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Abstract

Certain systems of functional equations related to the iteration of functions with a
fixed point are considered. We construct smooth solutions in terms of expansions
about a fixed point. In a particular example taken from an intuitive geometric
situation the solution is obtained explicitly as a convergent Taylor series. Particular
attention is given to the question of selecting distinguished solutions from an infinity
of possible solutions. This classical topic is presented in a transparent way by
consistently using compositional notation. The method described may be applied in
similar situations, e.g. for handling iterations arising in discrete dynamical systems.

1. Introduction

There are infinitely many smooth – even analytic – functions satisfying the recurrence
relation Γ(x + 1) = xΓ(x) and the initial condition Γ(1) = 1, therefore interpolating the
set of values {(n+ 1, n !)}∞0 . There are certain conditions under which Euler’s Gamma
function is the unique function which does this interpolation – see Davis []. The present
paper is similar in spirit, in that at the outset we consider a peculiar sequence of points
in the plane that are defined by a certain rigid motion of a rod of unit length, with
endpoints on two faces of a cube. This set of points then leads us to a functional recurrence
relation, and we then determine conditions under which there is a unique function which
interpolates the sequence of points and satisfies our derived recurrence relation.

With reference to Fig. (1) below, consider a unit cube C = [0, 1]3 in the first octant
of R3. Let us denote by F1 the face of C in the (x, y)−plane, so that F1 has corners
at (0, 0, 0), (0, 1, 0), (1, 0, 0) and (1, 1, 0), and similarly, let us denote by F2 the face of C
with corners at (0, 0, 0), (0, 0, 1), (1, 0, 0), and (1, 0, 1) in the (x, z)−plane. Two points,
A1 = (x, y, 0) ∈ F1 and A2 = (x, 0, z) ∈ F2 are connected by a rod of length 1, i.e.,√
y2 + z2 = 1. Suppose now that these two points, A1, A2 move such that x is monoton-

ically increasing, and such that A1 = (x, y, 0) is constrained to the lens-shaped region,
1− x ≤ y ≤

√
1− x2. It then turns out that A2 = (x, 0, z) is similarly constrained, i.e.,

x ≤ z ≤ 1−
√

1− (1− x)2.

Evidently, the trajectories ofA1, A2 with the properties described above are not unique.
For, given any function y = f(x), with 1 − x ≤ f(x) ≤

√
1− x2 in the face F1, one has

z = g(x) in F2, with g(x) =
√

1− f(x)2. In particular, if y = 1 − x on F1, then

z = 1−
√

1− (1− x)2 on F2, and similarly, if y =
√

1− x2 on F1, then z = x on F2.
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Figure 1: The rod A1A2 parallel to the xy-plane moving in such a way that the endpoints
A1 and A2 traverse congruent paths
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Next, consider the particular instances of the points A1, A2 marked by circles in Figure
(1). They are constructed in an obvious manner by means of “staircase polygons” starting

from the points A1 = (1
2
, 1

2
, 0), A2 = (1

2
, 0,

√
3

2
) or from A1 = ( 1√

2
, 1√

2
, 0), A2 = ( 1√

2
, 0, 1√

2
).

The question of interpolating these particular points by “nice” congruent curves will be
addressed in Section 4, where a set of recurrence relations will be derived first.

Functional equations, being relationships between values of a function at different
arguments, often have larger sets of solutions than differential equations which relate
function values and derivatives at a single argument. Besides initial conditions addi-
tional requirements such as smoothness and monotonicity are needed in order to choose
a distinguished particular solution.

The topic of functional equations has been active since the beginnings of calculus, e.g.
with Euler’s gamma function (see, e.g., [3]), up to the present day. A recent encyclopedia
volume by Kuczma et.al. [10] contains an extensive bibliography of more than 800 refer-
ences. The recent revival of the field is due to the connection between certain functional
equations and the modern theory of dynamical systems.

