Semi-Static Completeness and Model-independent Pricing by Informed Investors

Beatrice Acciaio

LSE

joint work with Martin Larsson

ITS Workshop Mathematical Finance beyond classical models
ETH Zurich, 16-18 September 2015
Outline

1. Introduction
2. Setup
3. Semi-static completeness and the Jacod-Yor theorem
4. Semi-static completeness and filtration structure
5. Pricing by informed investors
6. Conclusions
Model-independent framework:

- X: path-space, S: canonical process on X
- Ψ: set of claims ψ available for buy-and-hold trading
- \mathcal{M}: martingale measures consistent w/ the market price of ψ’s
- Φ: a given derivative, robust pricing: $\sup_{\mathbb{Q} \in \mathcal{M}} \mathbb{E}_\mathbb{Q} [\Phi]$
Model-independent framework

Model-independent framework:
- \mathcal{X}: path-space, S: canonical process on \mathcal{X}
- Ψ: set of claims ψ available for buy-and-hold trading
- \mathcal{M}: martingale measures consistent w/ the market price of ψ’s
- Φ: a given derivative, robust pricing: $\sup_{Q \in \mathcal{M}} \mathbb{E}_Q [\Phi]$

A central problem in model-independent finance is to prove:

$$\sup_{Q \in \mathcal{M}} \mathbb{E}_Q [\Phi] = \inf \left\{ c \in \mathbb{R} : \Phi \text{ can be hedged pathwise starting with initial capital } c \right\}$$

Beiglböck, H.-Labordère, Penkner ‘13; Galichon, H.-Labordère, Touzi ‘14; Acciaio, Beiglböck, Penkner, Schachermayer ‘13; Bouchard, Nutz ‘13; Dolinsky, Soner ‘14a,‘14b; Beiglböck, Cox, Huesmann ‘14; Biagini, Bouchard, Kardaras, Nutz ‘14; Beiglböck, Nutz, Touzi ‘15; Guo, Tan, Touzi ‘15; Hou, Obłój ‘15; Beiglböck, Cox, Huesmann, Perkowski, Prömel ‘15, Beiglböck, Nutz, Touzi ’15,...
Model-independent framework:

- Model-independent framework:
 - \mathcal{X}: path-space, S: canonical process on \mathcal{X}
 - Ψ: set of claims ψ available for buy-and-hold trading
 - \mathcal{M}: martingale measures consistent w/ the market price of ψ’s
 - Φ: a given derivative, robust pricing: $\sup_{Q \in \mathcal{M}} \mathbb{E}_Q[\Phi]$

A central problem in model-independent finance is to prove:

$$\sup_{Q \in \mathcal{M}} \mathbb{E}_Q[\Phi] = \inf \left\{ c \in \mathbb{R} : \Phi \text{ can be hedged pathwise starting with initial capital } c \right\}$$

- Note: \mathcal{M} clearly depends on the underlying filtration, as does the set of available trading strategies.

- Question: What can be said about the relation between the super-hedging price and the choice of filtration? In particular, when passing from \mathcal{F} to $\mathcal{G} \supseteq \mathcal{F}$?
Insider information

- Uninformed agent $F \subseteq G$ Informed agent
Insider information

- Uninformed agent $\mathcal{F} \subseteq \mathcal{G}$ Informed agent

- How do things change?

$$\sup_{Q \in \mathcal{M}} \mathbb{E}_Q [\Phi] = \inf \left\{ c \in \mathbb{R} : \Phi \text{ can be semi-s.-hedged starting with initial capital } c \right\}$$
Insider information

- Uninformed agent $\mathcal{F} \subseteq \mathcal{G}$ Informed agent

- How do things change?

$$\sup_{Q \in \mathcal{M}} \mathbb{E}_Q[\Phi] = \inf \left\{ c \in \mathbb{R} : \Phi \text{ can be semi-s.-hedged starting with initial capital } c \right\}$$

- Informed agent has more trading strategies
- Informed agent has less pricing measures: $\mathcal{M}(\mathcal{G}) \subseteq \mathcal{M}(\mathcal{F})$, so

$$\sup_{Q \in \mathcal{M}(\mathcal{G})} \mathbb{E}_Q[\Phi] \leq \sup_{Q \in \mathcal{M}(\mathcal{F})} \mathbb{E}_Q[\Phi]$$
Insider information

- Uninformed agent $\mathcal{F} \subseteq \mathcal{G}$ Informed agent

- How do things change?

$$\sup_{Q \in \mathcal{M}} E_Q[\Phi] = \inf \left\{ c \in \mathbb{R} : \Phi \text{ can be semi-s.-hedged starting with initial capital } c \right\}$$

- Informed agent has more trading strategies
- Informed agent has less pricing measures: $\mathcal{M}(\mathcal{G}) \subseteq \mathcal{M}(\mathcal{F})$, so

$$\sup_{Q \in \mathcal{M}(\mathcal{G})} E_Q[\Phi] \leq \sup_{Q \in \mathcal{M}(\mathcal{F})} E_Q[\Phi]$$

- **Question**: Which measures in $\mathcal{M}(\mathcal{F})$ are still relevant for pricing for the informed agent?
Setup

- \((\Omega, \mathbb{F}, \mathcal{F})\): Filtered measurable space with \(\mathbb{F} = (\mathcal{F}_t)_{0 \leq t \leq T}\) right-continuous.
 - Later we will consider other filtrations.

