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Abstract

Consider 4 point masses mk > 0 at positions xk(t) ∈ R2, k = 1, 2, 3, 4,

moving under Newtonian forces and satisfying the symmetry relations

m1 = m3, m2 = m4, x1(t) + x3(t) = 0, x2(t) + x4(t) = 0 at all times

t. This system, referred to as the Caledonian Four-Body Problem, has

been extensively studied B.A. Steves, A.E. Roy, and many others. Binary

collisions can occur as single collisions between m1 and m3 or between

m2 and m4. Also, simultaneous collisions (m1,m2) and (m3,m4) or

(m1,m4) and (m2,m3) can occur. Regularization according to

Levi-Civita is possible in every case (for the simultaneous collisions as a

consequence of the symmetry). A single coordinate transformation

involving elliptic functions is able to regularize every binary collision.
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1. Cartesian Equations of Motion
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Complex notation: x =
(

x1

x2

)

∈ R
2 −→ x = x1 + i x2 ∈ C

Two equal masses m1 = m3 at positions x(t) ∈ C and −x(t) ∈ C

Two equal masses m2 = m4 at positions y(t) ∈ C and −y(t) ∈ C

at all times t.
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Kinetic energy: T = m1 |ẋ|2 +m2 |ẏ|2 , ˙( ) = d
dt
( )

Potential energy: U = − m2
1

2 |x| −
m2

2

2 |y| −
2m1 m2

|x+ y| − 2m1 m2

|x− y|

Energy integral: T + U = const. =: H0

Hamiltonian, with complex momenta p = m1 ẋ, q = m2 ẏ, |x| =
√
x x̄

H(x, x̄, y, ȳ, p, p̄, q, q̄) =
p p̄

m1
+

q q̄

m2
− m2

1

2 |x| −
m2

2

2 |y| −
2m1 m2

|x+ y| − 2m1 m2

|x− y|

Hamiltonian equations of motion, complex notation

ẋ =
∂H

∂p̄
, ẏ =

∂H

∂q̄
, ṗ = −∂H

∂x̄
, q̇ = −∂H

∂ȳ
, H(t) = H0 = const.
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2. Jacobian Elliptic Functions

Definition:

Elliptic integral of first kind with “modulus” k ∈ (0, 1):

s =

∫ z

0

dζ
√

(1− ζ2) (1− k2 ζ2)
;

then
s := sn[−1](z, k), z = sn(s, k) = sn(s)

cn(s) :=
√

1− sn2(s), dn(s) :=
√

1− k2 sn2(s).

Identities:

sn2(s) + cn2(s) = 1, dn2(s) + k2 sn2(s) = 1

This implies

dn2(s)− k′2 sn2(s) = cn2(s) with k2 + k′2 = 1
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Derivatives

d

ds
sn(s, k) = cn(s, k) dn(s, k)

d

ds
cn(s, k) = − sn(s, k) dn(s, k)

d

ds
dn(s, k) = − k2 sn(s, k) cn(s, k)

Remark: Many software packages have implemented the Jacobian

elliptic functions; e.g. the matlab call

[sn, cn, dn] = ellipj(s,k^2)

generates all three function values by the AGM algorithm (see p. 8).
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Efficient Evaluation of sn(s, k), cn(s, k), dn(s, k) by the AGM

First step (depending on k only): Arithmetic-geometric mean algorithm

until cn < tol:

a0 = 1, b0 = k′ =
√
1− k2, c0 = k

a1 = 1
2 (a0 + b0), b1 =

√
a0 b0, c1 = 1

2 (a0 − b0)

. . . . . . . . . . . . . . . . . . . . . . . . . . .

an = 1
2 (an−1 + bn−1), bn =

√

an−1 bn−1, cn = 1
2 (an−1 − bn−1) < tol

Second step

ϕn = 2n s an

ϕn−1 = 1
2

(

ϕn + arcsin(
cn
an

sin(ϕn)
)

. . . . . . . . . . . .

