
Trading with Market Impact

H. Mete SONER,
Department of Mathematics ETH Zürich
Swiss Finance Institute

Mathematical Finance beyond classical models
Zurich, September 16, 2015

0



Collaborators

I have benefited the collaboration of many people including :
Albert Altarovici, Peter Bank, Umut Çetin, Yan Dolinsky, Selim
Gökay, Ludovic Moreau, Dylan Possamaï, Max Reppen,
Alexandre Roch, Moritz Voss and

Nizar Touzi Johannes Muhle-Karbe 1



Foreword

Consider a financial market in which our trades impact the
current value of the stock. We would like to

▶ model the market impact,

▶ model the dynamics of this impact,

▶ study its impact on investment decisions.
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Large Trader Models

▶ These models involve a large trader placing substantially big
orders. This results in a transformation of, in addition to
price, the volatility of the security. In particular, the volatility
of the transformed process can become time and size
dependent.

▶ In turn, they cause an permanent impact on the price.

▶ I will not consider these models in this talk and refer you to
Jarrow, Frey & Stremme, Frey, Huberman & Stanzl, Cvitanic &
Ma, Cvitanic & Cuoco, Platen & Schweizer, Roch.
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Temporary Impact Models

▶ Çetin-Jarrow-Protter model of liquidity is the representative
for this type of models. In this setting the authors postulate
the existence of a supply curve for the price process of the
asset.

▶ The supply curve gives you the price per share once you
specify the time and size of the trade.

▶ All investors are price takers to the supply curve and have
no lasting impact on the evolution of the underlying.
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How temporary !

Even in temporary impact models, it is realistic to assume that
the trade impacts the price. The main feature of a temporary
impact model is that the change in price should disappear if
there is no trade in the near future. In summary,

▶ When a trade of size ∆Zt is made, price changes by a certain
function of ∆Zt ;

▶ Then, a certain fraction of this change remains (permanent
impact) ;

▶ The remaining price change (temporary impact) decays in
time (relaxation).
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Price evolution
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Limit Order Book
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Limit Order Book after a trade
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Friction

Any model with friction is somehow related to this problem of
price impact. Indeed, transaction costs can be taught as a
particular price impact. Any positive amount of trade pushes
the price to the ask-price and any sale to the bid.

In the context of hedging, Leland formally argued that
transaction cost modifies the volatility. Later, Fukasawa and
Rosenbaum & Tankov revisited this approach. To understand
this modification, jointly with Barles we used asymptotics to
obtain a modified Black & Scholes equation.
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Optimal Execution

We may ask many relevant questions in such a model. First
interesting one is how to optimally execute a large order. In
practice this is quite important.

In general these orders are split into smaller pieces and
executed over time. Then, one has to balance between the
need and the risk of splitting into too many pieces and waiting
a longer time and placing large orders and paying higher cost
of liquidity.

In this talk, I will not treat this problem directly. See Bertsimas
& Lo, Almgren, Almgren & Chriss, Schied & Schöneborn,
Gatheral, Obizhaeva & Wang, Alfonsi, Fruth & Schied and
Alfonsi & Schied for more information. 12
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Model

They postulate an exogenous supply curve

S(t, St, ν), St = S(t, St, 0)

which gives the price per share for a transaction of size ν

(ν > 0 is a buy and ν < 0 a sell). An example of the supply
curve is the generalized Black-Scholes economy with liquidity
parameter Λ :

S(t, St, ν) = St exp (Λν) , dSt = St [µdt+ σdWt] .
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Linear example

We may simply take

S(t, St, ν) = St + Λν.

This corresponds to a constant density LOB. And 1/Λ is the
constant density. For a transaction of size ν we pay

νSt + Λ ν2 = ν [S(t, St, ν)− St] .

Now imagine of splitting this order into two and execute them
in tandem. Then we would pay

2
[
(ν/2)St + Λ((ν/2))2

]
= νSt +

1
2Λ ν2.
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Linear example, continued

Hence in this model,we would like to make small but many
transactions. Hence the portfolio process should be
continuous with no liquidity cost. But :

▶ In reality, each transaction takes some time to execute -
finite speed of the portfolio. So, we carry the risk of stock
price movements.

▶ Secondly, after the first transaction stock price moves and
we will not be able to get the same price as before - i.e.
there is resilience. But in the ideal model of Cetin, Protter
and Jarrow, we do get the same price !
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How to remedy ?

▶ Jointly with Çetin & Touzi we propose to restrict the portfolio
to be a semimartingale.

▶ Jointly with Gökay and later with Dolinsky, we consider the
limit of discrete time markets.

▶ Jointly with Roch and later Vukelja we introduce exponential
relaxation into the model.

