Modelling energy forward prices
– Representation of ambit fields –

Fred Espen Benth

Department of Mathematics
University of Oslo, Norway

In collaboration with Heidar Eyjolfsson, Barbara Rüdiger and Andre Süß

ITS Workshop Mathematical Finance beyond classical models,
ETH Zürich, September 15, 2015
Introduction

- Background: electricity forwards
- Study ambit fields as Volterra processes in Hilbert space
- Consider representations of ambit fields
 - Series representations as LSS processes
 - Solutions of SPDEs in Hilbert space
Background: electricity forwards
Power forwards: stylized facts of smoothed curves

- Example of power forward prices on NordPool
- Smoothed by fourth order polynomial spline
 - Imposed seasonal structure by industry spot prognosis
• Analysis of base load quarter/month/week contracts constructed from NordPool forward data
 • Daily forward curves 2001-2007
 • The "quarterly forward curve" 1 January, 2006
 • Andresen, Koekebakker and Westgaard (2010), B., Saltyte Benth and Koekebakker (2008)
• Correlation structure of quarterly contracts in NordPool
 • Correlation as a function of distance between start-of-delivery

[Graph showing observed and modeled correlation]

• High degree of ”idiosyncratic” risk
 • Quarterly contracts: 6 noise sources explain 96%, 7 explain 98%
- Observed Samuelson effect on (log-)returns
 - Volatility of forwards decrease with time to maturity
- Plot of Nordpool quarterly contracts, empirical volatility

![Observed and modeled volatility](image-url)
• Probability density of returns is non-Gaussian
• Example: weekly and monthly contracts
 • Fitted normal and NIG
 • ”True” and logarithmic frequency axis
 • NIG=normal inverse Gaussian distribution
Forward modelling by ambit processes

- Extension of the HJM approach
- Random field model for the smooth forward curve
 - by direct modelling rather than as the solution of some dynamic equation
- Simple arithmetic model could be (in the risk-neutral setting)

\[F(t, x) = \int_{-\infty}^{t} \int_{0}^{\infty} g(t - s, x, y)\sigma(s, y)L(dy, ds) \]

- \(x \) is "time-to-maturity"
Definition of ”classical” ambit fields

\[X(t, x) = \int_{-\infty}^{t} \int_{A} g(t - s, x, y) \sigma(s, y) L(ds, dy) \]

- \(L \) is a Lévy basis
- \(g \) non-negative deterministic function, \(g(u, x, y) = 0 \) for \(u < 0 \).
- Stochastic volatility process \(\sigma \) independent of \(L \), stationary
- \(A \) a Borel subset of \(\mathbb{R}^d \): ”ambit” set
• *L* is a *Lévy basis* on *R*^d* if*

1. the law of *L*(A) is infinitely divisible for all bounded sets *A*
2. if *A* ∩ *B* = ∅, then *L*(A) and *L*(B) are independent
3. if *A*₁, *A*₂, ... are disjoint bounded sets, then

\[
L(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} L(A_i), \text{ a.s}
\]

• We restrict to zero-mean, and square integrable Lévy bases *L*
• Use Walsh’s definition of the stochastic integral
• Our model: classical ambit field with \(d = 1 \) and \(\mathcal{A} = [0, \infty) \)

• Example I: exponential damping function

\[
g(u, x, y) = \exp(-\alpha(u + x + y))
\]

• Example II: the Musiela SPDE specification

 • \(L = W \), Brownian motion

\[
dF(t, x) = \frac{\partial F(t, x)}{\partial x} dt + g(x)\sigma(t) dW(t)
\]

• Solution of the SPDE

\[
F(t, x) = F_0(x + t) + \int_0^t g(x + (t-s))\sigma(s) dW(s)
\]
Hilbert-valued ambit fields

–Volterra processes in Hilbert space–
Recall definition of "classical" ambit fields

\[X(t, x) = \int_{-\infty}^{t} \int_{A} g(t-s, x, y) \sigma(s, y) \, L(ds, dy) \]

