contracts’ fair values, especially for large maturities. We fi-
nally want to highlight that the numbers given in the tables above can slightly change for
each run of simulations but are quite stable with our chosen m, equal to 200000.

9 Conclusion

Rough fractional stochastic volatility models are excellent candidates for reproducing im-
portant stylized facts of the past volatility time series and for providing a consistent implied
volatility surface with the observed one. In this paper, we explore more closely two tractable
implementations of the RFSV model, the rBergomi and the rough Heston models. We show
how to expand these two rough volatility models at larger time scales, we analyze their im-
plications for the pricing of long-term life insurance claims and we explain why they provide
a more accurate fair value of such long-term contracts. In particular, we study the long-term
properties of these two rough volatility models and compare them with two standard SV
models (the Heston and Bates models).

Among these four models, we conclude that the rough Heston is the most consistent with his-
torical and risk-neutral data while enjoying the best long-term properties. Indeed, this rough
Heston model with H ≈ 0.15 tends to outperform standard SV models in terms of calibration
with a better fit of the implied volatility surface and allows to better reproduce the statistical
properties of the observed historical volatility, especially at long time scales. We also re-
tain the rough Heston model as a highly tractable implementation of rough volatility models
with only three parameters to estimate and a characteristic function available in quasi-closed
form, which is not the case of the rBergomi model. Combined with the Carr-Madan formula,
the calibration and pricing of European options with the rough Heston model is hence ex-
tremely fast and accurate. Moreover, we manage to build at large time scales a stable regime
for the variance process in the rough Heston based on a SSVI parametrization of the for-
ward variance curve. This way, we obtain a model with a reasonable long-term behavior
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for its variance process while being consistent with the absence of static arbitrage. This
rough Heston is thus able to overcome the extreme and exponentially increasing variability
of the rBergomi variance process. Using the pricing methodology introduced in this paper,
a more accurate fair value of long-term equity-linked life insurance contracts is then ob-
tained in comparison with the rBergomi and standard SV models. This is especially true at
large maturity where the good properties of the rough Heston model have a stronger im-
pact. More precisely, we obtain with the rough Heston model a fair value significantly lower
than in standard SV models due to the long-reversion time scale and the rough property of
volatility. This highlights the added-value of using this rough Heston model when pricing
long-term life insurance contracts.

As future work, we should re-calibrate all the models considered in this paper on other
market data of European options. Choosing an other index/stock with a larger set of avail-
able maturities and at another point in time should help us to confirm and validate the results
derived with our methodology. Moreover, more advanced mortality models could be con-
sidered such as in [29] or in [11].

Appendix

10 SSVI forward variance curve

The surface SVI (SSVI) introduced in [25] provides a tractable arbitrage-free parametriza-
tion of the implied volatility surface. SSVI is based on a simple closed-form representation
of this volatility surface, which allows an extremely efficient calibration of this parametriza-
tion to observed implied volatility data. For a more detailed survey on such surface SVI,
we refer to [25]. We simply recall here that SSVI parametrizes the total implied variance
(usually denoted w(k,θt)) in terms of the log-strike k, of the ATM total variance θt (which
is assumed to be read on the market), of a constant leverage parameter ρ and of a curvature
function ϕ(θt). We will consider the widely-used power-law curve for ϕ ,

ϕ(θt) =
η

θ
γ

t (1+θt)
1−γ

,

since it allows a SSVI volatility surface completely free of static arbitrage (no calendar
spread and butterfly arbitrages) provided that γ ∈ (0,1/2] and η(1+ |ρ|)≤ 2. This function
also allows to be consistent with the power-law shape of the observed term structure of ATM
volatility skew (cfr Section 5).

We then used the algorithm described in Section 5.2 of [25] with our power-law SSVI in
order to calibrate the parameters (ρ,η ,γ) to implied volatility data while avoiding static
arbitrage. The optimal parameters ρ∗,η∗ and γ∗ are equal respectively to (-0.6842, 1.1536,
0.3410) in such a way that the non-arbitrage conditions above are verified. With these param-
eters, we obtain Fig. 12 below depicting the excellent fit of the power-law SSVI parametriza-
tion to observed implied volatility data. We observe that the fit quality is almost perfect.
There is only a slight deviation from the data for the shortest maturity T = 0.027. The as-
sociated forward variance curve to this SSVI parametrization is then given by Fig. 13 and
is again obtained as in[24] by approximating the value of a variance swap by the value of
a log-contract of the same maturity, built this time upon the SSVI parametrization of the
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Fig. 12 Blue dots are the observed mid implied volatilities, the orange solid line is the power-law SSVI fit

volatility surface. Note that this SSVI forward variance curve is interpolated between ob-
served maturities such as to ensure the absence of arbitrage in the interpolated volatility
surface, following the methodology described in Section 5.3 of [25].