- \(S = (S_t)_{0 \leq t \leq T}\): càdlàg \(\mathbb{F}\)-adapted discounted price process of an asset available for dynamic trading. We assume \(S_0 = 0\). (Everything works the same for multiple assets.)

- A risk-free asset with price \(\equiv 1\) available for dynamic trading.

- \(\Psi = \{\psi_1, \ldots, \psi_n\}\) a set of \(\mathcal{F}_T\)-measurable payoffs available for buy-and-hold trading. Today’s price of \(\psi_i\) is zero for each \(i\).
Martingale measures

Calibrated martingale measures:

\[\mathcal{M}(\mathcal{F}) = \left\{ Q \in \mathcal{P} : \begin{array}{l}
\text{S is an } \mathcal{F}\text{-martingale, } \mathbb{E}_Q[S_T^2] < \infty, \\
\mathbb{E}_Q[\psi | \mathcal{F}_0] = 0, \mathbb{E}_Q[\psi^2] < \infty \text{ for all } \psi \in \Psi
\end{array} \right\} \]
Martingale measures

Calibrated martingale measures:

\[\mathcal{M}(\mathcal{F}) = \left\{ Q \in \mathcal{P} : \begin{array}{l}
S \text{ is an } \mathcal{F}\text{-martingale, } \mathbb{E}_Q[S_T^2] < \infty, \\
\mathbb{E}_Q[\psi | \mathcal{F}_0] = 0, \mathbb{E}_Q[\psi^2] < \infty \text{ for all } \psi \in \Psi
\end{array} \right\} \]

- We want to study \(\mathcal{M}(\mathcal{F}) \) w.r.to \(\mathcal{F} \)
- \(\mathcal{M}(\mathcal{F}) \) is “huge”

 \(\hookrightarrow \) Can we reduce to the study of a special subset?
Martingale measures

Calibrated martingale measures:

\[\mathcal{M}(\mathcal{F}) = \left\{ Q \in \mathcal{P} : \begin{array}{l} S \text{ is an \(\mathcal{F} \)-martingale,} \\ \mathbb{E}_Q[S_T^2] < \infty, \\ \mathbb{E}_Q[\psi | \mathcal{F}_0] = 0, \mathbb{E}_Q[\psi^2] < \infty \text{ for all } \psi \in \Psi \end{array} \right\} \]

- We want to study \(\mathcal{M}(\mathcal{F}) \) w.r.to \(\mathcal{F} \)
- \(\mathcal{M}(\mathcal{F}) \) is “huge”
 - Can we reduce to the study of a special subset?
 - For example, if \(\mathcal{P} \) is endowed with a topology s.t. \(\mathcal{M}(\mathcal{F}) \) is compact, then
 \[\mathcal{M}(\mathcal{F}) = \text{conv}(\text{ext } \mathcal{M}(\mathcal{F})), \]
 where \(\text{ext } \mathcal{M}(\mathcal{F}) \) is the set of all extreme points in \(\mathcal{M}(\mathcal{F}) \).
Extreme points

Extreme points: $Q \in \mathcal{M}(\mathbb{F})$ is called an extreme point if

$$Q = \lambda Q^1 + (1 - \lambda) Q^2$$

for $Q^i \in \mathcal{M}(\mathbb{F}), \lambda \in (0, 1)$

$$\implies Q^1 = Q^2 = Q$$
Extreme points

- **Extreme points**: $Q \in \mathcal{M}(\mathcal{F})$ is called an extreme point if

 $Q = \lambda Q^1 + (1 - \lambda) Q^2$

 for $Q^i \in \mathcal{M}(\mathcal{F})$, $\lambda \in (0, 1)$ \implies $Q^1 = Q^2 = Q$

- Consider an \mathcal{F}_T-measurable payoff Φ and endow \mathcal{P} with a topology such that
 - $\mathcal{M}(\mathcal{F})$ is compact and $Q \mapsto \mathbb{E}_Q[\Phi]$ is continuous.

 Then $\sup_{Q \in \mathcal{M}(\mathcal{F})} \mathbb{E}_Q[\Phi] = \sup_{Q \in \text{ext} \mathcal{M}(\mathcal{F})} \mathbb{E}_Q[\Phi]$.
Extreme points

- **Extreme points:** \(Q \in \mathcal{M}(\mathbb{F}) \) is called an extreme point if
 \[
 Q = \lambda Q^1 + (1 - \lambda) Q^2
 \]
 for \(Q^i \in \mathcal{M}(\mathbb{F}), \; \lambda \in (0, 1) \) \(\implies Q^1 = Q^2 = Q \)

- Consider an \(\mathcal{F}_T \)-measurable payoff \(\Phi \) and endow \(\mathcal{P} \) with a topology such that
 - \(\mathcal{M}(\mathbb{F}) \) is compact
 - \(Q \mapsto \mathbb{E}_Q[\Phi] \) is continuous.

