Functional Equations, Summation of Series, The Theodorus Spiral: An Exercise in Quadrature, and Asymptotics

Seminar für Angewandte Mathematik Jörg Waldvogel, ETH Zürich

Swiss Numerical-Analysis Colloquium University of Basel, April 24, 2009

Abstract

surface interpolates the points of both spirals. the same functional equation as the discrete points. The analytic inner spiral asymptotic to it. A "nice" interpolating analytic curve was square root spiral, can intuitively be supplemented by a closely related continuation of the Davis solution to a different sheet of its Riemann constructed by Philip J. Davis (1993) as an infinite product satisfying The remarkable classical pattern of the discrete Theodorus spiral, or

References

Philip J. Davis: Spirals: From Theodorus to Chaos. A. K. Peters, 1993, 220 pp.

Walter Gautschi: The spiral of Theodorus, special functions, and numerical analysis. In Ph.J. Davis, loc. cit., 67-87.

Interpolant The Twin Spiral and its Common Monotonic Analytic

Outline 1. A functional equation

) <u> </u>	1. A functional equation) Л
5	2. Analytic continuation	œ
ω	3. Uniqueness	12
4	4. Summation of series by contour integration	16
5	5. Transformations	19
9	6. Numerical quadrature by the trapezoidal rule	21
7.	7. Asymptotics	29
∞	8. Conclusions	34

1. A Functional Equation

The outer discrete spiral, complex coordinates and polar coordinates:

$$F_n = r_n e^{i\Phi_n}, \quad r_n = |F_n|, \quad \Phi_n = \arg F_n, \quad n = 1, 2, \dots,$$
 (1)

Relations (functional equation):

$$r_n = \sqrt{n}$$
, $\Phi_{n+1} - \Phi_n = \arctan\left(\frac{1}{\sqrt{n}}\right)$, $\Phi_1 = 0$, $n \in \mathbb{N}$. (2)

Cumulative sum and product for $n \in \mathbb{N}$:

$$\Phi_n = \sum_{k=1}^{n-1} \arctan\left(\frac{1}{\sqrt{k}}\right), \quad F_n = \prod_{k=1}^{n-1} \left(1 + \frac{i}{\sqrt{k}}\right), \quad n \in \mathbb{N}. \quad (3)$$

The inner discrete spiral G_n is obtained from

$$G_n \cdot \left(1 - \frac{i}{r_n}\right) = F_{n+1} = F_n \cdot \left(1 + \frac{i}{r_n}\right), \quad r_n = \sqrt{n}, \quad F_1 = 1. \quad (4)$$

Ph. J. Davis' Interpolating Curve, 1993

Use Euler's idea of "telescoping" infinite products (or sums) for constructing the gamma function as an interpolant to the factorial:

$$\Phi_n = \sum_{k=1}^{\infty} \left\{ \arctan\left(\frac{1}{\sqrt{k}}\right) - \arctan\left(\frac{1}{\sqrt{k-1+n}}\right) \right\}.$$
 (5)

Given also in the reference Heuvers, Moak, Boursaw (HMB), 2000 (Slide13)

 $n \in \mathbb{R}_+$; therefore (5) defines an analytic solution of (2). the functional equation (2). The infinte sum converges absolutely for For $n\in\mathbb{N}$ this is equivalent with the finite sum (3), therefore satisfies

Substituting (5) into (1) yields Davis' infinite product

$$F_n = F(n) = \prod_{k=1}^{\infty} \frac{1 + \frac{i}{\sqrt{k}}}{1 + \frac{i}{\sqrt{k} - 1 + n}}, \quad n \in \mathbb{R}_+.$$
 (6)

2. Analytic Continuation

A natural new parameter: $r:=\pm\sqrt{n}\in\mathbb{R}, \ \Phi_n=\Phi(n)=\Phi(r^2)=:\varphi(r)$

term T_1 with k=1 passes through a branch point at r=0. The taken with the positive sign for any value of $n=r^2$. In contrast, the In the terms T_k of (5) with k>1 all square roots must consistently be its Riemann surface at r=0. analytic continuation of T_1 to negative values of r changes the sheet of

