Aspects of Signatures

Josef Teichmann

ETH Zürich

April 2021

CODE

We consider differential equations of the form

$$dY_t = \sum_i V_i(Y_t) du_t^i \,, \ Y_0 = y \in E$$

to construction evolutions in state space E (could be a manifold of finite or infinite dimension) depending on local characteristics, initial value $y \in E$ and the control u.

If the map $y \to Y_T$ is considered CODEs are an exciting model for feedforward neural networks, residual networks, etc (see joint work with Christa Cuchiero and Martin Larsson).

CODEs: control as input

For this talk we fix $y \in E$ and consider

$$u \mapsto W \operatorname{Evol}_{s,t}(y)$$

and train the readout and/or the vector fields.

Does this also correspond to classes of networks? Yes: these are continuous time versions of rNNs, LSTMs, etc.

It can be used for time series, predictions, etc.

Reservoir Computing (RC)

... We aim to learn an input-output map on a high- or infinite dimensional input state space. Consider the input as well as the output dynamic, e.g. a time series. An example: learn a given evolution on state space E:

Paradigm of Reservoir computing (Herbert Jäger, Lyudmila, Grigoryeva, Wolfgang Maas, Juan-Pablo Ortega, et al.)

Split the input-output map into a generic part of generalized rNN-type (the *reservoir*), which is *not* trained and a readout part, which is trained.

Often the readout is chosen linear and the reservoir has random features. The reservoir is usually a numerically very tractable dynamical system.

Applications of RC

- \bullet Often reservoirs can be realized physically, whence ultrafast evaluations are possible. Only the readout map W has to be trained.
- One can learn dynamic phenomena *without* knowing the specific characteristics.
- It works unreasonably well with generalization tasks.

Applications of RC

- ullet Often reservoirs can be realized physically, whence ultrafast evaluations are possible. Only the readout map W has to be trained.
- One can learn dynamic phenomena without knowing the specific characteristics.
- It works unreasonably well with generalization tasks.

Applications of RC

- ullet Often reservoirs can be realized physically, whence ultrafast evaluations are possible. Only the readout map W has to be trained.
- One can learn dynamic phenomena without knowing the specific characteristics.
- It works unreasonably well with generalization tasks.

An instance of RC are CODEs/RDEs/SDEs

Consider a controlled differential equation

$$dY_t = \sum_{i=1}^d V_i(Y_t) du_t^i, \ Y_0 = y \in E$$

for some smooth vector fields $V_i: E \to TE$, $i=1,\ldots,d$ and d independent (Stratonovich) Brownian motions u^i , or finite variation continuous controls, or a rough path, or a semi-martingale. This describes a controlled dynamics on E.

We want to learn the dynamics, i.e. the map

(input control u) \mapsto (solution Y).

Obviously a complicated, non-linear map, ...

Transport operators

We introduce some notation for this purpose:

Definition

Let $V: E \to E$ be a smooth vector field, and let $f: E \to \mathbb{R}$ be a smooth function, then we call

$$Vf(x) = df(x) \bullet V(x)$$

the transport operator associated to V, which maps smooth functions to smooth functions and determines V uniquely.

Taylor expansion

Theorem

Let Evol be a smooth evolution operator on a convenient manifold E which satisfies (again the time derivative is taken with respect to the forward variable t) a controlled ordinary differential equation

$$d \operatorname{Evol}_{s,t}(x) = \sum_{i=1}^{d} V_i(\operatorname{Evol}_{s,t}(x)) du^i(t)$$

then for any smooth function $f: E \to \mathbb{R}$, and every $x \in E$

$$f(\mathsf{Evol}_{s,t}(x)) =$$

$$= \sum_{k=0}^{M} \sum_{i_1,\dots,u_k=1}^{d} V_{i_1} \cdots V_{i_k} f(x) \int_{s \le t_1 \le \dots \le t_k \le t} du^{i_1}(t_1) \cdots du^{i_k}(t_k) +$$

$$+ R_M(s,t,f)$$

Taylor expansion

with remainder term

$$R_{M}(s,t,f) =$$

$$= \sum_{i_{0},...,u_{M}=1}^{d} \int_{s \leq t_{1} \leq \cdots \leq t_{M+1} \leq t} V_{i_{0}} \cdots V_{i_{k}} f(\operatorname{Evol}_{s,t_{0}}(x)) du^{i_{0}}(t_{0}) \cdots du^{i_{k}}(t_{M})$$

holds true for all times $s \le t$ and every natural number $M \ge 0$.