 Then
 \[
 \sup_{Q \in \mathcal{M}(\mathbb{F})} \mathbb{E}_Q[\Phi] = \sup_{Q \in \text{ext } \mathcal{M}(\mathbb{F})} \mathbb{E}_Q[\Phi].
 \]

- **Note:** The notion of extreme point is purely algebraic, independent of any topology we may put on the space of probability measures.
Example (Discrete time and bounded prices)

- $\Omega = [a, b]^T$, S is the coordinate process,
- each $\omega \mapsto \psi_i(\omega)$ is continuous,
- \mathcal{F} is generated by S

Then $\mathcal{M}(\mathcal{F})$ is weakly compact.
Examples

Example (Discrete time and bounded prices)

- $\Omega = [a, b]^T$, S is the coordinate process,
- each $\omega \mapsto \psi_i(\omega)$ is continuous,
- \mathcal{F} is generated by S

Then $\mathcal{M}(\mathcal{F})$ is weakly compact.

Example (Continuous time and bounded volatility)

- $\Omega = C_0[0, T]$, S is the coordinate process,
- $\omega \mapsto \psi_i(\omega)$ bounded and continuous, \mathcal{F} generated by S
- $\mathcal{P} = \{ Q : \mathbb{E}_Q\left[X \sup_{s \leq u \leq t} |S_u - S_s|^p \right] \leq C_p \sigma^p (t - s)^{p/2} \mathbb{E}_Q [X] \}$, for all $0 \leq s < t \leq T$, $X \geq 0$ \mathcal{F}_s-measurable, $p \geq 1$.

Then $\mathcal{M}(\mathcal{F})$ is weakly compact.
Example (Jakubowski topology)

- $\Omega = D_0([0, T], [-1, 1])$ with Jakubowski’s S-topology,
- S is the coordinate process, ψ_i suitable continuity conditions,
- \mathcal{F} is generated by S

Semi-static completeness and the Jacod-Yor theorem
The classical Jacod-Yor theorem

Suppose $\Psi = \emptyset$ (no static claims).

For $Q \in \mathcal{M}(\mathbb{F})$, by the classical Jacod-Yor (1977) theorem:

$$Q \in \text{ext } \mathcal{M}(\mathbb{F}) \iff L^2(\mathcal{F}_T) = \{x + (H \cdot S)_T : H \in L^2(S)\}$$

This result can be generalized to the semi-static case.
Generalization of the Jacod-Yor theorem

Definition

For $Q \in \mathcal{M}(\mathbb{F})$, we say that **semi-static completeness** holds if any $X \in L^2(\mathcal{F}_T)$ can be represented as

$$X = x + a_1 \psi_1 + \cdots + a_n \psi_n + (H \cdot S)_T$$

for some $x, a_1, \ldots, a_n \in \mathbb{R}$ and $H \in L^2(S)$.

Notation:

$$\text{SSC}(\mathbb{F}) = \{Q \in \mathcal{M}(\mathbb{F}) : \text{semi-static completeness holds}\}$$
Generalization of the Jacod-Yor theorem

Definition

For $Q \in \mathcal{M}(\mathcal{F})$, we say that **semi-static completeness** holds if any $X \in L^2(\mathcal{F}_T)$ can be represented as

$$X = x + a_1\psi_1 + \cdots + a_n\psi_n + (H \cdot S)_T$$

for some $x, a_1, \ldots, a_n \in \mathbb{R}$ and $H \in L^2(S)$.

Notation:

$$\text{SSC}(\mathcal{F}) = \{Q \in \mathcal{M}(\mathcal{F}) : \text{semi-static completeness holds}\}$$

Theorem (semi-static Jacod-Yor theorem)

The extreme martingale measures are exactly the semi-statically complete models, i.e.

$$\text{ext } \mathcal{M}(\mathcal{F}) = \text{SSC}(\mathcal{F}).$$
Generalization of the Jacod-Yor theorem

About the proof.

- The proof is very close to the classical case …
- … but uses duality for random variables \((L^1 - L^\infty)\) instead of processes \((H^1 - BMO)\):
Generalization of the Jacod-Yor theorem

About the proof.

- The proof is very close to the classical case . . .
- . . . but uses duality for random variables ($L^1 - L^\infty$) instead of processes ($H^1 - BMO$):

1. Fix $Q \in \text{ext } \mathcal{M}(\mathbb{F})$ and show that this set is dense in $L^1(\mathcal{F}_T)$

\[\{ x + \sum_i a_i \psi_i + (H \cdot S)_T : x, a_i \in \mathbb{R}, H \in L^2(S) \} . \]
Generalization of the Jacod-Yor theorem

About the proof.

- The proof is very close to the classical case . . .
- . . . but uses duality for random variables \((L^1 - L^\infty)\) instead of processes \((H^1 - BMO)\):

1. Fix \(Q \in \text{ext} M(\mathcal{F})\) and show that this set is dense in \(L^1(\mathcal{F}_T)\)

\[
\left\{ x + \sum_i a_i \psi_i + (H \cdot S)_T : x, a_i \in \mathbb{R}, \ H \in L^2(S) \right\}.
\]

2. Prove it is dense and closed in \(L^2(\mathcal{F}_T)\) using Hahn-Banach and a result by Yor (see also Delbaen/Schachermayer, 1999):

Theorem (Yor (1978))

Let \(H^n \in L(S)\) be such that \(H^n \cdot S\) is a martingale for each \(n\), and suppose \(\lim_n (H^n \cdot S)_T = X\) in \(L^1\) for some r.v. \(X\). Then there is \(H \in L(S)\) such that \(H \cdot S\) is a martingale with \((H \cdot S)_T = X\).
Remarks.

