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Gradient descent and backpropagation
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Supervised learning task with neural networks

Supervised learning

Given training data {(x;,y;),i = 1,... N} with x; € R™ and y; € R9, find
a neural network g within a class of neural networks NNg with a certain
architecture characterized by parameters € ©, such that

N
g €< argminZﬁ(g(x;),y;),
NNe =y

where L is a loss function: C(R™ RY) x R — R, . Note that the input
dimension of the neural network is m and the output dimension d.

Since g is determined by the parameters 0, the above optimization
corresponds to searching the minimum in the parameter space © which is
nothing else than the collection of (A¢, bt)¢=1,....n (if we have n hidden
layers) and the readout map R.
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Optimization task

Examples

o Example MNIST classification: x; € R?8%?8 je. m =28 x 28 and
y €R,i.e. d =1. The output dimension of the neural network is
d = 10. The loss function is given by

10
L(g(x),y) =D 1iy—k_1y log((8(x))i)-
k=1

e Example classical regression with L2 loss:

L(g(x),y) = llg(x) =yl

Here the output dimension of the neural network dis equal to d.
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But how...?

@ ... to deal with a non-linear, non-convex optimization problem and
with around 600 000 parameters, as it is the case for the MNIST data
set?

Christa Cuchiero (WU Wien) Lecture 3 Wien, October 2019 5/22



Optimization methods

Gradient descent: the simplest method

o The gradient of a function F(#) : RM — R is given by
VF(0) = (0, F(0),...,0,F(0)).
o Gradient descent:
starting with an initial guess (%), one iteratively defines for some

learning rate 7,
o1 = 9k — ) VF(6K))
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Optimization methods

Gradient descent: the simplest method
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Optimization methods

Classical convergence result

Theorem

Suppose the function F : RM — R is convex and differentiable, and that
its gradient is Lipschitz continuous with constant L > 0, i.e. we have that
IVF(0) — VF(B)|| < L|0— B| for any 8,3 € RM. Then if we run
gradient descent for k iterations with a fixed step sizen < 1/L , it will
yield a solution F(6¥)) which satisfies

(0)_9*”2
(k) — &3 <H87
FoW) — F(o) < oot

where F(0*) is the optimal value. Intuitively, this means that gradient
descent is guaranteed to converge and that it converges with rate O(1/k).

In practice, the convexity condition is often not satisfied. Moreover, the
solution depends crucially on the inital value.
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Optimization methods

How to compute the gradient

@ Nevertheless all optimization algorithms build on the classical idea of
gradient descent usually in its enhanced form of stochastic gradient descent.

@ How to compute the gradient in our case of supervised learning, where

N

F(0) = L(g(xil0), )

i=1

and 6 corresponds to (Ay, bt)¢=1,....n (if we have n hidden layers) and the
readout map R? We here indicate the dependence of the neural network on
0.

@ We suppose here for simplicity that the readout map R is linear, i.e.
R(x) = Asp1x+ b

where A,;1 has d rows and b € RE, so that 0 = {(A¢, bt)e=1,....n+1}-
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Backpropagation
@ Since

VoF (0 ZV@£ (xil0), yi),

we need to determine 8Ahk/£(g(x|9),y) and O, kL(g(x|6),y).

@ By the chain rule this is given by

On kiL(g(x]0),y) = (0gL(g(x0),y), Oa,.kig(x]0))
O,k L(g(x10), y) = (0gL(g(x]0),y), Ob, k&(x|0)).

@ Qutput Layer:
0,1 ki L(8(x]0), y) = (95 L(g(x10), ) k(o (Anx(n — 1) + bn)),

x(n)

abn+1,l<£(g(x|9)ay) = (agﬁ(g(XW)a}/))k
e oo BT T07®



Optimization methods

Backpropagation: second last layer

o Recall x(t + 1) = 0(z¢4+1) where zy11 = Apy1x(t) + bry1 and
g = Zp1 = Apy1x(n) + b1

@ To continue with the second last layer, we use the chain rule again

Note that L(g,y) = L(zn+1,y) = L(Ant1x(n) + b, y). Hence...

