
Lecture 2: A dynamic view on universal interpolation
and gradient descent

Christa Cuchiero based on joint lectures with M. Gambara,
J. Teichmann and Hanna Wutte

Institute of Statistics and Mathematics
Vienna University of Economics and Business

Christa Cuchiero (WU Wien) Lecture 2 Wien, October 2019 1 / 32



Part I

Deep neural networks, generic universal

interpolation, and controlled ODEs

based on joint work with M. Larsson and J. Teichmann
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Motivation

Goal

Analysis of deep feedforward neural networks from an optimal control
theory point of view:

deep neural networks as discretizations of certain controlled ODEs

expressiveness and generic universal interpolation

randomly generated generic expressiveness ⇒ large numbers of
parameters can be left untrained, and be chosen randomly
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Deep neural networks as controlled ODEs

Definition of a deep feedfoward neural network

Feedfoward neural networks are maps obtained by composing layers
consisting of an affine map and a componentwise nonlinearity σ:

x(0)
`1−→ x(1)

`2−→ x(2) −→ · · · x(t) · · · `n−→ x(n),

where x(t) ∈ Rm and

`t(x) = (σ(〈At,1, x〉+ bt,1), . . . , σ(〈At,m, x〉+ bt,m)).

There is usually a (linear) readout map R such that

x(n) −→ Rx(n) = y .

For a given training data set {(xi , yi ), i = 1, . . .N}, supervised learning
means selecting the parameters of (At , bt)t∈{1,...,n} and R such that

yi ≈ R ◦ `n ◦ · · · ◦ `1(xi ), ∀i
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Deep neural networks as controlled ODEs

Residual networks

Define V (x , θt) := `t(x)− x , where θt collects all the parameters of `t .

Then x(t) = x(t − 1) + V (x(t − 1), θt), which is sometimes called residual
network (see, e.g. He et al. (’15)).

This is nothing else than a discretization of an ODE

dX x
t = V (X x

t , θt)dt, X x
0 = x .

The feedforward neural network is then modeled by

x 7→ R(X x
1 )

and can be interpreted as a network of continuous depth. The discrete
parameter counting the layers is replaced by t ∈ [0, 1].

This perspective on neural networks can also be found in e.g. E(’17); Chang
et al.(’17); Chen et al.(’18); Grathwohl et al.(’18); Dupont et al.(’19), Liu
and Markowich(’19).
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Deep neural networks as controlled ODEs

Supervised learning as a control problem

For a given training data set {(xi , yi ), i = 1, . . .N} supervised learning now
means selecting V (·, θt) and R so that

yi ≈ R(X xi
1 ) ∀i .

We view this training task as a (deterministic) control problem: the N
inputs xi should be directed to their respective outputs yi , all using the same
vector fields.

Indeed, recognize dX x
t = V (X x

t , θt)dt as controlled ordinary differential
equation (CODE) by supposing that

V (x , θ) = u1V1(x) + + udVd(x)

where u1, . . . , ud are scalars and V1, . . . ,Vd are smooth vector fields on Rm.

We think of u1, · · · , ud as the only d trainable parameters (part of θ) that
will be t-dependent. The vector fields V1, . . . ,Vd are specified by the
remaining parameters in θ, which will be non-trainable and constant in t.
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Deep neural networks as controlled ODEs

The role of randomness and few trainable parameters

Recall that V (x , θ) was initially specifed by V (x , θt) = `t(x)− x with
`t(x) = (σ(〈At,1, x〉+ bt,1), . . . , σ(〈At,m, x〉+ bt,m)) = σ(Atx + bt).

For each layer t, a m ×m matrix At and a vector bt ∈ Rm has to be
trained.

Our results imply training of very few parameters: for instance we can
specify

V (x , θt) =
7∑

i=1

ui
tσi (Cix + di )

where Ci is a random matrix, di a random vector and σi polynomials
with random coefficients. Only ui

t are subject to training to achieve
what we call generic expressiveness.
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Expressiveness and universal interpolation

Universal approximation

One form of expressiveness of neural networks is the universal
approximation property.

Universal approximation (meta)-theorem

Any continuous (say) function f : [0, 1]m → R can be uniformly approxi-
mated to arbitrary accuracy by a neural network of sufficient depth and/or
width.

