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1 Purpose

In the current application of our parallelization concept we are using an
algorithm involving sieving techniques for locating and counting clusters of
prime numbers. Whereas the distribution of primes seems to be fairly regular
(if the Riemann hypothesis is true), the distribution of twin primes and longer
clusters is largely unknown and is characterized by large-scale anomalies.
Collecting experimental data on these anomalies is one of the reasons for the
interest in clusters of primes.

Another challenge of finding clusters of primes is collecting data support-
ing the unproven prime k-tuple hypothesis, which is concerned with sequences

c = [c1, c2, . . . , ck] , cj ∈ Z , j = 1, 2, . . . , k , c1 < c2 < · · · < ck

of k integers. The sequence or pattern c is called admissible if its elements
leave at least one residue class empty modulo every prime. As a conse-
quence of this definition, simple divisibility considerations cannot exclude
the existence of integers x such that each element of the shifted pattern
cx = [x + c1, x + c2, . . . , x + ck] is prime. A shifted pattern cx with this
property will be referred to as a prime instance of c. The prime k-tuple
hypothesis states that every admissible pattern has infinitely many prime
instances.
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An example of a non-admissible pattern is c = [0, 2, 4]; modulo 3 all
three residue classes are occupied. For every integer x the shifted pattern
cx = [x, x + 2, x + 4] contains one multiple of 3; therefore there exist only
finitely many prime instances, namely for x = 3 and x = −7, when one of
the elements is the prime 3 itself or its opposite.

The goal of this project is to find and display prime instances of certain
admissible patterns, in particular of the densest possible patterns for a given
number n of elements. With the current software and hardware n ≤ 21 and
|x| ≤ 1030 delimit the region of feasible search.

Many dense admissible patterns may be defined by a finite subsequence
of consecutive positve or negative odd primes. E.g. c = [17, 19, 23, 29, 31] is
admissible, it reoccurs as the prime instance c210 = [227, 229, 233, 239, 241],
and many more may be found. In general, the inverse (i.e.the mirror image)
of an admissible pattern is again admissible: c′ = [−31,−29,−23,−19,−17]
has the prime instance c′1320 = [1289, 1291, 1297, 1301, 1303], etc.

In this text, admissible patterns will be denoted by listing the elements
cj in increasing order, separated by commas and enclosed in square brackets
(often normalized such that c1 = 0). For brevity we will abbreviate a list of
consecutive primes by merely indicating the bounding elements, seprated by
two periods: c = [17..31], c′ = [−31.. − 17].

A proof of the prime k-tuple hypothesis is currently out of reach; not
even for the simplest case, the twin prime hypothesis, a proof is in sight. In
contrast, the observed average densities of prime k-tuples in the accessible
range are in perfect agreement with the densities ρc(x) conjectured by Hardy
and Littlewood [5] in 1922:

(1) ρc(x) =
hc

(log x)|c|
,

where hc is the Hardy-Littlewood constant associated with the pattern c,
and |c| is the number of elements in the pattern c.

2 Review of Results 2001 - 2003

The main achievement in the preceding period was the discovery of two
dense clusters of 18 primes in the range of 3 · 1024 on November 13, 2000
and on January 31, 2001. This computation was about 50 times harder
than finding the 23-digit clusters of 17 primes among 67 consecutive integers



(first discovered by Tony Forbes [3], and indepently by J. Waldvogel [10],
both in 1998). The news about this discovery was immediately announced in
the number theory press [6]. It also got coverage in the web journal of ETH
(ETHLife, December 6, 2000, [2]). Dense clusters of primes receive particular
attention on the website [4], continuously actualized by Tony Forbes. The
successes of our implementation bear the danger of monopolizing this site
and taking away all the fun!