A lot of work has been done to understand the analysis, algebra and geometry of this expansion (Kua-Tsai Chen, Gerard Ben-Arous, Terry Lyons). It is a starting point of *rough path analysis* (Terry Lyons, Peter Friz, etc).

Hopf algebraic interpretation

Definition

Consider the free algebra \mathbb{A}_d of formal series generated by d non-commutative indeterminates e_1,\ldots,e_d (actually a Hopf Algebra). A typical element $a\in\mathbb{A}_d$ is written as

$$a = \sum_{k=0}^{\infty} \sum_{i_1,...,i_k=1}^{d} a_{i_1...i_k} e_{i_1} \cdots e_{i_k}$$

sums and products are defined in the natural way. We consider the complete locally convex topology making all projections $a \mapsto a_{i_1...i_k}$ continuous on \mathbb{A}_d , hence a convenient vector space.

Vector fields in \mathbb{A}_d

Definition

We define on \mathbb{A}_d smooth vector fields

$$a \mapsto ae_i$$

for i = 1, ..., d.

Signature

Theorem

Let u be a smooth control, then the controlled differential equation

$$d\operatorname{Sig}_{s,t}(a) = \sum_{i=1}^{d} \operatorname{Sig}_{s,t}(a)e_{i}du^{i}(t), \operatorname{Sig}_{s,s}(a) = a$$
 (1)

has a unique smooth evolution operator, called signature of \boldsymbol{u} and denoted by Sig, given by

$$\operatorname{Sig}_{s,t}(a) = a \sum_{k=0}^{\infty} \sum_{i_1, \dots, u_k=1}^{d} \int_{s \leq t_1 \leq \dots \leq t_k \leq t} du^{i_1}(t_1) \cdots du^{i_k}(t_k) e_{i_1} \cdots e_{i_k}. (2)$$

Actually Sig(e) takes values in a Lie group G and any element of G can be reached up to arbitrary order of accuracy by such evolutions starting at e. Additionally the restriction of linear maps on G is an algebra.

Signature as abstract reservoir

Theorem (Signature is a reservoir)

Let Evol be a smooth evolution operator on a convenient vector space E which satisfies (again the time derivative is taken with respect to the forward variable t) a controlled ordinary differential equation

$$d \operatorname{Evol}_{s,t}(x) = \sum_{i=1}^d V_i(\operatorname{Evol}_{s,t}(x)) du^i(t).$$

Then for any smooth (test) function $f: E \to \mathbb{R}$ and for every $M \ge 0$ there is a time-homogenous linear $W = W(V_1, \ldots, V_d, f, M, x)$ from \mathbb{A}_d^M to the real numbers \mathbb{R} such that

$$f(\mathsf{Evol}_{s,t}(x)) = W(\pi_M(\mathsf{Sig}_{s,t}(1))) + \mathcal{O}((t-s)^{M+1})$$

for $s \leq t$.

- This explains that any solution can be represented up to a linear readout – by a universal reservoir, namely signature. Similar constructions can be done in regularity structures, too (branched rough paths, etc).
- This is used in many instances of provable machine learning by, e.g., groups in Oxford (Harald Oberhauser, Terry Lyons, etc), and also ...
- ... at JP Morgan, in particular great recent work on 'Nonparametric pricing and hedging of exotic derivatives' by Terry Lyons, Sina Nejad and Imanol Perez Arribas.
- in contrast to reservoir computing: signature is high dimensional (i.e. infinite dimensional) and a precisely defined, non-random object.
- Can we approximate signature by a lower dimensional random object with similar properties?

- This explains that any solution can be represented up to a linear readout – by a universal reservoir, namely signature. Similar constructions can be done in regularity structures, too (branched rough paths, etc).
- This is used in many instances of provable machine learning by, e.g., groups in Oxford (Harald Oberhauser, Terry Lyons, etc), and also ...
- ... at JP Morgan, in particular great recent work on 'Nonparametric pricing and hedging of exotic derivatives' by Terry Lyons, Sina Nejad and Imanol Perez Arribas.
- in contrast to reservoir computing: signature is high dimensional (i.e. infinite dimensional) and a precisely defined, non-random object
- Can we approximate signature by a lower dimensional random object with similar properties?

