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Abstract The trapezoidal rule is the method of choice for numerical quadrature of
analytic functions over the real lineR. Other intervals and slowly decaying inte-
grands may elegantly be handled by means of simple analytic transformations of
the integration variable. In the case of an integrand analytic in an open strip con-
tainingR the discretization error is exponentially small in the reciprocal step size. If
the integrand has singularities arbitrarily close toR, the discretization error is larger
and its theory is more complicated. We present examples illustrating possible error
laws of the trapezoidal rule.

1 Introduction

The (composite) trapezoidal rule, being the simplest and probably oldest algorithm
for numerical quadrature, is often dismissed as insufficient for the purpose of high-
precision quadrature, mainly due to its low order of precision for integrating generic
integrands over a finite interval. However, for integrals over the real lineR of func-
tions analytic in an open strip containingR the discretization error of the trapezoidal
rule has been proven to be exponentially small in the reciprocal step size. Hence in
some cases the trapezoidal rule is among the most powerful algorithms for numeri-
cal quadrature of analytic functions.

By means of appropriate analytic transformations of the integration variable gen-
eral intervals may be mapped to the real line, and the decay rate of the integrand may
be enhanced, which is desirable in order to reduce the numberof terms in infinite
trapezoidal sums. Since such transformations may generatenew singularities in the
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complex plane, no strip of analyticity may exist for the transformed integrand. To
the knowledge of this author, no general theory of the discretization error of the
trapezoidal rule in the absence of a strip of analyticity exists.

The trapezoidal rule in connection with quadrature of analytic functions has
already been studied 1949 by Goodwin [7], 1969 by Schwartz [12] and later by
Stenger [14]. The idea of using transformations of the integration variable has been
mentioned in [12] as well as 1973 by Takahasy and Mori [16]; see also [13], Chapter
8 for a summary. The entire topic is comprehensively treatedin the textbooks [4]
and [15].

Here we will first summarize the well-known error theory of the classical trape-
zoidal rule. We then consider the particular cases with an exponentially small dis-
cretization error, mainly using integrals over the real lineR. Finally, we will present
examples of integrals with singularities arbitrarily coseto R, where the trapezoidal
rule still yields powerful high-precision integrators of somewhat slower conver-
gence, still with an exponentially small discretization error.

2 The Classical Trapezoidal Rule

In its classical form the (composite) trapezoidal rule is stated as an algorithm for nu-
merically approximating the integralI of the integrable functionf over the interval
a≤ x≤ b,

I :=
∫ b

a
f (x)dx, (1)

using then+1≥ 2 equally spaced points

x j := a+ j h, j = 0, . . . ,n, h :=
b−a

n
, (2)

whereh is the step size. The trapezoidal sumT(h) is then defined as

T(h) := h
n

∑
j=0

wj f (x j ) , (3)

where the weightswj arew0 = wn = 1
2, w1 = w2 = · · · = wn−1 = 1.

If f has at least 2N− 1 > 0 continuous derivatives, thediscretization errorof
a trapezoidal sum is given by the Euler-Maclaurin summationformula (for a good
account see, e.g., [8]) as

T(h)− I =
h2

12

(

f ′(b)− f ′(a)
)

− h4

720

(

f ′′′(b)− f ′′′(a)
)

+ . . .

+
h2N B2N

(2N)!

(

f (2N−1)(b)− f (2N−1)(a)
)

+R2N,

(4)
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whereB2N is the Bernoulli number of the even order 2N,

B0 = 1, B2 =
1
6
, B4 = − 1

30
, B6 =

1
42

, B8 = − 1
30

, B10 =
5
66

, . . . ,

andR2N is the remainder term.R2N can be specified [8], but this is rather involved.
Since the above series is usually divergent for any fixed steph > 0, it must be trun-
cated at a finite value ofN.

In general, the trapezoidal rule converges very slowly withrespect to step re-
finement. Convergence is ofsecondorder: Halving of the step (i.e. doubling the
computational effort) reduces the discretization error bya factor of 4, i.e. merely
yields 0.6 additional digits of accuracy. This does not allow to obtain more than a
few digits of accuracy.