- Infinitely many ψ_i’s would allow to treat the case of a fixed (by the market) marginal law $S_T \sim \mu$

- But the arguments we use in the above proof break down in this case – for the moment we are only able to deal with finitely many ψ_i’s
Generalization of the Jacod-Yor theorem

Can we say more?

- Already in the classical case ($\Psi = \emptyset$), completeness is a strong property, but yet we do not have “control” on the complete models. For instance, completeness holds if $\mathbb{F} = \mathbb{F}^S$, and S is a strong solution to an SDE of the form

$$
 dS_t = \sigma(t; S_u : u \leq t) dW_t, \quad (W_t)_{t \geq 0} \text{ BM, } \sigma > 0.
$$
Generalization of the Jacod-Yor theorem

Can we say more?

- Already in the classical case ($\Psi = \emptyset$), completeness is a strong property, but yet we do not have “control” on the complete models. For instance, completeness holds if $\mathbb{F} = \mathbb{F}^S$, and S is a strong solution to an SDE of the form

 $$dS_t = \sigma(t; S_u : u \leq t) dW_t, \quad (W_t)_t \text{ BM, } \sigma > 0.$$

- Should we expect some additional structure in the semi-static case? – We shall see an interesting consequence of SSC
Generalization of the Jacod-Yor theorem

Can we say more?

- Already in the classical case ($\Psi = \emptyset$), completeness is a strong property, but yet we do not have “control” on the complete models. For instance, completeness holds if $\mathbb{F} = \mathbb{F}^S$, and S is a strong solution to an SDE of the form
 \[dS_t = \sigma(t; S_u : u \leq t) dW_t, \quad (W_t)_t \text{ BM, } \sigma > 0. \]

- Should we expect some additional structure in the semi-static case? – We shall see an interesting consequence of SSC

Notation: For any martingale N, denote

\[S(N) = \left\{ H \cdot N : H \in L^2(N) \right\}. \]

This is a closed subspace of H^2 (stable subspace generated by N).
A curious consequence of semi-static completeness

- For simplicity let $\Psi = \{\psi\}$, and fix $Q \in \text{SSC}(\mathcal{F})$
- Let $K \cdot S$ be the orthogonal projection of $\mathbb{E}_Q[\psi | \mathcal{F}_t]$ onto $S(S)$, and define
 \[M_t = \mathbb{E}_Q[\psi | \mathcal{F}_t] - (K \cdot S)_t \]

Note: M_T is the part of ψ which is not replicable by trading on S
A curious consequence of semi-static completeness

- For simplicity let $\Psi = \{\psi\}$, and fix $Q \in \text{SSC}(\mathcal{F})$
- Let $K \cdot S$ be the orthogonal projection of $\mathbb{E}_Q[\psi | \mathcal{F}_t]$ onto $S(S)$, and define
 $$M_t = \mathbb{E}_Q[\psi | \mathcal{F}_t] - (K \cdot S)_t$$

 Note: M_T is the part of ψ which is not replicable by trading on S

- Then $H \cdot M \perp S(S)$ for any $H \in L^2(M)$
A curious consequence of semi-static completeness

- For simplicity let $\Psi = \{\psi\}$, and fix $Q \in \text{SSC}(\mathbb{F})$.
- Let $K \cdot S$ be the orthogonal projection of $\mathbb{E}_Q[\psi | \mathcal{F}_t]$ onto $S(S)$, and define
 \[M_t = \mathbb{E}_Q[\psi | \mathcal{F}_t] - (K \cdot S)_t \]

Note: M_T is the part of ψ which is not replicable by trading on S.

- Then $H \cdot M \perp S(S)$ for any $H \in L^2(M)$.
- By semi-static completeness,
 \[\mathcal{H}^2 = \text{span}\{1\} \oplus \text{span}\{M\} \oplus S(S) \]
A curious consequence of semi-static completeness

- For simplicity let $\Psi = \{\psi\}$, and fix $Q \in \text{SSC}(\mathbb{F})$
- Let $K \cdot S$ be the orthogonal projection of $\mathbb{E}_Q[\psi | \mathcal{F}_t]$ onto $S(S)$, and define
 $$M_t = \mathbb{E}_Q[\psi | \mathcal{F}_t] - (K \cdot S)_t$$

 Note: M_T is the part of ψ which is not replicable by trading on S

- Then $H \cdot M \perp S(S)$ for any $H \in L^2(M)$

- By semi-static completeness,
 $$\mathcal{H}^2 = \text{span}\{1\} \oplus \text{span}\{M\} \oplus S(S)$$

- Consequently,
 $$S(M) = \text{span}\{M\},$$

 which is one-dimensional!
A curious consequence of semi-static completeness

We will use the following result on \(\psi \):

Lemma

Let \(N \) be a square-integrable martingale null at zero. The following are equivalent:

(i) \(S(N) = \text{span}\{N\} \)

(ii) \(N = N_T \mathbf{1}_{B \times [t^*, T]} \) for some \(t^* \in (0, T] \) and some atom \(B \) of \(\mathcal{F}_{t^*} \)
A curious consequence of semi-static completeness

We will use the following result on ψ:

Lemma

Let N be a square-integrable martingale null at zero. The following are equivalent:

(i) $S(N) = \text{span}\{N\}$

(ii) $N = N_T^1_{B \times [t^*, T]}$ for some $t^* \in (0, T]$ and some atom B of \mathcal{F}_{t^*}

And the following one on S, when S is continuous:

Lemma

Let N be a continuous local martingale, and let B be an atom of \mathcal{F}_{t^*} for some $t^* \in (0, T]$. Then $N_t = N_0$ on B for all $t < t^*$.
A curious consequence of semi-static completeness

Recall: $\Psi = \{\psi\}$, $Q \in \text{SSC}(\mathcal{F})$. Now, for S continuous we have

$$M = M_T 1_{B \times [t^*, T]} \quad \text{and} \quad S_t = S_0 \quad \text{on} \quad B \quad \text{for} \quad t \leq t^*$$
A curious consequence of semi-static completeness

Recall: \(\Psi = \{\psi\}, \ Q \in \text{SSC}(\mathbb{F}) \). Now, for \(S \) continuous we have

\[
M = M_T 1_{B \times [t^*, T]} \quad \text{and} \quad S_t = S_0 \text{ on } B \text{ for } t \leq t^*
\]

By semi-static completeness,

\[
1_B = Q(B) + aM_T + (H \cdot S)_T
\]
A curious consequence of semi-static completeness

Recall: $\Psi = \{\psi\}$, $Q \in \text{SSC}(\mathbb{F})$. Now, for S continuous we have

$$M = M_T \mathbf{1}_{B \times [t^*, T]} \quad \text{and} \quad S_t = S_0 \text{ on } B \text{ for } t \leq t^*$$

By semi-static completeness,

$$\mathbf{1}_B = \mathbb{E}_Q \left[Q(B) + aM_T + (H \cdot S)_T \mid \mathcal{F}_{t^*} \right]$$
A curious consequence of semi-static completeness

Recall: $\Psi = \{\psi\}$, $Q \in \text{SSC}(\mathcal{F})$. Now, for S continuous we have

$$M = M_T 1_{B \times [t^*, T]} \quad \text{and} \quad S_t = S_0 \text{ on } B \text{ for } t \leq t^*$$

By semi-static completeness,

$$1_B = \mathbb{E}_Q \left[Q(B) + aM_T + (H \cdot S)_T | \mathcal{F}_{t^*} \right] = Q(B) + (H \cdot S)_{t^*}$$
A curious consequence of semi-static completeness

Recall: $\Psi = \{\psi\}$, $Q \in \text{SSC}(\mathcal{F})$. Now, for S continuous we have

$$M = M_T \mathbf{1}_{B \times [t^*, T]}$$

and

$$S_t = S_0 \text{ on } B \text{ for } t \leq t^*$$

By semi-static completeness,

$$\mathbf{1}_B = \mathbb{E}_Q \left[Q(B) + aM_T + (H \cdot S)_T \mid \mathcal{F}_{t^*-} \right]$$

$$= Q(B) \mathbf{1}_B + (H \cdot S)_{t^*} \mathbf{1}_B$$
A curious consequence of semi-static completeness

Recall: $\Psi = \{\psi\}$, $Q \in \text{SSC}(\mathcal{F})$. Now, for S continuous we have

$$M = M_T 1_{B \times [t^*, T]}$$

and

$$S_t = S_0 \text{ on } B \text{ for } t \leq t^*$$

By semi-static completeness,

$$1_B = E_Q \left[Q(B) + aM_T + (H \cdot S)_T \mid \mathcal{F}_{t^*-} \right]$$

$$= Q(B)1_B + (H \cdot S)_{t^*}1_B$$

$$= Q(B)1_B$$
Recall: $\Psi = \{\psi\}$, $Q \in \text{SSC}(\mathbb{F})$. Now, for S continuous we have

$$M = M_T \mathbf{1}_{B \times [t^*, T]}$$

and

$$S_t = S_0 \text{ on } B \text{ for } t \leq t^*$$

By semi-static completeness,

$$\mathbf{1}_B = \mathbb{E}_Q \left[Q(B) + aM_T + (H \cdot S)_T \mid \mathcal{F}_{t^*} \right]$$

$$= Q(B) \mathbf{1}_B + (H \cdot S)_{t^*} \mathbf{1}_B$$

$$= Q(B) \mathbf{1}_B \quad \Rightarrow \quad Q(B) = 1.$$
A curious consequence of semi-static completeness

Recall: $\Psi = \{\psi\}$, $Q \in \text{SSC}(\mathbb{F})$. Now, for S continuous we have

$$M = M_T 1_{B \times [t^*, T]} \quad \text{and} \quad S_t = S_0 \text{ on } B \text{ for } t \leq t^*$$

