Are American options European after all?

Jan Kallsen

Christian-Albrechts-Universität zu Kiel based on joint work with Sören Christensen (Göteborg) and Matthias Lenga (Kiel)

Zürich, September 18, 2015

Outline

- 2 Cheapest dominating European option
- 3 Embedded American options

5 Conclusion

Outline

- 2 Cheapest dominating European option
- 3 Embedded American options

4 A new result

5 Conclusion

... which is still somewhat open

- Setup:
 - Black-Scholes model with positive interest rate
 - ► v_{Am,g}(ϑ, x): fair value of an American option with payoff function g(x), time to maturity ϑ, stock price x
 - ► $v_{\text{Eu},f}(\vartheta, x)$: fair value of a European option with payoff function f(x), time to maturity ϑ , stock price x
- Consider the American put g(x) := (K x)⁺.
 Question: Is there a representing European payoff f(x) in the sense that
 - $v_{Am,g} = v_{Eu,f}$ in the continuation region of g and
 - ► g ≤ v_{Eu,f} in the stopping region (and hence everywhere)?

(Or at least for some g? Or even for all g?)

... which is still somewhat open

- Setup:
 - Black-Scholes model with positive interest rate
 - ► v_{Am,g}(ϑ, x): fair value of an American option with payoff function g(x), time to maturity ϑ, stock price x
 - $v_{\text{Eu},f}(\vartheta, x)$: fair value of a European option with payoff function f(x), time to maturity ϑ , stock price x
- Consider the American put g(x) := (K x)⁺.
 Question: Is there a representing European payoff f(x) in the sense that
 - $v_{Am,g} = v_{Eu,f}$ in the continuation region of g and
 - ► g ≤ v_{Eu,f} in the stopping region (and hence everywhere)?

(Or at least for some g? Or even for all g?)

... which is still somewhat open

- Setup:
 - Black-Scholes model with positive interest rate
 - ► v_{Am,g}(ϑ, x): fair value of an American option with payoff function g(x), time to maturity ϑ, stock price x
 - $v_{\text{Eu},f}(\vartheta, x)$: fair value of a European option with payoff function f(x), time to maturity ϑ , stock price x
- Consider the American put g(x) := (K x)⁺.
 Question: Is there a representing European payoff f(x) in the sense that
 - $v_{Am,g} = v_{Eu,f}$ in the continuation region of g and
 - ► g ≤ v_{Eu,f} in the stopping region (and hence everywhere)?

(Or at least for some g? Or even for all g?)

... which is still somewhat open

- Setup:
 - Black-Scholes model with positive interest rate
 - *v*_{Am,g}(ϑ, x): fair value of an American option with payoff function g(x), time to maturity ϑ, stock price x
 - $v_{\text{Eu},f}(\vartheta, x)$: fair value of a European option with payoff function f(x), time to maturity ϑ , stock price x
- Consider the American put g(x) := (K x)⁺.
 Question: Is there a representing European payoff f(x) in the sense that
 - $v_{Am,g} = v_{Eu,f}$ in the continuation region of g and
 - g ≤ v_{Eu,f} in the stopping region (and hence everywhere)?

(Or at least for some g? Or even for all g?)

Outline

- 2 Cheapest dominating European option
- 3 Embedded American options

4 A new result

5 Conclusion

• Black-Scholes model, American payoff g(x), T, S(0) given

Solve

 $\min_{f} v_{\mathrm{Eu},f}(T, S(0))$

- CDEO: minimizer f if it exists
- semi-infinite linear programming
- upper bound for $\pi = v_{Am,g}(T, S(0))$, but surprisingly close
- implications of equality $v_{Eu,f}(T, S(0)) = v_{Am,g}(T, S(0))$ (if true):
 - new algorithm for American options
 - static European hedge for American options
 - interpretation of early exercise premium as payoff
 - properties of early exercise curve
 - solve free boundary problems by extension
 - alternative supermartingale decomposition

• Black-Scholes model, American payoff g(x), T, S(0) given

Solve

 $\min_{f} v_{\mathrm{Eu},f}(T, S(0))$

subject to $v_{Eu,f}(\vartheta, x) \ge g(x)$ for all x > 0 and all $\vartheta \le T$