In the following we restrict ourselves to integrandsf analytic in the open in-
terval of integration, i.e. integrable boundary singularities are permitted, andx will
be understood as acomplexvariable. Of particular interest are the cases with the
property that the terms of the series (4) vanish up to arbitrary values ofN. Then the
discretization error is given by the remainderR2N asN → ∞. We distinguish three
cases:

1. f is periodic with no singularities on the real lineR; the interval[a,b] is a full
period (or an integer number of periods).

2. f is integrable over the real lineR, andI is its integral overR, i.e.a=−∞, b= ∞.
3. f is a flat function at both boundaries, i.e. all derivatives off at x = a andx = b

vanish.

In all three cases convergence with respect to step refinement is faster than any finite
order, referred to asexponential convergence. Case 3 corresponds to using theIMT
rule proposed in 1969 by Iri, Moriguti and Takasawa (see, e.g. [10]). Case 2 may be
considered as a particular instance of Case 3; however, integration over the entire
real line is more fundamental and often leads to more efficient algorithms. We will
mainly concentrate on integrals overR, but we begin with a short discussion of
Case 1.

3 The Periodic Case

With no loss of generality we assumea = 0, b = 2π . Let f be 2π-periodic and
analytic on the entire real axis, and consider the integral

I :=
∫ 2π

0
f (x)dx. (5)

With n≥ 1 subintervals of equal lengthh =
2π
n

the trapezoidal sum (3) becomes
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T(h) = h
n−1

∑
l=0

f (l h) . (6)

The Fourier series off (in a somewhat unconventional notation),

f (x) =
1

2π

∞

∑
k=−∞

ck eikx with ck =

∫ 2π

0
f (x) e−ikx dx, (7)

impliesI = c0. Hence the trapezoidal sum (6) becomes

T(h) =
1
n

∞

∑
k=−∞

ck

n−1

∑
l=0

exp(i
2π
n

k l) =
∞

∑
j=−∞

c j n , (8)

and we obtain the discretization errorEn := T(h)− I with n = 2π/h as

En = cn +c−n+c2n+c−2n+ . . . . (9)

Therefore the discretization error of the trapezoidal rulefor small steps is governed
by the deacy rate of the Fourier coefficientscn of the integrand for large absolute
values of the indexn.

A more informative statement may be formulated iff is analytic in the symmetric
strip |Imx| < γ, γ > 0. Then the theory of Fourier series [11], [4] states

cn = O
(

e−(γ−ε) |n|) for any ε ∈ (0, γ) as n→±∞ . (10)

Combining this with the error formula (9) yields the following result:

Theorem 1. Let f be a2π-periodic function, analytic in the strip|Imx| < γ, γ >
0, and let I be the integral of f over a full period. Then the discretization error
En := T(h)− I of the trapezoidal sum T(h), with n≥ 1 subintervals of equal length
h = 2π/n, decays as O

(

e−(γ−ε) |n|) as n→±∞ for anyε ∈ (0, γ).

4 Integrals over the Real Line

We now consider Case 2 of Section 2, i.e. Equ. (1) is specialized to

I :=
∫ ∞

−∞
f (x) dx, (11)

where f is analytic onR and integrable overR. By slightly generalizing the defini-
tion (3) we will approximateI by theshiftedtrapezoidal sum with steph and offset
s,

T(h,s) = h
∞

∑
j=−∞

f (s+ j h) , (12)
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where the doubly infinite sum converges as a consequence of the integrability of f .
As a function ofs, T(h,s) is periodic with periodh, T(h,s) = T(h,s+ h), and the
relation

T(
h
2
,s) =

1
2

(

T(h,s)+T(h,s+
h
2
)

)

(13)

may be used for an efficient transition from steph to steph/2.
Aside from the approximation ofI , the evaluation of the infinite sum (12) may

be a problem in itself. Here we will not discuss this aspect; instead, we assume a
sufficiently fast decay of| f (x) | asx→±∞, such that simple truncation rules for the
infinite sum (12) may be used. In the next section we will motivate this approach
by discussing transformations of the integration variablein order to obtain quickly
decaying integrands.

