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Abstract. We give explicit formulae for the Hilbert transform∫
R− w(t)dt/(t − x), where w is either the generalized Laguerre weight

function w(t) = 0 if t ≤ 0, w(t) = tαe−t if 0 < t < ∞, and α > −1,
x > 0, or the Hermite weight function w(t) = e−t

2
, −∞ < t <∞, and

−∞ < x < ∞. Furthermore, several numerical evaluation schemes
are discussed, based on various representations of the objects un-
der consideration. In this connection we study the numerical sta-
bility of the three-term recurrence relation satisfied by the integrals∫
R− πn(t;w)w(t)dt/(t − x), n = 0, 1, 2, . . . , where πn( · ;w) is the gen-

eralized Laguerre, resp. the Hermite, polynomial of degree n.

AMS Categories: 65D30, 65D32, 65R10.

0. Introduction

In [5] we considered the Hilbert transform of the Jacobi weight func-
tion and set forth a combination of analytic and numerical methods for its
evaluation. In this paper we consider the Hilbert transform of the remaining
classical weight functions, namely the generalized Laguerre, and the Hermite,
weight function. For the former, unlike the Jacobi weight, no analytic results
seem to exist in the literature (except for the ordinary Laguerre weight).
Here we express it in terms of Tricomi’s incomplete gamma function and
also propose numerical methods using Gaussian quadrature rules, contour
integration, and a recurrence relation. For the Hermite weight, the Hilbert
transform is expressed in terms of Dawson’s integral. A similar expression
holds for the generalized Laguerre weight with parameter α = − 1

2
.
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1. The Generalized Laguerre Weight

The problem we wish to consider is to evaluate

(1.1) Iα(x) =

∫ ∞

0

− tαe−t

t− x dt, α > −1, x > 0,

where the integral is taken in the sense of the Cauchy principal value. For
α = 0, the result is expressible in terms of an exponential integral (cf. [1,
Ch.5]),

(1.2) I0(x) = −e−x
∫ x

−∞
− et

t
dt = −e−x Ei(x),

and for general α, as will be shown in §1.5, in terms of Tricomi’s incomplete
gamma function.

1.1. Recurrence relation. In principle it suffices to know Iα(x) for 0 < α ≤
1, since there is a simple relationship between Iα(x) and Iα−1(x). Indeed,
from (1.1),writing

tα

t− x =
t

t− x t
α−1 =

(
1 +

x

t− x

)
tα−1,

one obtains the recurrence relation

(1.3) Iα(x) = Γ(α) + xIα−1(x).

If 0 < α ≤ 1 and the left side is known, we can solve for the last term on
the right and obtain Iα−1(x) for −1 < α− 1 ≤ 0. For α = 1, we simply have
I1(x) = 1 + xI0(x) = 1− xe−x Ei(x). To compute Iα+n(x) for 0 < α ≤ 1 and
n = 1, 2, . . . , let

(1.4) yn =
Iα+n(x)

Γ(α+ n)
, n = 0, 1, 2, . . . , 0 < α ≤ 1.

Then (1.3) yields the first-order inhomogeneous difference equation

(1.5)
yn = 1 +

x

α + n− 1
yn−1, n = 1, 2, 3, . . . ,

y0 = Iα(x)/Γ(α).
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Figure 2.1. Amplification Factors for  alf=1/2
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Figure 1: Amplification factors for the recursion (1.9)

This recursion is quite stable, as can be seen from the behavior of the “am-
plification factors”

(1.6) ρn =
y0hn
yn

, hn =
xnΓ(α)

Γ(α + n)
.

See Fig. 1, where they are plotted on a logarithmic scale for α = 1
2

and
x = .5, 1, 2, 5, 10. The value α = 1

2
is representative for all other values of α

in the interval (0, 1], even very small ones. The quantity hn in (1.6) is the
solution, with h0 = 1, of the homogeneous recurrence relation associated
with (1.5).