Analytic continuation:

$$\arctan\left(\frac{1}{r}\right) = \frac{\pi}{2} - \operatorname{Arctan}(r), \ r \in \mathbb{R}.$$
 (7)

branch cuts on the imaginary axis from i to $i \infty$ and from $-i \infty$ to -i. $\mathsf{Arctan}(r)$ denotes the principal branch of the arctan function with

The arctan Function

Equation (5) with $n=r^2, r \in \mathbb{R}$ becomes

$$\varphi(r) = -\frac{\pi}{4} + \operatorname{Arctan}(r) + \sum_{k=2}^{\infty} \left\{ \arctan\left(\frac{1}{\sqrt{k}}\right) - \arctan\left(\frac{1}{\sqrt{k-1+r^2}}\right) \right\} \; .$$

 $\varphi(r)$ satisfies the functional equation

$$\varphi(\sqrt{r^2+1}) = \varphi(r) + \frac{\pi}{2} - \operatorname{Arctan}(r), \quad r \in \mathbb{R},$$
 (9)

and the sign change in \emph{r} is governed by

$$\varphi(-r) = \varphi(r) - 2\operatorname{Arctan}(r), \quad r \in \mathbb{R}.$$
 (10)

The Functions arphi(r) and $\Phi(r^2)$

points are $r_1=1.8191988282,\ r_2=-3.0958799878,\ \varphi=\Phi=\pi/2$ The polar angle $\varphi(r) = \Phi(r^2)$ as a function of r or of r^2 . The marked

3. Uniqueness

even analytic, solutions A functional equation of the type of p. 6, Equ. (2) has many "nice",

Example:

$$F(x+1) - F(x) = 1$$
 is solved by $F(x) = x + p(x)$,

where p is any 1-periodic function, e.g. $p(x) = c \sin(2 \pi x)$.

Distinguished solution: No oscillations, monotonic derivative \implies

$$p(x) = \text{const.}, \quad F(x) = x + \text{const.}.$$

Monotonic F is unique up to a constant.

Theorem by HMB and Gronau

(5). If $\Psi(n)$ is monotonically increasing, p(n) is a constant function. with p(n) being any 1-periodic function, and $\Phi(n)$ is defined in Equ. General solution of the functional equation (2): $\Psi(n) = p(n) + \Phi(n)$ If in addition $\Psi(1) = 0$ then p(n) = 0.

References

K.J. Heuvers, D.S. Moak and B. Boursaw: The functional equation of the square root spiral. In: T.M. Rassias (ed.): Functional Equations and Inequalities, Kluver, 2000, 111-117.

Detlef Gronau: The spiral of Theodorus.

Amer. Math. Monthly 111, 2004, 230-237.

Steven Finch: Constant of Theodorus http://algo.inria.fr/csolve/th.pdf, April 9, 2005

A Non-Monotonic Spiral

Corresponding Non-Monotonic Polar Angle

Polar angle: $\Phi_{\rm nonmon}(r^2)=\Phi(r^2)+0.03\,\sin(2\,\pi\,r^2)$

4. Summation of Series by Contour Integration

Efficient evaluation of (8). $r \in [0, 1]$ suffices; otherwise use (9), (10).

- Difficulty: Slowly converging series.
- Helpful: Terms depend analytically on the index k.
- Techniques of accelerating convergence may help a little bit.

There are better methods:

- Write the sum as a contour integral (Residue theorem backwards).
- Deform the path of integration appropriately.
- Trapezoidal rule (after appropriate transformation of the integrand).

A Summation Formula

integer point. Use a contour C passing from ∞ in the first quadrant to Deform C into the line $z=\frac{1}{2}+iy,\;\infty>y>-\infty.$ This yields the ∞ in the fourth quadrant, intersecting the real line in the interval (0,1).The function $z \mapsto \pi \cot (\pi z)$ has a first-order pole of residue 1 at every

with $s(\bar{z})=s(z)$ and $s(z)=O(z^{-\alpha}),\ \alpha>1$ as $|z|\to\infty,\ z\in D.$ Then **Theorem:** Let $s: z \mapsto s(z)$ be analytic in $D:=\{z \mid |\arg(z)| < \pi/2\}$

$$S := \sum_{k=1}^{\infty} s(k) = \frac{1}{2} \int_{-\infty}^{\infty} \operatorname{Im} s(\frac{1}{2} - iy) \tanh(\pi y) \, dy. \qquad \Box$$