- CDEO: minimizer *f* if it exists
- semi-infinite linear programming
- upper bound for $\pi = v_{Am,g}(T, S(0))$, but surprisingly close

• implications of equality $v_{Eu,f}(T, S(0)) = v_{Am,g}(T, S(0))$ (if true):

- new algorithm for American options
- static European hedge for American options
- interpretation of early exercise premium as payoff
- properties of early exercise curve
- solve free boundary problems by extension
- alternative supermartingale decomposition

- Black-Scholes model, American payoff g(x), T, S(0) given
- Solve

 $\min_{f} v_{\mathsf{Eu},f}(T, \mathcal{S}(0))$

- CDEO: minimizer f if it exists
- semi-infinite linear programming
- upper bound for $\pi = v_{Am,g}(T, S(0))$, but surprisingly close
- implications of equality $v_{Eu,f}(T, S(0)) = v_{Am,g}(T, S(0))$ (if true):
 - new algorithm for American options
 - static European hedge for American options
 - interpretation of early exercise premium as payoff
 - properties of early exercise curve
 - solve free boundary problems by extension
 - alternative supermartingale decomposition

- Black-Scholes model, American payoff g(x), T, S(0) given
- Solve

 $\min_{f} v_{\mathsf{Eu},f}(T, \mathcal{S}(0))$

subject to $v_{\mathsf{Eu},f}(\vartheta, x) \ge g(x)$ for all x > 0 and all $\vartheta \le T$

- CDEO: minimizer *f* if it exists
- semi-infinite linear programming
- upper bound for $\pi = v_{Am,g}(T, S(0))$, but surprisingly close

• implications of equality $v_{Eu,f}(T, S(0)) = v_{Am,g}(T, S(0))$ (if true):

- new algorithm for American options
- static European hedge for American options
- interpretation of early exercise premium as payoff
- properties of early exercise curve
- solve free boundary problems by extension
- alternative supermartingale decomposition

- Black-Scholes model, American payoff g(x), T, S(0) given
- Solve

 $\min_{f} v_{\mathsf{Eu},f}(T, S(0))$

- CDEO: minimizer *f* if it exists
- semi-infinite linear programming
- upper bound for $\pi = v_{Am,g}(T, S(0))$, but surprisingly close
- implications of equality $v_{Eu,f}(T, S(0)) = v_{Am,g}(T, S(0))$ (if true):
 - new algorithm for American options
 - static European hedge for American options
 - interpretation of early exercise premium as payoff
 - properties of early exercise curve
 - solve free boundary problems by extension
 - alternative supermartingale decomposition

- Black-Scholes model, American payoff g(x), T, S(0) given
- Solve

 $\min_{f} v_{\mathsf{Eu},f}(T, S(0))$

- ODEO: minimizer f if it exists
- semi-infinite linear programming
- upper bound for $\pi = v_{Am,g}(T, S(0))$, but surprisingly close
- implications of equality $v_{Eu,f}(T, S(0)) = v_{Am,g}(T, S(0))$ (if true):
 - new algorithm for American options
 - static European hedge for American options
 - interpretation of early exercise premium as payoff
 - properties of early exercise curve
 - solve free boundary problems by extension
 - alternative supermartingale decomposition

- Black-Scholes model, American payoff g(x), T, S(0) given
- Solve

 $\min_{f} v_{\mathsf{Eu},f}(T, S(0))$

- ODEO: minimizer f if it exists
- semi-infinite linear programming
- upper bound for $\pi = v_{Am,g}(T, S(0))$, but surprisingly close
- implications of equality $v_{Eu,f}(T, S(0)) = v_{Am,g}(T, S(0))$ (if true):
 - new algorithm for American options
 - static European hedge for American options
 - interpretation of early exercise premium as payoff
 - properties of early exercise curve
 - solve free boundary problems by extension
 - alternative supermartingale decomposition

Computing American option prices by minimization over sets of martingales

• Davis & Karatzas (94), Rogers (02), Haugh & Logan (04):

$$\pi = V_{\mathsf{Am},g}(T, S(0)) = \inf_{\substack{M \text{ mart., } M(0)=0}} E_Q\left(\sup_{t \in [0,T]} \left(e^{-rt}g(S(t)) - M(t)\right)\right)$$

