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Abstract

The remarkable classical pattern of the discrete Theodorus spiral, or
square root spiral, can intuitively be supplemented by a closely related
inner spiral asymptotic to it. A "nice’ interpolating analytic curve was
constructed by Philip J. Davis (1993) as an infinite product satisfying
the same functional equation as the discrete points. The analytic
continuation of the Davis solution to a different sheet of its Riemann

surface interpolates the points of both spirals.
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The Twin Spiral and its Common Monotonic Analytic
Interpolant
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1. A Functional Equation

ﬁ:Hﬂ:mm@;_ rn = |F.|, ®,=argF,, n=12 ..., (1)
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Relations (functional equation):
1
rn = \/1, $:+HI$:HE.n_UmEA|u_ =0, neN. (2)

Cumulative sum and product for n € IN:

ﬁmﬂmanﬁmsﬁwu_ ﬁmﬂmﬁwu_'wu_ nelN. (3)

The inner discrete spiral (,, 1s obtained from
(l

G (1= =) =Fari=Fo- (14 =), m=vh, A=1. (4

'n n
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Ph. J. Davis Interpolating Curve, 1993

Use Euler's idea of “telescoping” infinite products (or sums) for

constructing the gamma function as an interpolant to the factorial:

®,, = MU arctan ﬁa\H\Hu — arctan ﬁa\r IHH n :.u . (5)

k=1

Given also in the reference Heuvers, Moak, Boursaw (HMB), 2000 (Slide13)

For n € N this is equivalent with the finite sum (3), therefore satisfies
the functional equation (2). The infinte sum converges absolutely for

n € R, ; therefore (5) defines an analytic solution of (2).
Substituting (5) into (1) yields Davis" infinite product

F,=F(n)=]]
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2. Analytic Continuation
A natural new parameter: 7 :=4\/n e R, &, = &(n) = ®(r?) =: p(r)

In the terms 7}, of (5) with & > 1 all square roots must consistently be

taken with the positive sign for any value of n = r2. In contrast, the

term 77 with & = 1 passes through a branch point at r = 0. The
analytic continuation of T’ to negative values of r changes the sheet of

its Riemann surface at r = 0.

Analytic continuation:

H 31
m_Hn_um_.E ﬁﬂu =5~ Enﬁmﬁﬁl_ﬂmﬁ. _Mﬂ_

Arctan(r) denotes the principal branch of the arctan function with

branch cuts on the imaginary axis from 7 to 10c and from —i2 oo to —i.
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Equation (5) with n = 2, r € R becomes

0 - 1 1
o(r) = ——+Arctan(r)+ arctan | —= ) — arctan
p(r) =~ "+ (=) (==
(8)
¢(r) satisfies the functional equation
e(Vr2+1) = w(r)+ m — Arctan(r), relR, (9)

and the sign change in r is governed by

w(—r) = p(r) —2 Arctan(r), rclk. (10)

10
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The Functions ¢(r) and ®(r?)

polar angle ¢{r}=¢|{r2}|

r:=+/—sagrt(n), orn = _,m‘ respectively

The polar angle »(r) = ®(r?) as a function of r or of 2. The marked
points are r; = 1.8191988282, ro = —3.0958799878, v = ® = 7/2

11
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3. Uniqueness

A functional equation of the type of p. 6, Equ. (2) has many “nice",
even analytic, solutions.

Example:

F(r+1)—F(z) =1 issolved by F(x)=z+ p(x),
where p is any l-periodic function, e.g. p(z) = ¢ sin(2 7 ).
Distinguished solution: No oscillations, monotonic derivative —

p(xr) = const., F(z)= = + const..

Monotonic F'is unique up to a constant.

12
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Theorem by HMB and Gronau

General solution of the functional equation (2): ¥(n) = p(n) + ®(n)
with p(n) being any 1-periodic function, and ®(n) is defined in Equ.
(5). If ¥(n) is monotonically increasing, p(n) is a constant function.

If in addition ¥(1) = 0 then p(n) = 0.
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A Non-Monotonic Spiral

14
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Corresponding Non-Monotonic Polar Angle

polar angle ¢

2

-3 Q 3 1d

r:=+/—sgrtin), orn:= ﬂm_ respectively

Polar angle: ®nonmon _T..mu_ = n@_ﬂﬂmu_ + 0.03 mmﬂ_ﬁm qﬁ.ﬂmu_

15
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4. Summation of Series by Contour Integration

Efficient evaluation of (8). r € [0, 1] suffices; otherwise use (9), (10).

e Difficulty: Slowly converging series.
e Helpful: Terms depend analytically on the index k.

e Techniques of accelerating convergence may help a little bit.