- \(L \) is a \(\text{Lévy basis} \), \(g \) non-negative deterministic function, \(g(u, x, y) = 0 \) for \(u < 0 \), stochastic volatility process \(\sigma \) independent of \(L \) being stationary, \(A \) a Borel subset of \(\mathbb{R}^d \): "ambit" set
- **Our goals:**
 - Lift the ambit fields to processes in Hilbert space
 - ..and to analyse representations of such!
- Application of ambit fields: turbulence, tumor growth, energy finance, fixed-income markets
• Define \mathcal{H}-valued process $t \mapsto X(t)$

$$X(t) = \int_0^t \Gamma(t,s)(\sigma(s)) \, dL(s)$$

• $\mathcal{U}, \mathcal{V}, \mathcal{H}$ three separable Hilbert spaces
• $s \mapsto L(s)$ \mathcal{V}-valued Lévy process
 • Square integrable with mean zero (L is \mathcal{V}-martingale)
 • Covariance operator Q (symmetric, positive definite, trace class)
• $s \mapsto \sigma(s)$ predictable process with values in \mathcal{U}
 • Stochastic volatility or intermittency
• $(t, s) \mapsto \Gamma(t, s), s \leq t$, $\mathcal{L}(\mathcal{U}, \mathcal{L}(\mathcal{V}, \mathcal{H}))$-valued measurable mapping
 • Non-random kernel function
• Integrability condition for Γ and σ:

$$\mathbb{E} \left[\int_0^t \| \Gamma(t, s)(\sigma(s))Q^{1/2} \|^2_{\text{HS}} ds \right] < \infty$$

• We call \mathcal{X} a *Hambit field*

• A sufficient integrability condition:

$$\int_0^t \| \Gamma(t, s) \|^2_{\text{op}} \mathbb{E} \left[|\sigma(s)|^2_{\mathcal{U}} \right] \, ds < \infty$$
Proposition: Suppose that σ is independent of L. For $h \in \mathcal{H}$ it holds

$$\mathbb{E} \left[\exp(i(h, X(t))_\mathcal{H}) \right] = \mathbb{E} \left[\exp \left(\int_0^t \Psi_L((\Gamma(t, s)(\sigma(s)))^* h) \right) ds \right]$$

where Ψ_L is the characteristic exponent of $L(1)$.

Proof': Condition on σ, and use the independent increment property of L along with the fact

$$(h, \Gamma(t, s)(\sigma(s))\Delta L(s))_\mathcal{H} = ((\Gamma(t, s)(\sigma(s)))^* h, \Delta L(s))_\mathcal{V}$$
• Example: $L = W$, \mathcal{V}-valued Wiener process
• For $\nu \in \mathcal{V}$,

 \[
 \Psi_W(\nu) = -\frac{1}{2}(Q\nu, \nu)_{\mathcal{V}}
 \]

• Characteristic function of X (Bochner ds-integral)

 \[
 \mathbb{E} \left[\exp(i(h, X(t))_\mathcal{H}) \right] \\
 = \mathbb{E} \left[\exp \left(-\frac{1}{2} (h, \int_0^t \Gamma(t, s)(\sigma(s))Q(\Gamma(t, s)(\sigma(s)))^* \, ds \, h)_{\mathcal{H}} \right) \right]
 \]

• X is conditional Gaussian
Examples
Example: from \mathcal{H}ambit to ambit

- Let $\mathcal{A} \subset \mathbb{R}^n$ Borel set, \mathcal{U} a Hilbert space of real-valued functions on \mathcal{A}
- Let $(t, s, x, y) \mapsto g(t, s, x, y)$ be a measurable real-valued function for $0 \leq s \leq t \leq T$, $y \in \mathcal{A}$, $x \in \mathcal{B}$, $\mathcal{B} \subset \mathbb{R}^d$
- Suppose \mathcal{V} is a Hilbert space of absolutely continuous functions on \mathcal{A}.
- Define for $\sigma \in \mathcal{U}$ the linear operator on \mathcal{V}

$$\Gamma(t, s)(\sigma) := \int_{\mathcal{A}} g(t, s, \cdot, y)\sigma(y)$$

acting on $f \in \mathcal{V}$ as

$$\Gamma(t, s)(\sigma)f = \int_{\mathcal{A}} g(t, s, \cdot, y)\sigma(s, y)f(dy).$$
• Let \mathcal{H} be a Hilbert space of real-valued functions on \mathcal{B}
• Let L be a \mathcal{V}-valued Lévy process, σ \mathcal{U}-valued predictable process
 • Suppose integrability conditions on $s \mapsto \Gamma(t, s)(\sigma(s))$
• $X(t, x)$ is an ambit field