This is a very important part of the theory of deep and shallow
learning.

Prominent contributions include Cybenko (’89), Hornik (’91), Barron
(’93), Shaham et al. (’16), Bölcskei et al. (’16), etc.

Christa Cuchiero (WU Wien) Lecture 2 Wien, October 2019 8 / 32



Expressiveness and universal interpolation

Universal interpolation

Another form is what we shall call universal interpolation.

The system

dX x
t = u1

t V1(X x
t ) + · · · ud

t Vd(Xt)dt (*)

turns out to be expressive in the following sense if V1, . . . ,Vd are chosen
appropriately.

Definition

The control system (*), specified by V1, . . . ,Vd , is called a universal N-point
interpolator on Ω ⊆ Rm if, for any training set {(xi , yi ) ∈ Ω× Ω: i = 1, . . . ,N},
there exist controls u1

t , . . . , u
d
t that achieve the exact matching

X xi
1 = yi ∀i = 1, . . . ,N.

Here it is required that the training inputs and outputs are both pairwise distinct.

Perfect interpolation is not necessarily a desirable training goal, but here it
serves as a measure of expressiveness. The readout R is here the identity.
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Expressiveness and universal interpolation

1-point controllability

Toy training data set N = 1

Can we control any input x ∈ Rm to any output y ∈ Rm ?

The answer is given by the classical Chow - Rashevskii theorem.

Notation

Lie brackets of vector fields V and W :

[V ,W ](x) = DW (x)V (x)− DV (x)W (x)

Example: For linear vector fields V (x) = Ax , W (x) = Bx , this is
[V ,W ](x) = (AB − BA)x .

Lie algebra of all vector fields generated by V1, . . . ,Vd :

Lie(V1, . . . ,Vd) = span{V1, . . . ,Vd and their iterated Lie brackets}

Evaluation of Lie algebra at x ∈ Rm

Lie(V1, . . . ,Vd)|x = {W (x) : W ∈ Lie(V1, . . . ,Vd)} ⊆ Rm
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Expressiveness and universal interpolation

Chow-Rashevskii for 1-point controllability

Theorem (Chow - Rashevsky)

If the Hörmander condition

Lie(V1, . . . ,Vd)|x = Rm

holds at every point x ∈ Rm, then controllability holds: for every input/output
pair (x , y) there exist smooth scalar controls u1

t , . . . , u
d
t that achieve X x

1 = y,
where Xt is the solution of (*).

Why Lie brackets?

Consider linear vector fields V (x) = Ax and W (x) = Bx .

Flowing along V for a time t gives x 7→ etAx .

Alternating between W , V , −W , and −V :

e−tAe−tBetAetBx = x + t2(AB − BA)x + O(t3)

This produces motion in the direction [V ,W ](x) = (AB − BA)x .
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Expressiveness and universal interpolation

Universal N-point interpolation

Training data set of size N

Can we simultanously control inputs x̄ = (x1, . . . , xN) ∈ (Rm)N to outputs
ȳ = (y1, . . . , yN) ∈ (Rm)N using a common set of vector fields and controls?

If yes, how many and which vector fields do we need?

Consider the “stacked” system

d

dt

X x1
t
...

X xN
t


︸ ︷︷ ︸

X̄ x̄
t

= u1
t

V1(X x1
t )

...
V1(X xN

t )


︸ ︷︷ ︸

V⊕N
1 (X̄ x̄

t )

+ · · ·+ ud
t

Vd(X x1
t )

...
Vd(X xN

t )


︸ ︷︷ ︸

V⊕N
d (X̄ x̄

t )

.

with initial values in the space of pairwise distinct N-tuples: Ω = ΩN \∆
with ∆ = {(x1, . . . , xN) ∈ ΩN : xi = xj for some i 6= j}.
By the Chow–Rashevskii theorem, controllability holds true provided that
the N-point Hörmander condition, Lie(V⊕N1 (x̄), . . . , . . .V⊕Nd (x̄)) = (Rm)N

holds at every x̄ = (x1, . . . , xN) ∈ Ω.
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Expressiveness and universal interpolation

First result

Theorem

Fix m ≥ 2 and a bounded open connected subset Ω ⊆ Rm. There exist
d = 5 smooth bounded vector fields V1, . . . ,V5 on Rm such that

dX x
t = u1

t V1(X x
t ) + · · · ud

t Vd(Xt)dt (*)

is a universal N-point interpolator in Ω, for every N.

