
Lecture 3

Christa Cuchiero
based on joint lectures with M. Gambara, J. Teichmann and H. Wutte

Institute of Statistics and Mathematics
Vienna University of Economics and Business

Christa Cuchiero (WU Wien) Lecture 3 Wien, October 2019 1 / 22

Part I

Gradient descent and backpropagation

Christa Cuchiero (WU Wien) Lecture 3 Wien, October 2019 2 / 22

Optimization task

Supervised learning task with neural networks

Supervised learning

Given training data {(xi , yi), i = 1, . . .N} with xi ∈ Rm and yi ∈ Rd , find
a neural network g within a class of neural networks NNΘ with a certain
architecture characterized by parameters θ ∈ Θ, such that

g ∈ argmin
NNΘ

N∑
i=1

L(g(xi), yi),

where L is a loss function: C (Rm,Rd̃) × Rd → R+. Note that the input
dimension of the neural network is m and the output dimension d̃ .

Since g is determined by the parameters θ, the above optimization
corresponds to searching the minimum in the parameter space Θ which is
nothing else than the collection of (At , bt)t=1,...,n (if we have n hidden
layers) and the readout map R.

Christa Cuchiero (WU Wien) Lecture 3 Wien, October 2019 3 / 22

Optimization task

Examples

Example MNIST classification: xi ∈ R28×28, i.e. m = 28× 28 and
y ∈ R, i.e. d = 1. The output dimension of the neural network is
d̃ = 10. The loss function is given by

L(g(x), y) =
10∑
k=1

1{y=k−1} log((g(x))k).

Example classical regression with L2 loss:

L(g(x), y) = ‖g(x)− y‖2.

Here the output dimension of the neural network d̃ is equal to d .

Christa Cuchiero (WU Wien) Lecture 3 Wien, October 2019 4 / 22

Optimization task

But how...?

... to deal with a non-linear, non-convex optimization problem and
with around 600 000 parameters, as it is the case for the MNIST data
set?

Christa Cuchiero (WU Wien) Lecture 3 Wien, October 2019 5 / 22

Optimization methods

Gradient descent: the simplest method

The gradient of a function F (θ) : RM → R is given by

∇F (θ) = (∂θ1F (θ), . . . , ∂θM F (θ)).

Gradient descent:
starting with an initial guess θ(0), one iteratively defines for some
learning rate ηk

θ(k+1) = θ(k) − ηk∇F (θ(k))

Christa Cuchiero (WU Wien) Lecture 3 Wien, October 2019 6 / 22

Optimization methods

Gradient descent: the simplest method

Christa Cuchiero (WU Wien) Lecture 3 Wien, October 2019 7 / 22

Optimization methods

Classical convergence result

Theorem

Suppose the function F : RM → R is convex and differentiable, and that
its gradient is Lipschitz continuous with constant L > 0, i.e. we have that
‖∇F (θ)−∇F (β)‖ ≤ L‖θ − β‖ for any θ, β ∈ RM . Then if we run
gradient descent for k iterations with a fixed step size η ≤ 1/L , it will
yield a solution F (θ(k)) which satisfies

F (θ(k))− F (θ∗) ≤ ‖θ
(0) − θ∗‖2

2ηk
,

where F (θ∗) is the optimal value. Intuitively, this means that gradient
descent is guaranteed to converge and that it converges with rate O(1/k).

In practice, the convexity condition is often not satisfied. Moreover, the
solution depends crucially on the inital value.

Christa Cuchiero (WU Wien) Lecture 3 Wien, October 2019 8 / 22

Optimization methods

How to compute the gradient

Nevertheless all optimization algorithms build on the classical idea of
gradient descent usually in its enhanced form of stochastic gradient descent.

How to compute the gradient in our case of supervised learning, where

F (θ) =
N∑
i=1

L(g(xi |θ), yi)

and θ corresponds to (At , bt)t=1,...,n (if we have n hidden layers) and the
readout map R? We here indicate the dependence of the neural network on
θ.

We suppose here for simplicity that the readout map R is linear, i.e.

R(x) = An+1x + b

where An+1 has d̃ rows and b ∈ Rd̃ , so that θ = {(At , bt)t=1,...,n+1}.