▶ In a slightly different and more phenomenological model,
Almgren & Chriss penalises the square of the speed of
change of the portfolio. Later, jointly with Moreau &
Muhle-Karbe, we analysed this model asymptotically.

▶ Jointly, with Bank & Voss, we propose an ad-hoc model to
construct hedges.
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Dynamics

As usual one risky and one riskless asset and with zero
interest rate.

(Ω,F ,Ft,P) be a filtered probability space.

Let Xt be the units
of money-market account, the semimartingale Zt be the
number of shares. We define that Z is a self-financing strategy
if

Yt := Xt + ZtSt = X0 +
∫ t

0
ZtdSt

−
∑
0≤u≤t

∆Zu [S(u, Su,∆Zu)− Su]−
∫ t

0

∂S
∂ν

(u, Su, 0)d[Z, Z]ct .

This derivation is done first for elementary processes and then
passing to limit.
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Dynamics restated

dSt = St [µdt+ σdWt]

Yt = +

∫ t

0
ZudSu −

N−1∑
n=0

zn [S (τn, zn)− S (τn, 0)] 1{t<τn+1}

−
∫ t

0

∂S
∂ν

(u, Su, 0) Γ2uσ2S2udu.

Zr =
N−1∑
n=0

zn1{t<τn+1} +

∫ t

0
αudu+

∫ t

0
ΓudSu.

For a continuous Z (i.e., no “large trades”), we still have a
liquidity cost in terms of the Gamma of the portfolio.
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Liquidity Cost

On this supply curve there is no unique value of the portfolio,
for instance one can consider the liquidation value
Xt + ZtS(t,−Zt) or the book value of the portfolio Yt = Xt + ZtSt.
We use the book value :

Yt =
∫ t

0
ZudSu − Lt

Lt =
∑
0≤u≤t

∆Zu[S(u, Su,∆Zu)− Su] +
∫ t

0

∂S
∂ν

(u, Su, 0)Γ2uσ2S2udu.

Since S is monotone in ν , LT ≥ 0. Notice that that if Z is of
finite variation and continuous, then Lt = 0.
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Avoding the liquidity cost

Consider a process Z and its stochastic integral,

C :=

∫ T

0
ZudSu.

Leventhal & Skorokhod and Bank & Baum proved that one can
construct a sequence self-financing trading strategies Zn’s that
are absolutely continuous (hence Lnt = 0) and

XnT :=

∫ T

0
ZnudSu − LnT︸︷︷︸

=0

→
∫ T

0
ZudSu = C.

uniformly.

The construction is through a Borel-Cantello argument and the
BV norm of the approximating portfolio Zn gets arbitrarily large.
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Super-replication Problem

Simply, we restrict the portfolio and its gamma to be a
semimartingales with some bounds on the characteristics.

Let At,s be the set of all admissible portfolios.

For a given a European contingent claim with payoff g, the
super-replication cost is defined by

V(t, s) = inf
{
y : Yt,y,ZT ≥ g(St,sT ) a.s. for some Z ∈ At,s

}
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The PDE characterization

Together with Cetin and Touzi, we showed that the
super-replicating cost satisfies

0 = −Vt + sup
β≥0

(
− 12s

2σ2(Vss + β)− Λs2σ2(Vss + β)2
)
,

together with terminal cost V(T, s) = g(s). We rewrite as

−Vt − s2σH(Vss) = 0,

where the function H is given by

H(γ) =
{

1
2γ + Λγ2 γ ≥ − 1

4Λ
− 1
16Λ γ ≤ − 1

4Λ
.
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PDE rewritten

For a convex pay-off g, the solution also remains convex and
the equation simplifies to,

Vt = − 12s
2σ2Vss − Λs2σ2(Vss)2,

= − 12s
2σ̂2(t, s)Vss,

where

σ̂2(t, s) = σ2 [1+ 2ΛVss(t, s)] .

Hence the effect of liquidity is to increase the effective
volatility as in Leland and Fukasawa. Same is true for
non-convex pay-off’s as well.
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lliquidity premium

▶ By an application of maximum principle we have

V(t, s) ≥ VBS(t, s)

and they are equal only when g is an affine function.

▶ This implies that there exists a strict liquidity premium, a
difference between the superreplicating cost and the
Black-Scholes value of the claim.

▶ The reason why there are contradicting results between CJP
and the above is the trading strategy constraints.
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Discrete-time

▶ Together with Gökay and later with Dolinsky for general
pay-offs, we consider the discrete-time super-replication
problem, where we do not impose any conditions on the
portfolio processes.

▶ We analyze the asymptotic limit of the binomial model
numerically and theoretically. We find out as time steps gets
smaller, we recover the same PDE as in the portfolio
constrained case.