Application to the Sum in Equ. (8)

To avoid cancellation, write the term $\{\dots\}$ in the sum (8) as

$$s(z) := \arctan\left(\frac{r^2 - 1}{(z + r^2)\sqrt{z} + (z + 1)\sqrt{z} + r^2 - 1}\right).$$

In view of (8) use the contour

$$z=rac{3}{2}-i\,y\,.$$

The change of variables

$$y = \sinh(\sinh(t)), \quad dy = \cosh(\sinh(t))\cosh(t) dt, \quad t \in \mathbb{R}$$

yields a quickly decaying integrand (doubly exponential decay).

5. Transformations

the integral under consideration, Use an appropriate transformation $x=\phi(t),\;t\in\mathbb{R}$ in order to transform

$$I = \int_a^b f(x) \, dx \,,$$

to the integral of a quickly decaying analytic function over \mathbb{R} .

Desired properties of ϕ :

- analytic, monotonic
- quickly and accurately computable, e.g. a combination of elementary functions

Result:

$$I = \int_{-\infty}^{\infty} g(t) \, dt \quad \text{with} \quad g(t) := f \left(\phi(t) \right) \phi'(t)$$

Examples

nterval

1. Finite interval,
$$x \in (-1,1)$$
:

3. Semi-infinite interval,
$$x \in (0, \infty)$$
:

5. Real line
$$\mathbb{R}$$
, enhance decay as $t \to +\infty$:

6. Real line
$$\mathbb{R}$$
, enhance decay as $t \to -\infty$:

Transformation

$$x = \phi_1(t) = \tanh(t/2)$$

$$x = \phi_2(t) = \frac{1}{1 + \exp(-t)}$$

$$x = \phi_3(t) = \exp(t)$$

$$x = \phi_4(t) = \sinh(t)$$

$$x = \phi_5(t) = t + \exp(t)$$

 $x = \phi_6(t) = t - \exp(-t)$

singularities are allowed **Remark.** In the case of finite boundaries integrable boundary

6. Numerical Quadrature by the Trapezoidal Rule

Let f be such that its integral over $\mathbb R$ exists,

$$I = \int_{-\infty}^{\infty} f(x) \, dx.$$

Trapezoidal sum, step h, offset au :

$$T(h,\tau) = h \sum_{j=-\infty}^{\infty} f(\tau + j h),$$

Periodicity:

$$T(h,\tau) = T(h,\tau+h)$$

Refinement:

$$T(\frac{h}{2},\tau) = \frac{1}{2} \left(T(h,\tau) + T(h,\tau + \frac{h}{2}) \right)$$

Truncation of Infinite Trapezoidal Sums

$$\tilde{T}(h,s) = h \sum_{j=n_0}^{n_1} f(s+jh).$$

arepsilon>0 is a given tolerance reflecting the working precision. Desirable truncation rule: Truncate if |f(x)|<arepsilon, where x:=s+jh, and

A (moderately) robust implementation:

- Choose an interior point x_0 and accumulate two separate sums upwards from x_0+h and downwards from x_0
- Truncate each sum if two (or three) consecutive terms do not contribute to the sum

The Truncation Error

Remainder for the truncation limit X:

$$R_X := \int_X^\infty f(x) \; dx, \quad ext{where} \quad f(X) = arepsilon$$

(i) Algebraic decay:

$$f(x) = x^{-\alpha - 1}$$
, $(\alpha > 0)$, $R_X = \frac{X^{-\alpha}}{\alpha} = \frac{\varepsilon^{\alpha/(1 + \alpha)}}{\alpha}$

No good! Remainder may be $>> \varepsilon$. E. g. $R_X = O(\sqrt{\varepsilon})$ for $\alpha = 1$.

(ii) Exponential decay:

$$f(x) = e^{-\alpha x}$$
, $(\alpha > 0)$, $R_X = \frac{1}{\alpha} e^{-\alpha X} = \frac{\varepsilon}{\alpha}$

Better, but dangerous if $\alpha << 1$.

