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Abstract The trapezoidal rule is the method of choice for numericaldyature of
analytic functions over the real linR. Other intervals and slowly decaying inte-
grands may elegantly be handled by means of simple anatgiisformations of
the integration variable. In the case of an integrand aitailytan open strip con-
tainingR the discretization error is exponentially small in the peotcal step size. If
the integrand has singularities arbitrarily clos&tahe discretization error is larger
and its theory is more complicated. We present examplestiifiting possible error
laws of the trapezoidal rule.

1 Introduction

The (composite) trapezoidal rule, being the simplest anbaisly oldest algorithm
for numerical quadrature, is often dismissed as insuffidienthe purpose of high-
precision quadrature, mainly due to its low order of preeidor integrating generic
integrands over a finite interval. However, for integraleiothe real lineR of func-
tions analytic in an open strip containifighe discretization error of the trapezoidal
rule has been proven to be exponentially small in the recidrstep size. Hence in
some cases the trapezoidal rule is among the most powegfuitdms for numeri-
cal quadrature of analytic functions.

By means of appropriate analytic transformations of thegrdtion variable gen-
eral intervals may be mapped to the real line, and the detapfthe integrand may
be enhanced, which is desirable in order to reduce the nuoflierms in infinite
trapezoidal sums. Since such transformations may genseatsingularities in the
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complex plane, no strip of analyticity may exist for the stormed integrand. To
the knowledge of this author, no general theory of the diszaton error of the
trapezoidal rule in the absence of a strip of analyticitysexi

The trapezoidal rule in connection with quadrature of at@lfunctions has
already been studied 1949 by Goodwin [7], 1969 by Schwar2t §hd later by
Stenger [14]. The idea of using transformations of the irgtgn variable has been
mentioned in [12] as well as 1973 by Takahasy and Mori [16};aleo [13], Chapter
8 for a summary. The entire topic is comprehensively treatdtie textbooks [4]
and [15].

Here we will first summarize the well-known error theory oé ttlassical trape-
zoidal rule. We then consider the particular cases with groe&ntially small dis-
cretization error, mainly using integrals over the rea¢ It Finally, we will present
examples of integrals with singularities arbitrarily cas&, where the trapezoidal
rule still yields powerful high-precision integrators afrsewhat slower conver-
gence, still with an exponentially small discretizatioroer

2 TheClassical Trapezoidal Rule

In its classical form the (composite) trapezoidal rule &ed as an algorithm for nu-
merically approximating the integrhlof the integrable functiori over the interval
a<x<b,

b
| :=/ £(x) dx, @)
a
using then+ 1 > 2 equally spaced points
xj:=a+jh, j=0,...n, h::b—;a, @)

whereh is the step size. The trapezoidal siiith) is then defined as
n
T(h)y:=h% wjf(x), ®)
2

where the weightsy; arewp = wn = %, Wi =Wp=--=Wp_1=1.

If f has at leasti® —1 > 0 continuous derivatives, thdiscretization errorof
a trapezoidal sum is given by the Euler-Maclaurin summafdomula (for a good
account see, e.g., [8]) as

2 4
T(h) 1= Z—Z(f’(b) ~1'(@) - %(f”’(b) —1"(@)) + ...
N (4)
2N

+W (fEN"D () — £@NY(@)) + Ron,
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whereB,y is the Bernoulli number of the even ordeM 2
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6 30
andRyy is the remainder terniyy can be specified [8], but this is rather involved.
Since the above series is usually divergent for any fixedlstef®, it must be trun-
cated at a finite value df.

In general, the trapezoidal rule converges very slowly wébpect to step re-
finement. Convergence is gecondorder: Halving of the step (i.e. doubling the
computational effort) reduces the discretization errobfactor of 4, i.e. merely
yields 0.6 additional digits of accuracy. This does notwlto obtain more than a
few digits of accuracy.

In the following we restrict ourselves to integranfignalytic in the openin-
terval of integration, i.e. integrable boundary singuias are permitted, andwill
be understood as @omplexvariable. Of particular interest are the cases with the
property that the terms of the series (4) vanish up to amitralues ofN. Then the
discretization error is given by the remaind®g asN — . We distinguish three
cases:

1. f is periodic with no singularities on the real lifie the intervala,b] is a full
period (or an integer number of periods).