As in the periodic case of Section 3, the discretization error may be obtained by
Fourier theory. The basic tool is the Poisson summation formula (see, e.g., [9]),

T(h,s) = PV
∞

∑
k=−∞

f̂ (k r) ei sk r with r :=
2π
h

, (14)

which expresses the shifted trapezoidal sum (12) off with step h again as a
(weighted) trapezoidal sum, but of the Fourier transformf̂ , and with stepr := 2π/h.
HerePV stands for the Cauchy principal value of the sum, i.e. the sumover all in-
tegersk must be taken as the limit of the symmetric sum from−K to K asK → ∞.
The Fourier transform̂f of f is defined as

f̂ (ω) :=
∫ ∞

−∞
e−i ω x f (x) dx, ω ∈ R , (15)

which immediately yieldsI = f̂ (0).
In the following we restrict ourselves to the particular case of vanishing offset,

s= 0, using the notationT(h) := T(h,0). In view of the definitionr := 2π/h in Equ.
(14) we introduce the discretization errrorE(r) as a function ofr,

E(r) := T(h)− I , h :=
2π
r

. (16)

Equ. (14) now yields theerror formula

E(r) = f̂ (r)+ f̂ (−r)+ f̂ (2r)+ f̂ (−2r)+ . . . . (17)

Therefore, in complete analogy with Equ. (9), withr taking the role of the indexn,
the discretization error of the trapezoidal rule for small stepsh is governed by the
deacy rate of the Fourier transform̂f of the integrand for large values ofω = ±r :=
±2π/h.

A more informative statement may be formulated iff is analytic in the symmetric
strip |Imx|< γ, γ > 0 and integrable along any path Imx= γ0 = const with|γ0|< γ.
Then we have
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f̂ (ω) = O
(

e−(γ−ε) |ω|) for any ε ∈ (0, γ) as ω →±∞ (18)

([3] Chapter 3, [11] Thm. IX.14, or [4]). Combining (17), (18) yields the following
theorem:

Theorem 2. Let f be analytic in the strip
∣

∣Imx
∣

∣ < γ, γ > 0 and integrable along
any path Im x = γ0 = const with |γ0| < γ, and let I be the integral of f overR.
Then the discretization error En := T(h)− I of the trapezoidal sum T(h) with step
h = 2π/r and decays as O

(

e−(γ−ε)|r|) as r→±∞ for anyε ∈ (0, γ).

5 Transforming the Integration Variable

The trapezoidal rule for integrals overR is particularly attractive for quickly de-
caying integrands (at least exponential decay). Then the truncation of the infinite
trapezoidal sums can be easily handled. A simple truncationrule for an infinite sum
is truncation if the contribution of the current term is below agiven toleranceε > 0.
If necessary, this simple rule can be made more robust by truncating only if two (or
three) consecutive terms do not contribute. Accumulation of doubly infinite sums
has to be done upwards and downwards from an interior point.

To validate such a truncation procedure the tail of the truncated sum needs to be
estimated. Ideally, the contribution of the truncated tailshould be< ε. We will use
the the function

f (x) := exp(−eα x), α > 0 (19)

as a simple model of a doubly exponentially decaying integrand asx → +∞. The
tail of the sum, truncated atx = X > 0, will be modeled by the integral

RX :=
∫ ∞

X
f (x) dx.

For the integrand (19) we obtain

RX =
1
α

exp(−eα X)
(

e−α X −e−2α X +2! e−3α X + . . .
)

.

The suggested truncation limitX, given by f (X) = ε, is found to be

X =
1
α

log log
1
ε

;

therefore

RX = − ε
α

(

1
log ε

+O((log ε)−2)

)

.

