On the Relation between Linearity-Generating Processes and Linear-Rational Models

Damir Filipović
(joint with Martin Larsson and Anders Trolle)

Swiss Finance Institute
Ecole Polytechnique Fédérale de Lausanne

Mathematical Finance beyond classical models
ETH Institute for Theoretical Studies, 18 September 2015
Outline

Linearity-Generating (LG) Processes

Linear-Rational (LR) Models

Relation between LG processes and LR models

State Price Density Decomposition
Outline

Linearity-Generating (LG) Processes

Linear-Rational (LR) Models

Relation between LG processes and LR models

State Price Density Decomposition
Ingredients

- FPS ($\Omega, \mathcal{F}_t, \mathcal{F}, \mathbb{P}$)
- State price density process

\[\zeta_t = \zeta_0 e^{-\int_0^t r_s \, ds} \mathcal{E}_t(L) \]

- Risk-neutral measure \(\frac{dQ}{dP}|_{\mathcal{F}_t} = \mathcal{E}_t(L) \)
- \(m \)-dimensional semimartingale \(X_t \)
Definition LG Process (Gabaix 2009)

\((\zeta_t, X_t)\) forms \((m + 1)\)-dimensional **linearity-generating (LG)** process if

\[
\mathbb{E}_t \left[\frac{\zeta_T}{\zeta_t} \right] = \mathcal{A}(T - t) + \mathcal{B}(T - t)X_t
\]

\[
\mathbb{E}_t \left[\frac{\zeta_T}{\zeta_t} X_T \right] = \mathcal{C}(T - t) + \mathcal{D}(T - t)X_t
\]

for some continuously differentiable functions \(\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}\).

\(\Rightarrow\) Linear \(T\)-claims in \(X_T\) have linear time-\(t\) prices in \(X_t\)

- E.g. zero-coupon bond price

\[
P(t, T) = \mathcal{A}(T - t) + \mathcal{B}(T - t)X_t
\]
Hidden Non-degeneracy Assumption

Support of X_{t^*} / $\zeta_{t^*} X_{t^*}$ / Z_{t^*} affinely spans \mathbb{R}^m for some $t^* \geq 0$
Characterization Theorem

The following statements are equivalent:

1. \((\zeta_t, X_t)\) forms an LG process;
2. short rate \(r_t\), \(\mathbb{Q}\)-drift \(\mu_t^{X,\mathbb{Q}}\) of \(X_t\) are linear, quadratic in \(X_t\),
 \[r_t = -A - BX_t \]
 \[\mu_t^{X,\mathbb{Q}} = C + (r_t + D)X_t = C + (D - A)X_t - (BX_t)X_t \]
3. drift of \(Y_t = (\zeta_t, \zeta_t X_t)\) is strictly linear in \(Y_t\),
 \[dY_t = K Y_t \, dt + dM_t^Y \]

In either case,
\[K = \begin{pmatrix} A & B \\ C & D \end{pmatrix}, \quad \begin{pmatrix} A(\tau) & B(\tau) \\ C(\tau) & D(\tau) \end{pmatrix} = e^{K\tau} \]
Sketch of Proof

LG condition holds if and only if either

- The processes
 \[M_t = e^{-\int_0^t r_s ds}(A(T - t) + B(T - t)X_t) \]
 \[N_t = e^{-\int_0^t r_s ds}(C(T - t) + D(T - t)X_t) \]
 are \(\mathbb{Q} \)-martingales (\(\rightarrow \) set drift zero)

- \(Y_t = (\zeta_t, \zeta_t X_t) \) satisfies
 \[\mathbb{E}_t[Y_T] = e^{K(T-t)} Y_t \]
Remarks

- Part 3 is definition of LG process given in Gabaix (2009)
- Gabaix (2009) refers to \((BX_t)X_t\) in

\[
\mu_{t}^{X,Q} = C + (r_t + D)X_t = C + (D - A)X_t - (BX_t)X_t
\]

as “linearity-generating twist of an AR(1) process”
Discussion

- Existence of LG processes \((\zeta_t, X_t)\)?