" \geq " follows from the Doob-Meyer decomposition

$$V_{\operatorname{Am},g}(T-t,S(t))e^{-rt} = \pi + M^{\star}(t) - A^{\star}(t)$$

with $M^*(0) = 0 = A^*(0)$, M^* martingale, $A^* \ge 0$, A^* increasing. • Christensen (11):

$$\pi = V_{Am,g}(T, S(0)) \leq \inf_{V_{Eu,f} \text{ dominating } g} V_{Eu,f}(T, S(0))$$

" \geq " (if true) would rely on decomposition

 $v_{\text{Am},g}(T-t, S(t))e^{-rt} = \pi + \tilde{M}(t) - \tilde{A}(t)$ with $\tilde{M}(0) = 0 = \tilde{A}(0)$, \tilde{M} martingale, $\tilde{A} \ge 0$, \tilde{M} Markov-type, i.e. $\tilde{M}(t) = m(T-t, S(t))$ for some m.

Computing American option prices by minimization over sets of martingales

• Davis & Karatzas (94), Rogers (02), Haugh & Logan (04):

$$\pi = v_{\mathsf{Am},g}(T, S(0)) = \inf_{\substack{M \text{ mart., } M(0)=0}} E_Q\left(\sup_{t \in [0,T]} \left(e^{-rt}g(S(t)) - M(t)\right)\right)$$

" \geq " follows from the Doob-Meyer decomposition

$$v_{\operatorname{Am},g}(T-t,S(t))e^{-rt}=\pi+M^{\star}(t)-A^{\star}(t)$$

with $M^*(0) = 0 = A^*(0)$, M^* martingale, $A^* \ge 0$, A^* increasing. • Christensen (11):

$$\pi = v_{\mathsf{Am},g}(T, S(0)) \leq \inf_{v_{\mathsf{Eu},f} \text{ dominating } g} v_{\mathsf{Eu},f}(T, S(0))$$

" \geq " (if true) would rely on decomposition

with

$$v_{\operatorname{Am},g}(T-t,S(t))e^{-rt} = \pi + \tilde{M}(t) - \tilde{A}(t)$$

 $ilde{M}(0) = 0 = ilde{A}(0), \, ilde{M} ext{ martingale}, \, ilde{A} \ge 0,$

 \tilde{M} Markov-type, i.e. $\tilde{M}(t) = m(T - t, S(t))$ for some *m*.

Outline

- 1 Are American options European after all?
- 2 Cheapest dominating European option
- 3 Embedded American options
- 4 New result

5 Conclusion

Jourdain & Martini (Ann. IHP Anal. nonlin. 01, AAP 02)

- Black-Scholes model,
 given European payoff f(x)
- embedded American payoff

$$g(x) = \inf_{\vartheta} v_{\mathsf{Eu},f}(\vartheta, x) \quad \left(= v_{\mathsf{Eu},f}(\vartheta(x), x) \right)$$

 $(\vartheta \in [0, \infty) \text{ or } \vartheta \in [0, T])$ • If curve $x \mapsto \vartheta(x)$ is nice:

- ► $g \leq v_{\mathsf{Eu},f}$,
- $v_{Am,g} = v_{Eu,f}$ in continuation region of g,
- The embedded early exercise curve $x \mapsto \vartheta(x)$ is the early exercise curve of *g*.

Jourdain & Martini (Ann. IHP Anal. nonlin. 01, AAP 02)

- Black-Scholes model,
 given European payoff f(x)
- embedded American payoff

$$g(x) = \inf_{\vartheta} v_{\mathsf{Eu},f}(\vartheta, x) \quad \left(= v_{\mathsf{Eu},f}(\vartheta(x), x) \right)$$

($artheta\in [0,\infty)$ or $artheta\in [0,T]$)

- If curve $x \mapsto \vartheta(x)$ is nice:
 - ► $g \leq v_{\mathsf{Eu},f}$,
 - $V_{Am,g} = v_{Eu,f}$ in continuation region of g,
 - The embedded early exercise curve $x \mapsto \vartheta(x)$ is the early exercise curve of *g*.