- This explains that any solution can be represented up to a linear readout – by a universal reservoir, namely signature. Similar constructions can be done in regularity structures, too (branched rough paths, etc).
- This is used in many instances of provable machine learning by, e.g., groups in Oxford (Harald Oberhauser, Terry Lyons, etc), and also ...
- ... at JP Morgan, in particular great recent work on 'Nonparametric pricing and hedging of exotic derivatives' by Terry Lyons, Sina Nejad and Imanol Perez Arribas.
- in contrast to reservoir computing: signature is high dimensional (i.e. infinite dimensional) and a precisely defined, non-random object.
- Can we approximate signature by a lower dimensional random object with similar properties?

- This explains that any solution can be represented up to a linear readout – by a universal reservoir, namely signature. Similar constructions can be done in regularity structures, too (branched rough paths, etc).
- This is used in many instances of provable machine learning by, e.g., groups in Oxford (Harald Oberhauser, Terry Lyons, etc), and also ...
- ... at JP Morgan, in particular great recent work on 'Nonparametric pricing and hedging of exotic derivatives' by Terry Lyons, Sina Nejad and Imanol Perez Arribas.
- in contrast to reservoir computing: signature is high dimensional (i.e. infinite dimensional) and a precisely defined, non-random object.
- Can we approximate signature by a lower dimensional random object with similar properties?

- This explains that any solution can be represented up to a linear readout – by a universal reservoir, namely signature. Similar constructions can be done in regularity structures, too (branched rough paths, etc).
- This is used in many instances of provable machine learning by, e.g., groups in Oxford (Harald Oberhauser, Terry Lyons, etc), and also ...
- ... at JP Morgan, in particular great recent work on 'Nonparametric pricing and hedging of exotic derivatives' by Terry Lyons, Sina Nejad and Imanol Perez Arribas.
- in contrast to reservoir computing: signature is high dimensional (i.e. infinite dimensional) and a precisely defined, non-random object.
- Can we approximate signature by a lower dimensional random object with similar properties?

Signature for semi-martingales

We shall consider now $\mathbb{R}_{\geq 0}$ as time interval except otherwise mentioned. The stochastic basis satisfies usual conditions.

Let us introduce some notation: we denote by $\mathbb S$ the set of simple predictable processes, i.e. for $\omega\in\Omega,$ $s\in\mathcal T$

$$H_s(\omega) = H_0(\omega) 1_{\{0\}}(s) + \sum_{i=1}^n H_i(\omega) 1_{]T_i(\omega), T_{i+1}(\omega)]}(s)$$

for an increasing, finite sequence of stopping times $0=T_0\leq T_1\leq \ldots T_{n+1}<\infty$ and H_i being \mathcal{F}_{T_i} measurable, by $\mathbb L$ the set of adapted, caglad processes and by $\mathbb D$ the set of adapted, cadlag processes on $\mathbb R_{\geq 0}$.

These vector spaces are endowed with the metric

$$d(X,Y) := \sum_{n>0} \frac{1}{2^n} E[|(X-Y)|_n^* \wedge 1],$$

which makes $\mathbb L$ and $\mathbb D$ complete topological vector spaces. We call this topology the ucp-topology ("uniform convergence on compacts in probability"). Notice that predictable strategies as well as integrators are considered $\mathbb R$ valued here, which, however, *contains* the $\mathbb R^n$ case.

Good integrators

Definition

An adapted, cadlag process X is called good integrator if the map

$$J_X:\mathbb{S}\to\mathbb{D}$$

with

$$(H \bullet X)_t := J_X(H)_t := H_0 X_0 + \sum_{i=1}^n H_i (X_{T_{i+1} \wedge t} - X_{T_i \wedge t}),$$

for $H \in \mathbb{S}$, is continuous with respect to the ucp-topologies on the respective spaces (this can even be weakened).

Bichteler-Dellacherie Theorem

X is a good integrator if and only if X = M + A, where M is a local martingale and A is a process of finite total variation, i.e. X is a semimartingale.