The significance of the ρ’s (cf., e.g., [7]) is that ρt/ρs measures the ampli-
fication (or damping, as it were) at n = t of a small relative error committed
at n = s.
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1.2. Gaussian quadrature. We write

Iα(x) =

∫ ∞

0

tα − xα
t− x e−tdt+ xα

∫ ∞

0

− e−t

t− x dt,

that is, in view of (1.2),

(1.7) Iα(x) =

∫ ∞

0

tα − xα
t− x e−tdt− xαe−x Ei(x).

Although the integral on the right is an ordinary integral, it requires some
care to evaluate.

We first make the change of variables t = (1 + τ)x and write
∫ ∞

0

tα − xα
t− x e−tdt = xαe−x

∫ ∞

−1

(1 + τ)α − 1

τ
e−τxdτ.

Splitting the integral on the right in two parts and changing variables in an
obvious manner yields

∫ ∞

0

tα − xα
t− x e−tdt = xαe−x

{∫ 1

0

1− (1− t)α
t

etxdt

+
1

x

∫ ∞

0

(1 + t/x)α − 1

t/x
e−tdt

}
.

It is convenient to introduce the function

(1.8) hα(u) =
(1 + u)α − 1

u
, u > 0, α > −1,

in terms of which
∫ ∞

0

tα − xα
t− x e−tdt = xαe−x

{∫ 1

0

hα(−t)etxdt+
1

x

∫ ∞

0

hα(t/x)e−tdt

}
.

For computational purposes, the first integral on the right is split into one
from 0 to 1

2
and another from 1

2
to 1. This yields the final formula to be used

as a basis of our computation,

(1.9)

Iα(x) = xαe−x
{∫ 1/2

0

hα(−t)etxdt+

∫ 1

1/2

etx

t
dt

−
∫ 1

1/2

etx

t
(1− t)αdt+

1

x

∫ ∞

0

hα(t/x)e−tdt− Ei(x)

}
.
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The function hα(u) occurring in this formula is easily and accurately
evaluated by Taylor expansion, when |u| ≤ 1

2
,

(1.10)
(1 + u)α − 1

u
=
∞∑

k=0

(
α

k + 1

)
uk,

and directly otherwise. The first two integrals in (1.9) are now computed by
Gauss-Legendre quadrature respectively on the interval [0, 1

2
] and [1

2
, 1], the

third integral by Gauss-Jacobi quadrature on the interval [ 1
2
, 1] with Jacobi

parameters α and β = 0, and the fourth by Gauss-Laguerre quadrature. For
the exponential integral Ei(x) rational approximations [2] and software [9]
are available, but straightforward Taylor expansion of Ei(x)−γ− ln x is also
quite feasible and accurate, at least for x not excessively large, say less than
100.

If α = −1
2
, the integral in (1.1), by a change of variables t 7→ t2, becomes

I− 1
2
(x) =

∫ ∞

−∞
− e−t

2

t2 − ξ2
dt, ξ =

√
x.

Using here
1

t2 − ξ2
=

1

2ξ

(
1

t− ξ −
1

t+ ξ

)
,

and changing the variable of integration from t to −t in the integral corre-
sponding to the second term, yields

(1.11) I− 1
2
(x) =

1

ξ

∫ ∞

−∞
− e−t

2

t− ξ dt,

where the integral on the right is the Hilbert transform I(ξ) of the Hermite
weight (cf. (2.1) below). By virtue of (2.6), we therefore get

(1.12) I− 1
2
(x) = −2

√
π

x
F (
√
x),

with F denoting Dawson’s integral.