Remarks

m = 1 is not covered (on the real line inputs cannot be directed to
outputs if they are differently ordered)

Note that d = 5 is independent of both N and m, and the same
vector fields (but not the same controls) work for any N.

5 is probably not optimal.
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Expressiveness and universal interpolation

Sketch of the proof

Let V1(x) = Ax , V2(x) = Bx , where A and B are suitable traceless
m ×m matrices and

V3(x) =


0
...
0
1

 , V4(x) =


(xm)2

0
...
0

 , V5(x) =


x1xm

x2xm

...
(xm)2

 .

Then Lie(V1, . . . ,V5) contains all polynomial vector fields.

The set of all polynomial vector fields on Rm interpolates at every
x̄ ∈ Ω, i.e. for every x̄ ∈ Ω and ȳ ∈ (Rm)N there exists some
polynomial vector field V s.t. V (xi ) = yi for all i . The same property
thus holds for Lie(V1, . . . ,V5).

This implies the N-point Hörmander condition for these five vector
fields at every x̄ and in turn the N-point interpolator property.
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Randomly generated generic expressiveness

Generic expressiveness

So far: universal interpolators can be constructed using just five
vector fields.

Our next goal is to prove that such expressive systems are generic.

Appropriately randomly chosen nonlinear polynomial vector fields
allow to generate controlled ODEs (*) that are sufficiently expressive
to interpolate almost every training set.

Instead of using the identity as final read out, we relate here the input
x and output y via

y = λ(X x
1 − x), with X x

1 solving

dX x
t = u1

t V1(X x
t ) + · · · ud

t Vd(X x
t )

(**)

where λ is some scalar parameter which has to be trained.
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Randomly generated generic expressiveness

Main result - Ingredients

Bounded open connected subset Ω ⊂ Rm, m ≥ 2

A polynomial vector field V of degree at most k has components of
the form

V j(x) =
k∑
|α|=0

c j
αxα.

Coefficient vector: c = (c j
α : j = 1, . . . ,m, |α| ≤ k) ∈ RDk where

Dk = m
(m+k

m

)
.

d ≥ 5 polynomial vector fields V1, . . . ,Vd of degree at most k ≥ 2 in
Ω, with coefficients (c1, . . . , cd)

For some l ∈ N, some polynomial map Q : Rl → (RDk )d , and some
random vector Z in Rl , we assume the coefficients are drawn
randomly in the following way.

(c1, . . . , cd) = Q(Z ).

Christa Cuchiero (WU Wien) Lecture 2 Wien, October 2019 16 / 32



Randomly generated generic expressiveness

Main result

Theorem (C., M. Larsson and J. Teichmann)

Assume that

1 the law of Z admits a probability density on Rl ;

2 for some ẑ ∈ Rl , the Lie algebra generated by the vector fields with
coefficients (ĉ1, . . . , ĉd) = Q(ẑ) contains all polynomial vector fields;

3 the training data set is generic: inputs xi of {(xi , yi ) ∈ Ω×Ω: i = 1, . . . ,N}
are drawn from some density on (Ω)N ; outputs yi are just pairwise distinct.

Then, with probability one, (**) forms a universal interpolator, i.e. there exist
controls u1

t , . . . , u
d
t and a constant λ > 0 such that yi = λ(X xi

1 − xi ) for all i .

Example

Let l = (Dk)5 and Q be the identity map.

Draw (c1, . . . , cd) from any density on (RDk )5.

Take ẑ = (ĉ1, . . . , ĉ5), where (ĉ1, . . . , ĉ5) are the coefficients of the specific
5 polynomial vector fields from above.
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Randomly generated generic expressiveness

Idea of the proof

Let ~V = (V1, . . . ,V5) be polynomial vector fields parameterized by
coefficients (c1, . . . , c5) ∈ (RDk )5 such that (c1, . . . , c5) = Q(Z ) for
Q : Rl → (RDk )5.