Christa Cuchiero (WU Wien) Lecture 3 Wien, October 2019 9 / 22

Optimization methods

Backpropagation

Since

∇θF (θ) =
N∑
i=1

∇θL(g(xi |θ), yi),

we need to determine ∂At ,klL(g(x |θ), y) and ∂bt ,kL(g(x |θ), y).

By the chain rule this is given by

∂At ,klL(g(x |θ), y) = 〈∂gL(g(x |θ), y), ∂At ,klg(x |θ)〉
∂bt ,kL(g(x |θ), y) = 〈∂gL(g(x |θ), y), ∂bt ,kg(x |θ)〉.

Output Layer:

∂An+1,klL(g(x |θ), y) = (∂gL(g(x |θ), y))k(σ(Anx(n − 1) + bn)︸ ︷︷ ︸
x(n)

)l

∂bn+1,kL(g(x |θ), y) = (∂gL(g(x |θ), y))k

Christa Cuchiero (WU Wien) Lecture 3 Wien, October 2019 10 / 22

Optimization methods

Backpropagation: second last layer

Recall x(t + 1) = σ(zt+1) where zt+1 = At+1x(t) + bt+1 and
g = zn+1 = An+1x(n) + bn+1.

To continue with the second last layer, we use the chain rule again

Note that L(g , y) = L(zn+1, y) = L(An+1x(n) + bn, y). Hence...

∂An,klL = 〈∂x(n)L, ∂An,klx(n)〉 = 〈An+1∂gL, ∂An,klx(n)〉
= 〈An+1∂gL, diag(σ′(zn)) ∂An,klzn︸ ︷︷ ︸

similar as in the last layer

〉

∂bn,kL = 〈∂x(n)L, ∂bn,kx(n)〉 = 〈An+1∂gL, ∂bn,kx(n)〉
= 〈An+1∂gL, diag(σ′(zn)) ∂bn,kzn︸ ︷︷ ︸

similar as in the last layer

〉

Christa Cuchiero (WU Wien) Lecture 3 Wien, October 2019 11 / 22

Optimization methods

Backpropagation - matrix notation

Output Layer:

∂An+1L = ∂gL︸︷︷︸
δn+1

(σ(An(· · ·) + bn)︸ ︷︷ ︸
x(n)

)T

∂bn+1L = ∂gL

All other layers:

∂AtL = diag(σ′(zt))At+1∂gL︸ ︷︷ ︸
δt

(σ(At−1x(t − 2) + bt−1)︸ ︷︷ ︸
x(t−1)

)T

∂btL = diag(σ′(zt))At+1∂gL

Christa Cuchiero (WU Wien) Lecture 3 Wien, October 2019 12 / 22

Optimization methods

The Backpropogation Algorithm

1 Calculate zt , x(t) for t = 1, . . . , n + 1 (forward pass)

2 Set δn+1 = ∂gL

3 Then ∂An+1L = δn+1x(n) and ∂bn+1L = δn+1

4 for t from n to 1 do:

I δt = diag(σ′(zt))At+1∂gL

I Then ∂AtL = δtx(t − 1) and ∂btL = δt

5 return ∂AtL and ∂btL for t = 1, . . . , n + 1

Christa Cuchiero (WU Wien) Lecture 3 Wien, October 2019 13 / 22

Part II

Stochastic gradient descent

Christa Cuchiero (WU Wien) Lecture 3 Wien, October 2019 14 / 22

Complexity of the standard gradient descent

Recall that one gradient descent step requires the calculation of

∇θF (θ) =
1

N

N∑
i=1

∇θL(g(xi |θ), yi).

and each of the summands requires one backpropagation run. (We
normalize the loss function by N). Thus, the total complexity of one
gradient descent step is equal to

N ∗ complexity(backprop)

The complexity of one backpropagation run corresponds to the number of
parameters of the neural network

n∑
t=1

(mt ×mt+1 + bt).

In the case of the standard algorithm for the MNIST data set that would be
600000 ∗ 60000 = 36 ∗ 109 flops (Floating Point Operations Per Seconds)
and memory units!