1.3. Numerical examples. The procedure based on (1.9) was programmed
and run in IEEE double precision on a Sun SPARCstation 2. The various
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Gaussian quadrature rules required were generated by the routines drecur

and dgauss of [6]. In order to obtain an idea of how fast these quadrature
rules converge, we printed for each quadrature the smallest value n∗ of n for
which the n-point and (n− 1)-point rule agreed within a relative accuracy ε.
For the first three integrals in (1.9) we chose ε = 102×eps, where eps is the
machine (double) precision, and for the last integral (which has a tendency
to converge more slowly) we chose ε = 103×eps. (In single precision, the

single double

x alpha hilbert n1 n2 n3 n4 n1 n2 n3 n4

0.50 0.10 -0.645766100214D-01 5 6 6 21 10 11 11 92

0.50 0.30 0.256532993500D+00 5 6 5 20 10 11 11 87

0.50 0.50 0.487817480185D+00 5 6 6 18 9 11 11 82

0.50 0.70 0.662529121674D+00 4 6 6 17 9 11 11 76

0.50 0.90 0.801524138808D+00 4 6 5 13 9 11 11 67

1.50 0.10 -0.332759050435D+00 6 6 5 11 10 10 10 38

1.50 0.30 -0.171460868311D+00 5 6 5 10 10 10 10 36

1.50 0.50 -0.216602175465D-01 5 6 5 10 10 10 10 34

1.50 0.70 0.127377364345D+00 5 6 5 9 9 10 10 32

1.50 0.90 0.283237714160D+00 4 6 5 7 9 10 10 28

4.50 0.10 -0.805375913333D-02 6 6 5 7 11 10 10 17

4.50 0.30 0.955567141732D-01 6 6 5 7 10 10 10 16

4.50 0.50 0.223371446826D+00 6 6 5 5 10 10 10 16

4.50 0.70 0.389899605377D+00 6 6 5 5 10 10 10 15

4.50 0.90 0.612817575593D+00 6 6 5 5 10 10 10 14

13.50 0.10 0.271303905850D-01 9 9 8 5 12 11 11 9

13.50 0.30 0.101560021816D+00 9 9 9 5 12 11 11 9

13.50 0.50 0.221256809530D+00 9 9 7 5 12 11 11 9

13.50 0.70 0.420091222360D+00 9 9 7 4 12 11 11 8

13.50 0.90 0.754188711212D+00 9 9 9 3 11 11 11 8

Table 1.1. Numerical results for Iα(x)

value taken for ε was 10×eps for all integrals, with eps the machine single
precision.) Table 1.1 shows the results for selected values of x and α. The
first four integers after the double-precision result for Iα(x) are the values of
n∗ in single precision for the four integrals of (1.9), the next four integers the
analogous values of n∗ for double precision.
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Figure 2: Path C ofintegration (for x = 1).

Generally, n∗ is quite small except for the last integral, particularly when
x and α are both small. In this case the function hα(t/x) is quite steep near
the origin, the derivative at t = 0 being α(α− 1)/(2x).

1.4. Contour integration. Closely related to the integral Iα(x) is the
contour integral

(1.13) Gα(x) =
1

2πi

∫

C

(−t)αe−t
t− x dt,

where the contour C starts at +∞ + iε, ε > 0, encircles the origin once
counterclockwise, and returns to +∞− iε. In order to compute this integral,
we decompose the path of integration into C = C0 ∪ C1 ∪ · · · ∪ C6 as shown
in Fig. 2. For brevity we write

(1.14) fα(t) =
(−t)αe−t
t− x , t ∈ C \R+

(suppressing in the notation the dependence on x) and restrict t to the cut
plane as shown. The αth power is understood in the sense of the principal
value. We then have the following limit relations, as ε and δ tend to zero in
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an appropriate manner, assuming α > −1:

lim
1

2πi

∫

C0∪C2

fα(t)dt = − 1

2πi
e−iαπIα(x),

lim
1

2πi

∫

C4∪C6

fα(t)dt =
1

2πi
eiαπIα(x),

lim
1

2πi

∫

C3

fα(t)dt = 0,

lim
1

2πi

∫

C1

fα(t)dt = 1
2
e−iαπxαe−x,

and

lim
1

2πi

∫

C5

fα(t)dt = 1
2
eiαπxαe−x.