$$X(t, x) = \int_0^t \int_A g(t, s, x, y)\sigma(y) L(ds, dy)$$

• Example of Hilbert space?
Realization in Filipovic space

- Let $\mathcal{U} = \mathcal{V} = \mathcal{H}$, $n = d = 1$, $\mathcal{A} = \mathcal{B} = \mathbb{R}_+$
- Let $w \in C^1(\mathbb{R}_+)$ be non-decreasing, $w(0) = 1$ and $w^{-1} \in L^1(\mathbb{R}_+)$
- Let $\mathcal{U} := H_w$ be the space of absolutely continuous functions on \mathbb{R}_+ where

$$
|f|^2_w = f^2(0) + \int_{\mathbb{R}_+} w(y)|f'(y)|^2 \, dy < \infty
$$

- H_w separable Hilbert space.
 - Introduced by Filipovic (2001)
 - Main application: realization of forward rate HJM models
Hilbert-valued OU with stochastic volatility

- Fix $\mathcal{V} = \mathcal{H}$, and let A an unbounded operator on \mathcal{H} with C_0-semigroup S_t.
- \mathcal{W} \mathcal{H}-valued Wiener process with covariance operator Q.
- B. Rüdiger and Süss (2015): Let $\sigma(t)$ be a $\mathcal{U} := L_{HS}(\mathcal{H})$-valued predictable process,

$$dX(t) = AX(t) \, dt + \sigma(t) \, dW(t)$$

- Mild solution

$$X(t) = S_t X(0) + \int_0^t S_{t-s} \sigma(s) \, dW(s)$$
• X as \mathcal{H}ambit field: define $\Gamma(t, s) \in \mathcal{L}(L_{HS}(\mathcal{H}), \mathcal{L}(\mathcal{H}))$

$$\Gamma(t, s) : \sigma \mapsto S_{t-s}\sigma$$

• A BNS SV model: $\sigma(t) = \mathcal{Y}^{1/2}(t)$

$$d\mathcal{Y}(t) = \mathbb{C}\mathcal{Y}(t) dt + d\mathcal{L}(t)$$

• $\mathbb{C} \in \mathcal{L}(L_{HS}(\mathcal{H}))$, with C_0-semigroup S_t

• \mathcal{L} is a $L_{HS}(\mathcal{H})$-valued "subordinator"
• \(\mathcal{Y}(t) \) symmetric, positive definite, \(L_{HS}(\mathcal{H}) \)-valued process,

\[
\mathbb{E}[|\sigma(t)|^2_U] = \sum_{n=1}^{\infty} (\sigma(t)h_k, \sigma(t)h_k)_\mathcal{H} = \text{Tr}(\mathcal{Y}(t))
\]

• The trace is continuous, and hence the integrability condition for \(X \) holds

\[
\text{Tr}(\mathcal{Y}(t)) = \text{Tr}(\mathcal{S}_t\mathcal{Y}_0) + \text{Tr}(\int_0^t \mathcal{S}_s \, ds \mathbb{E}[\mathcal{L}(1)])
\]

• Infinite-dimensional extension of Barndorff-Nielsen and Stelzer (2007)
Hambit fields as Lévy semistationary (LSS) processes
• Let $\{u_n\}, \{v_m\}$ and $\{h_k\}$ be ONB in \mathcal{U}, \mathcal{V} and \mathcal{H} resp.
 • Recall separability of the Hilbert spaces
• $L_m := (L, v_m)_\mathcal{V}$ are \mathbb{R}-valued Lévy processes
 • zero mean, square integrable
 • but, not independent nor zero correlated
• Define LSS processes $Y_{n,m,k}(t)$ by

$$Y_{n,m,k}(t) = \int_0^t g_{m,n,k}(t, s)\sigma_n(s) \, dL_m(s)$$

$$g_{n,m,k}(t, s) := \langle \Gamma(t, s)(u_n)v_m, h_k \rangle_{\mathcal{H}} \quad \sigma_n(s) := \langle \sigma(s), u_n \rangle_{\mathcal{U}}$$
Proposition: Assume

\[\int_0^t \| \Gamma(t, s) \|_{\text{op}}^2 \left(\sum_{n=1}^{\infty} \mathbb{E}[\sigma_n^2(s)]^{1/2} \right)^2 ds < \infty \]

then,

\[X(t) = \sum_{n,m,k=1}^{\infty} Y_{n,m,k}(t) h_k \]