ϕ0 = 1
2

(

ϕ1 + arcsin(
c1
a1

sin(ϕ1)
)

Then: sn(s, k) = sin(ϕ0), cn(s, k) = cos(ϕ0), dn(s, k) =
cos(ϕ0)

cos(ϕ1 − ϕ0)
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Complex Arguments

Let s = s1 + i s2, k′ =
√
1− k2 and

S1 = sn(s1, k), C1 = cn(s1, k), D1 = dn(s1, k),

S2 = sn(s2, k
′), C2 = cn(s2, k

′), D2 = dn(s2, k
′).

Then

sn(s1 + i s2, k) =
S1D2 + i S2 D1 C1 C2

1− S2
2 D

2
1

cn(s1 + i s2, k) =
C1 C2 − i S1 S2 D1 D2

1− S2
2 D

2
1

dn(s1 + i s2, k) =
C2 D1 D2 − i k2 C1 S1 S2

1− S2
2 D

2
1

.
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3. Levi-Civita Type Coordinate Transformation

For regularizing the Kepler problem with complex Hamiltonian

H(x, x̄, p, p̄) =
p p̄

m
− 2m2

|x| , x, p ∈ C

Levi-Civita used a new complex coordinate ξ with x = ξ2. Therefore, for

analoguously regularizing all binary collisions of the Hamiltonian

H(x, x̄, y, ȳ, p, p̄, q, q̄) of p. 5 we need two new complex variables such

that all four denominator variables of H appear as complete squares:

x = ξ2, y = η2, x+ y = r2, x− y = d2 .

We will use the last two identities of p. 6, involving Jacobian elliptic

functions,

dn2(s, k) + k2 sn2(s, k) = 1, dn2(s, k)− k′2 sn2(s, k) = cn2(s, k) .
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Levi-Civita type transformation, continued

The equations for x+ y and x− y can easily be satisfied with the choice

k = k′ =
1√
2
.

For regularizing all four types of binaries we now reparametrize ξ, η in

terms of two new complex variables, r, s ∈ C, as

ξ = r · dn(s, 1√
2
) , η = r · 1√

2
sn(s,

1√
2
) .

The first identity is equivalent with x+ y = r2, and the second one

implies d =
√
x− y = r · cn(s, k).

In the following, the elliptic functions will only be used with the second

parameter k = 1/
√
2; it will therefore be suppressed: sn(s), cn(s), dn(s).

Quarter period: K = K’ = π

agm(2,
√
2)

= 1.85407 46773 01371 91843 ...
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4. Canonically Conjugated Momenta

Theory of canonical transformations, e.g. Siegel-Moser (Springer 1971),

or, for the complex notation, e.g., JW 1999, p. 258-262 (Ref. on p. 18).

List of complex variables Hamiltonian p.5 Regularized

Coordinates x = x1, y = x2 r = r1, s = r2

Momenta p = p1, q = p2 u = u1, v = u2

Given coordinate transformation:

x1 = f1(r1, r2), x2 = f2(r1, r2), f1, f2 analytic in r1, r2

Generating function:

W (p1, p1, p2, p2, r1, r1, r2, r2) =

p1 f1(r1, r2) + p2 f2(r1, r2) + p1 f1(r1, r2) + p2 f2(r1, r2)
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Conjugated momenta, continued

From the generating function W the new momenta are obtained as

u1 =
∂W

∂ r1
, u2 =

∂W

∂ r2
.

With f1(r, s) = r2 dn2(s), f2(r, s) =
r2

2
sn2(s) the generating function

becomes

W = r2
(

p̄ dn2(s) +
q̄

2
sn2(s)

)

+ r̄2
(

p dn2(s̄) +
q

2
sn2(s̄)

)

.

Finally, the partial derivatives above, together with the differentiation

rules of p. 7, yield the momenta u, v conjugated to r, s:

u = r̄
(

2 p dn2(s̄) + q sn2(s̄)
)

, v = r̄2 sn(s̄) cn(s̄) dn(s̄) (q − p) .
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5. Transformation of the Hamiltonian

Solving for p, q yields the following (written without denominators):

p r̄2 sn(s̄) cn(s̄) dn(s̄) = u
2 r̄ sn(s̄) cn(s̄) dn(s̄)− v

2 sn
2(s̄)

q r̄2 sn(s̄) cn(s̄) dn(s̄) = u
2 r̄ sn(s̄) cn(s̄) dn(s̄) + v dn2(s̄) .