Adding up all contributions yields

(1.15) Gα(x) =
sinαπ

π
Iα(x) + cosαπ · xαe−x.

We remark that the definition (1.13) of Gα(x) makes sense for arbitrary
α ∈ C. Moreover, the path C may be deformed to any path C̃ in C \R+

without changing the value of Gα(x) as long as C̃ enters through the first
quadrant and leaves the fourth (with Re t → ∞). Therefore, the variable x
need not be confined to R+ but can be arbitrary complex, provided the path
C̃ is chosen to leave x on its left as it is run through. Consequently, Gα(x) is
an entire function in both variables α and x. It will be identified in the next
subsection.

Eq. (1.15) may serve to define the analytic continuation of Iα(x) to every
x ∈ C and α ∈ C \Z, by solving (1.15) for Iα(x):

(1.16) Iα(x) =
π

sinαπ

[
Gα(x)− cosαπ · xαe−x

]
.

When α→ n, n ∈ Z, since Iα(x) remains finite, one needs to use the rule of
Bernoulli-L’Hospital, with

(1.17)
∂

∂α
Iα(x)

∣∣∣∣
α=n

=
1

2πi

∫

C̃

fn(t) log(−t)dt.

The formula (1.16) lends itself also to numerical evaluation. Assuming
x > 0, α > −1, we take a path C = C̃ in (1.13) defined by t = s2, s = σ+is0,
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−∞ < σ < ∞, s0 > 0, which represents a parabola with focus at t = 0
opening in the direction of the positive real axis. The integral

Gα(x) =
1

2πi

∫

C̃

fα(t)dt =
1

πi

∫ −∞

∞
fα((σ + is0)2)(σ + is0)dσ

is conveniently approximated by the composite trapezoidal rule, with step
h > 0,

(1.18) Gα(x) = − h

πi

∞∑

k=−∞
fα((kh+ is0)2)(kh+ is0) +R(h),

which, because of the exponential decay of the integrand at both ends of the
path, has an error term going to zero exponentially fast in h−1, i.e.,

(1.19) R(h) = O(e−γ/h), h→ 0,

for some γ > 0 (cf. [4, Eq.]). Moreover, it suffices to approximate the infinite
sum in (1.18) by a finite sum which, by symmetry, can be taken twice the
sum from k = 1 to n plus the term for k = 0. Here, n is typically a relatively
small positive integer. For example, if α = 1

32
, x = 1, taking s0 = 3, we

achieve a relative accuracy of 28 decimal digits with h = 17
64

and n = 38.
(The calculations were done with the symbolic package Pari.)

1.5. Closed-form expression for Gα(x). We now show that

(1.20) Gα(x) = e−xγ∗(−α,−x),

where γ∗ is the incomplete gamma function as defined by Tricomi (cf. [8]),
an entire function in both of its variables. It has the power series expansion

(1.21) ezγ∗(a, z) =
∞∑

k=0

zk

Γ(a+ k + 1)
, a ∈ C, z ∈ C.

We choose a contour C = C̃ in (1.13) such that the geometric series

1

t− x =

∞∑

k=0

xkt−(1+k)

converges for every t ∈ C̃. Substitution in (1.13) yields

Gα(x) =
∞∑

k=0

(−x)k · −1

2πi

∫

C̃

(−t)α−k−1e−tdt.
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The integral on the right can be evaluated by the same integration technique
employed in §1.4. Using, in addition, the reflection formula for the gamma
function,

Γ(z)Γ(1− z) =
π

sin πz
with z = k − α + 1, we find

− 1

2πi

∫

C̃

(−t)α−k−1e−tdt = Γ(α− k)
1

π
sin(k − α + 1)π =

1

Γ(k − α + 1)
,

and thus

Gα(x) =

∞∑

k=0

(−x)k

Γ(k − α + 1)
.