"Proof": Expand all elements along the ONB’s in their respective spaces. The integrability assumption ensures the commutation of an infinite sum and stochastic integral wrt. \(L_m \) (A stochastic Fubini theorem).
• Barndorff-Nielsen et al. (2013): energy spot price modeling using LSS processes
 • Finite factors
 • Implied forward prices become scaled finite sums of LSS processes
• Barndorff-Nielsen et al. (2014): energy forward prices as ambit fields
 • Infinite LSS factor models!
• B. Krühner (2014): HJM forward price dynamics representable as countable scaled sums of OU process
 • Possibly complex valued OU processes
• Integrability condition implies the sufficient condition for existence of \mathcal{H}ambit field:

• By Parseval’s identity

$$\mathbb{E}[|\sigma(s)|^2] = \sum_{n=1}^{\infty} \mathbb{E}[\langle \sigma(s), u_n \rangle^2]$$

• Sufficient condition for LSS representation: there exists $a_n > 0$ s.t. $\sum_{n=1}^{\infty} a_n^{-1} < \infty$ and

$$\sum_{n=1}^{\infty} a_n \int_0^t \|\Gamma(t,s)\|_\text{op}^2 \mathbb{E}[\langle \sigma(s), u_n \rangle^2] \, ds < \infty$$
Hambit fields and SPDEs
• Known connection between an LSS process and the boundary of a hyperbolic stochastic partial differential equation (SPDE):

\[
dZ(t, x) = \partial_x Z(t, x) \, dt + g(t + x, t)\sigma(t) \, dL(t)
\]

\[
Z_0(t) := Z(t, 0) = \int_0^t g(t, s)\sigma(s) \, dL(s)
\]

• \(L \, \mathbb{R}\)-valued Lévy process, \(x \geq 0\)

• **Goal**: show similar result for \(\mathcal{H}\)ambit fields!
 • Application: B. Eyjolfsson (2015+) devised iterative (finite difference) numerical schemes in the \(\mathbb{R}\)-valued case using this relationship
• Assume $\tilde{\mathcal{H}}$ a Hilbert space of strongly measurable \mathcal{H}-valued functions on \mathbb{R}_+

• Suppose S_ξ right-shift operator is C_0-semigroup on $\tilde{\mathcal{H}}$

$$S_\xi f := f(\xi + \cdot), \quad f \in \tilde{\mathcal{H}}$$

• Generator is $\partial_\xi = \partial/\partial \xi$

• Consider hyperbolic SPDE in $\tilde{\mathcal{H}}$

$$X(t) = \partial_\xi X(t) \, dt + \Gamma(t + \cdot, t)(\sigma(t)) \, dL(t), \ X(0) \in \tilde{\mathcal{H}}$$
Predictable $\tilde{\mathcal{H}}$-valued unique solution

$$X(t) = S_t X(0) + \int_0^t S_{t-s} \Gamma(s + \cdot, s)(\sigma(s)) \, dL(s)$$

Proposition: Assume that the evaluation map $\delta_x : \tilde{\mathcal{H}} \to \mathcal{H}$ defined by $\delta_x f = f(x) \in \mathcal{H}$ for every $x \geq 0$ and $f \in \tilde{\mathcal{H}}$ is a continuous linear operator. If $X(0) = 0$, then $X(t) = \delta_0(X(t))$.