(iii) Doubly exponential decay:

$$f(x) = \exp(-e^{\alpha x}), \quad (\alpha > 0),$$

 $R_X = \frac{1}{\alpha} \exp(-e^{\alpha X}) \left(e^{-\alpha X} - e^{-2\alpha X} + 2! e^{-3\alpha X} + \dots\right)$

Truncation limit:

$$f(X) = \varepsilon \implies X = \frac{1}{\alpha} \log \log \frac{1}{\varepsilon} ,$$

therefore

$$R_X = -\frac{\varepsilon}{\alpha} \left(\frac{1}{\log \varepsilon} + O((\log \varepsilon)^{-2}) \right).$$

Truncation is safe even for lpha << 1 if arepsilon is sufficiently small.

The Discretization Error

$$I = \int_{-\infty}^{\infty} f(x) \, dx.$$

Fourier Transform:

$$= \int_{-\infty}^{} f(x) dx.$$

$$\hat{f}(\omega) := \int_{-\infty}^{\infty} e^{-i\omega x} f(x) dx, \quad I = \hat{f}(0)$$

Trapezoidal sum with offset:
$$T(h,\tau):=h$$
 $\sum_{j=-\infty}^{\infty}f(j\,h+\tau)$

Poisson summation formula:
$$T(h,\tau) = PV \sum_{k=-\infty}^{\infty} \hat{f}\left(k \frac{2\pi}{h}\right) e^{i \tau k \cdot 2\pi/h}$$

For offset au=0 we obtain the error formula

$$T(h,0)-I=\hat{f}\left(\frac{2\pi}{h}\right)+\hat{f}\left(-\frac{2\pi}{h}\right)+\hat{f}\left(\frac{4\pi}{h}\right)+\hat{f}\left(-\frac{4\pi}{h}\right)+\dots$$

small step h>0 is asymptotic to the sum of the Fourier transform values of the integrand at $\pm 2\pi/h$ Theorem. The discretization error of the infinite trapezoidal sum for a

Particular cases

(i) Integrand analytic in a strip of the complex plane

Let f(x) be analytic in $|\mathrm{Im}(x)|<\gamma,\ \gamma>0$. Then

$$|\hat{f}(\omega)| = O(e^{-(\gamma - \varepsilon) |\omega|})$$
 for any $\varepsilon > 0$, as $\omega \to \pm c$

and the discretization error for $h \to 0$ is

$$T(h,0)-I=O(e^{-(\gamma-\varepsilon)\omega})$$
 with $\omega:=2\pi/h$.

(ii) Proliferation of singularities due to sinh transformations

Convergence may be slower, such as (with some $\gamma > 0$)

$$T(h,0)-I=O(e^{-\gamma\,\omega/\log(\omega)})\quad\text{or}\quad T(h,0)-I=O(e^{-\gamma\,\sqrt{\omega}}).$$

Breeding Singularities by sinh Transformations, $\int_{-\infty}^{\infty} \frac{dz}{1+z^2}$

Experiments in PARI/GP

Evaluating the sum in (8) by means of the PARI function

```
\{fct(t) =
dy * tanh(Pi*y) * imag(atan((1-rr)/((z+rr)*sqrt(z)+(z+1)*sqrt(z+rr-1))))
                                                                           sh = sinh(t); y = sinh(sh); dy = cosh(sh)*cosh(t); z = 3/2 + I*y;
```

steps $h=1,\frac{1}{2},\frac{1}{4},\ldots$ yields (with a loss of at most 2 digits): with the global argument ${f rr}=r^2=0.25$ and the trapezoidal rule with

Working precision 19 1.6 GHz seconds Reciprocal step .015 32 . 05 38 2 .19 128 67 .70 2.35 4.04 105 144 256 512 192 512 18.6 1024 298 2048 67.9 404

C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier: The software package PARI. http://pari.math.u-bordeaux.fr/