Comparison with (1.21) shows the validity of (1.20).
For α = ±n, n ∈ N0, the function γ∗(−α,−x) is elementary (cf. [8, Eq]),

giving
Gn(x) = (−x)ne−x,

G−n =
(−1)n

xn
[e−x − en−1(−x)],

where en−1 is the (n−1)st partial sum of the exponential series. We also note
that there are efficient expansions of γ∗(−α,−x) in terms of Bessel functions
([8, Eqs]). The function γ∗ is included among the special function routines
in the package Pari.

2. The Hermite Weight

The problem now is to compute

(2.1) I(x) =

∫ ∞

−∞
− e−t

2

t− x dt, x ∈ R.

Since I(−x) = −I(x), it suffices to consider positive values of x.
By definition of the Cauchy principal value integral, we have

I(x) = lim
ε↓0

(∫ x−ε

−∞
+

∫ ∞

x+ε

)
e−t

2

t− x dt

= lim
ε↓0

∫ ∞

ε

−e−(x−t)2
+ e−(x+t)2

t
dt

= −e−x2

∫ ∞

0

e2xt − e−2xt

t
e−t

2

dt,
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that is,

(2.2) I(x) = −4xe−x
2

∫ ∞

0

sinh(2xt)

2xt
e−t

2

dt.

Using Taylor expansion of the hyperbolic sine, term-by-term integration, and∫∞
0
t2ke−t

2
dt = 1

2
Γ(k + 1

2
), yields

(2.3)

∫ ∞

0

sinh(2xt)

2xt
e−t

2

dt =
1

2

∞∑

k=0

Γ(k + 1
2
)

Γ(2k + 2)
(2x)2k.

The duplication formula for the gamma function,

Γ(2k + 2) =
22k+3/2

√
2π

Γ(k + 1)Γ(k + 3
2
),

allows us to write (2.3) in the form

(2.4)

∫ ∞

0

sinh(2xt)

2xt
e−t

2

dt =

√
π

4

∞∑

k=0

1

k + 1
2

x2k

k!
.

The series on the right can be recognized as the error function of a purely
imaginary argument, namely [1, Eq. 7.1.5]

(2.5)

∞∑

k=0

1

k + 1
2

x2k

k!
=
√
π

erf ix

ix
=

2

x

∫ x

0

et
2

dt.

Thus, substitution of (2.4) and (2.5) in (2.2) expresses the Hilbert transform
in terms of Dawson’s integral,

(2.6) I(x) = −2
√
πF (x), F (x) = e−x

2

∫ x

0

et
2

dt.

¿From the asymptotic expansion [1, Eq. 7.1.23] of the error function one finds

(2.7) I(x) ∼ −
√
π

x

(
1 +

∞∑

k=1

1 · 3 · · · (2k − 1)

(2x2)k

)
as x→∞.

For computation, one can use the series expansion (2.4) in (2.2) when x
is small or moderately large, and the asymptotic expansion (2.7) when x is
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large. For single-precision accuracy, x = 5 may be taken as the separation
point, for double precision x = 7.5. Results thus obtained are displayed in
Table 2.1. The last two columns show the number of terms required in single
resp. double precision for the series in (2.4), or the series in (2.7), to yield
full machine precision.

x hilbert n nd

0.50 -0.15045878048051D+01 6 12

1.00 -0.19074421882418D+01 10 17

2.00 -0.10682238655627D+01 18 29

5.00 -0.36205586704396D+00 8 76

7.50 -0.23848654284464D+00 5 17

10.00 -0.17814524994095D+00 5 12

50.00 -0.35456171091663D-01 3 6

100.00 -0.17725424868948D-01 2 5

200.00 -0.88623800370477D-02 2 4

Table 2.1. Numerical results for I(x)

There are also rational approximations for F (x) that could be used, e.g.,
those in [3].