There are better methods:
e Write the sum as a contour integral (Residue theorem backwards).

e Deform the path of integration appropriately.

e Trapezoidal rule (after appropriate transformation of the integrand).

16
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A Summation Formula

The function z +— 7 cotan(m z) has a first-order pole of residue 1 at every
Integer point. Use a contour C' passing from oc in the first quadrant to
oo in the fourth quadrant, intersecting the real line in the interval (0, 1).

Deform C' into the line z = w +1y, oo >y > —oc. |his yields the

Theorem: Let s: z+— s(z) be analytic in D := {z | | arg(z) | < 7/2}

with s(z) = s(z) and s(2) = O0(27%), a>1las |z]| - oo, z€ D. Then

> 1

S = Mum?.u_ = W \l H_Hm_mm —iy) tanh(my) dy . O

oo

17
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Application to the Sum in Equ. (8)

To avoid cancellation, write the term {...} in the sum (8) as

rZ —1
s(z) := arctan ﬁ_ﬂml_'q.mu_#\mlT PRI W Hu.

In view of (8) use the contour

e
|

— —1iy.
The change of variables
y = sinh (sinh(¢)), dy = cosh (sinh(¢)) cosh(t)dt, teR

yields a quickly decaying integrand (doubly exponential decay).

18
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5. Transformations

Use an appropriate transformation = = ¢(t), ¢ € R in order to transform

the integral under consideration,

T\u%ﬁﬁ

to the integral of a quickly decaying analytic function over [E.
Desired properties of ¢:
e analytic, monotonic

e quickly and accurately computable, e.g. a combination of

elementary functions

Result:

- Toydt with g(t) = £(6(8) &'(8)

19
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Examples

o

o o A W

Interval

Finite interval, z € (—1,1):

Finite interval, = € (0,1):

Semi-infinite interval, = € (0, 00):
Real line &, enhance the decay:
Real line &, enhance decay ast — +oc:

Real line K, enhance decay ast — —oc:

Transformation

r = ¢1(t) = tanh(/2)
1

€L = ﬁm@u - 1 +mHﬁ_MIS

r = ¢3(t) = exp(t)

Remark. In the case of finite boundaries integrable boundary

singularities are allowed.

20
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6. Numerical Quadrature by the Trapezoidal Rule

Let f be such that its integral over IR exists,

HH\MEU&H.

Trapezoidal sum, step h, offset 7 :

[ ]
T(h,7)=~h MU flr +jh),
J=—0D0
Periodicity:
T(h,7)=T(h, 7+ h)

Refinement:
1

m:ﬁ..w_ ,JH 5 hm:ﬁf ﬂu_+m4_ﬂ_q~_ﬂ+ ..HIMU_V

21
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Truncation of Infinite Trapezoidal Sums

T(h,s)=h MUH f(s+ jh).

J—=Tn

Desirable truncation rule: Truncate if |f(z)| < &, where = := s+ jh, and

£ > 0 s a given tolerance reflecting the working precision.

A (moderately) robust implementation:

e Choose an interior point xy and accumulate two separate sums

upwards from zn + h and downwards from xg

e Truncate each sum if two (or three) consecutive terms do not

contribute to the sum

22
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The Truncation Error

Remainder for the truncation limit X:
Rx _H\ flz) dz, where f(X)=:=
X

(i) Algebraic decay:

. Y ov/ (14
.un_MHU_HH.l_D.l.__ _M.HUUDU__ ..mvn” — =
¥ ¥

No good! Remainder may be >>¢=. E. g. Rx = O(/2) for a = 1.
(ii) Exponential decay:

1
flz)=€e"", (a>0), Ry=—¢e " =
)

2 m

Better, but dangerous if o << 1.

23
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(iii) Doubly exponential decay:

flz) = exp(—e®?), (a>0),

1
Rx

¥

Truncation limit:

1 1
flX)=2 — X = — loglog—,
¥ £
therefore
£ 1 _
Ry = —— +O((log =)~
a \ log =

Truncation is safe even for a@ << 1 if £ is sufficiently small.

= _m,uﬂu_m|m_ﬂu.ﬂu_ ﬁml_ﬂuﬁ|mlm_ﬂuﬂl_lm_ mlm_u..n.ml_l.

24
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T he Discretization Error

HH\MiHEH.

Fourier Transform: flw) = [ e flz)do, I= F(0)
Trapezoidal sum with offset:  T'(h,7):=h 52 f(ih+T)
Poisson summation formula: T'(h,7) = PV M“manlnm.w,? mmv gl 7 h-2m/h

For offset 7 = 0 we obtain the error formula

H?_SLummmﬂJ i%&ﬂav +mmmﬂav +wm|.ﬁﬂav +.

Theorem. The discretization error of the infinite trapezoidal sum for a
small step h > 0 1s asymptotic to the sum of the Fourier transform
values of the integrand at +27/h.