"Proof": Argue that

$$\delta_0 \int_0^t \Gamma(t + \cdot, s)(\sigma(s)) \, dL(s) = \int_0^t \Gamma(t, s)(\sigma(s)) \, dL(s)$$

• Need a space $\tilde{\mathcal{H}}$ with $\delta_x \in \mathcal{L}(\tilde{\mathcal{H}}, \mathcal{H})$
Abstract Filipovic space

- $f \in L^1_{loc}(\mathbb{R}_+, \mathcal{H})$ is \textit{weakly differentiable} if there exists $f' \in L^1_{loc}(\mathbb{R}_+, \mathcal{H})$ such that

$$\int_{\mathbb{R}_+} f(x)\phi'(x)\,dx = -\int_{\mathbb{R}_+} f'(x)\phi(x)\,dx, \forall \phi \in C^\infty_c(\mathbb{R}_+)$$

- Integrals interpreted in Bochner sense
- Let $w \in C^1(\mathbb{R}_+)$ be a non-decreasing function with $w(0) = 1$ and

$$\int_{\mathbb{R}_+} w^{-1}(x)\,dx < \infty$$
• Define \mathcal{H}_w to be the space of $f \in L^1_{loc}(\mathbb{R}_+, \mathcal{H})$ for which there exists $f' \in L^1_{loc}(\mathbb{R}_+, \mathcal{H})$ such that

$$\|f\|^2_w = |f(0)|^2_{\mathcal{H}} + \int_{\mathbb{R}_+} w(x)|f'(x)|^2_{\mathcal{H}} \, dx < \infty.$$

• \mathcal{H}_w is a separable Hilbert space with inner product

$$\langle f, g \rangle_w = (f(0), g(0))_{\mathcal{H}} + \int_{\mathbb{R}_+} w(x)(f'(x), g'(x))_{\mathcal{H}} \, dx$$
• Fundamental theorem of calculus: If $f \in \mathcal{H}_w$, then $f' \in L^1(\mathbb{R}_+, \mathcal{H})$, $\|f'\|_1 \leq c\|f\|_w$, and

$$f(x + t) - f(x) = \int_x^{x+t} f'(y) \, dy$$

• Shift-operator $S_\xi, \xi \geq 0$ is uniformly bounded

$$\|S_\xi f\|_w^2 \leq 2(1 + c^2)\|f\|_w^2$$

• Constant equal to $c^2 = \int_{\mathbb{R}_+} w^{-1}(x) \, dx$
Lemma: Evaluation map $\delta_x : \mathcal{H}_w \to \mathcal{H}$ is a linear bounded operator with

$$|\delta_x f|_{\mathcal{H}} \leq K \|f\|_w$$

"Proof": FTC, Bochner’s norm inequality and Cauchy-Schwartz inequality yield

$$|\delta_x f|_{\mathcal{H}}^2 = |f(x)|_{\mathcal{H}}^2 \leq 2|f(0)|_{\mathcal{H}}^2 + 2 \int_{\mathbb{R}^+} w^{-1}(y) \, dy \int_{\mathbb{R}^+} w(y)|f'(y)|_{\mathcal{H}}^2 \, dy$$

• We have an example $\tilde{\mathcal{H}} = \mathcal{H}_w$!
Classical and abstract Filipovcic space

Proposition: For \(L \in \mathcal{H}^* \), \(x \mapsto L \circ \delta_x(g) = L(g(x)) \in H_w \) for \(g \in \mathcal{H}_w \). Moreover, if \(h_x(y) = 1 + \int_0^{x \wedge y} w^{-1}(z) \, dz \) and \(\ell_x = L^*(h_x) \), then

\[
\mathcal{L}(g(x)) = \langle g, \ell_x \rangle_w
\]

"Proof": Follows from linearity of \(\mathcal{L} \), FTC and Bochner’s norm inequality. Further, if \(\tilde{\delta}_x \) is the evaluation map on \(H_w \), then \(\tilde{\delta}_x(\nu) = (\nu, h_x)_w \), \(\nu \in H_w \).
Wrapping up...

- Ambit fields: motivated from power forwards
- Hambit fields: general framework for
 - non-Gaussianity, stochastic volatility, Samuelson effect
- Representation in LSS processes
 - Spot price models
- Representation as boundary of solution of hyperbolic SPDE
 - Finite difference numerical schemes
- Outlook:
 - Pricing and hedging power forward options (B. Krühner (2015)).
 - Stochastic integration (B. Süß (2015))
Thank you for your attention!
References