Following the Eulerian habit of providing alternative proofs, here is a
complex-variable derivation of (2.6) using the Cauchy transform

(2.8) C(z) =

∫ ∞

−∞

e−t
2

t− z dt, z ∈ C \R,

and the well-known fact that

(2.9) I(x) = lim
ε↓0

1
2
[C(x+ iε) + C(x− iε)].

By [1, Eq. 7.1.4] we have, for ε > 0,

(2.10) C(x+ iε) =

∫ ∞

−∞

e−t
2

t− x− iε dt = iπw(x+ iε),

where

w(z) = e−z
2

(
1 +

2i√
π

∫ z

0

et
2

dt

)
= e−z

2

erfc (−iz)
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is the complex error function [1, Eq. 7.1.3]. Multiplying (2.10) by −1 and
making the change of variables t 7→ −t in the resulting integral yields

(2.11) C(x− iε) = −iπw(−x + iε).

Therefore, the average of (2.10) and (2.11) becomes

1
2
[C(x + iε) + C(x− iε)] = 1

2
iπ[w(x+ iε)− w(−x + iε)].

Now apply w(−z) = 2e−z
2 − w(z) (cf. [1, Eq. 7.1.11]) with z = x − iε to

obtain

1
2
[C(x + iε) + C(x− iε)] = 1

2
iπ[w(x+ iε)− 2e−(x−iε)2

+ w(x− iε)].

Going to the limit ε ↓ 0, and using (2.9), we find

I(x) = iπ[w(x)− e−x2
]

= iπ

[
e−x

2

(
1 +

2i√
π

∫ x

0

et
2

dt

)
− e−x2

]

= −2
√
πF (x),

in agreement with (2.6).

3. The Hilbert Transform of the Generalized Laguerre and
Hermite Polynomials; Pseudostability of the Three-Term Re-
currence Relation

Let {πn(t;w)} denote the (monic) orthogonal polynomials relative to the
weight function w, and x be a point in the interior of the support of w. The
Cauchy principal value integrals

(3.1) ρn(x) =

∫

R
− πn(t;w)

t− x w(t)dt, n = 0, 1, 2, . . . ,

are of interest in connection with singular integral equations. They satisfy
the same three-term recurrence relation as the orthogonal polynomials them-
selves, namely

(3.2) yk+1 = (x− αk)yk − βkyk−1, k = 0, 1, 2, . . . ,
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but with initial values

(3.3) y−1 = −1, y0 =

∫

R
− w(t)

t− x dt.

(It is assumed in (3.2) that β0 =
∫
R w(t)dt.) Let {zk} be a second solution

of (3.2) defined by

(3.4) z−1 = y0, z0 = 1.

It is shown in [5, §4] that the amplification of relative error in yk due to small
relative errors in y0 and y1 can be measured by the quantity

(3.5) ωk =
|z1/y1 − zk/yk|+ |z0/y0 − zk/yk|

|z1/y1 − z0/y0|
.

In this section, we wish to observe the behavior of {ωk} in the two cases of
the generalized Laguerre weight and the Hermite weight.

For the weight w(t) = tαe−t, 0 < t < ∞, it appears that serious growth
of ωk is most likely to occur when x > 0 in (3.1) is small and α large. We
illustrate this by computing ωk for 1 ≤ k ≤ 50 in the case α = 10 for selected
values of x. The results, for x = .5, 1, 2, and 5, are plotted in the left frame
of Fig. 3 with a logarithmic scale on the vertical axis. It would appear, but

Figure 3: Amplification factors ωk for generalized Laguerre and Hermite
weights

is not known, that ωk remains finite as k → ∞. Yet, Fig. 3 shows that it
can assume rather large values — many decimal orders of magnitude — a
phenomenon called pseudostability in [5]. A similar phenomenon takes place
for the Hermite weight function w(t) = e−t

2
, −∞ < t < ∞, as is shown in

the right frame of Fig. 3 for x = 1, 3, and 5. Here, it is large absolute values
of x that give rise to pseudostability.
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