2. fisintegrable over the real lirfig, andl is its integral oveR, i.e.a= —o0, b= oo,

3. fis aflat function at both boundaries, i.e. all derivatives @t x =aandx="b
vanish.

In all three cases convergence with respect to step refingsaster than any finite
order, referred to asxponential convergenc€ase 3 corresponds to using T
rule proposed in 1969 by Iri, Moriguti and Takasawa (see, e.d)[Tase 2 may be
considered as a particular instance of Case 3; howevegratten over the entire
real line is more fundamental and often leads to more efficaigorithms. We will
mainly concentrate on integrals ovRt but we begin with a short discussion of
Case 1.

3 ThePeriodic Case

With no loss of generality we assunae= 0, b = 27. Let f be 2r-periodic and
analytic on the entire real axis, and consider the integral

| = /Oznf(x)dx. (5)

. . 2 .
With n > 1 subintervals of equal length= e the trapezoidal sum (3) becomes
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n-1
T(h)fhlgjf(lh). (6)
The Fourier series of (in a somewhat unconventional notation),
1 o Kx 2 —ikx
f(x) = ETk:Zkae with ¢ = /o f(x) e dx, (7)

impliesl = cy. Hence the trapezoidal sum (6) becomes
12 nrooom >
T(hy== chklgjexp(lel)f_z Cin, (8)

n k= J=—0

and we obtain the discretization erfgy := T (h) — | with n=2m/has

‘En:cn+c,n+02n+c,2n+...‘. 9

Therefore the discretization error of the trapezoidal fatesmall steps is governed
by the deacy rate of the Fourier coefficientsof the integrand for large absolute
values of the index.

A more informative statement may be formulatefl i§ analytic in the symmetric
strip|Imx| <y, y > 0. Then the theory of Fourier series [11], [4] states

ch=0(e 9"y forany e€(0,y) as n— +oo. (10)

Combining this with the error formula (9) yields the follavg result:

Theorem 1. Let f be a2m-periodic function, analytic in the strigmx| <y, y >
0, and let | be the integral of f over a full period. Then the diization error
En:=T(h) — I of the trapezoidal sum {h), with n> 1 subintervals of equal length
h=2m/n, decays as @& (¥-)I") as n— Lo for anye € (0, y).

4 Integrals over the Real Line

We now consider Case 2 of Section 2, i.e. Equ. (1) is speeilia
| = / £(x) dx, (11)

wheref is analytic onR and integrable oveR. By slightly generalizing the defini-
tion (3) we will approximate by theshiftedtrapezoidal sum with stefpand offset
S,

T(h,s)=h z f(s+jh), (12)

J:700
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where the doubly infinite sum converges as a consequence oftégrability off.
As a function ofs, T (h,s) is periodic with perioch, T (h,s) = T(h,s+h), and the

relation H L H
T(E’S):E (T(h,S)+T(h,S+ 5)) (13)

may be used for an efficient transition from stef steph/2.

Aside from the approximation df, the evaluation of the infinite sum (12) may
be a problem in itself. Here we will not discuss this aspetdtdad, we assume a
sufficiently fast decay off (x) | asx — 4, such that simple truncation rules for the
infinite sum (12) may be used. In the next section we will natvthis approach
by discussing transformations of the integration variaflerder to obtain quickly
decaying integrands.

As in the periodic case of Section 3, the discretizationrammay be obtained by
Fourier theory. The basic tool is the Poisson summation titair¢see, e.g., [9]),

T(hs) =PV ¥ f(kr) €  with r::%", (14)
k=—o0

which expresses the shifted trapezoidal sum (12)f ofith steph again as a
(weighted) trapezoidal sum, but of the Fourier transfdrrand with step := 27/h.
HerePV stands for the Cauchy principal value of the sum, i.e. the suen all in-
tegersk must be taken as the limit of the symmetric sum freiid to K askK — oo,

The Fourier transforni of f is defined as
f(w) ::/ e f(x)dx, weR, (15)

which immediately yields = (0).