- Carr, Gabaix, Wu (2009) specify \(Y_t\),

\[
dY_t = KY_t \, dt + dM_t^Y,
\]

and set \(\zeta_t = Y_{1t}\) and \(X_t = Y_{2..m+1,t}/Y_{1,t}\)

- Problem: \(Y_t\) is not stationary: \(Y_{1t} > 0\) and \(\mathbb{E}[Y_{1t}] \to 0\)

- \(X_t = Y_{2..m+1,t}/Y_{1,t}\) is stationary, but . . .
 - no functional relation between \(\zeta_t\) and \(X_t\) (e.g. \(\bar{\zeta}_t = N_t \zeta_t\))
 - nontrivial viability conditions for \(X_t\) in view of

\[
0 < P(t, T) = A(T - t) + B(T - t)X_t \leq 1
\]

- quadratic \(\mathbb{Q}\)-drift and highly nonlinear \(\mathbb{P}\)-drift of \(X_t\)
Outline

Linearity-Generating (LG) Processes

Linear-Rational (LR) Models

Relation between LG processes and LR models

State Price Density Decomposition
Definition (Filipović, Larsson, Trolle 2014)

An m-dimensional **linear-rational (LR) model** consists of an m-dimensional semimartingale Z_t with linear drift,

$$dZ_t = (b + \beta Z_t) \, dt + dM^Z_t,$$

and parameters $\alpha, \phi \in \mathbb{R}$ and $\psi \in \mathbb{R}^m$ such that

$$\zeta_t = e^{-\alpha t} \left(\phi + \psi^\top Z_t \right) > 0.$$
LR model implies linear-rational bond prices

\[P(t, T) = \mathbb{E}_t \left[\frac{\zeta_T}{\zeta_t} \right] = e^{-\alpha(T-t)} \phi + \psi^\top e_{\beta(T-t)} \int_0^{T-t} e^{-\beta s} b \, ds + \psi^\top e_{\beta(T-t)} Z_t \phi + \psi^\top Z_t \]

and short rate

\[r_t = -\partial_T \log P(t, T) \big|_{T=t} = \alpha - \frac{\psi^\top (b + \beta Z_t)}{\phi + \psi^\top Z_t}. \]
Representation as LG Process

- Define normalized factor

$$X_t = \frac{Z_t}{\phi + \psi^T Z_t}$$

- Simple algebraic fact (if $\phi \neq 0$):

$$\frac{p + q^T Z_t}{\phi + \psi^T Z_t} = \frac{p}{\phi} + \left(q - \frac{p\psi}{\phi}\right)^T X_t$$

$$\Rightarrow$$ Bond price and short rate become linear in X_t
Outline

- Linearity-Generating (LG) Processes
- Linear-Rational (LR) Models
- Relation between LG processes and LR models
- State Price Density Decomposition
Representation Theorem: \(m \)-dim LR as \((m+1)\)-dim LG

An \(m \)-dimensional LR model

\[
dZ_t = (b + \beta Z_t) \, dt + dM_t^Z, \quad \zeta_t = e^{-\alpha t} \left(\phi + \psi^T Z_t \right)
\]

can be represented as \((m+1)\)-dimensional LG process \((\zeta_t, X_t)\) through

\[
X_t = \frac{Z_t}{\phi + \psi^T Z_t}
\]

if and only if \(b = C\phi \).

The respective \(Y_t = (\zeta_t, \zeta_t X_t) \) in Characterization Theorem is

\[
Y_t = e^{-\alpha t} (\phi + \psi^T Z_t, Z_t)
\]

and the matrix \(K \) in \(dY_t = K Y_t \, dt + dM_t^Y \) is given by

\[
A = -\alpha + \psi^T C, \quad B = \psi^T (-C\psi^T + \beta),
\]
\[
C = \frac{b}{\phi}, \quad D = -\alpha \text{Id} - C\psi^T + \beta
\]