We approched our ”prime“ target, the search for clusters of 18 primes
among 71 consecutive integers, by searching blocks of size 1024. Preliminary
experiments with the idle time of 20 workstations of the Seminar for Applied
Mathematics SAM were carried out for testing purposes. The time necessary
in this setting was estimated as 2 years – with luck; otherwise it could be
5 years as well. If the search were to be successful within a reasonable
timespan, we could claim a world record that wouldn’t be easy to break.
Dense clusters of 19 primes in the patterns of [13, . . . , 89], [37, . . . , 113] or
their mirror images are expected to repeat/occur only in the range of 1025 or
even 1026. For the final “attack” on the 18er 432 processors of the Beowulf
Cluster and 20 workstations of SAM were involved. The search has now been
completed up to 2.9999949836 ·1024. The first search was caried out with the
pattern

(2) c = [x − 83, x − 79, x − 73, . . . , x − 19, x − 17, x − 13]

consisting of 18 elements, such that for x = 0 the sequence of consecutive
negative primes beginning at -83 and ending at -13 is obtained. For the
corresponding Hardy-Littlewood constant the value hc = 6723654.312 is ob-
tained. Equ. (1) implies that the expected number of occurrences of the
pattern c (as well as of its mirror image) in a large interval of length ∆ near
a much larger x is approximately given by hc ∆ (log x)−18. Integration of this
average density yields the following expected frequencies HL(x) (referred to
as the Hardy-Littlewood count, HL count for short):

x 11024 21024 31024 41024 51024 11025 11026
HL(x) 0.438 0.695 0.912 1.107 1.286 2.056 9.962

Therefore, one could ”hope“ that the above prime pattern c would repeat
for some x in the range of 3 · 1024, and also that its mirror image occurs in
the same range. One could even be lucky to have occurrences for smaller
values of x, but also, with bad luck, the search might have to be pushed up



much higher. The table below summarizes some of the actions that lead to
the discovery of the two 18-tuples of maximum density; for more details see
[10], Projects/cl18.pdf.

Pattern Block Begin/end of search Date Initial element HLcount

[-83..-13] 1 8/03 - 9/19/00 0.438

[-83..-13] 2 9/19 -10/26/00 0.695

[-83..-13] 3 10/29 -11/20/00 11/13/00 2845372542509911868266807 0.880

[ 13.. 83] 1 12/19 - 1/23/01 0.438

[ 13.. 83] 2 1/23 - 2/27/01 1/31/01 1906230835046648293290043 0.673

[ 13.. 83] 3 2/27 - 3/26/01 0.912

3 Distribution of a Particular 12-Tuple

In this section we describe the results of an extended study of the distribution
of the particular k-tuple with k = 12, defined by the pattern

(3) c = [−23,−19,−17,−13,−11,−1, 1, 11, 13, 17, 19, 23] .

It is easily seen that c is admissible: modulo the primes ≤ 7 the residue class
0 is vacant, modulo the primes ≥ 13 the 12-tuple necessarily leaves at least
one residue class empty, and modulo 11 the residue classes ±4 are empty.
The pattern c, spanning an interval of length 46, is not the densest admissible
12-tuple; the primes [11, 13, . . . , 53], spanning an interval of length 42 only,
also form an admissible 12-tuple. The pattern c, by its appealing symmetry
and by the lack of an obvious reoccurrence in terms positive primes, promises
to be an interesting object to study.

The prime k-tuple hypothesis predicts infinitely many prime instances of
c. By means of our algorithm ([10]: the Initial Report 2001, /clprimes01.pdf,
and the experimental PARI code, /paricode.gp) all prime intances of c up
to 1.000046276 · 1021 were generated, 155 898 instances alltogether. Chinese
remaindering was done with the first np = 14 primes. The primes up to 29
produce 52 224 tasks; the range mentioned above was covered with 5 sieve
blocks of length block = 15 288. These computations were performed during
the testing phase of the algorithm on Asgard within about two weeks.

In the table below we report the initial primes of a few of the patterns
generated: 16 at the beginning of the sequence, 7 at the current end, and 2
at each transition to a new decade.



