{{{id=1| x, a0, a1, a2 = var('x, a0, a1, a2') solve([a2*x^2 + a1*x + a0 == 0],x) /// }}} {{{id=2| x, a0, a1, a2, a3 = var('x, a0, a1, a2, a3') solve([a3*x^3+a2*x^2+a1*x^1+a0 ==0],x) /// }}} {{{id=4| f(x)=(x^2+x-3)/(x+3) f.partial_fraction() /// }}} {{{id=5| S = RR['x'] f=x^5+4*x^4-3*x^2-2*x+1 g=x^3+3*x^2-4 def poldiv(f,g): if f.degree(x) < g.degree(x): return f else: m=f.degree(x) n=g.degree(x) return f-g*f.coefficient(x^m)/g.coefficient(x^n)*x^(m-n) /// }}} {{{id=10| expand(poldiv(f,g)) /// }}} {{{id=8| K=[(f,0)] m=f.degree(x) n=g.degree(x) h=f while m >= n: K.append((expand(poldiv(h,g)),expand(h.coefficient(x^m)/g.coefficient(x^n)*x^(m-n)))) h=expand(poldiv(h,g)) print h m=m-1 /// x^4 + x^2 - 2*x + 1 -3*x^3 + x^2 + 2*x + 1 10*x^2 + 2*x - 11 }}} {{{id=9| K /// }}} {{{id=16| h=f/g h.partial_fraction() /// }}} {{{id=17| /// }}}