By using this and the framed equations on p. 10, 11 the Hamiltonian H

of p.5 becomes a function of r, r̄, s, s̄, u, ū, v, v̄:

H =
p p̄

m1
+
q q̄

m2
− 1

r r̄

( 1
2 m

2
1

dn(s) dn(s̄)
+

m2
2

sn(s) sn(s̄)
+

2m1 m2

cn(s) cn(s̄)
+ 2m1 m2

)

.

It is natural to choose the common denominator, f , of H as the

dilatation factor in the regularizing time transformation, see p.15.
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6. The Time Transformation

We introduce a new independent variable, the fictitious time τ , by

Sundman’s technique, using the factor f in order to produce a

regularized Hamiltonian K:

dt = f · dτ =⇒ K
(

r, r̄, s, s̄, u, ū, v, v̄
)

= f ·
(

H −H0

)

,

where H0 is the fixed value of H on the orbit. From p. 14 the common

denominator is found to be

f = r2 sn(s) cn(s) dn(s) · r̄2 sn(s̄) cn(s̄) dn(s̄) = 2 |x| |y| |x− y|
|x+ y| ,

where the last expression (the physical meaning of f) follows from p. 10

and 11.
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7. Global Regularization

The regularized Hamiltonian:

K
(

r, r̄, s, s̄, u, ū, v, v̄
)

=

r r̄ C0(s)u ū+ r C1(s) ū v + r̄ C1(s̄)u v̄ + C2(s) v v̄ + r r̄ C3(s) +
(

r r̄
)2

C4(s) ,

where, by omitting the argument s for simplicity, sn = sn(s), sn = sn(s̄),

C0(s) =
( 1

4m1
+

1

4m2

)

sn sn cn cndn dn

C1(s) = sn cn dn
( dn2

2m2
− sn2

4m1

)

C2(s) =
sn2 sn2

4m1
+

dn2 dn
2

m2

C3(s) = −m2
1

2
sn sn cn cn−m2

2 cn cn dn dn− 2m1 m2 sn sn dn dn
(

1 + cn cn
)

C4(s) = −H0 sn sn cn cn dn dn
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8. Regularized Equations of Motion

in terms of complex variables:

dr

dτ
=

∂K

∂ū
,

ds

dτ
=

∂K

∂v̄
,

du

dτ
= −∂K

∂r̄
,

dv

dτ
= −∂K

∂s̄
.

Outlook to numerical experiments.

• The regularized Hamiltonian K is a polynomial in r, u, v.

• For the partial derivative of K with respect to s̄ see the

differentiation rules on p. 7.

• The Jacobian elliptic functions (doubly periodic in the complex

plane) have first-order poles at points in a quadratic grid with mesh

2K containing the point s = iK (see p.11). These non-physical

singularities may need special attention in practical implementations.
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Conclusions

• The “Caledonian” symmetric four-body problem in two dimensions, introduced

by B.A. Steves and A.E. Roy in 1998, allows for four types of binary collisions

(besides the simultaneous collision of all four bodies).

• A technique doubling the number of degrees of freedom (suggested by D. Heggie

in 1974) was used by Sivasankaran, Steves, and Sweatman in 2010 for

regularizing all binary collisions in the Caledonian problem.

• In this study the Jacobian elliptic functions sn(s, k), cn(s, k), dn(s, k) with a

complex argument s and k = 1/
√
2 were used for achieving Levi-Civita-type

regularization of all binary collisions.

• The regularized equations of motion, although somewhat long, have an elegant

and transparent stucture.

• Owing to the existence of an efficient algorithm for evaluating sn, cn, and dn

(arithmetic-geometric mean), the variables suggested here are a promising tool

for numerical applications.

• Experiments with numerical integration upcoming!