Index Initial Prime Index Initial Prime

1 41280160361347 205 99859425208272637

2 65073487398967 206 100306705532373247

3 273596722858597

4 305247832189207 996 998054166528529927

5 314546191059007 997 1004612024526939967

6 334701417639727

7 355340244780337 5330 9999309335149183957

8 552105775370287 5331 10001687719716943297

9 610954727181937

10 660119078678197 28104 99992682101800188517

11 767920116273217 28105 100004729076950887327

12 776137769447857

13 899316460923697 155892 999972884065149535357

14 957065931972967 155893 1000006962511995788257

15 1333086396411817 155894 1000017025199672760187

16 1490344945469287 155895 1000022902668956065807

155896 1000035195619662051757

43 9411514972889167 155897 1000037569658302164127

44 10012543630829647 155898 1000044549710737801177

In the following, we consider the counting function πc(x), defined as the
number of patterns c with initial prime ≤ x. We will compare πc(x) with the
corresponding smooth counting function obtained by integrating the Hardy-
Littlewood density given in Equ. (1). For the pattern c of Equ. (3) the
Hardy-Littlewood constant

hc = 18867.657182534569614833826514092

is obtained. Instead of the conventional logarithmic integral

lik(x) :=

∫ x

2

1

(log t)k
dt

we prefer to use the generalization

(4) Rk(x) :=
∞

∑

j=0

(log x)j

(k − 1 + j)! j ζ(1 + j)
, k ∈ N ,

of Riemann’s function R(x) := R1(x). Here ζ(s) is the Riemann zeta func-
tion, and for j = 0 the product j ζ(1 + j) must be understood in the sense
of the limit limj→0(j ζ(1 + j)) = 1.
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Figure 1: Counting function πc and the smooth graph of HL(x) versus x. Range
0 < x < 10j , j = 16, . . . , 19.

For x → ∞ Rk(x) and lik(x) have asymptotically the same values. The
advantage of Rk(x) is the simple evaluation algorithm based on the series
(4) and the regularity at x = 1. R(x) = R1(x) is known to be a very elegant
monotonic approximation of the prime counting function π(x). In all our
examples the (modified Hardy-Littlewood) counting function

(5) HL(x) := hc · Rk(x) with k = |c|

agrees surprisingly well with πc, for large values of x as well as for small ones.
In the six frames of Fig. 1, Fig. 2, Fig. 3 we plot πc and HL(x) in the

regions 0 < x < 10j, j = 16, . . . , 21. The range of x in the subsequent frame
is increased 10-fold. The preceding frame appears to the left of the dashed
lines in compressed form.
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Figure 2: Counting function πc and the smooth graph of HL(x) versus x. Range
0 < x < 1020. πc below HL.

0 1 2 3 4 5 6 7 8 9 10

x 10
20

0

2

4

6

8

10

12

14

16
x 10

4 The 12−tuples [−23,...,−11,−1,1,11,...,23]  < x

x

N
um

be
r 

of
 tu

pl
es

 m
in

us
 H

ar
dy

−
Li

ttl
ew

oo
d 

co
un

t

Figure 3: Counting function πc and the smooth graph of HL(x) versus x. Range
0 < x < 1021. Crossover of πc.
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Figure 4: Difference πc − HL(x) versus x. Range 0 < x < 10j , j = 16, . . . , 19.

In the six frames of Fig. 4, Fig. 4, Fig. 6 we plot the difference πc−HL(x)
versus x in the same regions 0 < x < 10j, j = 16, . . . , 21. Again, the range of
x in the subsequent frame is increased 10-fold. The preceding frame appears
to the left of the dashed lines in compressed form.

Despite apparent discrepancies between πc and HL(x) (e.g. in the range
1020, Fig. 5) the agreement of the two graphs over the full range of 7 powers
of 10 is striking (Fig. 3). Whereas the prime counting function π(x) oscillates
on a short scale, the counting functions of prime twins and longer clusters of
primes seem to depart from the average in large-scale excursions. E.g., the
pattern c of Equ. (3) is deficient in 9 · 1018 < x < 2.7 · 1020, i.e. the bounds
of this interval differ by as much as a factor of 30. Even in the simplest case,
the prime twins, the source of such large-scale anomalies is still unknown and
is the subject of theoretical research.