In the following we restrict ourselves to the particulareas vanishing offset,
s=0, using the notatiof (h) := T (h,0). In view of the definitiorr := 2rt/hin Equ.
(14) we introduce the discretization erriB(r) as a function of,

E(r):=T(h)—1, h::ZTn. (16)
Equ. (14) now yields therror formula
Er)=f(r)+ f(—r)+f@rn+f(-2rn+...| 17)

Therefore, in complete analogy with Equ. (9), wittaking the role of the inder,
the discretization error of the trapezoidal rule for sm#dpsh is governed by the
deacy rate of the Fourier transforfrof the integrand for large values af= +r :=
+2m/h.

A more informative statement may be formulatefl i§ analytic in the symmetric
strip|Imx| <y, y > 0 and integrable along any path ¥ yp = const with|y| < y.
Then we have
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f(w)y=0(e " 9I?) forany e€(0,y) as w— +o (18)

([3] Chapter 3, [11] Thm. IX.14, or [4]). Combining (17), (Lgields the following
theorem:

Theorem 2. Let f be analytic in the striﬁlmx] <y, y> 0and integrable along
any path Im x = yp = const with |y| < y, and let | be the integral of f oveR.
Then the discretization errorfE= T (h) — | of the trapezoidal sum {(h) with step
h=2m/r and decays as @& ¥-8)I'l) as r— +oo for anye € (0, y).

5 Transforming the Integration Variable

The trapezoidal rule for integrals ov& is particularly attractive for quickly de-
caying integrands (at least exponential decay). Then thecation of the infinite
trapezoidal sums can be easily handled. A simple truncatilerfor an infinite sum
is truncation if the contribution of the current term is belowiaen tolerance > 0.
If necessary, this simple rule can be made more robust bgating only if two (or
three) consecutive terms do not contribute. Accumulatiodawubly infinite sums
has to be done upwards and downwards from an interior point.

To validate such a truncation procedure the tail of the tatea sum needs to be
estimated. Ideally, the contribution of the truncatedsaibuld be< €. We will use
the the function

f(x) :=exp(—€**), a>0 (19)

as a simple model of a doubly exponentially decaying integr@sx — +o. The
tail of the sum, truncated at= X > 0, will be modeled by the integral

Rx ::/ f(x) dx.
X
For the integrand (19) we obtain
Ry = % exp(—e*X) (e70X —e 20X p2re 30Xy ),
The suggested truncation limit, given by f (X) = ¢, is found to be
1 1
X == loglog=;
o 0909,
therefore

Ry =+ (i +0O((log 8)2)) .

a \loge

Truncation is safe even far << 1, since|Rx| < ¢ if € is sufficiently small.
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Our strategy is to use the simple tool of transformationsefihtegration vari-
able in order to transform a given integral into one oRewith a quickly decaying
integrand. Beginning with the integrabf Equ. (1), we use an appropriate transfor-
mation

x=0qt), teR, (20)

whereg is a monotonically increasing, differentiable functipnt € R — x= ¢(t) €
(a,b). The resultis

I:/joF(t)dt with F(t) = (o) ¢(1). 21)

There is a wide range for the choice @f Since we are working with analytic
integrands we only consider analytic transformation fioms. In view of numerical
applications we will choose as a combination of elementary functions, for which
reliable implementations in arbitrary precision are rgaavailable.

In the following table we list a few standard intervaislj] for the integral (1),
together with suggested elementary transformationsp(t). Possibly, a composi-
tion of several of the suggested mappings may have to be nsadiér to achieve
doubly exponential decay of the transformed integra(td ast — +co. In all cases
(including the cases with finite boundaries) integrablerutauny singularities are
allowed. However, in the case of finite intervals care mustaen to accurately
transmit the distances to both interval boundaries.

Interval:x € (a, b) Transformationx = ¢(t) =
1. Finite interval(—1,1): tanht/2)
2. Finite interval(0,1): 1/(1+exp—t))
3. Semi-infinite interval0, ): exp(t)

4. Real lineR, accelerate decay as— +o  sinh(t)
5. Real lineR, accelerate decay as— +o  t+expt)
6. Real lineR, accelerate decay as— —o  t—exp(—t)

6 Error Theory of Integralsover R

In the remaining sections we will go back to the problem oft®ac4, the integral

| overR of (11), to be approximated by the infinite trapezoidal sunkqfi. (12),
T(h) = T(h,0) with steph. In the case off being analytic in a symmetric strip of
half-widthy > 0 containingR the discretization error of (h) is exponentially small
in h according to Theorem 2, more precisely