25
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Particular cases

(i) Integrand analytic in a strip of the complex plane

Let f(x) be analytic in _HE_MHU__ <7, v > 0. Then

.W_MEU_ =O0(e "9l forany £>0, as w— +oo,

and the discretization error for h — 0 is

T(h,0) — T = O(e”""9)%)  with w:=2m/h.

(i1) Proliferation of singularities due to sinh transformations

Convergence may be slower, such as (with some ~ > 0)

T(h,0) —I = O(e~ 79/ 1oel@)y or T(h,0) —1 = O(e 7 V).

206
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Breeding Singularities by sinh Transformations, [

Poles of 1/i1 +mm”_

27

oo iz
—oo 1422

First sinh transformation

Second sinh tmnsformation
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Experiments in PARI/GP
Evaluating the sum in (8) by means of the PARI function

{fet(t) =
sh = sinh(t); y = sinh(sh); dy = cosh(sh)*cosh(t); z = 3/2 + I*y;
dy * tanh(Pi*y) * imag(atan((l-rr)/((z+rr)*sqrt(z)+(z+1)+*sqrt(z+rr-1))))

¥
with the global argument rr=r% = 0.25 and the trapezoidal rule with
steps h =1, 3, 1,... yields (with a loss of at most 2 digits):
Working precision 19 38 67 105 144 192 298 404
Reciprocal step 32 64 128 256 512 512 1024 2048

1.6 GHz seconds .01 .05 19 .70 235 404 186 679

C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier:
The software package PARI. http://pari.math.u-bordeaux.fr/
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7. Asymptotics

Equation (2) admits a formal solution of the form
O(n)=~(n)+con24+cin V2 4eon ™32 4. (11)

where v(n) is any 1-periodic function of n. The coefficients ¢ satisfy

the relation

k

> wl__ T:w k=0,1,2 (12)
b = — p—
s \k+1—1 Yok RS

which may be solved recursively by

WIH
MT% WL 5
n|| wng::: 5
kT 42 M E—1)k+1—-1" (13)
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The first few coefficients are found to be
1 1 1 5 1 521

__n_n_”wu Clp — — nm”|g_nm

mu

T OR40T T ROG4TC T 12240 0T
e Coefficients seem to decrease

e The numerator 521 destroys any hope for a simple behaviour
e 7(n) = = const. yields "distinguished” solutions, monotonic at oo

e Comparison of (11) with the sum (3) yields (n=52, 36 terms in (11))

v = —2.15778 29966 59446 2209291427 86820 57772 35041 39598 60756

e Unfortunately, this is not rigorous since the series (11) is divergent

2196480

30



Jorg Waldvogel, ETH Ziirich

The Series Coefficients

Equ. (12) may be written by means of a lower triangular matrix L and a
column vector ¢ = [cp, ¢1,...|7. The inverse matrix (also lower
triangular) is given by

1 By (k-1
kE+1-1 k—1 2 _m.nu..ngﬁm_

hLuﬁ u — (-1
Trigr Trig] _H H_ _mmlw I | 1 =

where B; are the Bernoulli numbers. This leads to a closed form of the

coefficients ¢;, resulting in the asymptotic formula (for [ — oc)

. Tz
e Re(pil), p=.27547—.10375i = erf(2)
T g

z = (1+i).

31
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Coefficients of the Asymptotic Series, Scaled

=...z.E;.... B S T S E S

ShEsE L,
1

Scaled coefficients, ¢; (27)" (I — 2)!, versus [ < 32
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The Euler Constant of the Theodorus Spiral (Slide 30)

n—1
. 1
y = lim WL_ ?2% A,\mu —2 ,\mv — —2.15778 29966 59446 . . .

Use the Euler-Maclarin summation formula with remainder term:

M flk) = .\h; flz)dz — f(n) +.\ha ({z}— ww f(x) dx .

k=1"

With f(x) := arctan mHlimU we obtain

|
=
=S
3
|
g
O
b
3
bo
ot
=2
o
£
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8. Conclusions

The spiral of Theodorus (Th. of Cyrene, 465 - 398 B.C.) provides a

wide field of challenges in theoretical and numerical mathematics:

The monotonic solution of the corresponding functional equation
was first given by Ph. Davis (1993), independently rediscovered by
Heuvers, Moak and Boursaw (2000).

The analytic continuation presented here seems to be new.
A numerical challenge is the summation of slowly convergent series.

As an efficient technigque, summation by contour integration and

numerical quadrature by the trapezoidal rule is suggested.
The trapezoidal rule quickly integrates analytic functions over .

The asymptotic expansion of the polar angle provides an alternate

fast algorithm for evaluating the relevant mathematical functions.
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