Jourdain & Martini (Ann. IHP Anal. nonlin. 01, AAP 02)

- Black-Scholes model,
 given European payoff f(x)
- embedded American payoff

$$g(x) = \inf_{\vartheta} v_{\mathsf{Eu},f}(\vartheta, x) \quad \left(= v_{\mathsf{Eu},f}(\vartheta(x), x) \right)$$

($artheta\in [0,\infty)$ or $artheta\in [0,T]$)

- If curve $x \mapsto \vartheta(x)$ is nice:
 - ► $g \le v_{\mathsf{Eu},f}$,
 - $v_{Am,g} = v_{Eu,f}$ in continuation region of g,
 - The embedded early exercise curve $x \mapsto \vartheta(x)$ is the early exercise curve of g.

Jourdain & Martini (Ann. IHP Anal. nonlin. 01, AAP 02)

- Black-Scholes model,
 given European payoff f(x)
- embedded American payoff

$$g(x) = \inf_{\vartheta} v_{\mathsf{Eu},f}(\vartheta, x) \quad \left(= v_{\mathsf{Eu},f}(\vartheta(x), x) \right)$$

($artheta\in [0,\infty)$ or $artheta\in [0,\,T]$)

- If curve $x \mapsto \vartheta(x)$ is nice:
 - ► $g \le v_{\mathsf{Eu},f}$,
 - $v_{Am,g} = v_{Eu,f}$ in continuation region of g,
 - The embedded early exercise curve $x \mapsto \vartheta(x)$ is the early exercise curve of g.

of embedded American payoffs

•
$$B(t) = 1$$
,
 $S(t) = \exp(\sqrt{2}W(t) - t)$

- European payoff $f(x) = 3x^{1/2} + x^{3/2}$
- American payoff $g(x) = 4x^{3/4} \mathbf{1}_{\{x < 1\}} + f(x) \mathbf{1}_{\{x \ge 1\}}$
- early exercise curve $\vartheta(x) = -\log(x)\mathbf{1}_{\{x<1\}}$
- Note that *g* is analytic on (0, 1).

of embedded American payoffs

•
$$B(t) = 1$$
,
 $S(t) = \exp(\sqrt{2}W(t) - t)$

- European payoff $f(x) = 3x^{1/2} + x^{3/2}$
- American payoff $g(x) = 4x^{3/4} \mathbf{1}_{\{x < 1\}} + f(x) \mathbf{1}_{\{x \ge 1\}}$
- early exercise curve $\vartheta(x) = -\log(x)\mathbf{1}_{\{x<1\}}$
- Note that g is analytic on (0, 1).

of embedded American payoffs ct'd

- B(t) = 1,S(t) = W(t)
- European payoff $f(x) = (x^2 \frac{1}{2})^2$
- American payoff $g(x) = 2x^2(1-4x^2)\mathbf{1}_{\{x^2 < 1/6\}} + f(x)\mathbf{1}_{\{x^2 \ge 1/6\}}$
- early exercise curve $\vartheta(x) = (\frac{1}{2} - 3x^2)\mathbf{1}_{\{x^2 < 1/6\}}$

of embedded American payoffs ct'd

American butterfly in the Bachelier model:

- B(t) = 1,S(t) = W(t)
- European payoff $f(x) = 21_{\{x \le -1\}} + (1 x)1_{\{-1 < x < 1\}}$
- American payoff $g(x) = (1 + x)\mathbf{1}_{\{-1 < x < 0\}} + (1 - x)\mathbf{1}_{\{0 \le x < 1\}}$

• early exercise curve $\vartheta(x) = \infty \mathbf{1}_{\{x=0\}}$

of embedded American payoffs ct'd

Jourdain & Martini (01):