Let (ĉ1, . . . , ĉ5) = Q(ẑ) are the coefficients of the specific 5 polynomial

vector fields V̂1, . . . , V̂5 from the previous theorem.

Lie(V̂1, . . . , V̂5) contains a basis E1(
~̂
V , x), . . . ,EDn(

~̂
V , x) for the space of

polynomial vector fields of degree at most n.

To guarantee that 〈E1(~V , ·), . . .EDn(~V , ·)〉 interpolates at (x1, . . . , xN) ∈ ΩN ,
the mN × Dn matrix E1(~V , x1) · · · EDn(~V , x1)

...
...

E1(~V , xN) · · · EDn(~V , xN)


has to have columns that span (Rm)N , i.e. the determinant of at least one
mN ×mN matrix has to be nonzero.
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Randomly generated generic expressiveness

Idea of the proof

Ej are polynomials in x , but also in Z (seen as function in Z generating V ).
The same holds for the squared determinant Γn(x1, . . . , xN ,Z ).

Since for n big enough the squared determinant Γn(x1, . . . , xN , ẑ) > 0 for
every pairwise distinct data set, we can conclude that

(x1, . . . , xN ,Z ) 7→ Γn(x1, . . . , xN ,Z )

it is not identically zero. Here Condition (2) is needed.

The density condition on the data set and Z is used to avoid zeros which
can exist, but which only constitute a nullset.

With probability 1, Lie(V1, . . . ,V5) interpolates at x̄ .
⇒ N-point Hörmander condition holds at x̄ .

By continuity, there is an open connected neighborhood U ⊂ ΩN of x̄ where
the Hörmander condition holds. ⇒ Choose λ > 0 large enough so that
x̄ + λ−1ȳ ∈ U .

The Chow - Rashevskii theorem then implies that xi + λ−1yi can be reached
X xi

1 for all i = 1, . . . ,N.
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Randomly generated generic expressiveness

Concrete example of neural network typ

Corollary

Consider d = 7 vector fields of the form Vi (x) = σi (Cix + bi ), i = 1, . . . , 7, where

Ci is a random matrix in Rm×m, bi a random vector in Rm, and

σi (·) a polynomial nonlinearity, whose coefficients depend polynomially on
some random vector Z0.

Assume that

1 the random elements Z = (Z0,C1, . . . ,C7, b1, . . . , b7) admit a joint density;

2 for some value ẑ0 of supp(law(Z0)), we have σi (r) = r for i = 1, 2, 3, and
σi (r) = r 2 for i = 4, 5, 6, 7;

3 the training data set is generic.

Then with probability one, (**) forms a universal interpolator in the sense of the
above Theorem.
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Randomly generated generic expressiveness

Consequences for training

Universal interpolation is a generic property.

In practice, the CODE (*) is replaced by a discretization, say with M
steps.

This yields a network of depth M . After randomly choosing d vector
fields, the number of trainable parameters (including λ) becomes
Md + 1.

This tends to be much smaller than the total number of parameters
needed to specify the vector fields, and can potentially simplify the
training task significantly.

The fact that most parameters are chosen randomly reinforces the
view that randomness is a crucial ingredient for training.
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Randomly generated generic expressiveness

Conclusion

Deep feedforward neural networks can be modeled as controlled dynamical
systems.

Expressiveness can be proved in this formulation using classical results on
controllability.

Expressiveness is generic since Lie(V⊕N1 , . . .V⊕Nd ) generically spans (Rm)N .

Many parameters can be chosen randomly, which truely works in
applications.

We illustrate this with the MNIST data set by training a generic network
with much less trainable parameters than in the standard implementation.
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Part II

Gradient descent and backpropagation
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Optimization task

Supervised learning task with neural networks

Supervised learning

Given training data {(xi , yi ), i = 1, . . .N} with xi ∈ Rm and yi ∈ Rd , find
a neural network g within a class of neural networks NNΘ with a certain
architecture characterized by parameters θ ∈ Θ, such that

g ∈ argmin
NNΘ

N∑
i=1

L(g(xi ), yi ),

where L is a loss function: C (Rm,Rd̃) × Rd → R+. Note that the input
dimension of the neural network is m and the output dimension d̃ .