Fig. 13 Initial SSVI forward variance curve ξ SSV I
0 (t) between 0 and 1.2 years. The black dots are the values

of ξ SSV I
0 (t) for the observed maturities
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The objective now is to extrapolate in an arbitrage-free way the SVI surface beyond the last
available maturity T = 1.2. As explained again in Section 5.3 of [25], we first need a mono-
tonic increasing extrapolation of θt which is asymptotically linear in time. Based on Fig. 14
below depicting the values of θt for the observed maturities, we clearly see that a simple
linear regression appears to provide the best fit (while being of course asymptotically linear
in time). Let tn be the last available maturity in the data. According to [25], the total implied

Fig. 14 Red dots are values of θt for the available maturities, the red line is the linear fit

variance for t > tn can now be extrapolated by

w(k,θt) = w(k,θtn)+θt −θtn ,

while remaining free of static arbitrage (cfr Theorem 4.3 [25]). Finally, the forward variance
curve is again retrieved from the extrapolated values w(k,θt ) by valuating log-contracts.
The extrapolated forward variance curve based on this power-law SSVI parametrization is
depicted in Section 4.3 on Fig. 5.

11 Calibration and valuation based on other forward variance curves

11.1 Constant forward variance curve

Rough Heston :

Using the constant forward variance curve ξ cst
0 (t) = 0.0925, we obtain in a first step the

following set of initial parameters from the SA global optimizer : (0.1235, 0.6383, -0.6415).
Using our local optimizer, we then find a minimal RMSE of 0.11097 with the following
(same) final parameter values Θ ∗:

H∗ ν∗ ρ∗

0.1235 0.6383 -0.6415
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The fit is thus poorer than with the initial SSVI forward variance curve ξ SSV I
0 (t). The vol-

of-var parameter ν∗ and the anti-correlation ρ∗ are close to values obtained previously with
ξ SSV I

0 (t) but the Hurst index H∗ is now lower and closer to the historical estimate (= 0.13).

rBergomi :

Using ξ cst
0 (t) = 0.0925, we find a RMSE of 0.0851 with the initial set of parameters (0.12,

1.55, -0.90). This leads to the following final parameter values Θ ∗:

H∗ η∗ ρ∗

0.1231 1.8636 -0.8951

Hence, we obtain a slightly better fit than with the rBergomi based on the SSVI forward
variance curve (and almost as good as the SSVI rough Heston). However, we have an even
higher vol-of-var parameter compared with the SSVI forward variance curve

ν
∗ = η

∗√2H∗/(2CH) = 1.137

This huge level ν∗ again leads to unrealistic sample paths. We also obtain a lower Hurst
index H∗. Moreover, we still have a stability issue when calibrating this rBergomi model
with a high variability of the results in function of the chosen number of paths and steps
(here, m = 1000000 and n = 300 for the calibration).

Furthermore, the two Tables 6 and 7 display the fair value FV0 in function of the minimum
yearly guaranteed rate kg and the maturity of the contract T .

Table 6 FV0 for various kg with maturity T = 10 and ξ cst
0 (t)

T = 10 rBergomi rough Heston
kg = 0.5% 15086.55 e 15041.99 e
kg = 1% 15492.96 e 15430.33 e
kg = 2% 16403.19 e 16334.91 e
kg = 5% 20015.25 e 20048.91 e

Table 7 FV0 for various maturities T with kg = 1% and ξ cst
0 (t)

kg = 1% rBergomi rough Heston
T = 5 12527.35 e 12836.30 e

T = 10 15492.96 e 15430.33 e
T = 20 22079.51 e 21124.48 e

If we compare these two tables with Tables 4 and 5 derived from the SSVI forward variance
curve, we see that the obtained fair values are significantly higher when using the constant
forward variance curve ξ cst

0 (t). For the rough Heston, we said above that the main differ-
ence in terms of calibration is the lower Hurst index when considering ξ cst

0 (t). Therefore,
the comparison of these two forward variance curves shows the impact of the roughness
and memory properties of the variance process on the contracts’ prices. A lower Hurst in-
dex leads to a higher fair value. Moreover, we observe that the differences in fair values
when considering the two forward variance curves are the most exacerbated at large time
scales. This comparison hence emphasizes the importance of taking the roughness/memory
property of the variance process into account, especially for large maturities.



