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Introduction to wavelet analyis

A brief history of wavelet analysis

@ Wavelets have their origins in signal analysis and engineering.

@ The term "wavelet” was coined in the 1980s in geophysics by Jean

Morlet, Alex Grossman for functions that generalize the short-term
Fourier transform.

@ In the 1990s, a veritable wavelet boom arose, triggered by

» the discovery of compact, continuous (to any order of differentiability)
and orthogonal wavelets by Ingrid Daubechies (1988) and

» the development of the algorithm of fast wavelet transformation

(FWT) using multi-scale analysis (MRA) by Stéphane Mallat and Yves
Meyer (1989).
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Introduction to wavelet analyis

The what, the why and the how of wavelets?

The following introduction to wavelets is based on Ingrid Daubechies’
"Ten lectures on wavelets”, Chapter 1:

@ Wavelets provide a tool for time-frequency localization.

o Given a signal f(t) (we here assume for simplicity that t is a
continuous variable and f a function in one variable), one is interested
in its frequency content locally in time.

@ The wavelet transform of a signal evolving in time depends therefore
on two variables: frequency and time.
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Introduction to wavelet analyis

Time frequency localization

@ The standard Fourier transform,

Fr(w) = \/12? / et F(t)dt

gives a representation of the frequency content of f, but information
concerning time-localization cannot be read off easily from Ff.

@ Time-localization can be achieved by a windowed Fourier transform,
i.e.

Pt = L [ rtts o

@ In its discrete version t and w are assigned regularly spaced values:
t = ntp,w = mwy, for n,m € Z and wp, tp > 0 fixed:

. 1 .
Fonf = /e"mw"sf s)g(s — nty)ds.
m,n \/% ( )g( 0)
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Introduction to wavelet analyis

The windowed Fourier transform

ga(t)

fitig(t)

F1G. 1.1. The windowed Fourter transform: the function f(t) is multiplied with the window
function g(t), and the Fourier coefficients of the product f(t)g(t) are computed; the procedure
is then repeated for translated versions of the window, g(t — to), g(t — 2tg), ---.
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Introduction to wavelet analyis

The wavelet transform

@ The continuous and discrete wavelet transform formulas are
analogous to the continuous and discrete windowed Fourier, i.e.

TV (5 b) = \;H/f(t)w(t;b)dt

and

wav

1
m,nf—m/f(t)#)(

ap "'t — nbg)dt

@ The function 1 is sometimes called mother wavelet and satisfies
[ (t)dt =0.

o Ty3Vf is again obtained from T"2Vf(a, b) by restricting a, b to only
discrete values: a = ag’ , b = nbpay’ in this case, with m, n ranging

over Z , and ag > 1, by > 0 fixed.
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Introduction to wavelet analyis

Analogies/differences to the windowed Fourier transform

@ Similarity: both transforms take the inner products of f with a family of
functions indexed by two labels: g“*f(s) = €'“*g(s — t) in the Fourier case
and

s—b

by~ Ly
(8 (S)—\/HU( )-

in the wavelet case. The functions ©)?” are called wavelets

o Difference: shapes of g**t and ¢?°.

» The functions g*t all consist of the same g, translated to the proper
time location, and "filled in" with higher frequency oscillations. All the
g“* have the same width.

» In contrast, the ©?"® have time-widths adapted to their frequency: high
frequency 1)®? are very narrow, while low frequency 1 are much
broader. As a result, the wavelet transform is better able than the
windowed Fourier transform to “zoom in” on very short lived high
frequency phenomena.
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Comparison between windowed Fourier transform
o A typical choice for v is 1(t) = (1 — t?) exp(—t2/2), sometimes
called the mexican hat function, illustrated below.

(b)

wlx)

:: 9lx) _WBW

y2° witha<1
b>

vab witha> 1
b<0

0| x

FiG. 1.2, Typical shapes of (a) windowed Fourier transform functions g“*t, and
(b) wavelets $*°. The g***(z) = e“=g(z — t) can be viewed as translated envelopes g, “filled
in” with higher frequencies; the $** are all copies of the same functions, translated and com-
pressed or stretched.
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Introduction to wavelet analyis

Different types of wavelet transforms

A The continuous wavelet transform T“2Vf(a, b) and

B The discrete wavelet transform TZ57f
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Introduction to wavelet analyis

Different types of wavelet transforms

A The continuous wavelet transform T“2Vf(a, b) and

B The discrete wavelet transform T,‘;,"j;’f

Within the discrete wavelet transform we distinguish further between
B1 Redundant discrete systems, so-called wavelet frames and

B2 Orthonormal (and other) bases of wavelets (in L2(RR))
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Introduction to wavelet analyis

A: the continuous wavelet transform

@ A function can be reconstructed from its wavelet transform by means of the
“resolution of identity” formula,

B e} e o) 1 5 5
f:cwl/_w/_w?wz b f)p*Pdadb

where (-, -) denotes the L? scalar product.

@ The constant Cy, depends only on 7 and is given by
Co=2m [ Be)e e

and we assume Cy, < oo . If 1 is in L}(IR) (this is the case in all examples of

o~

practical interest) , then 1) is continuous, so that Cy. can be finite only if
$(0) =0, i.e. [9(t)dt=0.
@ The above formula can viewed as a way to write f as a superposition of

wavelets where the coefficients in this superposition are given by the wavelet
transform of f.

Christa Cuchiero (WU Wien) Lecture 2 Wien, October 2019 11/22



Introduction to wavelet analyis

B1: the discrete but redundant wavelet transform-frames.