In this paper we will begin with the intuitive geometrical situation drawn in Figure 1,
below, which turns out to be intimately connected with the iteration of functions in one
variable. In Section 2 the corresponding functional equations are solved by the classical
methods of Schröder [11] and Abel [1]. Section 3 is devoted to the involutory case which
is picked up in Section 4 by means of the particular example described above. In Sections
4 and 5 this example will be solved completely in terms of convergent power series.

Let A(x), B(x) be two smooth monotonic functions defined on appropriate subintervals
of R, and consider their graphs as shown in Figure 2.

We discuss the problem of connecting the points of intersection of two polygons zigzag-
ging between A and B by a simple smooth graph G. From Figure 2 we immediately obtain
the conditions

(1) G(x) = A(y)

(2) G(y) = B(x) .

Clearly, the solution is far from unique unless further requirements on G are specified.
Consider, e.g., the particular example A(x) = axα, B(x) = bxβ in x ≥ 0 with a, b, α, β > 0.
Assuming G(x) = g · xγ shows that Eqs. (1) and (2) are satisfied for every x ≥ 0 if we
choose the appropriate mapping y = Q(x) if we choose

(3) γ =
√
αβ , g =

(
a
√
βb
√
α
)1/(

√
α+
√
β)

.

Here, this is the simplest possible solution. However, as will be seen later, there exists a
continuum of more complicated solutions to the problem.
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Figure 2: Graphs of functions A, B and G

In what follows in this paper functions are denoted by capital characters, and compo-
sition will be denoted by juxtaposition, e.g.

A(B(x)) = (AB)(x) .

Exponents denote functional iteration, such as An(x) = A(An−1(x)), A0(x) = x (A0 = Id
identity, and A−1 accordingly denotes the inverse function of A.

2. Functional Equations

With the purpose of eliminating y from the system (1), (2) we solve (1) for y, assuming
that A−1 exists:

(4) y = Q(x) := A−1(G(x)) , or Q = A−1 G .

Inserting this into (2) yields

(5) GA−1 G = B,

and, with the abbreviation

(6) R := A−1 B ,

the simple relation Q2 = R is obtained. Hence the problem at hand amounts to taking
the “compositional square root” Q of the given function R ; then
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(7) G = AQ = A(A−1 B)1/2 .

This is a particular case of so-called fractional iteration of a function which has a long
history dating back at least to 1871 (E. Schröder, [11]). This early work was soon carried
on by N. H. Abel [1], G. Königs [8], and E. Kasner [6], and the field has been active up to
the present day. Besides the large bibliography in [10] a commented bibliography up to
1964 by Targonski [14] is mentioned. The question of uniqueness and regularity of growth
of fractional iterates was discussed, among many others, by Collatz [2], Davis [3], Kuczma
[9], and Targonski [15].

We will use the methods of Schröder and Abel in order to construct particular solutions
with various properties to the above problem. Using the idea of introducing appropriate
“coordinates” [3], we introduce the formal conjugacy of the map R with the shift map
Sp(x) := x + p (p is an appropriately chosen shift), by means of an Abel function or
logarithm of iteration [1] Φ(x) for R:

(8) ΦR = SpΦ or Φ(R(x)) = p+ Φ(x) .

If both Φ and Φ−1 exist, we have R = Φ−1 SpΦ, and we immediately verify that

(9) Q = Φ−1 S p
2
Φ

is a solution of Eq. (5).

In order to find more solutions consider the circle map C with shift p, by definition a
monotonic function

(10) x 7−→ C(x) := x + P (x) ,

where P (x) = P (x+ p) is a p-periodic function. Clearly, we have

(11) C Sp = SpC .

Theorem 1 If Φ is an Abel function for R with shift p, ΦR = SpΦ, and if C is a circle

map with the same shift, the function Φ̃ = CΦ is also an Abel function for R with shift p.

Proof: ΦR = SpΦ =⇒ CΦR = C SpΦ =⇒ Φ̃R = SpΦ̃. 2

Consequently, in Eq. (9) Φ(x) may be replaced by Φ̃(x) = Φ(x) + P (Φ(x)), where P

is an arbitrary p-periodic function with the only restriction that Φ̃−1 exists.
In the example of Section 1 we obtain

5



R(x) =
( b
a
xβ
)1/α

and, e.g.,

(12) Φ(x) = log log(µx), µ =
( b
a

)1/(β−α)

, p = log
(β
α

)
.