\((*)\)
Representation Corollary 1: m-dim LR as $(m + 2)$-dim LG

By increasing dimension can always assume $b = 0$:

\[
\bar{Z}_t = \begin{pmatrix} Z_t \\ 1 \end{pmatrix}, \quad \bar{b} = 0, \quad \bar{\beta} = \begin{pmatrix} \beta \\ 0 \end{pmatrix}, \quad M_t^{\bar{Z}} = \begin{pmatrix} M_t^{Z} \\ 0 \end{pmatrix}, \quad \bar{\psi} = \begin{pmatrix} \psi \\ 0 \end{pmatrix}
\]

is econ equivalent $(m + 1)$-dim LR model with strictly linear drift

\[
d\bar{Z}_t = \bar{\beta}\bar{Z}_t \, dt + dM_t^{\bar{Z}}, \quad \zeta_t = e^{-\alpha t} \left(\phi + \bar{\psi}^\top \bar{Z}_t \right)
\]

Corollary 3.1.

m-dim LR model can always be represented as $(m + 2)$-dim LG process through

\[
\bar{X}_t = \frac{(Z_t, 1)}{\phi + \psi^\top \bar{Z}_t}.
\]

The respective $\bar{Y}_t = (\zeta_t, \zeta_t \bar{X}_t) = e^{-\alpha t} (\phi + \psi^\top Z_t, Z_t, 1) \ldots$
For given parameters A, B, C, D condition (*) holds if and only if

$$(1 \ -\psi^\top) \begin{pmatrix} A & B \\ C & D \end{pmatrix} = -\alpha (1 \ -\psi^\top)$$

Corollary 3.2.

The functions A, B, C, D of an $(m + 1)$-dimensional LG process can be obtained from an m-dimensional LR model if and only if the respective matrix K admits a left-eigenvector v^\top with $v_1 \neq 0$.
Counterexample

For $B \neq 0$, $C = 0$, $D = A\text{Id}$ there exists no such left-eigenvector.

\Rightarrow not every $(m + 1)$-dimensional LG process (ζ_t, X_t) can be represented as LR model of dimension m or lower.

Characterization Theorem \Rightarrow $(m + 1)$-dim LG process (ζ_t, X_t) can always be represented as $(m + 1)$-dim LR model

$$Z_t \equiv Y_t = (\zeta_t, \zeta_t X_t), \quad \zeta_t = Z_{1,t}$$

Next step: characterize those $(m + 1)$-dim LG processes that can be represented as m-dim LR model
Representation Theorem: \((m + 1)\)-dim LG as \(m\)-dim LR

Consider \((m + 1)\)-dim LG process \((\zeta_t, X_t)\) and let \(Y_t = (\zeta_t, \zeta_t X_t)\).

The following statements are equivalent:

1. \((\zeta_t, X_t)\) can be represented as \(m\)-dim LR model
2. there exist parameters \(\alpha, \phi, \psi\) such that
 \[
 (1 - \psi^\top) Y_t = \phi e^{-\alpha t}
 \]
3. there exist nonzero \(v \in \mathbb{R}^{m+1}\) and function \(f(t)\) such that
 \[
 v^\top Y_t = f(t) \tag{**}
 \]

Note: \((**)) \Rightarrow M_t^Y - M_0^Y \perp v
Semimartingale S_t is **mean-reverting** to **mean-reversion level** θ if
\[
\frac{1}{T-t} \int_t^T \mathbb{E}_t[S_u] \, du \to \theta \text{ as } T \to \infty \text{ almost surely for all } t \geq 0.
\]
Consider \((m + 1)\)-dim LG process \((\zeta_t, X_t)\) and let \(Y_t = (\zeta_t, \zeta_t X_t)\).

The following statements are equivalent:

1. \((\zeta_t, X_t)\) can be represented as \(m\)-dim LR model \(Z_t\) and \(Z_t\) is mean-reverting to level \(\theta \in \mathbb{R}^m\) satisfying \(\phi + \psi^\top \theta > 0\);

2. \(e^{\alpha t} Y_t\) is mean-reverting to level \(\tilde{\theta} \in \mathbb{R}^{m+1}\) satisfying \(\tilde{\theta}_1 > 0\) for some \(\alpha\).