E(r)=0(e" V9l as r:=+2n/h—+0 V £€(0,y). (22)

This also applies to integrals one would hardly attempt teadly approximate by
the trapezoidal rule, e.g.= [, dx/(1+x%) = 7. In such cases it is advisable to
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enhance the decay of the integrand according to Sectiorobeoigfyoking the trape-
zoidal rule. However, transformations enhancing the dexdahe integrand may
bear the danger of generating new singularities in the cexqghne (possibly clos-
ing in on the realline), such that Theorem 2 is no longer applie. We will consider
this situation in more detail in Section 7.

The essential ingredient for an error theory of the infiniswézoidal sum is the
Fourier transfornf (w) of the integrand, defined in Equ. (15); then the discretimati
error is given by the error formula (17). We will now develaperror formula for
transformed integrals. Consider the intedralverR of Equ. (11), and assumg:
teR+— x=@(t) € R to be used in order to modify the decay rate of the integrand;
the transformed integral is given by Equ. (21). The FourimsformF (w) of F (t)
becomes

F(w) = /:; &9t (p(t)) /(1) dlt. (23)

Going back to the original variableby using thenversetransformatiorpl =2 : x e
R —t = ¢-¥(x) € R and the relatiory/ (t) dt = dxyields

Flo)= /:: e 19PN () dx, (24)

a modified “Fourier” transformof f, where the factok in the exponent of Equ.
(15) is replaced by~ (x). Combining this with the error formula (17) yields the
following result:

Theorem 3. Let T (h) be the infinite trapezoidal sum with step h, obtained from the
integral | = [ f(x) dx after having transformed the integration variable by mea
of the isomorphisnp: t e R — x= ¢(t) € R,

T=h Yy f(ekn)@kh).

whereF (w) is given by Equ. (24).

7 Asymptotics

According to the error formula (17) the discretization eobthe infinite trapezoidal
rule for small step$ is governed by the Fourier transforifr) of the integrand
at large arguments= +2m/h. Therefore, an error theory of the trapezoidal rule
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amounts to an asymptotic theory of the Fourier transfornhefibtegrand. Such a
theory is complicated and has not been fully developed so far

In the simple case of a strip of analyticity (of half-widgh with the symmetry
axis R, Theorem 2 establishes the discretization error to be ofradd exp((e —
y)r)). However, if a transformatiom = @(t) is necessary in order to achieve a
sufficient decay rate of the integrand, the strip of anaiytimay be lost (i.e. the
sigularities may fill the area outside a “funnel” closing im the real axis, see Fig-
ure 1). Then Theorem 2 is no longer applicable, and an asyiopbeory of the
modified Fourier transform (24) is needed. In several exampbnjectured decay
rates of ordeO(exp(—yw/log(cw)) or O(exp—y+/w)) with y > 0, ¢ > 0 were
observed.

7.1 An Introductory Example

We begin with the discussion of the explicit example mergbim connection with
Equ. (22), subjected to repeated sinh transformations efirttegration variable.
Adapting the notation by using := x, lp := |, consider

|k:/ f(ty) dtg = 71, k=0,1,2,3 with fo(t): (25)

=T
and the transformations

te =sinh(tis1),  fipa(t) = fi(sinh(t)) cosht), k=0,1,2. (26)
Hence the integrands

1 ~ cosht) _ cosh(sinh(t))
fl) = Gosit)* 20 = Gosn(sinn) * Y = Gosh{sinhsin(1)))

show single, double, or triple exponential decay. The dangfies (poles)o, t,t, of
fo, f1, f2, respectively, are given by

to = i
t1:iu7—21, uodd
. moo.m
t, = sign(u) Acosh( |u| 5) +ivs, uv odd.

The poleg; of f; still leave a strip of analyticityimt | < 17/2, whereas the poles of
f3 close in on the real axis as— +oo, see Figure 1.

In the casek = 0 andk = 1 the Fourier transformf(w) and the discretization
errorsEy(r), see (15, 17), may be expressed explicitly as



10 Jorg Waldvogel

L L L 1 L L L
-5 -4 -3 -2 -1 0 1 2 3 4 5
Fig. 1 Singularities of the integrands of [, dx/(1+ x?) after 3 sinh transformations. The dots
on the curves, to be continued in increasing density, madusarities. The arc-shaped areas to the
left and to the right are densely filled with singularitieg narked in the figure.