- $B(t) = \exp(rt)$, $S(t) = S(0) \exp((r - \frac{\sigma^2}{2})t + \sigma W(t))$
- European payoff $f(x) = x \mathbf{1}_{\{x > K\}}$
- American payoff $g(x) = f(x)\Phi\left(\frac{2}{\sigma}\sqrt{(r+\frac{\sigma^2}{2})\log\frac{x}{K}}\right)$
- early exercise curve $\vartheta(x) = \log(x)/(r + \frac{\sigma^2}{2})\mathbf{1}_{\{x > K\}}$

of embedded American payoffs ct'd

European put in the Black-Scholes model:

- $B(t) = \exp(rt)$, $S(t) = S(0) \exp((r - \frac{\sigma^2}{2})t + \sigma W(t))$
- European payoff $f(x) = (K x)^+$
- yields an embedded American option, but only up to some maximal T

Outline

- 1 Are American options European after all?
- 2 Cheapest dominating European option
- 3 Embedded American options

5 Conclusion

Some bad news first ...

... the second one making me nervous at some point

- Strehle (14): no representation for the American put in the Cox-Ross-Rubinstein model
- Jourdain & Martini (02): no generating European payoff exists for American put!?

First, in Section 2 we design a family of European payoffs which verify very crude necessary conditions for $\widehat{\varphi}(x) = (K - x)^+$ to have any chance to hold. This is the main step, it relies on the parameterization of φ by a measure *h* related to $A\varphi$. Then we focus on the Continuation region. Among our family we find necessary and sufficient conditions which grant that the equation $\inf_{t\geq 0} v_{\varphi}(t, x) = v_{\varphi}(\widehat{t}(x), x)$ defines a curve which displays the same qualitative features as the free boundary of the American Put (Section 3).

Unfortunately, it is easy to see that for any function among our family $\widehat{\varphi}(x) = (K - K^*)(x/K^*)^{-\alpha} \mathbb{1}_{\{x \ge K^*\}}$ below K^* , which is not satisfactory. The third step is to prove that the price of the American option with modified payoff $(K - x)^+ \mathbb{1}_{\{x \le K^*\}} + \widehat{\varphi}(x)\mathbb{1}_{\{x > K^*\}}$, denoted by $\widehat{\varphi}_h$ to emphasize the dependence on the parameter *h*, and matching $(K - x)^+$ both for $x \ge K$ and for $x \le K^*$ is still embedded in $v_{\varphi}(t, x)$: $v_{\widehat{\varphi}_h}^{\mathrm{am}}(t, x) = (K - x)^+ \mathbb{1}_{\{x \le K^*\}} + v_{\varphi}(t \lor \widehat{t}(x), x)\mathbb{1}_{\{x > K^*\}}$. This is done in Section 4.

Since we show that $\widehat{\varphi}_h$ cannot be equal to the Put payoff everywhere [indeed $\widehat{\varphi}_h''(K^{*+}) > 0$], we believe that at this stage there is little to get from further calculations. The last stage is to select among our family the point h^* so that,

A sufficient criterion

"for the engineer"

- American payoff: $g(x) = \varphi(x) \mathbf{1}_{\{x \le K\}}$,
- φ holomorphic, bounded, positive on (0, K), and $\varphi(K) = 0$

Theorem (Christensen, K., Lenga 15)

The CDEO f exists (as a generalized function). If

- $v_{Eu,f}(T + \epsilon, x) < \infty$ for some $\epsilon > 0, x < K$,
- $\lim_{\vartheta \to 0} v_{Eu,f}(\vartheta, x) > \varphi(x)$ for any x < K,
- for any $x \leq K$, function $\vartheta \mapsto v_{Eu,f}(\vartheta, x)$ has a unique minimum in some $\vartheta(x)$ (the embedded early exercise curve of the CDEO f),
- for some *x*₀ we have
 - $\vartheta(x) = T$ for $x \leq x_0$,
 - $\vartheta(x) \in (0, T)$ for $x \in (x_0, K)$,

then the CDEO f represents g.