Choosing an arbitrary circle map C with shift p, Eqs (4), (9) yield G = AΦ−1 C−1 S p
2
CΦ

or

G(x) = a
( 1

µ
exp exp

(
C−1

(1

2
log

β

α
+ C

(
log log(µx)

))))α
.

With C = Id the simple solution G(x) = g · xγ with g, γ from (3) is obtained.

3. Symmetry

We now consider the case of involutions A,B with A2 = B2 = Id. Then involutory
solutions G of (1), (2) may exist since G2 = Id is compatible with B2 = GA−1 G2 A−1 G
= Id (see Eq. (5)). We then have from (7) R = AB, R−1 = BA.

In order to construct an involutory solution we state the following theorem that holds
without the symmetry condition on A and B. Let N(x) = −x be the ”anti-identity“; we
have SpN = NS−p.

Theorem 2 Let Φ be an Abel function for R satisfying (8) or ΦA−1 = Sp ΦB−1. Then

the function Φ̃ := NΦA−1 satisfies Φ̃A = Sp Φ̃B.

Proof: ΦA−1 = Sp ΦB−1 =⇒ NS−p ΦA−1 = N ΦB−1 =⇒ SpΦ̃ = Φ̃AB−1 =⇒ SpΦ̃B =

Φ̃A. 2

Corollary. If A and B are involutions, A−1 = A, B−1 = B, and Φ satisfies ΦA = Sp ΦB,

then Φ̃ := N ΦA−1 satisfies the same equation, Φ̃A = Sp Φ̃B.

Next, we observe that any linear combination wΦ + w̃Φ̃ with w + w̃ = 1 satisfies Eq.
(8). In particular, if we use w = w̃ = 1

2
to define

(13) Ψ =
1

2
(Φ + Φ̃) or Ψ(x) =

1

2
[Φ(x)− Φ(A−1(x)]

as our standard Abel function we have
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Theorem 3 The solution

(14) G = AΨ−1S p
2

Ψ

generated by the Abel function Ψ is involutory.

Proof: We have ΨA = NΨ. Therefore

G2 = AΨ−1 S p
2

ΨAΨ−1 S p
2

Ψ = AΨ−1 S p
2
N S p

2
Ψ = AΨ−1ΨA = Id .

2

The symmetry of the solution (14) may be displayed by writing (14) as ΨA−1G = S p
2

Ψ
or as

(15) Φ(A−1(G)) + Φ(A−1(x)) = p+ Φ(G) + Φ(x) .

This is an implicit equation of the curve G(x) in the (x,G) plane. Obviously, it is invariant
if x and G are interchanged (hence involutory), and due to its construction it solves the
problem (1), (2). Φ is an arbitrary Abel function for R satisfying (8), and p is the
corresponding shift. More solutions are obtained by using CΦ instead of Φ in Eq. (15).

To conclude this section we derive an elegant parameterization of the curve defined
by Eq. (15). With the definition

(16) D(x) :=
1

p
(Φ(A−1(x))− Φ(x))

(15) becomes D(G) +D(x) = 1. By introducing the parameter t := D(x), or x = D−1(t),
where D−1 is the inverse of D, we obtain the simple parametric form

(17) x = D−1(t), G = D−1(1− t), ∞ < t <∞

for the curve defined by Eq. (15).

4. An Example

Let us now return to the motion of the rod described in the introduction and visualized
in Fifure 1. We consider the family G of paths y = G(x) of the lower endpoint A1, whose
y-coordinate lies between the curves

(18) y = A(x) := 1− x and y = B(x) :=
√

1− x2, 0 ≤ x ≤ 1.