▶ This justifies the necessity of the constraints on the portfolio
strategies in the continuous time paper.

Convex dual representation is crucial in Dolinsky & Soner.
29



Summarizing

▶ CJP model has liquidity premium.

▶ This premium is due to the resilience and can be realised by
restrictions on the portfolio.

▶ Supe-replication is cost is different than the frictionless
model.

▶ However, without introducing the resilience explicitly, the
liquidity premium is weak and is does not impact the utility
maximization problems.
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Supply Curve

This is a phenomenological model by Almgren & Chriss (also
important contributions by Rogers & Sign, Garleanu &
Pedersen), considers an impact functional of the form

S(t, St, Z′t) = St + ΛZ′t.

Then, the dynamics are given by

Yt =
∫ t

0
ZudSu − Lt

Lt= Λ

∫ t

0

(
Z′u
)2 du.

In these models, it is not possible to avoid the liquidity
premium.
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Problem

Consider a utility maximization problem

sup
Z

E
[
U
(
RZ
T)
) ]

,

where RT is the risk adjusted liquidation cost of Schöneborn
and is given by,

RZ
T := YZT − CΛ2(ZT − Z∗T)2,

where C is a constant derived from the model and Z∗ is
optimal portfolio for the frictionless (i.e., Λ = 0) market.
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Problem

There are two difficulties :

▶ Due to the price impact, we could only use portfolios that
are differentiable in time. If the target portfolio Z∗ is rough,
the optimisation problem gives us a way to approximate this
target portfolio.

▶ In addition to continuous targeting error, we have both
initial and final liquidation costs.

▶ Initially, we might far from the optimal location and need to
move there efficiently.

▶ Also, closer to maturity one must consider the final portfolio
position.
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Asymptotics

The actual problem is not quite tractable and together with
Moreau & Muhle-Karbe we considered the asymptotics as Λ
gets smaller.

We have asymptotic results for the value function and also for
optimal portfolio.

The rigorous proof uses recent machinery from viscosity
solutions which I do not report here. Only I outline the
asymptotic structure of the hedge.
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Optimal Portfolio

Let z∗ = z∗,Λ be the optimal portfolio for the utility
maximization problem with small but non-zero impact Λ > 0.

Asymptotically,

d
dtz

∗
t = c Λ−1/2 (z∗t − Z∗t ), wherec = σ√

2Rt
,

and Rt is the frictionless investor’s indirect risk-tolerance
process, i.e., the risk tolerance of the frictionless value.

As Λ gets smaller, z∗ moves very quickly towards the
frictionless optimizer Z∗.
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Connections

▶ A related model is the friction due to transaction costs.
Asymptotics analysis has been successfully used in that
context by Shreve and collaborators, by myself with
Altarovici, Reppen, Muhle-Karbe, Touzi.

▶ Relatedly, in a series of papers Kallsen & Muhle-Karbe
studied directly the asymptotics of the optimal portfolio.

▶ Kallsen & Muhle-Karbe formulae although different in their
fine details, have many common features. In particular, the
risk tolerance function plays a central role. But the scaling in
the small parameter might be different.
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Tracking model

Joint with Bank & Voss, we consider the following tracking
problem for a given portfolio process Z∗t ,

minimize J(u) := J(u; x, Z∗),

where

J(u; x, Z∗) :=
1
2

∫ T

0

[(
Xu,xt − Z∗t

)2
+ Λu2t

]
dt,

Xu,xt := X+
∫ t

0
usds.

The above model is motivated by recent papers of Bank & Voss
and also Kallsen & Muhle-Karbe. It was also considered in
Rogers & Sign but solved only approximately.
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Solution

The optimizer X∗ has a very similar structure to the asymptotic
formula already discussed in the impact model. Indeed, it
solves

d
dtX

∗
t = c Λ−1/2 (X∗t − (LZ∗)t),

where LZ∗ is a linear map of Z∗ depending on the parameter Λ.
Roughly, it is the adapted projection of the forward
convolution of Z∗.

So, instead of targeting directly the target portfolio Z∗t at time t,
we target an estimate of the possible future values of the
target. This was also obtained by Garleanu & Pedersen.
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Target the future

Garleanu & Pedersen quote Wayne Gretzky, “A great hockey
player skates to where the puck is going to be, not where it is.”
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Concluding

▶ There are a rich class of models for illiquid markets with
price impact.

▶ Another use of this approach is to assume that the target
portfolio is given but not implementable. This would give us
away to provide implementable approximations.

▶ Asymptotics makes things tractable.

THANK YOU FOR YOUR ATTENTION.
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