@ The dilation parameter a and the translation parameter b both take only
discrete values.

@ For a we choose the integer (positive and negative) powers of one fixed
dilation parameter a9 > 1, i.e. , a = aj.

@ Different values of m correspond to wavelets of different widths.

@ The discretization of b should thus depend on m: narrow (high frequency)
wavelets are translated by small steps, while wider (lower frequency)
wavelets are translated by larger steps.

@ Since the width of ¢(ay; "x) is proportional to af’, we choose therefore to
discretize b by b = nbpag’

@ The corresponding discretely labelled wavelets are therefore

Ymn = a3y " (ag "(x — nboad))) = ag ™ *4(ag "x — nbo)
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B1: Recovering f7?

@ In the discrete case there does not exists a “resolution of the identity
formula as in the continuous case.

@ Reconstruction of f from (T3 (f))m,n, if at all possible, must
therefore be done by some other means.

@ The following questions naturally arise:

> Is it possible to characterize f completely by knowing (733 (f))m,n, or
in other words

» Can any function be written as a superposition of ¥, , ?

@ As in the continuous case, these discrete wavelet transforms often
provide a very redundant description of the original function.
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Introduction to wavelet analyis

B2: Orthonormal wavelet bases

@ For some very special choices of ¢ and ag, by, the 9, , constitute an
orthonormal basis for L2(R).

@ In particular, if we choose ag = 2, bg = 1, then there exist ) with
good time-frequency localization properties, such that the

Ymn(X) = 27227 Mx — n)

constitute an orthonormal basis for L2(R).

@ The oldest example of a function v for which the v, , as defined
above constitute an orthonormal basis for L?(RR) is the Haar function.

1, 0<x< 3,
Y(x) =< -1, I<x<1,
0, else
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Frames

We return to the setting of B1 where we do not necessarily have a basis
but rather redundant wavelet frames.

Definition
A family of functions (g;j)jc, in a Hilbert space H and J a countable index
set is called a frame if there exist A > 0, B < oo so that, for all f € H,

AllfI? < > 1(F. g)I* < BIIfI?
JjeJ

We call A and B the frame bounds. If the two frame bounds are equal,
A = B, then the frame is called a tight frame, i.e. we have

Yjes [(F, gi)|? = Allf|1%.
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Frames and discrete wavelet transforms

Frames versus (orthonormal) bases

Proposition

If (gj)jey is a tight frame, with frame bound A =1, and if ||g;||*> = 1 for
all j € J, then the gj constitute an orthonormal basis.

@ In general, frames and even tight frames are however not orthonormal
bases.

@ Nevertheless at least for tight frames the function can expressed
similarly. Indeed, by the polarization identity we have

A(f, h) = Z(f’gj><h’gj>

J

so that f = A1 >_;(f.gj)g; at least weakly.
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Frames and discrete wavelet transforms

Frame operator

How does it work for general frames?
Definition

If (gj)jey is a frame in H, then the frame operator F is the linear operator
from H to ¢2(J) = {(c)jes | D |cj|* < oo} defined by (Ff); = (f.g}).

e It follows from the frame bounds that ||Ff||?> < BJ|f||?. It is thus a
bounded operator.

@ The adjoint F* of F is easy to compute:
(Frc.f) =(c,FF)=> cilg.f
J

Hence F*c =}, ¢ig;.
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Frames and discrete wavelet transforms

Frame operator

The definition of the frame operator implies further that

> [f )P = |IFFIIP = (F*Ff.f).
J

Hence, by the frame bounds we have

Ald< F*F < BId

This implies, in particular, that F*F is invertible, by the following lemma.

Lemma

If a nonnegative bounded linear operator S on H is bounded from below
by a strictly positive constant «, then operator is invertible and its inverse
S~ is bounded from above by a~*.
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Frames and discrete wavelet transforms

Towards dual frames
@ From the above we have that (F*F)~! is well defined and
I(F*F) Y < AL

e Applying the operator (F*F)~! to the vectors gj leads to an
interesting new family of vectors, which we denote by

8= (FF) g
Proposition
The (g;)jes constitute a frame with frame bounds B~! and A71, i.e.,

BHFIZ <Y I(F.g) P < ATHIfIP
jeJ

The associated frame operator F : H — (2(J), (Ff)j = (f, gj) satisfies
F=F(F*F) ', F*F = (FxF)™', F*F =Id = F*F and FF* = FF* is
the orthogonal projection operator, in £?(J) onto Ran(F) = Ran(F).

v
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Frames and discrete wavelet transforms

Dual frames

We call (gj)jes the dual frame of (gj)jes. The conclusions of the above
Proposition namely F*F = 1d = F*F means

FFf =) (fg)g=f=FFf=>Y (f.g)g
J J

@ This means that we have a reconstruction formula for f from the
(f,gj)-

@ At the same time we have also obtained a recipe for writing f as a
superposition of g;.
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“Optimality” of Dual frames

Frames, even tight frames, are generally not (orthonormal) bases because
the g; are typically not linearly independent. This means that for a given
f, there exist many different superpositions of the g; which all add up to
f. The above superposition is nevertheless special in the following sense.

Proposition
Iff =3, cigj for some () € ¢2(J) and if not all ¢; = (f,g;), then
> G* > > (f, &)
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Frames and discrete wavelet transforms

Wavelet frames

@ Wavelet frames can be construced from a family of averaging kernels
(“father functions” or scaling functions) satisfying certain conditions.

@ This is connected to so-called multiresolution analysis.

@ The goal is here to represent wavelet frames via deep neural networks.
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