By semi-static completeness,

$$1_B = \mathbb{E}_Q\left[Q(B) + aM_T + (H \cdot S)_T \mid \mathcal{F}_{t^*} \right]$$

$$= Q(B)1_B + (H \cdot S)_{t^*}1_B$$

$$= Q(B)1_B \quad \Rightarrow \quad Q(B) = 1.$$
Semi-static completeness and filtration structure
Atomic tree

- Fix $Q \in \mathcal{M}(\mathcal{F})$
- For $A \in \mathcal{F}_T$, denote by $t(A)$ the first time A becomes measurable,
 $$t(A) = \inf\{t \in [0, T] : A \in \mathcal{F}_t\}.$$

Definition

An **atomic tree** is a finite collection T of events in \mathcal{F}_T s.t.:

(i) every $A \in T$ is a non-null atom of $\mathcal{F}_{t(A)}$;
(ii) $\forall A, A' \in T$ s.t. $t(A) < t(A')$, either $A \supseteq A'$ or $A \cap A' = \emptyset$;
(iii) $\forall A, A' \in T$ such that $A \supseteq A'$, $Q(A \setminus A') > 0$;
(iv) the leaves form a partition of Ω (up to nullsets), and A is an atom of $\mathcal{F}_{t(A')}$ whenever A' is a child of A.

leaf: $A \in T$ s.t. there is no $A' \in T$ s.t. $A' \subset A$;
dim T: # leaves

child: A' is a child of A if $A, A' \in T$ satisfy $A' \subset A$ and there is no $A'' \in T$ such that $A' \subset A'' \subset A$
Atomic tree
Atomic tree

Remarks.

- $\sigma(T)$ is well-defined. It can be described as $\sigma(T) = F_{\zeta(T)}$, where the stopping time $\zeta(T)$ is the “end” of the tree:

$$\zeta(T) = \sum_{A \in T \text{ is a leaf}} t(A)1_A.$$

- Note that $\dim T = \dim L^2(\sigma(T))$.
Atomic tree

Remarks.

- $\sigma(T)$ is well-defined. It can be described as $\sigma(T) = \mathcal{F}_{\zeta(T)}$, where the stopping time $\zeta(T)$ is the “end” of the tree:

$$\zeta(T) = \sum_{A \in T \text{ is a leaf}} t(A)1_A.$$

- Note that $\dim T = \dim L^2(\sigma(T))$.

Definition

We say that S is complete on $A \times [t, T]$ for given $t \in [0, T]$ and $A \in \mathcal{F}_t$ if any $X \in L^2(\mathcal{F}_T)$ can be dynamically replicated there:

$$X = x + (H \cdot S)_T \quad \text{on} \quad A$$

for some $x \in \mathbb{R}$ and some $H \in L^2(S)$ with $H = 0$ on $[0, t]$.
Recall: $Q \in \mathcal{M}(\mathbb{F})$ is fixed.

Theorem

Let S be continuous. Then $Q \in \text{SSC}(\mathbb{F})$ IFF \exists an atomic tree T s.t.

1. $\{ \mathbb{E}_Q[\psi_i | \sigma(T)] : i = 1, \ldots, n \}$ has dim $T - 1$ lin. indep. elements,
2. S is complete on $A \times [t(A), T]$ for each leaf $A \in T$.

In this case, S is constant on $[0, \zeta(T)]$ and

$$L^2(\mathcal{F}_T) = \text{span}\{1, \Psi\} + S(S) = L^2(\sigma(T)) \oplus S(S).$$

Remark: $\psi_i = \mathbb{E}_Q[\psi_i | \sigma(T)] + (H^i \cdot S)_T$, $i = 1, \ldots, n$. orthog. proj.
Semi-static completeness for continuous price processes

The filtration \mathcal{F} under $Q \in SSC(\mathcal{F})$. Each set of lines emanating from the leaves of T corresponds to a dynamically complete stock price model.
Semi-static completeness for continuous price processes

Example (Semi-statically complete continuous model)

One static claim $\psi = \langle S, S \rangle_T - K$ with zero value at $t = 0$.

- Pick $t^* \in (0, T)$, $\sigma_1, \sigma_2 > 0$ with $\sigma_1 \neq \sigma_2$.
- Set $Q = \lambda Q_1 + (1 - \lambda) Q_2$ where
 \[S_t = \sigma_i W_{t-t^*} 1_{\{t \geq t^*\}} \] under Q^i,
 where W is Brownian motion, and λ is determined by calibration:
 \[0 = E_Q[\psi | F_0] = \lambda \sigma_1^2 (T - t^*) + (1 - \lambda) \sigma_2^2 (T - t^*) - K. \]

- Define $A_i = \{ \partial^+ \langle S, S \rangle_{t^*} = \sigma_i^2 \}$ and set $T = \{ \Omega, A_1, A_2 \}$.