Truncation is safe even forα << 1, since|RX| < ε if ε is sufficiently small.
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Our strategy is to use the simple tool of transformations of the integration vari-
able in order to transform a given integral into one overR with a quickly decaying
integrand. Beginning with the integralI of Equ. (1), we use an appropriate transfor-
mation

x = φ(t) , t ∈ R, (20)

whereφ is a monotonically increasing, differentiable functionφ : t ∈R 7→ x= φ(t)∈
(a,b). The result is

I =

∫ ∞

−∞
F(t)dt with F(t) := f

(

φ(t)
)

φ ′(t) . (21)

There is a wide range for the choice ofφ . Since we are working with analytic
integrands we only consider analytic transformation functions. In view of numerical
applications we will chooseφ as a combination of elementary functions, for which
reliable implementations in arbitrary precision are readily available.

In the following table we list a few standard intervals [a,b] for the integral (1),
together with suggested elementary transformationsx = φ(t). Possibly, a composi-
tion of several of the suggested mappings may have to be used in order to achieve
doubly exponential decay of the transformed integrandF(t) ast →±∞. In all cases
(including the cases with finite boundaries) integrable boundary singularities are
allowed. However, in the case of finite intervals care must betaken to accurately
transmit the distances to both interval boundaries.

Interval:x∈ (a, b) Transformation:x = φ(t) =

1. Finite interval(−1,1): tanh(t/2)
2. Finite interval(0,1): 1/

(

1+exp(−t)
)

3. Semi-infinite interval(0,∞): exp(t)
4. Real lineR, accelerate decay asx→±∞ sinh(t)
5. Real lineR, accelerate decay asx→ +∞ t +exp(t)
6. Real lineR, accelerate decay asx→−∞ t −exp(−t)

6 Error Theory of Integrals over R

In the remaining sections we will go back to the problem of Section 4, the integral
I overR of (11), to be approximated by the infinite trapezoidal sum ofEqu. (12),
T(h) = T(h,0) with steph. In the case off being analytic in a symmetric strip of
half-widthγ > 0 containingR the discretization error ofT(h) is exponentially small
in h according to Theorem 2, more precisely

E(r) = O
(

e−(γ−ε)|r|) as r := ±2π/h→±∞ ∀ ε ∈ (0, γ) . (22)

This also applies to integrals one would hardly attempt to directly approximate by
the trapezoidal rule, e.g.I =

∫ ∞
−∞ dx/(1+ x2) = π . In such cases it is advisable to
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enhance the decay of the integrand according to Section 5 before invoking the trape-
zoidal rule. However, transformations enhancing the decayof the integrand may
bear the danger of generating new singularities in the complex plane (possibly clos-
ing in on the real line), such that Theorem 2 is no longer applicable. We will consider
this situation in more detail in Section 7.

The essential ingredient for an error theory of the infinite trapezoidal sum is the
Fourier transformf̂ (ω) of the integrand, defined in Equ. (15); then the discretization
error is given by the error formula (17). We will now develop an error formula for
transformed integrals. Consider the integralI overR of Equ. (11), and assumeφ :
t ∈ R 7→ x = φ(t) ∈ R to be used in order to modify the decay rate of the integrand;
the transformed integral is given by Equ. (21). The Fourier transformF̂(ω) of F(t)
becomes

F̂(ω) =
∫ ∞

−∞
e−i ω t f

(

φ(t)
)

φ ′(t)dt . (23)

Going back to the original variablex by using theinversetransformationφ [−1] : x∈
R 7→ t = φ [−1](x) ∈ R and the relationφ ′(t)dt = dxyields

F̂(ω) =

∫ ∞

−∞
e−i ω φ [−1](x) f (x) dx, (24)

a modified “Fourier” transformof f , where the factorx in the exponent of Equ.
(15) is replaced byφ [−1](x). Combining this with the error formula (17) yields the
following result:

Theorem 3. Let T̃(h) be the infinite trapezoidal sum with step h, obtained from the
integral I =

∫ ∞
−∞ f (x) dx after having transformed the integration variable by means

of the isomorphismφ : t ∈ R 7→ x = φ(t) ∈ R,

T̃(h) = h
∞

∑
k=−∞

f
(

φ(kh)
)

φ ′(kh) .