Christa Cuchiero (WU Wien) Lecture 3 Wien, October 2019 15 / 22

Stochastic gradient descent

Key insight for deep learning: stochastic gradient descent

∇θF is approximated/replaced by the gradient of a subsample: starting with
an initial guess θ(0), one iteratively defines for some learning rate ηk

θ(k+1) = θ(k) − ηk∇L(k)(θ(k))

with

L(k)(θ) =
1

Nbatch

Nbatch∑
i=1

L(g(xi+kNbatch
|θ), yi+kNbatch

)

k ∈ {0, 1, ..., bN/Nbatch, c − 1}

meaning that the training data is batched in packages (mini batches) of
size Nbatch.

In the most extrem case Nbatch can be equal to 1. Then the true gradient of
F is approximated by a gradient of a single (randomly chosen) sample k, i.e.
∇L((g(xk |θ), yk). The algorithm then sweeps through the training set to
perform the above update of θ.

Christa Cuchiero (WU Wien) Lecture 3 Wien, October 2019 16 / 22

Stochastic gradient descent - algorithm

Choose an initial vector of parameters θ and learning rate η

Repeat until an approximate minimum is obtained:

I Randomly shuffle examples in the training set.
I for k = 1, 2, . . . ,N do:

F θ(k) := θ(k−1) − η∇L((g(xk |θk−1), yk)

The following picture illustrated the fluctuations in the loss function as gradient
steps with respect to mini-batches are taken.

Christa Cuchiero (WU Wien) Lecture 3 Wien, October 2019 17 / 22

“Comparison between SGD and GD”

Christa Cuchiero (WU Wien) Lecture 3 Wien, October 2019 18 / 22

Stochastic approximations - Robbins-Monro algorithm

Stochastic gradient descent can be traced back to the Robbins-Monro
algorithm (1951).

This is a methodology for solving a root finding problem, where the
function is represented as an expected value.

Assume that we have a function M(θ) and a constant α , such that
the equation M(θ) = α has a unique root at θ∗, i.e. M(θ∗)− α = 0.

It is assumed M(θ) = E[N(θ)].

The structure of the algorithm is to then generate iterates of the form:

θ(k+1) = θ(k) − ηk(N(θ(k))− α)

Christa Cuchiero (WU Wien) Lecture 3 Wien, October 2019 19 / 22

A convergence result

Theorem (Robbins-Monoroe ’51, Blum ’54)

Assume that
the random variable N(θ) is uniformly bounded,
M(θ) is nondecreasing,
M ′(θ∗) exists and is positive,
the sequence ηk satisfies the following requirements

∞∑
k=0

ηk =∞ and
∞∑
k=0

η2
k <∞.

Then θ(k) converges in L2 and almost surely to θ∗.

Christa Cuchiero (WU Wien) Lecture 3 Wien, October 2019 20 / 22

Application in Stochastic Optimization

Suppose we want to solve the following stochastic optimization problem

min
θ∈Θ

E[Q(θ)]

with a stochastic objective function Q : Ω×Θ→ R, (ω, θ) 7→ Q(θ)(ω).

If θ 7→ E[Q(θ)] is differentiable and convex, then this problem is equivalent
to find the root θ∗ of ∇E[Q(θ)] = 0.

We can apply the Robbins Monro algorithm whenever we find
N(θ) = N(θ)(ω) such that

∇E[Q(θ)] = E[N(θ)],

i.e., N(θ) needs to be an unbiased estimator of ∇E[Q(θ)]. If we can
interchange differentiation and expectation,

N(θ) = ∇Q(θ)

is clearly a candidate.

Christa Cuchiero (WU Wien) Lecture 3 Wien, October 2019 21 / 22

Convergence and application to supervised learning

The above first three conditions for convergence translate to strict
convexity of θ 7→ E[Q(θ)] and uniform boundedness of ∇Q(θ).

In the case of supervised learning we deal exactly with such problems.
The stochastic objective function Q(θ)(ω) then corresponds to

L(g(x |θ), y)

where (x , y) corresponds to ω and we deal with the empirical measure
to compute the mean.

Christa Cuchiero (WU Wien) Lecture 3 Wien, October 2019 22 / 22

	Gradient descent and backpropagation
	Optimization task
	Optimization methods

	Stochastic gradient descent