Numerical inspection for the American put

25/31

- Key ingedients:
 - convex duality in locally convex spaces
 - identity of analytic functions
- Primal problem: find CDEO (in space of generalized functions/ distributions/measures in order to warrant existence)
- Domain of dual problem: measures on [0, T] × ℝ₊₊
 (one Lagrange multiplier for each constraint v_{Eu,f}(ϑ, x) ≥ g(x))
- Establish weak duality, existence of primal and dual optimizer, strong duality, complementary slackness condition
- Recall: Lagrange multiplier ≠ 0 only if constraint is binding.
 Here: support of dual optimizer ⊂ {(v̂, x) : v_{Eu,f}(v̂, x) = g(x)}
- Slackness condition: gBm started on support of dual optimizer has lognormal law at T.
- Using assumptions and identity of analytic functions: support of dual optimizer must be nice connected curve.
- Consequence: Am. payoff *g* is represented by its CDEO.

- Key ingedients:
 - convex duality in locally convex spaces
 - identity of analytic functions
- Primal problem: find CDEO (in space of generalized functions/ distributions/measures in order to warrant existence)
- Domain of dual problem: measures on [0, *T*] × ℝ₊₊
 (one Lagrange multiplier for each constraint v_{Eu,f}(ϑ, x) ≥ g(x))
- Establish weak duality, existence of primal and dual optimizer, strong duality, complementary slackness condition
- Recall: Lagrange multiplier \neq 0 only if constraint is binding. Here: support of dual optimizer $\subset \{(\vartheta, x) : v_{Eu,f}(\vartheta, x) = g(x)\}$
- Slackness condition: gBm started on support of dual optimizer has lognormal law at T.
- Using assumptions and identity of analytic functions: support of dual optimizer must be nice connected curve.
- Consequence: Am. payoff *g* is represented by its CDEO.

- Key ingedients:
 - convex duality in locally convex spaces
 - identity of analytic functions
- Primal problem: find CDEO (in space of generalized functions/ distributions/measures in order to warrant existence)
- Domain of dual problem: measures on [0, T] × ℝ₊₊
 (one Lagrange multiplier for each constraint v_{Eu,f}(ϑ, x) ≥ g(x))
- Establish weak duality, existence of primal and dual optimizer, strong duality, complementary slackness condition
- Recall: Lagrange multiplier ≠ 0 only if constraint is binding. Here: support of dual optimizer ⊂ {(v̂, x) : v_{Eu,f}(v̂, x) = g(x)}
- Slackness condition: gBm started on support of dual optimizer has lognormal law at T.
- Using assumptions and identity of analytic functions: support of dual optimizer must be nice connected curve.
- Consequence: Am. payoff *g* is represented by its CDEO.

- Key ingedients:
 - convex duality in locally convex spaces
 - identity of analytic functions
- Primal problem: find CDEO (in space of generalized functions/ distributions/measures in order to warrant existence)
- Domain of dual problem: measures on [0, T] × ℝ₊₊
 (one Lagrange multiplier for each constraint v_{Eu,f}(ϑ, x) ≥ g(x))
- Establish weak duality, existence of primal and dual optimizer, strong duality, complementary slackness condition
- Recall: Lagrange multiplier ≠ 0 only if constraint is binding. Here: support of dual optimizer ⊂ {(v̂, x) : v_{Eu,f}(v̂, x) = g(x)}
- Slackness condition: gBm started on support of dual optimizer has lognormal law at T.
- Using assumptions and identity of analytic functions: support of dual optimizer must be nice connected curve.
- Consequence: Am. payoff *g* is represented by its CDEO.

- Key ingedients:
 - convex duality in locally convex spaces
 - identity of analytic functions
- Primal problem: find CDEO (in space of generalized functions/ distributions/measures in order to warrant existence)
- Domain of dual problem: measures on [0, T] × ℝ₊₊
 (one Lagrange multiplier for each constraint v_{Eu,f}(ϑ, x) ≥ g(x))
- Establish weak duality, existence of primal and dual optimizer, strong duality, complementary slackness condition
- Recall: Lagrange multiplier ≠ 0 only if constraint is binding. Here: support of dual optimizer ⊂ {(𝔅, 𝑥) : ャ_{Eu,f}(𝔅, 𝑥) = g(𝑥)}
- Slackness condition: gBm started on support of dual optimizer has lognormal law at T.
- Using assumptions and identity of analytic functions: support of dual optimizer must be nice connected curve.
- Consequence: Am. payoff *g* is represented by its CDEO.

