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Part I

Wavelet frames (for deep neural networks)
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Introduction to wavelet analyis

A brief history of wavelet analysis

Wavelets have their origins in signal analysis and engineering.

The term ”wavelet” was coined in the 1980s in geophysics by Jean
Morlet, Alex Grossman for functions that generalize the short-term
Fourier transform.

In the 1990s, a veritable wavelet boom arose, triggered by

I the discovery of compact, continuous (to any order of differentiability)
and orthogonal wavelets by Ingrid Daubechies (1988) and

I the development of the algorithm of fast wavelet transformation
(FWT) using multi-scale analysis (MRA) by Stéphane Mallat and Yves
Meyer (1989).
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Introduction to wavelet analyis

The what, the why and the how of wavelets?

The following introduction to wavelets is based on Ingrid Daubechies’
”Ten lectures on wavelets”, Chapter 1:

Wavelets provide a tool for time-frequency localization.

Given a signal f (t) (we here assume for simplicity that t is a
continuous variable and f a function in one variable), one is interested
in its frequency content locally in time.

The wavelet transform of a signal evolving in time depends therefore
on two variables: frequency and time.
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Introduction to wavelet analyis

Time frequency localization

The standard Fourier transform,

F f (ω) =
1√
2π

∫
e−iωt f (t)dt

gives a representation of the frequency content of f , but information
concerning time-localization cannot be read off easily from F f .

Time-localization can be achieved by a windowed Fourier transform,
i.e.

Fwinf (ω, t) =
1√
2π

∫
e−iωs f (s)g(s − t)ds.

In its discrete version t and ω are assigned regularly spaced values:
t = nt0, ω = mω0, for n,m ∈ Z and ω0, t0 > 0 fixed:

Fwin
m,nf =

1√
2π

∫
e−imω0s f (s)g(s − nt0)ds.
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Introduction to wavelet analyis

The windowed Fourier transform
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Introduction to wavelet analyis

The wavelet transform

The continuous and discrete wavelet transform formulas are
analogous to the continuous and discrete windowed Fourier, i.e.

Twavf (a, b) =
1√
|a|

∫
f (t)ψ(

t − b

a
)dt

and

Twav
m,n f =

1√
|a0|m

∫
f (t)ψ(a−m0 t − nb0)dt

The function ψ is sometimes called mother wavelet and satisfies∫
ψ(t)dt = 0.

Twav
m,n f is again obtained from Twavf (a, b) by restricting a, b to only

discrete values: a = am0 , b = nb0am0 in this case, with m, n ranging
over Z , and a0 > 1, b0 > 0 fixed.
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Introduction to wavelet analyis

Analogies/differences to the windowed Fourier transform

Similarity: both transforms take the inner products of f with a family of
functions indexed by two labels: gω,t(s) = e iωsg(s − t) in the Fourier case
and

ψa,b(s) =
1√
|a|
ψ(

s − b

a
).

in the wavelet case. The functions ψa,b are called wavelets

Difference: shapes of gω,t and ψa,b.

I The functions gω,t all consist of the same g , translated to the proper
time location, and ”filled in” with higher frequency oscillations. All the
gω,t have the same width.

I In contrast, the ψa,b have time-widths adapted to their frequency: high
frequency ψa,b are very narrow, while low frequency ψa,b are much
broader. As a result, the wavelet transform is better able than the
windowed Fourier transform to “zoom in” on very short lived high
frequency phenomena.
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Introduction to wavelet analyis

Comparison between windowed Fourier transform

A typical choice for ψ is ψ(t) = (1− t2) exp(−t2/2), sometimes
called the mexican hat function, illustrated below.
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Introduction to wavelet analyis

Different types of wavelet transforms

A The continuous wavelet transform Twavf (a, b) and

B The discrete wavelet transform Twav
m,n f

Within the discrete wavelet transform we distinguish further between

B1 Redundant discrete systems, so-called wavelet frames and

B2 Orthonormal (and other) bases of wavelets (in L2(R))
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Introduction to wavelet analyis

A: the continuous wavelet transform

A function can be reconstructed from its wavelet transform by means of the
“resolution of identity” formula,

f = C−1ψ

∫ ∞
−∞

∫ ∞
−∞

1

a2
〈ψa,b, f 〉ψa,bda db

where 〈·, ·〉 denotes the L2 scalar product.

The constant Cψ, depends only on ψ and is given by

Cψ = 2π

∫ ∞
−∞

ψ̂(ξ)ξ−1dξ

and we assume Cψ <∞ . If ψ is in L1(R) (this is the case in all examples of

practical interest) , then ψ̂ is continuous, so that Cψ, can be finite only if

ψ̂(0) = 0, i.e.
∫
ψ(t)dt = 0.

The above formula can viewed as a way to write f as a superposition of
wavelets where the coefficients in this superposition are given by the wavelet
transform of f .
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Introduction to wavelet analyis

B1: the discrete but redundant wavelet transform-frames.

The dilation parameter a and the translation parameter b both take only
discrete values.

For a we choose the integer (positive and negative) powers of one fixed
dilation parameter a0 > 1 , i.e. , a = am0 .

Different values of m correspond to wavelets of different widths.

The discretization of b should thus depend on m: narrow (high frequency)
wavelets are translated by small steps, while wider (lower frequency)
wavelets are translated by larger steps.

Since the width of ψ(a−m0 x) is proportional to am0 , we choose therefore to
discretize b by b = nb0am0

The corresponding discretely labelled wavelets are therefore

ψm,n = a
−m/2
0 ψ(a−m0 (x − nb0am0 ))) = a

−m/2
0 ψ(a−m0 x − nb0)
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Introduction to wavelet analyis

B1: Recovering f ?