Dpp ki £ = (Ou(n) L, Opn hax(n)) = (Any105L, Oa, 1ax(n))
= (An+105L, diag(o’(zn)) OA,,k1Zn )
~——
similar as in the last layer
abmkﬁ = <8X(,,),C, 8bmkx(n)> = <An+18g£,8bmkx(n))
= (An105L, diag(0”(20)) Opnkzn )
~——

similar as in the last layer
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Optimization methods

Backpropagation - matrix notation

o Qutput Layer:

Onpir L= 0gL(o(An(- ) + bn)) "
~ —
6n+1 x(n)

Oy £ = O L.

o All other layers:

Oa L = diag(o’(2:)) A+ 105 L(o(Ac—1x(t — 2) + be—1)) "

5 x(t—1)
Op L = diag(0”(2¢)) Aes10g L
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The Backpropogation Algorithm

O Calculate z, x(t) for t =1,...,n+ 1 (forward pass)
@ Set dpy1 = 0L
© Then Ja,_ L = dpt1x(n) and 0
@ for t from n to 1 do:

» 0; = diag(o'(2:))Ae4+10, L

» Then 04, L = 0:x(t — 1) and Op, L = 0

L= 5n+1

n+1 n+1

Q return 05, L and Op, L fort=1,...,n+1
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Stochastic gradient descent
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-
Complexity of the standard gradient descent

@ Recall that one gradient descent step requires the calculation of
VoF(0 Zveﬁ (xi10), i)-

and each of the summands requires one backpropagation run. (We
normalize the loss function by N). Thus, the total complexity of one
gradient descent step is equal to

N x complexity(backprop)

@ The complexity of one backpropagation run corresponds to the number of
parameters of the neural network
n

Z(mt X Mgyq + bt)

t=1
@ In the case of the standard algorithm for the MNIST data set that would be
600000 * 60000 = 36 * 10° flops (Floating Point Operations Per Seconds)

and memory units!
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Stochastic gradient descent

@ Key insight for deep learning: stochastic gradient descent

@ VyF is approximated/replaced by the gradient of a subsample: starting with
an initial guess 6(°), one iteratively defines for some learning rate 7,

ol = gt — v £ (9K)

with
Noatch

Z L& (Xi+kNoaien|0) Yict-kiNoaien)
i=1

k € {O, 1,..., I_N/Nbatch - 1}

meaning that the training data is batched in packages (mini batches) of
size Npatch-

LM (0

Nbatch

@ In the most extrem case Npaich can be equal to 1. Then the true gradient of
F is approximated by a gradient of a single (randomly chosen) sample k, i.e.

VL((g(xx|0), yx). The algorithm then sweeps through the training set to
perform the above update of 6.
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Stochastic gradient descent - algorithm

@ Choose an initial vector of parameters 6 and learning rate n

@ Repeat until an approximate minimum is obtained:
» Randomly shuffle examples in the training set.
» for k=1,2,..., N do:
* 00 = 0%V — v L((g(al0" 1), vi)

The following picture illustrated the fluctuations in the loss function as gradient
steps with respect to mini-batches are taken.
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NN
“Comparison between SGD and GD"

Gradienl Descenl Slochaslic Gradiant Dascant
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Stochastic approximations - Robbins-Monro algorithm

@ Stochastic gradient descent can be traced back to the Robbins-Monro
algorithm (1951).

@ This is a methodology for solving a root finding problem, where the
function is represented as an expected value.

@ Assume that we have a function M(6) and a constant « , such that
the equation M(6) = « has a unique root at 6%, i.e. M(0*) — a =0.

o It is assumed M(0) = E[N(0)].

@ The structure of the algorithm is to then generate iterates of the form:

Ut = 6t — e (N(OW) — )
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A convergence result

Theorem (Robbins-Monoroe '51, Blum '54)

Assume that

the random variable N(0) is uniformly bounded,
M(0) is nondecreasing,

M'(6*) exists and is positive,

the sequence ny satisfies the following requirements

o0 o0
an:oo and Zn,%<oo.
k=0 k=0

Then 6(%) converges in L2 and almost surely to 6*.
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|
Application in Stochastic Optimization

@ Suppose we want to solve the following stochastic optimization problem
min E[Q(6
min E[Q(0)]

with a stochastic objective function @ : Q2 x © — R, (w,0) — Q(0)(w).

o If 6 — E[Q(0)] is differentiable and convex, then this problem is equivalent
to find the root 6* of VE[Q(6)] = 0.

@ We can apply the Robbins Monro algorithm whenever we find
N(0) = N(0)(w) such that

VE[Q(0)] = E[N(0)],

i.e., N(0) needs to be an unbiased estimator of VE[Q(A)]. If we can
interchange differentiation and expectation,

N(9) = VQ(0)
is clearly a candidate.
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Convergence and application to supervised learning

@ The above first three conditions for convergence translate to strict
convexity of 6 — E[Q(6)] and uniform boundedness of VQ(6).

@ In the case of supervised learning we deal exactly with such problems.
The stochastic objective function Q(6)(w) then corresponds to

L(g(x]0),y)

where (x, y) corresponds to w and we deal with the empirical measure
to compute the mean.
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