It is clear that the z-coordinate of the upper endpoint, z = A2(x), lies between the
trajectories z =

√
1− (1− x)2 and z = x. Upon replacing x by 1 − x in the family of
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Figure 3: Graphs of the functions A(x), B(x), G(x), G0(x) together with the four stair-
case polygons passing through the points ( 1

2
, 1√

2
), or (x0, x0), respectively.

trajectories G(x), we may ask: For what trajectories G(x) do we have G(1− x) = A2(x)?
Equivalently, since A2(x) =

√
1−G2(x), for what functions G defined on [0, 1], and such

that 0 ≤ G(x) ≤ 1 do we have [12]

(19) G(1− x) =
√

1−G2(x) ?

Here the exponent 2 denotes the second power. We notice that the functions A and B
are involutory, i.e. on the interval [0, 1] they satisfy A−1(x) = A(x) and B−1(x) = B(x),
and we furthermore restrict the family G of functions G such that

(20) G−1(x) = G(x)

for all of the functions G ∈ G. We may now ask:

• What are the properties of the family G?

• In what sense is the family G described as above unique?

• If the family G consists of more than one member, what other properties reduce G
to a single member G?

• Is it possible to construct such a G ∈ G?
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We shall consider these questions in turn, in what follows; see also Figure 3.

We first observe that due to (20), i.e. G2 = Id , all the symmetries of Section 3 apply.
Furthermore, Equ. (19), which corresponds to GA−1 = BG in the compositional notation
of the previous sections, is a direct consequence of (5) and (20). Therefore the theory of
Sections 2, 3 holds. Instead of Equ. (8) we use the equivalent form

(21) Φ(1− x) = p+ Φ(
√

1− x2)

with the goal of choosing an appropriate value of p and a simple solution Φ(x), e.g. a
formal ascending series. It is suggested to adopt the ascending series solution Φ(x) to
be defined below as the ”best“ solution of Equ. (21) in the sense that it shows the most
regular growth as x→ 0. Other choices may be possible, though. Due to the construction
in Section 3, however, the same solution G is obtained from the Abel function based on the
most regular behaviour as x→ 1. Considerations of this type are important in identifying
the gamma function as the ”best“ solution of its functional equation (see, e.g., [4]); for
other examples see Kneser [7], Szekeres [13].

In view of Equ. (12), pointing to a possibly complicated logarithmic singularity at
z = 0 we introduce

(22) Θ(x) := exp Φ(x)

satisfying the functional equation

(23) Θ(1− x) = ep ·Θ(
√

1− x2)

which determines Θ(x) at most up to an arbitrary factor. The function Θ(x) satisfies an
appropriate Schröder equation [10]. Assuming

Θ(z) = − log(cz) +O(z)

uniquely yields p = log 2, c = 1
2
. In order to avoid logarithmic terms we attempt to find

a formal solution Θ′(x) = −x−1 +O(1) of the derivative of (23),

(24) Θ′(1− x) =
2x√

1− x2
Θ′(
√

1− x2) .

The procedure described below will directly result in a convergent series solving (24).
Instead of z we will use the variable u := (1− x2)/4 ∈ [0, 1

4
]; therefore

(25)
√

1− x2 = 2
√
u , x =

√
1− 4u .

The function
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(26) ϑ(u) := −2 Θ′(2u)

then satisfies the functional equation

(27)
1√
u
ϑ(
√
u) =

1√
1− 4u

ϑ
(1−

√
1− 4u

2

)
,

for which a formal solution

(28) ϑ(u) = c0u
−1 + c1u+ c2u

3 + c3u
5 + . . . , c0 = 1

will be shown to exist.

Lemma 4 For every k ∈ R the following expansion holds:

fk(u) :=
1√

1− 4u

(1−
√

1− 4u

2

)k
=

∞∑

j=0

(
k + 2j
j

)
uj+k .