N 2m
o(w) = me 1@ o(r) g1 T /
~ m o 21

f =—F-= E()=Y ———~=.
1) cosiw 1/2)’ (1) j£1cosh(jr m/2)
In the cas& = 2 Theorem 3 yields the Fourier transforfa{w) as the integral

R 0 o—i WASInh(t)
[c @7

fz((A)) = . W dt

which does not have an obvious closed form. However, acegitdi Theorem 2 we
have

fo(w) =O(ele"2I®l) as w— +w forany ec (0, 7—2-[). (28)

Evaluation of the integral (27) by a branch cut integral gltre imaginary axis or by
the saddle point method ([5]; [6] for a worked example) cbom@tes (28). In Figure
2 the exponentially amplified discretization error, &xq/2) E,(r), is plotted versus
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r € (0.5,70), whereE(r) ~ 2Ref,(r) according to the error formula (17). The
complicated irregular behavior seen in Figure 2 reflectdabethat infinitely many
singularities or saddles contribute to the integral (2He Blow (sub-exponential)
growth of the amplitude in Figure 2 exemplifies the necesHityie parametes in
Theorem 2.

305.6f

-263.0p L L L L L L
0.5 7

Fig. 2 Exponentially amplified discretization erra#,™?2 Ex(r), versusr = 2m/h, 0.5 <r < 70.
High-precision computations done with the software paekagRI [2].

The casek = 3 is even more complicated. In spite of a “mine field” of singu-
larities, the real axis does not hit a single one, and thegiated onR becomes
exceedingly small. Nevertheless, in the range of Figuree3dikcretization error
seems to be exponentially small of the conjectured order

Ex(r) ~ O(e™V"/109€N)  with y=2.285, ¢ = 6.05. (29)

Figure 3 shows a plot of lgg(|Ex(r)|), i.e. a plot of minus the number of correct
digits, versus = 2r/h, together with the empirical envelope

logyo (9 exp(—yr/log(cr)))

with y,c from (29). In spite of the singularities, halving the stepesailmost doubles
the number of correct digits, at least up to an accuracy ofidifsd

As a summary, Figure 4 shows lggd|Ex(r)|) for k= 1,2,0,3 (bottom to top)
versug = 2r/hin the interval 55 < r < 70. The algorithm wittk = 0 is impractical
due to the slow decay of the integrand (very long trapezaidais).k = 3 works
with short trapezoidal sums but, as a consequence of the slopé in Figure 4,
requires a much smaller step size for reaching the sameacUirthe best perfor-
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-45.29L L L L L L L
2.001 350

Fig. 3 The integral [, dx/(1+ x2) with 3 sinh transformations. Plot of lgg(|Ex(r)|) €
(—45.3,0.2) versusr € (2,350, including an empirical upper envelope.

mance results frork = 2, featuring an integrand of doubly exponential decay in a
strip of analyticity.

-47.56p, L L L L 1 1
55 7

Fig. 4 Plots of log (|Ex(r)|) € (—47, 0) for k = 1,2,0,3 (bottom to top) versus = 21/h €
(5.5,70).
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7.2 A Difficult Integral

Slowly decaying analytic functions with many singulastimay be difficult to in-
tegrate ovelR by the algorithms discussed here. Transformations to exatel the
decay of the integrand (Section 5) may breed more singiga(iFigure 1) and slow
down the decay rate of the discretization error with resfzestep refinement. Con-
sider, e.g., the integral

dx

(@)= /700 cosh(x) (cosha) + cogx)) - (30)

Explicit values may be obtained from calculus of residugagishe polesx; =
iuj, Xp=Vvr+ia, u,vodd:

_ < (—1)k 2 coga) coshum)
I(a) =2m <kz) cosh(a) + cosh(k+ %)rr + sinh(a) u:%m coslt (urm) — sir?(a) >

Fora =1 the quickly convergent series easily yields the 50D appraon

(1) =1.9473499863386919544599206 53366 23422 622654279365329

to be used as a reference value.