Then the discretization error̃E(r) := T̃(h)− I of T̃(h) is given by

Ẽ(r) = ∑
k6=0

F̂(k r) , r =
2π
h

,

whereF̂(ω) is given by Equ. (24).

7 Asymptotics

According to the error formula (17) the discretization error of the infinite trapezoidal
rule for small stepsh is governed by the Fourier transform̂f (r) of the integrand
at large argumentsr = ±2π/h. Therefore, an error theory of the trapezoidal rule
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amounts to an asymptotic theory of the Fourier transform of the integrand. Such a
theory is complicated and has not been fully developed so far.

In the simple case of a strip of analyticity (of half-widthγ) with the symmetry
axis R, Theorem 2 establishes the discretization error to be of order O

(

exp((ε −
γ) r)

)

. However, if a transformationx = φ(t) is necessary in order to achieve a
sufficient decay rate of the integrand, the strip of analyticity may be lost (i.e. the
sigularities may fill the area outside a “funnel” closing in on the real axis, see Fig-
ure 1). Then Theorem 2 is no longer applicable, and an asymptotic theory of the
modified Fourier transform (24) is needed. In several examples conjectured decay
rates of orderO

(

exp(−γ ω/ log(cω)
)

or O
(

exp(−γ
√

ω)
)

with γ > 0, c > 0 were
observed.

7.1 An Introductory Example

We begin with the discussion of the explicit example mentioned in connection with
Equ. (22), subjected to repeated sinh transformations of the integration variable.
Adapting the notation by usingt0 := x, I0 := I , consider

Ik =

∫ ∞

−∞
fk(tk) dtk = π , k = 0,1,2,3 with f0(t) :=

1
1+ t2 . (25)

and the transformations

tk = sinh(tk+1) , fk+1(t) = fk
(

sinh(t)
)

cosh(t) , k = 0,1,2. (26)

Hence the integrands

f1(t) =
1

cosh(t)
, f2(t) =

cosh(t)

cosh
(

sinh(t)
) , f3(t) =

cosh
(

sinh(t)
)

cosh
(

sinh(sinh(t))
)

show single, double, or triple exponential decay. The singularities (poles)t0,t1,t2 of
f0, f1, f2, respectively, are given by

t0 = ±i

t1 = iu
π
2

, u odd

t2 = sign(u) Acosh
(

|u| π
2

)

+ iv
π
2

, u,v odd.

The polest2 of f2 still leave a strip of analyticity|Im t | < π/2, whereas the poles of
f3 close in on the real axis ast →±∞, see Figure 1.

In the casesk = 0 andk = 1 the Fourier transformŝfk(ω) and the discretization
errorsEk(r), see (15, 17), may be expressed explicitly as
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2
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4

Fig. 1 Singularities of the integrandf3 of
∫ ∞
−∞ dx/(1+ x2) after 3 sinh transformations. The dots

on the curves, to be continued in increasing density, mark singularities. The arc-shaped areas to the
left and to the right are densely filled with singularities not marked in the figure.

f̂0(ω) = π e−|ω| , E0(r) =
2π

er −1
, r = 2π/h

f̂1(ω) =
π

cosh(ω π/2)
, E1(r) =

∞
∑
j=1

2π
cosh( j r π/2)

.

In the casek = 2 Theorem 3 yields the Fourier transform̂f2(ω) as the integral

f̂2(ω) =
∫ ∞

−∞

e−i ω Asinh(t)

cosh(t)
dt (27)

which does not have an obvious closed form. However, according to Theorem 2 we
have

f̂2(ω) = O
(

e(ε−π/2) |ω |) as ω →±∞ for any ε ∈ (0,
π
2

) . (28)

Evaluation of the integral (27) by a branch cut integral along the imaginary axis or by
the saddle point method ([5]; [6] for a worked example) corroborates (28). In Figure
2 the exponentially amplified discretization error, exp(r π/2)E2(r), is plotted versus
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r ∈ (0.5,70), whereE2(r) ≈ 2Re f̂2(r) according to the error formula (17). The
complicated irregular behavior seen in Figure 2 reflects thefact that infinitely many
singularities or saddles contribute to the integral (27). The slow (sub-exponential)
growth of the amplitude in Figure 2 exemplifies the necessityof the parameterε in
Theorem 2.