In the discrete case there does not exists a “resolution of the identity”
formula as in the continuous case.

Reconstruction of f from (Twav
m,n (f ))m,n, if at all possible, must

therefore be done by some other means.

The following questions naturally arise:

I Is it possible to characterize f completely by knowing (Twav
m,n (f ))m,n, or

in other words

I Can any function be written as a superposition of ψm,n ?

As in the continuous case, these discrete wavelet transforms often
provide a very redundant description of the original function.
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Introduction to wavelet analyis

B2: Orthonormal wavelet bases

For some very special choices of ψ and a0, b0, the ψm,n constitute an
orthonormal basis for L2(R).

In particular, if we choose a0 = 2, b0 = 1, then there exist ψ with
good time-frequency localization properties, such that the

ψm,n(x) = 2−m/2ψ(2−mx − n)

constitute an orthonormal basis for L2(R).

The oldest example of a function ψ for which the ψm,n as defined
above constitute an orthonormal basis for L2(R) is the Haar function.

ψ(x) =


1, 0 ≤ x < 1

2 ,

−1, 1
2 ≤ x < 1,

0, else
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Frames and discrete wavelet transforms

Frames

We return to the setting of B1 where we do not necessarily have a basis
but rather redundant wavelet frames.

Definition

A family of functions (gj)j∈J in a Hilbert space H and J a countable index
set is called a frame if there exist A > 0,B <∞ so that, for all f ∈ H,

A‖f ‖2 ≤
∑
j∈J
|〈f , gj〉|2 ≤ B‖f ‖2

We call A and B the frame bounds. If the two frame bounds are equal,
A = B, then the frame is called a tight frame, i.e. we have∑

j∈J |〈f , gj〉|2 = A‖f ‖2.
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Frames and discrete wavelet transforms

Frames versus (orthonormal) bases

Proposition

If (gj)j∈J is a tight frame, with frame bound A = 1 , and if ‖gj‖2 = 1 for
all j ∈ J, then the gj constitute an orthonormal basis.

In general, frames and even tight frames are however not orthonormal
bases.

Nevertheless at least for tight frames the function can expressed
similarly. Indeed, by the polarization identity we have

A〈f , h〉 =
∑
j

〈f , gj〉〈h, gj〉

so that f = A−1
∑

j〈f , gj〉gj at least weakly.
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Frames and discrete wavelet transforms

Frame operator

How does it work for general frames?

Definition

If (gj)j∈J is a frame in H, then the frame operator F is the linear operator
from H to `2(J) = {(cj)j∈J |

∑
|cj |2 <∞} defined by (Ff )j = 〈f , gj〉.

It follows from the frame bounds that ‖Ff ‖2 ≤ B‖f ‖2. It is thus a
bounded operator.

The adjoint F ∗ of F is easy to compute:

〈F ∗c , f 〉 = 〈c ,Ff 〉 =
∑
j

cj〈gj , f 〉

Hence F ∗c =
∑

j cjgj .
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Frames and discrete wavelet transforms

Frame operator

The definition of the frame operator implies further that∑
j

|〈f , gj〉|2 = ‖Ff ‖2 = 〈F ∗Ff , f 〉.

Hence, by the frame bounds we have

A Id ≤ F ∗F ≤ B Id

This implies, in particular, that F ∗F is invertible, by the following lemma.

Lemma

If a nonnegative bounded linear operator S on H is bounded from below
by a strictly positive constant α, then operator is invertible and its inverse
S−1 is bounded from above by α−1.
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Frames and discrete wavelet transforms

Towards dual frames

From the above we have that (F ∗F )−1 is well defined and
‖(F ∗F )−1‖ ≤ A−1.

Applying the operator (F ∗F )−1 to the vectors gj leads to an
interesting new family of vectors, which we denote by
g̃j = (F ∗F )−1gj .

Proposition

The (g̃j)j∈J constitute a frame with frame bounds B−1 and A−1, i.e.,

B−1‖f ‖2 ≤
∑
j∈J
|〈f , g̃j〉|2 ≤ A−1‖f ‖2

The associated frame operator F̃ : H → `2(J), (F̃ f )j = 〈f , g̃j〉 satisfies

F̃ = F (F ∗F )−1, F̃ ∗F̃ = (F ∗ F )−1, F̃ ∗F = Id = F ∗F̃ and F F̃ ∗ = F̃ F ∗ is
the orthogonal projection operator, in `2(J) onto Ran(F ) = Ran(F̃ ).
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Frames and discrete wavelet transforms

Dual frames

We call (g̃j)j∈J the dual frame of (gj)j∈J . The conclusions of the above

Proposition namely F̃ ∗F = Id = F ∗F̃ means

F̃ ∗Ff =
∑
j

〈f , gj〉g̃j = f = F ∗F̃ f =
∑
j

〈f , g̃j〉gj .

This means that we have a reconstruction formula for f from the
〈f , gj〉.

At the same time we have also obtained a recipe for writing f as a
superposition of gj .
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Frames and discrete wavelet transforms

“Optimality” of Dual frames

Frames, even tight frames, are generally not (orthonormal) bases because
the gj are typically not linearly independent. This means that for a given
f , there exist many different superpositions of the gj which all add up to
f . The above superposition is nevertheless special in the following sense.

Proposition

If f =
∑

j cjgj for some (cj) ∈ `2(J) and if not all cj = 〈f , g̃j〉, then∑
j |cj |2 >

∑
j |〈f , g̃j〉|2.
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Frames and discrete wavelet transforms

Wavelet frames

Wavelet frames can be construced from a family of averaging kernels
(“father functions” or scaling functions) satisfying certain conditions.

This is connected to so-called multiresolution analysis.

The goal is here to represent wavelet frames via deep neural networks.
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