- T is an atomic tree with dim $T = 2$ and
 \[E_Q[\psi | \sigma(T)] = \sigma_1^2 (T - t^*) 1_{A_1} + \sigma_2^2 (T - t^*) 1_{A_2} - K \neq 0. \]

- By the theorem, $Q \in SSC(\mathbb{F})$.
The leaves A_1, A_2 correspond to Bachelier models with volatilities $\sigma_1 > \sigma_2$. Thus the “variance swap” $\psi = \langle S \rangle_T$ is priced differently under the two models, and can be used to hedge against A_1 or A_2.
Example (Semi-statically complete jump model, but no atomic tree)

- $\psi = [S, S]_T - K$
- $S_t = \begin{cases}
-t & t < \theta \land t^* \\
1 - \theta + f(\theta) W_{t-\theta} & t \geq \theta, \ \theta < t^* \\
-t^* + 1_{A_1} \sigma_1 W_{t-t^*} + 1_{A_2} \sigma_2 W_{t-t^*} & t \geq t^*, \ t^* \leq \theta
\end{cases}$

with $\theta \sim \text{Exp}(1)$, W, t^*, σ_1, $\sigma_2 > 0$ as above, $f(t) : [0, t^*) \rightarrow \mathbb{R}_+$.

Conclusion: When the asset is allowed to jump, we do not have anymore the tree structure.
Pricing by informed investors
\[\mathcal{G} = (\mathcal{G}_t)_{0 \leq t \leq T} : \text{right-continuous filtration (of the informed agent) with} \]

\[\mathcal{F}_t \subseteq \mathcal{G}_t, \quad 0 \leq t \leq T. \]

- Access to the same trading instruments: risk-free asset, \(S \), \(\Psi \).
\[G = (G_t)_{0 \leq t \leq T} \text{: right-continuous filtration (of the informed agent) with} \]
\[\mathcal{F}_t \subseteq G_t, \quad 0 \leq t \leq T. \]

- Access to the same trading instruments: risk-free asset, \(S \), \(\Psi \)

- Consider a payoff \(\Phi \). The robust super-hedging price of the informed agent:
\[
\sup_{Q \in \mathcal{M}(G)} \mathbb{E}_Q[\Phi]
\]

- As before, we want to study \(\text{ext} \mathcal{M}(G) \equiv \text{SSC}(G) \).
Setup

- $\mathcal{G} = (\mathcal{G}_t)_{0 \leq t \leq T}$: right-continuous filtration (of the informed agent) with
 \[\mathcal{F}_t \subseteq \mathcal{G}_t, \quad 0 \leq t \leq T. \]
- Access to the same trading instruments: risk-free asset, S, Ψ
- Consider a payoff Φ. The robust super-hedging price of the informed agent:
 \[\sup_{Q \in \mathcal{M}(\mathcal{G})} \mathbb{E}_Q[\Phi] \]
- As before, we want to study $\text{ext} \mathcal{M}(\mathcal{G}) \equiv \text{SSC}(\mathcal{G})$.

Question: How are $\text{SSC}(\mathcal{G})$ and $\text{SSC}(\mathcal{F})$ related?
Progressive filtration enlargement

Specification of G: Progressive enlargement of \mathcal{F} with \mathcal{H}

$$
\mathcal{G}_t = \bigcap_{u > t} \mathcal{F}_u \vee \mathcal{H}_u.
$$

Smallest right-continuous filtration that contains both \mathcal{F} and \mathcal{H}.

- \mathcal{H} generated by a collection of single-jump processes $X 1_{[\tau, T]}$, where X is a non-negative bounded random variable and τ is a random time (that is, $[0, T] \cup \{\infty\}$-valued random variable). (W.l.g., suppose $\tau = \infty$ on $\{X = 0\}$.)

- Remark: **special cases** are the classical progressive enlargement with a random time and initial enlargement with a random variable.
Progressive filtration enlargement

Specification of \(\mathcal{G} \): Progressive enlargement of \(\mathcal{F} \) with \(\mathcal{H} \)

\[
\mathcal{G}_t = \bigcap_{u > t} \mathcal{F}_u \lor \mathcal{H}_u.
\]

Smallest right-continuous filtration that contains both \(\mathcal{F} \) and \(\mathcal{H} \).

- \(\mathcal{H} \) generated by a collection of single-jump processes \(X 1_{[\tau, T]} \), where \(X \) is a non-negative bounded random variable and \(\tau \) is a random time (that is, \([0, T] \cup \{\infty\}\)-valued random variable). (W.l.g., suppose \(\tau = \infty \) on \(\{X = 0\} \).)

- Remark: **special cases** are the classical progressive enlargement with a random time and initial enlargement with a random variable.

- For this kind of filtration enlargement there are clear-cut results between \(\text{SSC}(\mathcal{G}) \) and \(\text{SSC}(\mathcal{F}) \).
Progressive filtration enlargement

Let σ be the first time S starts to move: $\sigma = \inf\{t \in [0, T] : S_t \neq 0\}$.

Theorem

Let S be continuous and \mathbb{H} generated by $X_k 1_{[\tau_k, T]}$, $k = 1, \ldots, p$. Assume $\tau_k > \sigma$ on $\{0 < \tau_k < \infty\}$ for all k. Then

$$\text{SSC}(G) = \{ Q \in \text{SSC}(F) : F = G \text{ under } Q \}$$
Progressive filtration enlargement

Let σ be the first time S starts to move: $\sigma = \inf\{t \in [0, T]: S_t \neq 0\}$.