305.67

-263.02
0.5 70

Fig. 2 Exponentially amplified discretization error,er π/2 E2(r), versusr = 2π/h, 0.5 ≤ r ≤ 70.
High-precision computations done with the software package PARI [2].

The casek = 3 is even more complicated. In spite of a “mine field” of singu-
larities, the real axis does not hit a single one, and the integrand onR becomes
exceedingly small. Nevertheless, in the range of Figure 3 the discretization error
seems to be exponentially small of the conjectured order

E2(r) ≈ O
(

e−γ r/ log(cr)) with γ =̇ 2.285, c =̇ 6.05. (29)

Figure 3 shows a plot of log10(|E2(r)|), i.e. a plot of minus the number of correct
digits, versusr = 2π/h, together with the empirical envelope

log10

(

9 exp(−γ r/ log(cr))
)

with γ,c from (29). In spite of the singularities, halving the step size almost doubles
the number of correct digits, at least up to an accuracy of 45 digits.

As a summary, Figure 4 shows log10

(

|Ek(r)|
)

for k = 1,2,0,3 (bottom to top)
versusr = 2π/h in the interval 5.5≤ r ≤ 70. The algorithm withk= 0 is impractical
due to the slow decay of the integrand (very long trapezoidalsums).k = 3 works
with short trapezoidal sums but, as a consequence of the small slope in Figure 4,
requires a much smaller step size for reaching the same accuracy. The best perfor-
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0.15795

-45.291
2.001 350

Fig. 3 The integral
∫ ∞
−∞ dx/(1 + x2) with 3 sinh transformations. Plot of log10

(

|E2(r)|
)

∈
(−45.3,0.2) versusr ∈ (2,350), including an empirical upper envelope.

mance results fromk = 2, featuring an integrand of doubly exponential decay in a
strip of analyticity.

-0.34555

-47.563
5.5 70

Fig. 4 Plots of log10

(

|Ek(r)|
)

∈ (−47, 0) for k = 1,2,0,3 (bottom to top) versusr = 2π/h ∈
(5.5,70).



Towards a general error theory of the trapezoidal rule 13

7.2 A Difficult Integral

Slowly decaying analytic functions with many singularities may be difficult to in-
tegrate overR by the algorithms discussed here. Transformations to accelerate the
decay of the integrand (Section 5) may breed more singularities (Figure 1) and slow
down the decay rate of the discretization error with respectto step refinement. Con-
sider, e.g., the integral

I(a) :=
∫ ∞

−∞

dx

cosh(x)
(

cosh(a)+cos(x)
) . (30)

Explicit values may be obtained from calculus of residues using the polesx1 =
iu π

2 , x2 = vπ ± ia, u,v odd:

I(a) = 2π

(

∞

∑
k=0

(−1)k

cosh(a)+cosh(k+ 1
2)π

+
2 cos(a)

sinh(a) ∑
u=1,3,..

cosh(uπ)

cosh2(uπ)−sin2(a)

)

Fora = 1 the quickly convergent series easily yields the 50D approximation

I(1) = 1.94734998633869195445992065336623422622654279365329

to be used as a reference value.
For a numerical high-precision evaluation by the trapezoidal rule with steph an

integrand of doubly exponential decay may be desirable; therefore we transform the
integration variable by means ofx = sinh(t).

The behaviour of the discretization errorE(r) of the transformed integral as func-
tion of r := 2π/h turns out to be complicated. Here we formulate a conjecture con-
cerning the decay rate ofE(r):

Conjecture.