7. Asymptotics

Equation (2) admits a formal solution of the form

$$\Phi(n) = \gamma(n) + c_0 n^{1/2} + c_1 n^{-1/2} + c_2 n^{-3/2} + \dots,$$
 (1:

where $\gamma(n)$ is any 1-periodic function of n. The coefficients c_k satisfy

$$\sum_{l=0}^{k} \left(\frac{\frac{1}{2} - l}{k+1-l} \right) c_l = \frac{(-1)^k}{2k+1}, \quad k = 0, 1, 2, \dots,$$
 (12)

which may be solved recursively by

$$c_k = \frac{2(-1)^k}{1 - 4k^2} - \sum_{l=0}^{k-1} {1 \choose 2 - l \choose k - l} \frac{c_l}{k+1-l}, \quad k = 0, 1, 2, \dots$$
 (13)

The first few coefficients are found to be

$$c_0=2,\ c_1=\frac{1}{6},\ c_2=-\frac{1}{120},\ c_3=-\frac{1}{840},\ c_4=\frac{5}{8064},\ c_5=\frac{1}{4224},\ c_6=-\frac{521}{2196480}.$$

- Coefficients seem to decrease
- The numerator 521 destroys any hope for a simple behaviour
- $\gamma(n)=\gamma=$ const. yields "distinguished" solutions, monotonic at ∞
- Comparison of (11) with the sum (3) yields (n=52, 36 terms in (11)) $\gamma = -2.15778299665944622092914278682957772350413959860756$
- Unfortunately, this is not rigorous since the series (11) is divergent

The Series Coefficients

triangular) is given by column vector $\mathbf{c} = [c_0, c_1, \dots]^T$. The inverse matrix (also lower Equ. (12) may be written by means of a lower triangular matrix L and a

$$L^{-1} = \left(m_{kl}\right), \quad m_{kl} = (-1)^{k+1-l} \frac{B_{k-l}}{k-\frac{1}{2}} \binom{k-\frac{1}{2}}{k-l}, \quad l \le k,$$

where B_j are the Bernoulli numbers. This leads to a closed form of the coefficients c_l , resulting in the asymptotic formula (for $l \to \infty$)

$$c_l \sim \frac{(l-\frac{3}{2})!}{(2\pi)^l} \operatorname{Re}(\rho i^l), \quad \rho = .27547 - .19375 i = \frac{\operatorname{erf}(z)}{z}, \ z = \sqrt{\pi} (1+i).$$

Coefficients of the Asymptotic Series, Scaled

The Euler Constant of the Theodorus Spiral (Slide 30)

$$\gamma = \lim_{n \to \infty} \sum_{k=1}^{n-1} \left(\arctan\left(\frac{1}{\sqrt{k}}\right) - 2\sqrt{n} \right) = -2.15778\,29966\,59446\dots$$

Use the Euler-Maclarin summation formula with remainder term:

$$\sum_{k=1'}^{n'} f(k) = \int_1^n f(x) \; dx - f(n) + \int_1^n \left(\{x\} - \frac{1}{2} \right) \; f'(x) \; dx \; .$$

With $f(x) := \arctan(x^{-1/2})$ we obtain

$$\gamma = -\frac{3}{8} \pi - 1 + \sum_{m=1}^{\infty} g(m),$$

where

$$g(m) := (m + \frac{3}{2}) \arctan\left(\frac{1}{(m+2)\sqrt{m} + (m+1)^{3/2}}\right) - \frac{1}{\sqrt{m+1} + \sqrt{m}}$$
$$= \frac{1}{16} m^{-5/2} - \frac{35}{192} m^{-7/2} + \frac{105}{256} m^{-9/2} - \frac{27}{32} m^{-9/2} + O(m^{-13/2})$$

Conclusions

- wide field of challenges in theoretical and numerical mathematics: The spiral of Theodorus (Th. of Cyrene, 465 - 398 B.C.) provides a
- The monotonic solution of the corresponding functional equation Heuvers, Moak and Boursaw (2000). was first given by Ph. Davis (1993), independently rediscovered by
- The analytic continuation presented here seems to be new
- A numerical challenge is the summation of slowly convergent series.
- As an efficient technique, summation by contour integration and numerical quadrature by the trapezoidal rule is suggested
- The trapezoidal rule quickly integrates analytic functions over \mathbb{R} .
- The asymptotic expansion of the polar angle provides an alternate fast algorithm for evaluating the relevant mathematical functions