In Fig. 7, the final graphic of this section, we summarize the properties
of πc by using a logarithmic scale in x and plotting the normalized difference

D(x) =
πc − HL(x)
√

HL(x)
.

In the range considered this choice of the normalizing factor seems to keep
the amplitude roughly constant; however, its true growth rate is not known.
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Figure 5: Difference πc − HL(x) versus x. Range 0 < x < 1020.
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Figure 6: Difference πc − HL(x) versus x. Range 0 < x < 1021.
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Figure 7: Normalized difference (πc − HL(x))/
√

HL(x) versus log10(x). Range
1014 < x < 1021, logarithmic scale.

4 Some Particular Patterns

4.1 Densest 16-Tuples

The densest 16-tuples occur in two patterns which may be defined by se-
quences of consecutive small primes, namely

c = [13, 17, . . . , 71, 73] and c′ = [−73,−71, . . . ,−17,−13] ,

their common Hardy-Littlewood constant being hc = 751221.42544528571.
Below we will compare the modified Hardy-Littlewood counting function

HL(x) = hc · R16(x)

with the actual counting functions πc(x), πc′(x) deduced from the 67 in-
stances present in 0 < x < 1023.



Pattern [13,...,73] Pattern [-73,...,-13]

1 13 47710850533373130107

2 695874886175252911063 347709450746519734877

3 1567582627835236839763 1099638576123052218257

4 1750052554011927712483 1169914227530138703617

5 2257588388550898970503 1522014304823128379267

6 3789227751026345304613 1620784518619319025977

7 4654682384109074514133 2639154464612254121537

8 5022156579757255625623 3259125690557440336637

9 13599236099159166553033 9042634271485192050677

10 29894522822363684652103 9239395687646993061197

11 35718904544536715448883 15571053758048293307807

12 42421183685552747462323 20628149050698694668167

13 47624415490498763963983 20947353617877810296177

14 50069823850049036630533 23182160505954925788317

15 56294926786180569503953 27814116054901200587567

16 60877851518090858117803 30406149669349341460577

17 66871135379953148611303 31607383424682394081757

18 70743491366529526461853 34254730511961158822627

19 72039555441202354852783 40675973411840597813987

20 72939169778564978895943 41459159264655740911307

21 78314167738064529047713 49798002215047773229547

22 79415821643818505392483 53284658140441622257367

23 80755924819458605984203 61196813406933554172827

24 81433995543774820773763 62564565965531138812307

25 83405687980406998933663 67089635430601104554237

26 93091355499511979496823 73377493322819357084417

27 94045986419037158522953 75356498508757177334627

28 94975866735959660878363 80444001154123052328887

29 97907646478336552814893 81044576768686984666217

30 99517467925153764522973 82069568461982909560757

31 86042715202634832665027

32 88077044957120569823477

33 89172493451857275102647

34 91576165734484982223677

35 93954295353554241598997

36 97692369541610844803807

37 98659593721870389301097
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The 16−tuples [13..73] (solid) and [−73..−13] (dashed) < x

Figure 8: The densest 16-tuples in the range 0 < x < 1023 and their HL count.
Solid: Pattern [13,...,73], dashed: Pattern [-73,...,-13].

4.2 Two Octuples at Minimum Distance

The densest octuples occur in three patterns which may all be defined by
sequences of consecutive small primes, namely

c1 = [17, . . . , 43] , c2 = [11, . . . , 37] , c2
′ = [−37, . . . ,−11] .

c1, spanning a range of 26, is the longest symmetric pattern of maximum
density. We observe that the 16-tuple C consisting of two copies of c1,
concatenated at the distance of 34,

C = [−43,−41,−37,−31,−29,−23,−19,−17, 17, 19, 23, 29, 31, 37, 41, 43] ,

is admissible (see the remark at the beginning of Section 3). For the corre-
sponding Hardy-Littlewood constant hC we obtain

hC =
13312

2625
· hc = 3809622.71067719746 ,
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Figure 9: 94 pairs of octuples in the range 0 < x < 5 · 1022 and their HL count,
Pattern [-43,...,-13, 13,...,43].

where hc is defined in Section 4.1. Up to the limit X = 5 · 1022 we expect
HL(X) = hC ·R16(X) = 89.7 occurrences of the pattern C. The distribution
of the 94 prime instances of C is shown in Fig. 9.