Mean-reversion levels are related by \(\tilde{\theta} = (\phi + \psi^\top \theta, \theta)\).
Outline

Linearity-Generating (LG) Processes

Linear-Rational (LR) Models

Relation between LG processes and LR models

State Price Density Decomposition
Markov Valuation

- Economy described by Markov state X_t
- State price density forms positive multiplicative functional:

$$\frac{\zeta_T(X)}{\zeta_t(X)} = \frac{\zeta_{T-t}(X \circ \theta_t)}{\zeta_0(X \circ \theta_t)}$$

\Rightarrow Pricing semigroup S_t:

$$S_t f(x) = \mathbb{E}_x \left[\frac{\zeta_t}{\zeta_0} f(X_t) \right]$$
Multiplicative Decomposition Theorem

Let \(\varphi(x) \) be positive eigenfunction of pricing semigroup \(S_t \) with eigenvalues \(e^{\rho t} \) then \(\zeta_t \) admits the multiplicative decomposition

\[
\zeta_t = e^{\rho t} \frac{1}{\varphi(X_t)} \hat{M}_t
\]

where \(\hat{M}_t \) is a positive martingale with \(\hat{M}_0 = 1 \).

If \(X_t \) is recurrent and stationary under \(\mathbb{A} \) given by \(\frac{d\mathbb{A}}{dP}|_{\mathcal{F}_t} = \hat{M}_t \) then this decomposition is unique.

HS (2009) also provide conditions for existence of positive ef \(\varphi(x) \)
LR Models Revisited

An m-dimensional LR model

$$dZ_t = (b + \beta Z_t) \, dt + dM_t^Z, \quad \zeta_t = e^{-\alpha t} \left(\phi + \psi^\top Z_t \right)$$

satisfies multiplicative decomposition for

$$\rho = -\alpha, \quad \varphi(x) = \frac{1}{\phi + \psi^\top z}, \quad \hat{M}_t = 1$$

and can be (part of) recurrent and stationary Markov process!
LR Models Revisited cont’d

- \mathbb{A} is long forward measure:

$$\frac{\zeta_t P(t, T)}{\zeta_0 P(0, T)} = \frac{\phi + \mathbb{E}_t[\psi^\top Z_T]}{\phi + \mathbb{E}[\psi^\top Z_T]} \to 1 \quad \text{as} \quad T \to \infty$$

Hence deflating by ζ_t/ζ_0 amounts to discounting by gross return on long-term bond $\lim_{T \to \infty} \frac{P(t, T)}{P(0, T)}$

It also implies that the long-term bond is growth optimal under \mathbb{A} (Qin, Linetsky 2015)

- Flexible market price of risk specification: free to modify

$$\zeta_t \sim \zeta_t \hat{M}_t$$

for some auxiliary density process \hat{M}_t
Conclusion

- LG processes are related to LR models
- \(\{m\text{-dim LR models}\} \subset \{(m + 1(2))\text{-dim LG processes}\} \)
- \(\{(m + 1)\text{-dim LG processes}\} \subset \{(m + 1)\text{-dim LR models}\} \)
- \((m + 1)\text{-dim LG process} \in \{\text{mean-rev. } m\text{-dim LR models}\} \) if and only if mean-reverting after exponential scaling
- HS decomposition theorem favors mean-reverting LR model specification

LR models = “reasonable” specifications of LG processes
Conclusion

- LG processes are related to LR models
- \(\{m\text{-dim LR models}\} \subset \{(m + 1(2))\text{-dim LG processes}\} \)
- \(\{(m + 1)\text{-dim LG processes}\} \subset \{(m + 1)\text{-dim LR models}\} \)
- \((m + 1)\text{-dim LG process} \in \{\text{mean-rev. } m\text{-dim LR models}\}\) if and only if mean-reverting after exponential scaling
- HS decomposition theorem favors mean-reverting LR model specification

LR models = “reasonable” specifications of LG processes