E(r) = O
(

(ar)1/4 e−2
√

ar) , r :=
2π
h

. (31)

In the following we give a heuristic derivation of the above conjecture. In view of
the error formula (17),E(r)∼ F̂(r)+ F̂(−r) and Theorem 3 it suffices to investigate
the modified Fourier transform

F̂(ω) =

∫ ∞

−∞

e−i ω Asinh(z)

cosh(z)
(

cosh(a)+cos(z)
) dz (32)

for large|ω |. For this purpose we deform (“pull down”) the path of integration R

and consider the following contributionsFk, k = 1,2,3,4 to the integralF̂(ω):

1. Lower semi-circle of radiusR: F1 → 0 asR→ ∞
2. Branch cut along the imaginary axis, Imz< −1 : F2 = O(e−|ω|π/2), negligible

asω →±∞
3. Poles on branch cut,zv := i π

2 v, v < 0, odd:F3 = O(e−|ω|π/2), negligible asω →
±∞
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4. Poleszu := uπ − ia, u odd: thedominantcontributions,F4:

Summation over the poleszu yields

F4 =
4π

sinh(a) ∑
u=1,3,...

Re
e−i ω Asinh(uπ−ia)

cosh(uπ − ia)
. (33)

-0.088066

-34.956
1 1600

Fig. 5 Plot of log10(
1
2 |E(r)|) ∈ (−35, 0) versusr = 2π/h ∈ (1, 1600) for the inegral (30) with

one sinh transformation, together with the conjectured upper bound from (36).

This is simplified by approximating the sum by the corresponding integral and
replacing the terms of the sum by the expressions

2 Re exp
(

− i ω
(

log(2uπ)− ia
uπ
)

+ ia−uπ
)

,

which are asymptotic to the terms of the sum asu→ ∞. The result is

F4 ≈
4

sinh(a)

∫ ∞

0
exp(−aω

v
−v) cos(ω log(2v)−a) dv, (34)

wherev = uπ . A crude upper bound for|F4| is therefore

|F4| <̇
4

sinh(a)

∫ ∞

0
exp(−aω

v
−v) dv. (35)

The substitutionv =
√

aω et and Equ. 9.6.24 of [1] results in the following closed
form of the integral in (35) in terms of amodified Besselfunction:



Towards a general error theory of the trapezoidal rule 15

∫ ∞

0
exp(−aω

v
−v) dv= 2

√
aω K1(2

√
aω) .

Asymptotics of K1 ([1], Equ. 9.7.2) yields the approximate inequality

|F̂(ω)| <̇ c (aω)1/4 e−2
√

aω , c =
4
√

π
sinh(a)

. (36)

Figures 5 and 6 show this bound in comparison with half the error of the trapezoidal
sum with steph = 2π/ω . The agreement is striking!

-0.088066

-12.703
1 200

Fig. 6 Detail of Figure 5 in the ranger ∈ (1, 200) in higher resolution. As expected, Equ. (36)
does not give a strict bound.

The error law (31) implies that doubling the accuracy requires quartering the
step; this is still exponential convergence, but at a slowerrate. For this reason the
trapezoidal rule applied to the original integral (30) turns out to be more efficient,
in spite of the longer trapezoidal sums. With the software package PARI [2] and a
working precision of 57 digits (resulting in about 54 correct digits), the computation
time for the direct approach is 45 % of the time taken for the transformed integral.

8 Conclusions

We have proposed to use the trapezoidal rule on the entire real line R as the standard
algorithm for numerical quadrature of analytic functions.Finite and semi-infinite in-
tervals as well as boundary singularities may be handled by using a new integration
variablet, thus transforming the original variablex asx = φ(t), where in practiceφ
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may be chosen as an appropriate combination of elementary functions. Slow decay
at infinity may be accelerated by the transformationx = sinh(t).

If the transformed integrand is analytic in a strip containing R the discretiza-
tion error is known to be exponentially small inr := 2π/h, h being the step size.
If the integrand has singularities arbitrarily close toR, as it often happens in inte-
grands transformed with sinh, the behaviour of the discretization error may be very
complicated; no general theory is known. Decay ratesO

(

exp(−γ r/ log(cr))
)

and
O
(

exp(−γ
√

r)
)

with γ > 0, c> 0 have been observed; in both cases the trapezoidal
rule is still a powerful algorithm.
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