Impact of rough stochastic volatility models on long-term life insurance pricing 31

11.2 Market forward variance curve

Rough Heston :

Using the market forward variance curve ξ mkt
0 (t), we obtain in a first step the following

set of initial parameters from the SA global optimizer : (0.1206, 0.4131, -0.8015). We then
obtain with our local optimizer a minimal RMSE of 0.09235 with the following (same) final
parameter values Θ ∗:

H∗ ν∗ ρ∗

0.1206 0.4131 -0.8015

The fit is thus poorer compared with the fit derived from the SSVI forward variance curve
but better than when using ξ cst

0 (t). The Hurst index is again lower and very close to the
historical estimate. We also observe that the volatility of variance parameter ν∗ is lower
compared to the SSVI parametrization and we obtain this time a stronger anti-correlation
ρ∗.

rBergomi :

We find a RMSE of 0.1479 with the initial set of parameters equal to (0.1, 1.45, -0.99).
This leads to the following final values Θ ∗:

H∗ η∗ ρ∗

0.1357 1.4614 -0.9967

The quality of the fit is clearly poorer compared with ξ SSV I
0 (t) and ξ cst

0 (t). The vol of var
parameter is this time lower and more reasonable. We indeed have ν∗ = η∗√2H∗/(2CH) =
0.8804. We again obtain a lower Hurst index compared with the SSVI forward variance
curve.

Table 8 Fair value FV0 for various kg with maturity T = 10 and ξ mkt
0 (t)

T = 10 rBergomi rough Heston
kg = 0.5% 14518.48 e 13817.37 e
kg = 1% 14909.54 e 14228.54 e
kg = 2% 15785.42 e 15196.15 e
kg = 5% 19301.23 e 19075.75 e

Table 9 Fair value FV0 for various maturities T with kg = 1% and ξ mkt
0 (t)

kg = 1% s rBergomi rough Heston
T = 5 12291.17 e 12371,10 e

T = 10 14909.54 e 14228.54 e
T = 20 20639.81 e 18293.85 e

Since the market forward variance curve lies below the SSVI forward variance curve for
the considered maturities, we would expect a lower fair value of our contract using ξ mkt

0 (t)
instead of ξ SSV I

0 (t). However, for both the rough Heston and the rBergomi, the lower Hurst
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index H and the lower parameter ν both lead to an increase of the contract’s prices and
hence, they compensate for the lower average values of vt . This is why we observe very
similar fair values when using the two forward variance curves (cfr Tables 8 and 9 vs. Tables
4 and 5). For large maturities or small values of κg, we see that we even obtain a higher fair
value when using the market forward variance curve ξ mkt

0 (t). Again, this comes from the
fact that the sample paths properties are exacerbated when the maturity is large or when
the minimal guarantee κg is low. This comparison also shows that the Hurst index H (and
hence the roughness/memory property of the variance process) has a strong impact on the
fair value of insurance contracts, especially at large time scales. This emphasizes once again
the importance of using rough volatility models.

11.3 Forward Heston model

In order to provide a better comparison with rough volatility models, we finally introduce the
forward-variance specification of the Heston model. From Gatheral and Keller-Ressel [27],
we have that the Heston model is an affine forward variance model, as explained in Section
3.2. Hence, the characteristic function of the log-asset price Xt = logSt at time 0 under the
Heston model can be written as previously by (9) where we use the SSVI forward variance
curve ξ SSV I

0 (t) and where we need to solve the Riccati ODE (10). Using well-known nu-
merical methods to solve this Riccati ODE and applying the Carr-Madan formula with the
characteristic function above, it is quite simple to calibrate and find the optimal parameters
(λ ∗,ρ∗,ν∗) based on the observed European options and based on the SSVI forward vari-
ance cure ξ SSV I

0 (t). We find a RMSE of 0.1182 with the following optimal parameters :

λ ∗ ν∗ ρ∗

3.02522 1.42928 -0.71762

The RMSE and the final parameters of this forward-variance specification of the Heston
model are highly similar to the ones derived above in Section 4.2 for the classical Heston
model. However, for pricing our life-insurance contract, we still need to calibrate the mean-
reversion level θ and the initial variance level v0. The constant parameter θ is not flexible
enough to deal with the observed forward variance curve and we therefore need to con-
sider an extension of the Heston model where we allow the mean-reversion level θ(t) to be
time-dependent. In order to fit the market and recover the SSVI forward variance curve, the
authors in [10] show that we must set

θ(t) =
∂

∂ t ξ SSV I
0 (t)
λ

+ξ
SSV I
0 (t) and v0 = ξ

SSV I
0 (0) .