Since g is determined by the parameters θ, the above optimization
corresponds to searching the minimum in the parameter space Θ which is
nothing else than the collection of (At , bt)t=1,...,n (if we have n hidden
layers) and the readout map R.
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Optimization task

Examples

Example MNIST classification: xi ∈ R28×28, i.e. m = 28× 28 and
y ∈ R, i.e. d = 1. The output dimension of the neural network is
d̃ = 10. The loss function is given by

L(g(x), y) =
10∑
k=1

1{y=k−1} log((g(x))k).

Example classical regression with L2 loss:

L(g(x), y) = ‖g(x)− y‖2.

Here the output dimension of the neural network d̃ is equal to d .
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Optimization task

But how...?

... to deal with a non-linear, non-convex optimization problem and
with around 600 000 parameters, as it is the case for the MNIST data
set?
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Optimization methods

Gradient descent: the simplest method

The gradient of a function F (θ) : RM → R is given by

∇F (θ) = (∂θ1F (θ), . . . , ∂θM F (θ)).

Gradient descent:
starting with an initial guess θ(0), one iteratively defines for some
learning rate ηk

θ(k+1) = θ(k) − ηk∇F (θ(k))
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Optimization methods

Gradient descent: the simplest method
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Optimization methods

Classical convergence result

Theorem

Suppose the function F : RM → R is convex and differentiable, and that
its gradient is Lipschitz continuous with constant L > 0, i.e. we have that
‖∇F (θ)−∇F (β)‖ ≤ L‖θ − β‖ for any θ, β ∈ RM . Then if we run
gradient descent for k iterations with a fixed step size η ≤ 1/L , it will
yield a solution F (θ(k)) which satisfies

F (θ(k))− F (θ∗) ≤ ‖θ
(0) − θ∗‖2

2ηk
,

where F (θ∗) is the optimal value. Intuitively, this means that gradient
descent is guaranteed to converge and that it converges with rate O(1/k).

In practice, the convexity condition is often not satisfied. Moreover, the
solution depends crucially on the inital value.
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Optimization methods

How to compute the gradient

Nevertheless all optimization algorithms build on the classical idea of
gradient descent usually in its enhanced form of stochastic gradient descent.

How to compute the gradient in our case of supervised learning, where

F (θ) =
N∑
i=1

L(g(xi |θ), yi )

and θ corresponds to (At , bt)t=1,...,n (if we have n hidden layers) and the
readout map R? We here indicate the dependence of the neural network on
θ.

We suppose here for simplicity that the readout map R is linear, i.e.

R(x) = An+1x + b

where An+1 has d̃ rows and b ∈ Rd̃ , so that θ = {(At , bt)t=1,...,n+1}.
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Optimization methods

Backpropagation

Since

∇θF (θ) =
N∑
i=1

∇θL(g(xi |θ), yi ),

we need to determine ∂At ,klL(g(x |θ), y) and ∂bt ,kL(g(x |θ), y).

By the chain rule this is given by

∂At ,klL(g(x |θ), y) = 〈∂gL(g(x |θ), y), ∂At ,klg(x |θ)〉
∂bt ,kL(g(x |θ), y) = 〈∂gL(g(x |θ), y), ∂bt ,kg(x |θ)〉.

Output Layer:

∂An+1,klL(g(x |θ), y) = (∂gL(g(x |θ))y)k(σ(An(· · · ) + bn)︸ ︷︷ ︸
x(n)

)l

∂bn+1,kL(g(x |θ), y) = (∂gL(g(x |θ))y)k
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Optimization methods

Backpropagation: second last layer

Recall x(t + 1) = σ(zt+1) where zt+1 = At+1x(t) + bt+1 and
g = zn+1 = An+1x(n) + bn+1.

To continue with the second last layer, we use the chain rule again

Note that L(g , y) = L(zn+1, y) = L(An+1x(n) + bn, y). Hence...

∂An,klL = 〈∂x(n)L, ∂An,klx(n)〉 = 〈An+1∂gL, ∂An,klx(n)〉
= 〈An+1∂gL, diag(σ′(zn)) ∂An,klzn︸ ︷︷ ︸

similar as in the last layer

〉
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