The Emery topology

The Emery topology on the set of semimartingales \mathbb{SEM} is defined by the metric

$$d_{\mathsf{E}}(S_1,S_2) := \sum_{n\geq 0} \frac{1}{2^n} \sup_{K\in\mathbb{S}, \|K\|_{\infty}\leq 1} \mathsf{E}\big[|(K\bullet(S_1-S_2))|_n^* \wedge 1\big].$$

We can by means of the Bichteler-Dellacherie theorem easily prove the following important theorem.

Theorem

The set of semi-martingales \mathbb{SEM} is a topological vector space and complete with respect to the Emery topology.

Theorem

For every semi-martingale X the map J_X from the space $\mathbb L$ of càglàd processes to $\mathbb S \mathbb E \mathbb M$ of semi-martingales is continuous.

Ito's formula

We are now already able to formulate and prove Ito's formula in all generality:

Theorem

Let X^1,\ldots,X^n be good integrators and $f:\mathbb{R}^n\to\mathbb{R}$ a C^2 function, then for $t\geq 0$

$$f(X_{t}) = \sum_{i=1}^{n} (\partial_{i} f(X_{-}) \bullet X^{i})_{t} + \frac{1}{2} \sum_{i,j=1}^{n} (\partial_{ij}^{2} f(X_{-}) \bullet [X^{i}, X^{j}])_{t} +$$

$$+ \sum_{0 \leq s \leq t} \{ f(X_{s}) - f(X_{s})_{-} - \sum_{i=1}^{n} \partial_{i} f(X_{s})_{-} \Delta X_{s}^{i} - \frac{1}{2} \sum_{i,j=1}^{n} \partial_{ij}^{2} f(X_{s})_{-} \Delta X_{s}^{i} \Delta X_{s}^{j} \}.$$

(we apply $X_{0-} = 0$ here.)

Semimartingale Signature (existence)

Theorem

Let $X^1, ..., X^n$ be good integrators. Consider a free algebra \mathbb{A}^d of power series generated by (non-commutative) generators $e_0, e_i, e_{ij}, e_{ijk}, ...,$ for $i \leq j \leq k \leq ... \in \{1, ..., d\}$, then semimartingale signature

$$\begin{aligned} &\operatorname{sem-Sig} = 1 + \int_0^{\cdot} (\operatorname{sem-Sig}_s \, ds) e_0 + \sum_{i=1}^d (\operatorname{sem-Sig}_- \bullet X^i) e_i + \\ &+ \sum_{i \leq j = 1}^d (\operatorname{sem-Sig}_- \bullet [X^i, X^j]) e_{ij} + \\ &\sum_{i \leq j \leq k} (\sum_{s \leq \cdot} \operatorname{sem-Sig}_{s_-} \Delta X^i_s \Delta X^j_s \Delta X^k_s) e_{ijk} + \dots \end{aligned}$$

is a well defined \mathbb{A}^d valued process.

Semi-martingale Signature (density)

The set of all $\langle \ell, \text{sem-Sig} \rangle$ for $\ell \in (\mathbb{A}^d)^*$ is an algebra of semimartingales.

Proof

- The first assertion follows by constructing solutions for finite dimensional (nilpotent of degree *M*) cut off systems.
- By Ito's formula one sees that every polynomial in time and X^1, \ldots, X^d can be precisely written as a finite linear combination of components of the semimartingale signature.
- By Ito's formula one can see that products of components of semimartingale signature can be written as finite linear combinations of components of semimartingale signature.
- Also every integral with integrand $f(., X^1, ..., X^d)$ with respect to a component of semimartingale signature can be written as a finite linear combination of components of signature.
- Therefore the span of the components of semimartingale signature constitutes an algebra.

References

- E. Akyildirim, J. Teichmann, S. Zhou: Portfolio selection by random signature methods, working paper, 2020.
- C. Cuchiero, M. Larsson, J. Teichmann: Controlled neural ordinary differential equations, accepted, SIAM, 2020.
- C. Cuchiero, L. Gonon, L. Grigoryeva, J.-P. Ortega, J. Teichmann: Discrete-time signatures and randomness in reservoir computing, arxiv, 2020.
- T. Lyons, Rough paths, Signatures and the modelling of functions on streams Terry Lyons, Arxiv, 2014.