- Key ingedients:
 - convex duality in locally convex spaces
 - identity of analytic functions
- Primal problem: find CDEO (in space of generalized functions/ distributions/measures in order to warrant existence)
- Domain of dual problem: measures on [0, T] × ℝ₊₊
 (one Lagrange multiplier for each constraint v_{Eu,f}(ϑ, x) ≥ g(x))
- Establish weak duality, existence of primal and dual optimizer, strong duality, complementary slackness condition
- Recall: Lagrange multiplier ≠ 0 only if constraint is binding. Here: support of dual optimizer ⊂ {(𝔅, 𝑥) : ャ_{Eu,f}(𝔅, 𝑥) = g(𝑥)}
- Slackness condition: gBm started on support of dual optimizer has lognormal law at T.
- Using assumptions and identity of analytic functions: support of dual optimizer must be nice connected curve.
- Consequence: Am. payoff *g* is represented by its CDEO.

- Key ingedients:
 - convex duality in locally convex spaces
 - identity of analytic functions
- Primal problem: find CDEO (in space of generalized functions/ distributions/measures in order to warrant existence)
- Domain of dual problem: measures on [0, T] × ℝ₊₊
 (one Lagrange multiplier for each constraint v_{Eu,f}(ϑ, x) ≥ g(x))
- Establish weak duality, existence of primal and dual optimizer, strong duality, complementary slackness condition
- Recall: Lagrange multiplier ≠ 0 only if constraint is binding. Here: support of dual optimizer ⊂ {(𝔅, 𝑥) : ャ_{Eu,f}(𝔅, 𝑥) = g(𝑥)}
- Slackness condition: gBm started on support of dual optimizer has lognormal law at T.
- Using assumptions and identity of analytic functions: support of dual optimizer must be nice connected curve.
- Consequence: Am. payoff *g* is represented by its CDEO.

- Key ingedients:
 - convex duality in locally convex spaces
 - identity of analytic functions
- Primal problem: find CDEO (in space of generalized functions/ distributions/measures in order to warrant existence)
- Domain of dual problem: measures on [0, T] × ℝ₊₊
 (one Lagrange multiplier for each constraint v_{Eu,f}(ϑ, x) ≥ g(x))
- Establish weak duality, existence of primal and dual optimizer, strong duality, complementary slackness condition
- Recall: Lagrange multiplier ≠ 0 only if constraint is binding. Here: support of dual optimizer ⊂ {(𝔅, 𝑥) : ャ_{Eu,f}(𝔅, 𝑥) = g(𝑥)}
- Slackness condition: gBm started on support of dual optimizer has lognormal law at T.
- Using assumptions and identity of analytic functions: support of dual optimizer must be nice connected curve.
- Consequence: Am. payoff *g* is represented by its CDEO.

A bold conjecture

stated informally

- Necessary:
 - g analytic on the set where the optimal exercise time $\notin \{0, T\}$.
 - time horizon T "not too large"
- Conjecture: If
 - g is analytic on $\{x \in \mathbb{R}_+ : \frac{\partial}{\partial \vartheta} v_{\mathsf{Eu},g}(0,x) < 0\}$ and
 - ► the early exercise boundary has derivative ϑ'(x) ∉ {0, ±∞} up to time horizon *T*,

then maybe g is representable up to time horizon T.

A bold conjecture

stated informally

- Necessary:
 - g analytic on the set where the optimal exercise time $\notin \{0, T\}$.
 - time horizon T "not too large"
- Conjecture: If
 - g is analytic on $\{x \in \mathbb{R}_+ : \frac{\partial}{\partial \vartheta} v_{\mathsf{Eu},g}(0,x) < 0\}$ and
 - It the early exercise boundary has derivative ϑ'(x) ∉ {0, ±∞} up to time horizon T,

then maybe g is representable up to time horizon T.

Outline

- 1 Are American options European after all?
- 2 Cheapest dominating European option
- 3 Embedded American options

Where are we now?

- Interesting relation between American and European options
- Several important implications of equality
- Verification theorem based on qualitative properties of the CDEO
- Not yet clear:
 - Rigorous proof for the American put?
 - How generally does equality hold?