For a numerical high-precision evaluation by the trapeaiaidle with steph an
integrand of doubly exponential decay may be desirableefbee we transform the
integration variable by means »f= sinh(t).

The behaviour of the discretization erifr) of the transformed integral as func-
tion of r := 2mr/h turns out to be complicated. Here we formulate a conjectane ¢
cerning the decay rate &f(r):

Conjecture.
P 2m

h
In the following we give a heuristic derivation of the abowaecture. In view of
the error formula (17)(r) ~ F(r)+F(—r) and Theorem 3 it suffices to investigate

the modified Fourier transform

E(r) =O((anY*e=2var) (31)

I e—i wAsinh(z)

Fw) = /700 cosh(z) (cosha) +cogz2)) dZ

(32)

for large|w|. For this purpose we deform (“pull down”) the path of integra R
and consider the following contributiofig, k= 1,2, 3,4 to the integraF (w):

1. Lower semi-circle of radiuB: F; — 0 asR — o

2. Branch cut along the imaginary axis, lm< —1 : F, = O(e™ 1! /2 negligible
asw — £oo

3. Poles on branch cut, :=i Zv, v < 0, odd:Fs = O(e™1®l2), negligible agw —
+o0
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4. Poles, :=um—ia, uodd:thedominantcontributionsfF;:
Summation over the poleg yields

ATT el wAsinh(umr—ia)

Fa= sinh(a) u:%_'_Re coshumr—ia) ° (33)

-0.088046

-34.95p
1

1600

Fig. 5 Plot of Ioglo(%\E(r)D € (—35, 0) versusr = 2rr/h € (1, 1600 for the inegral (30) with
one sinh transformation, together with the conjectureceujppund from (36).

This is simplified by approximating the sum by the correspogdntegral and
replacing the terms of the sum by the expressions

2 Re exp(—iw(log(Zun)—%)Ha—un),

which are asymptotic to the terms of the sumuas . The result is

4
sinh(a)

4~

/ exp(f%) —v) co§ wlog(2v) —a) dv, (34)
Jo
wherev = ur. A crude upper bound fdF,| is therefore
.4 o aw
il < i) /O exp(~ 2% ~v) dv. (35)

The substitutiorv = v/aw € and Equ. 9.6.24 of [1] results in the following closed
form of the integral in (35) in terms of modified Bessdlnction:
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o0 aw
/ exp(—T —v)dv=2vawKi(2vaw).
Jo
Asymptotics of K ([1], Equ. 9.7.2) yields the approximate inequality

4\/m
C=— .
sinh(a)
Figures 5 and 6 show this bound in comparison with half therexfrthe trapezoidal
sum with stefh = 211/ w. The agreement is striking!

IF(w)| < ¢ (aw)Y/* e 2vaw,

(36)

-0.0880¢5 T

-12.708
1 200

Fig. 6 Detail of Figure 5 in the range € (1, 200) in higher resolution. As expected, Equ. (36)
does not give a strict bound.

The error law (31) implies that doubling the accuracy reegliquartering the
step; this is still exponential convergence, but at a slaw#. For this reason the
trapezoidal rule applied to the original integral (30) wiout to be more efficient,
in spite of the longer trapezoidal sums. With the softwarekpge PARI [2] and a
working precision of 57 digits (resulting in about 54 cotreigits), the computation
time for the direct approach is 45 % of the time taken for thasformed integral.

8 Conclusions

We have proposed to use the trapezoidal rule on the entirkre® as the standard
algorithm for numerical quadrature of analytic functiofisite and semi-infinite in-
tervals as well as boundary singularities may be handledsimgua new integration
variablet, thus transforming the original variabteasx = ¢(t), where in practice
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may be chosen as an appropriate combination of elementacjidns. Slow decay
at infinity may be accelerated by the transformatieasinh(t).

If the transformed integrand is analytic in a strip contagnR the discretiza-
tion error is known to be exponentially smallin= 2r7/h, h being the step size.
If the integrand has singularities arbitrarily closeRpas it often happens in inte-
grands transformed with sinh, the behaviour of the disza&tn error may be very
complicated; no general theory is known. Decay r&@ésxp(—yr/log(cr))) and
O(exp(—y\ﬁ)) with y > 0, ¢ > 0 have been observed; in both cases the trapezoidal
rule is still a powerful algorithm.
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