This indeed allows to have EP∗ [vt |F0] = ξ SSV I
0 (t) in this model. We then obtain the following

Tables 10 and 11 giving the fair value FV0 of the contracts above under the forward-variance
specification of the Heston model. We clearly see that the forward-variance specification of
the Heston model provides lower fair values compared with the standard Heston model due
to the lower mean-reversion level. The mean-reversion function θ(t) indeed lies below the
value θ ∗ = 0.0967 of the standard Heston model at any time scales. We again see that this
forward-variance Heston model provides a higher fair value than rough volatility models
even if their average long-term variance is this time comparable since EP∗ [vt |F0] = ξ SSV I

0 (t)
in each model. This once again emphasizes that the rough property of the variance process
induced by the index H∗ has a strong impact on the obtained fair values of long-term life
insurance contracts.
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Table 10 FV0 for various kg with maturity T = 10 and ξ SSV I
0 (t)

T = 10 Heston fwd Heston rBergomi rough Heston
kg = 0.5% 18931.16 e 17370.17 e 14494.43 e 13696.86 e
kg = 1% 19353.14 e 17750.09 e 14893.48 e 14130.58 e
kg = 2% 20262.77 e 18581.37 e 15795.31 e 15130.80 e
kg = 5% 23644.91 e 21790.04 e 19418.47 e 19072.87 e

Table 11 FV0 for various maturities T with kg = 1% and ξ SSV I
0 (t)

kg = 1% Heston fwd Heston rBergomi rough Heston
T = 5 14017.18 e 13442.93 e 12365.27 e 12363.09 e
T = 10 19353.14 e 17750.09 e 14893.48 e 14130.58 e
T = 20 35618.91 e 28928.57 e 20126.21 e 17677.04 e

12 Figures

12.1 Risk-free rates

Table 12 European risk-free interest rates between 0 and 20 years

Maturity Rate Maturity Rate
Overnight -0.55486 % 8 years -0.26535 %

7 days -0.52686 % 9 years -0.23026 %
1 month -0.494 % 10 years -0.19118 %
2 months -0.44157 % 11 years -0.15312 %
3 months -0.43514 % 12 years -0.11707 %
6 months -0.35386 % 13 years -0.08303 %

1 year -0.36767 % 14 years -0.07203 %
2 years -0.38775 % 15 years -0.02600 %
3 years -0.39076 % 16 years -0.00200 %
4 years -0.37771 % 17 years 0.00099 %
5 years -0.35563 % 18 years 0.0020 %
6 years -0.33054 % 19 years 0.01100 %
7 years -0.29945 % 20 years 0.03599 %

12.2 Conditional variance process

The rBergomi variance process is conditionally log-normal and we can prove that

VP∗ [vu|Ft ] = ξt(u)2 (exp
(
η

2(u− t)2H)−1
)
. (17)

Hence, this quantity increases exponentially with u, leading to extreme swings and vari-
ability in the rBergomi variance process for large maturities. We see that VP∗ [vu|Ft ] also
depends on the forward variance curve, but since this curve is stable for large maturity (cfr
Fig. 5 and 4), it does not contribute to the exponential growth of VP∗ [vu|Ft ].

For the rough Heston, using Ito isometry and conditional log-normality, we find

VP∗ [vu|Ft ] =
ν2

[Γ (H +1/2)]2

∫ u

t
(u− s)2H−1

ξt(s)ds . (18)
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Since the forward variance curve is almost constant for large maturities, we make the as-
sumption that this curve is fixed to a constant K so as to obtain the following approximation
at t = 0 :

VP∗ [vu|F0]≈
K ν2

[Γ (H +1/2)]2 2H
u2H .

This approximation allows to see that the rate of increase of the quantity VP∗ [vu|F0] is
approximately u2H , which leads to a slowly increasing behavior as confirmed on Figure 15.
Using the SSVI forward variance curve ξ SSV I

0 (u) in 17 with η = 1.6803 and H = 0.1515
and using again ξ SSV I

0 (u) with ν = 0.6241 and H = 0.1703 in equation 18 , we obtain the
following figure Fig. 15 at t = 0.

Fig. 15 Comparison of VP∗ [vu|F0] in function of u between the rough Heston and the rBergomi models

12.3 ATM volatility skew term structure

Fig. 16 Empirical fit (blue) vs. Heston and Bates fit (green) of ψ(τ), CAC 40
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Fig. 17 Empirical fit (blue) vs. rough Heston and rBergomi fit (green) of ψ(τ), CAC 40
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35. Mrázek, M., Pospı́šil, J., Sobotka, T.: On calibration of stochastic and fractional stochastic volatility

models. European Journal of Operational Research 254(3), 1036–1046 (2016)
36. Ninomiya, S., Victoir, N.: Weak approximation of stochastic differential equations and application to

derivative pricing. Applied Mathematical Finance 15(2), 107–121 (2008)
37. Van Laarhoven, P.J., Aarts, E.H.: Simulated annealing. In: Simulated annealing: Theory and applications,

pp. 7–15. Springer (1987)

View publication stats

https://www.researchgate.net/publication/361548231

	Introduction
	Life insurance contract
	Key features of the RFSV model
	Calibration
	Volatility surface fit
	Simulation and discretization methodology
	Conclusion of the fit
	Life insurance contract valuation
	Conclusion
	SSVI forward variance curve
	Calibration and valuation based on other forward variance curves
	Figures