Proof: We only need the lemma for k = −1, 0, 1 . . . . The correctness of the expansion
is easily seen for k = −1 and k = 0. Induction with respect to k by using fk+2(u) −
fk+1(u) + u fk(u) = 0 and the basic relation between the elements of the Pascal triangle
establishes Lemma 4 for k = 1, 2, 3, . . . . 2

Inserting the expansion (29) into (28) and using Lemma 4 directly yields the recurrence
relation

(29) ck =

[ k
2

]∑

j=0

(
2k − 2j − 1

k − 1

)
cj, (k = 0, 1, . . . ), c0 = 1

for the sequence ck. Its initial elements are

(30) ck = {1, 1, 4, 13, 49, 181, 685, 2605, 9988, 38479, 148879, 577930, 2249698, . . .} .

Clearly, the coefficients ck form a monotonically increasing sequence of integers, and the
following theorem holds:

Theorem 5 The sequence ck defined by Equ. (31) satisfies ck ≤ 4k for every k ≥ 0.
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Proof by induction: The statement of the theorem is trivially true for k = 0. Assume
cj ≤ 4j for j = 0, 1, . . . , k − 1, (k ≥ 1). Then (31) implies (with J := 2j)

ck ≤
[ k
2

]∑

j=0

(
2k − 2j − 1

k − 1

)
4j <

k∑

J=−∞

(
2k − J − 1
k − 1

)
2J .

By introducing the summation index l := k − J instead of J and by using identities
between binomial coefficients as well as the binomial expansion the last sum becomes

k∑

J=−∞

( 2k − J − 1
k − 1

)
2J = 2k

∞∑

l=0

( k + l − 1
l

)
2−l

= 2k
∞∑

l=0

( −k
l

)
(−1

2
)l = 2k (1− 1

2
)−k = 4k ,

which establishes the theorem. 2

As a consequence of Theorem 5 the series (30) converges for every u ∈ C with |u| < 1
2
,

and from (26) we obtain

(31) Θ(x) = −c0 log
x

2
−
∞∑

k=1

ck
2k

(x
2

)2k

.

5. Results

In order to evaluate Θ(x) for a given x ∈ (0, 1), we use the functional equation (23)
repeatedly before evaluating the series: Let x0 := x and iterate

(32) xj = R(xj−1) =
x2
j−1

1 +
√

1− x2
j−1

, j = 1, 2, . . . , m

such that Θ(xm) by the appropriately truncated series (31) has sufficient accuracy. Then
Θ(x) = 2−mΘ(xm). The graphs of the functions Φ(x), Θ(x) and exp(−Θ(x)) are shown
in Figure 4.

In terms of the Schröder function Θ the equation (15) of the graph G(x) may be
written as

(33) Θ(1−G) ·Θ(1− x) = 2Θ(G) ·Θ(x) ,

as is seen by exponentiating Equ. (15). This is one form of the final result of the problem
of Section 1 with A and B defined by Equ. (18). In order to solve (33) numerically for
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G the secant method with the initial guesses G0 = G0(x) := (1− x
√

2)1/
√

2 and a nearby
value G1 is recommended, cf. Figure 3.

Another representation of this graph is the parametrization (17) where, according to
(16), the function F (x) = D−1(x) is now the inverse of

(34) D(x) = log2

Θ(1− x)

Θ(x)
,

to be computed, e.g., by solving the equation

(35) Θ(1− F ) = 2x ·Θ(F )

for the unknown F (see Figure 5). As a consequence of (17), the fixed point x0 = G(x0)
of the symmetric solution is now defined by x0 = D−1(1/2), which results in

(36) x0 = .60694 81374 10748 90686 44016 61391 98879 45573 42957.

It is interesting to note that the solution G̃ obtained directly from Θ by means of
Equs (7), (9), (22), i.e.

(37) G̃ = A Θ−1 exp S p
2

log Θ or G̃(z) = 1−Θ−1(
√

2 Θ(x)) ,

passes through the fixed point x0 of G and therefore through all of its forward and
backward iterates under the map A−1B. G̃ is not quite symmetric, however; we have
|G̃(x)−G(x)| ≤ 3.9658 94143 · 10−7 and |G̃(G̃(x))− x| ≤ 7.9317 88286 · 10−7, see Figure

6 and Figure 7. Since G̃(y) deviates from G(x) only by an amount of less than 10−6, G̃ is
sufficient for graphics purposes.
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