The patterns

C1 = [−43,−41,−37,−31,−29,−23,−19,−17,−1, 1, 17, 19, 23, 29, 31, 37, 41, 43, 47]
C2 = [−47,−43,−41,−37,−31,−29,−23,−19,−17,−13, 1, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

of 18 or 21 elements, respectively, both containing C as a subset, are found to
be admissible as well. Therefore, it is expected that some of the 94 instances
of C will actually be subsets of C1 or C2 with more than 16 elements.
However, instances of C1 or C2 themselves are expected to occur only in
the range of 1024 or 1030, respectively. In the table below we list the initial
primes of all 94 instances of C, together with additional elements from C1 or
C2 contained in the patterns, if present (in the columns more). No patterns
with more than 18 elements exist in the range considered.



Index Initial Prime more Index Initial Prime more

1 10458834002271815117 48 14284612658991181216667

2 26476006821087640697 -47 49 14297146316095286150387

3 44350865905809142637 50 14754208002759013618787

4 54014646858393564377 -47,13 51 14841953373654341817917 -13

5 62155369550078511587 -47 52 15532484963882491131407 -13

6 253586253591518370557 -47 53 15853064083490265705107 47

7 304079924911990894547 13 54 16130615338665630649727

8 423291158347150012877 55 16372205147465011401437

9 511505988322414165037 56 16858454028003145410887

10 512761727903842750367 57 17198991227897242847117

11 644424770171034352457 58 18786403726068543935327

12 675759858713748355427 59 19054062004470982522067 13

13 780362378270548056017 60 19547070837095799260297

14 1416058157129915879537 61 19728243594481889687177

15 1457922032650513232837 -47 62 21944528505231528596357

16 1792491363005354644667 63 25435635163943029705637 1

17 1812456008867090693987 64 26360513714179113726137

18 1826785107639242841047 65 28001420822911641278207

19 2193719983731075106187 66 28794590387631746120477

20 2519939592777795291137 67 30178895046554873882297

21 2715485152912746884627 68 30544994855724415219187

22 3309935724597716754497 69 31647354432491850512417 -1

23 3703048128556987693517 70 31810951085696093237807

24 3741636047391669917447 -47,-1 71 33086235745772630878337

25 3824778120476297871767 72 34351709846301758103227

26 3829402050773411044967 73 35138861572319523491507

27 4916234207084567704217 74 36373617998432758393307 -47

28 5187457951820816722007 75 37064354400225808655957 -47

29 5335829523905291634257 76 37604920347436702417037 13

30 5644872371007238806317 77 38694494289512089895747 -47

31 5795560513558228593137 78 38695164866270310508067 -47

32 5984674091995810261007 79 39874467007461049653647

33 6969682106336094492227 80 39950366639130114006797 -47

34 7305028693989548271707 81 41132274627392276695247

35 8203874622781421977427 -13 82 41269649010979497985757

36 8348101522292016031427 83 41504939256100372845827

37 8591703894674746255367 47 84 41564901882588422431127 -47

38 8741497840086683458667 1 85 41579404447063334354537

39 9806894079711946604267 1 86 41773491218296251541007

40 9815343014825749197677 87 42108300110425746630467

41 10606325734168483068707 -47 88 42858583357347352501787

42 11423347423634306069867 89 42876198440221191818807

43 11568680835710656040417 90 44860553600587843401317

44 11673556306524425252897 1 91 46952529647970814520687

45 12344874940525148664677 92 47030198166588987767297

46 13216411836106066110557 93 49235705631942915972767

47 13729297230363654379397 47 94 49623872890924546023767
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