Theorem

Let S be continuous and \mathbb{H} generated by $X_k 1_{[\tau_k, T]}$, $k = 1, \ldots, p$. Assume $\tau_k > \sigma$ on $\{0 < \tau_k < \infty\}$ for all k. Then

$$\text{SSC}(\mathbb{G}) = \{ Q \in \text{SSC}(\mathbb{F}): \mathbb{F} = \mathbb{G} \text{ under } Q \}$$

In the proof we use an extension of the classical Jeulin-Yor theorem.

- Fix $Q \in \text{SSC}(\mathbb{G})$
- Let Z be the Azéma supermartingale: $Z_t = Q(\tau > t | \mathbb{F}_t)$
- Let A be is the dual predictable projection of $X 1_{[\tau, \infty]}$

Theorem (Jeulin-Yor (1978))

The following process is a \mathbb{G}-martingale w.r.to Q:

$$M_t = X 1_{\{\tau \leq t\}} - \int_0^{t \wedge \tau} \frac{1}{Z_s} dA_s.$$
Progressive filtration enlargement

Sketch of the proof of “⊆” (for \(p = 1, X \equiv 1 \))

- Fix \(Q \in \text{SSC}(\mathcal{G}) \)
- Consider the process \(M_t = 1_{\{\tau \leq t\}} - \int_0^{t \land \tau} \frac{1}{Z_{s-}} dA_s \) \hspace{1cm} (1)
Progressive filtration enlargement

Sketch of the proof of “⊆” (for $p = 1$, $X \equiv 1$)

- Fix $Q \in \text{SSC}(\mathcal{G})$
- Consider the process $M_t = 1_{\{\tau \leq t\}} - \int_0^{t \wedge \tau} \frac{1}{Z_s} dA_s$ \hspace{1cm} (1)
- By semi-static completeness,

$$M = M_0 + V + H \cdot S,$$

for some $H \in L(S)$ and martingale V with $V_T \in L^2(\sigma(T))$
Progressive filtration enlargement

Sketch of the proof of “⊆” (for $p = 1$, $X \equiv 1$)

- Fix $Q \in \text{SSC}(\mathcal{G})$
- Consider the process $M_t = 1_{\{\tau \leq t\}} - \int_0^{t \wedge \tau} \frac{1}{Z_{s^-}} dA_s$ (1)

By semi-static completeness,

$$M = M_0 + V + H \cdot S,$$ (2)

for some $H \in L(S)$ and martingale V with $V_T \in L^2(\sigma(T))$

- By (1), (2) and continuity of S, by considering the jumps of M:

$$\tau = \inf \left\{ t \in [0, T] : \frac{1}{Z_{t^-}} \Delta A_t + \Delta V_t = 1 \right\}.$$
Progressive filtration enlargement

Sketch of the proof of “⊂” (for $p = 1$, $X \equiv 1$)

- Fix $Q \in \text{SSC}(\mathcal{G})$
- Consider the process $M_t = 1_{\{\tau \leq t\}} - \int_0^{t \wedge \tau} \frac{1}{Z_{s-}} dA_s$ \hspace{1cm} (1)
- By semi-static completeness,
 $$M = M_0 + V + H \cdot S,$$ \hspace{1cm} (2)
 for some $H \in L(S)$ and martingale V with $V_T \in L^2(\sigma(T))$
- By (1), (2) and continuity of S, by considering the jumps of M:
 $$\tau = \inf \left\{ t \in [0, T] : \frac{1}{Z_{t-}} \Delta A_t + \Delta V_t = 1 \right\}.$$
- By assumption, $\tau > \sigma = \inf\{t > 0 : S_t \neq S_0\}$
- And V is constant on $[\sigma, \infty[$ by our characterization Theorem
- Therefore $\tau = \inf\{t \in [0, T] : \frac{1}{Z_{t-}} \Delta A_t = 1\}$ \mathbb{F}-stopping time.
Remarks.

- From the proof it is clear that the set equivalence still holds true without any assumption on S when $\Psi = \emptyset$.
Remarks.

- From the proof it is clear that the set equivalence still holds true without any assumption on S when $\Psi = \emptyset$.

- We can generalize the theorem for filtration enlargements with countably many single-jump processes.

Theorem

Let S be continuous and \mathcal{H} generated by $X_k 1_{[\tau_k, T]}$, $k \in \mathbb{N}$. Assume $\tau_k > \sigma$ on $\{0 < \tau_k < \infty\}$ for all k, and $|\{k : \tau_k(\omega) \leq T\}| < \infty \ \forall \ \omega$.

Then

$$\text{SSC}(\mathcal{G}) = \{ Q \in \text{SSC}(\mathcal{F}) : \mathcal{F} = \mathcal{G} \ \text{under} \ Q \}$$
Motivated by robust super-hedging price computation, we study extreme calibrated martingale measures.

We obtain:

- Semi-static version of the Jacod-Yor theorem.
- Description of semi-statically complete models in terms of dynamically complete models glued together by means of an atomic tree.
- Application to robust pricing by informed agents: under structural assumptions, informed agents price using only those models that render the additional information uninformative.

Lots of things remain to be done and appear to be within reach:

- Infinitely many static claims \(\rightarrow \) case \(S_T \sim \mu \)
- Better understanding of price processes with jumps
- More general filtration enlargements
- \ldots
Thank you for your attention!

© Walter: have a great year in Zurich!