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Introduction

Bernstein polynomials

A simple and beautiful application of the law of large numbers (LLN) is
Sergey Bernstein’s proof of Weierstrass approximation theorem:

A Bernstein polynomial of type (n, k) is defined by

Bn,k(x) =

(
n

k

)
xk(1− x)n−k (k = 0, 1, . . . , n) . (1)

Then every continuous function f on [0, 1] can be uniformly approximated
by the following polynomial

B f
n (x) =

n∑
k=0

f

(
k

n

)
Bn,k(x) ,

where a quantitative estimate is given below.
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Introduction

Bernstein polynomials

Let (Xn) be a sequence of independent, identically distributed Bernoulli
random variables with success parameter x ∈ [0, 1], then by LLN

X1 + . . .+ Xn

n
→ x

almost surely. We furthermore have

P
[
X1 + . . .+ Xn = k

]
= Bn,k(x) .

Denote by Sn the sum X1 + . . .+ Xn.
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Introduction

Bernstein polynomials

Whence

|B f
n (x)− f (x)| =

∣∣∣∣E[f (Sn
n

)
− f (x)

]∣∣∣∣ ≤ E
[ ∣∣∣∣f (Sn

n

)
− f (x)

∣∣∣∣ ]
≤ 2 sup

u
|f (u)| P

[ ∣∣∣∣Snn − x

∣∣∣∣ > δ
]

+ sup
|u−v |≤δ

|f (u)− f (v)| P
[ ∣∣∣∣Snn − x

∣∣∣∣ ≤ δ] .
Since f is uniformly continuous we can bound the second term on the
right hand side by ε for small enough δ. Due to Chebychev’s inequality the
first term is bounded by

2 sup
u
|f (u)|x(1− x)

nδ2
≤ 1

2nδ2
sup
u
|f (u)| ≤ ε ,

for n large enough. Therefore

‖B f
n (x)− f (x)‖∞ −→ 0 for n→∞.
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Introduction

Weierstrass approximation theorem

This proves in particular the following theorem:

The polynomials are dense in C ([0, 1]) = C ([0, 1],R) (Weierstrass
approximation theorem).

A substantial generalization of this result tells that on compact topological
Hausdorff spaces K every point separating subalgebra of the algebra of
continuous functions C (K ) := C (K ;R) is actually dense, too
(Stone-Weierstrass approximation theorem). Point separating just means
that for every two points x 6= y there is a function f ∈ A such that
f (x) 6= f (y).

There is an order theoretic version of this theorem and Bernstein’s proof
also paves the path towards a probabilistic version of this theorem.
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Introduction

Proof of the Stone Weierstrass approximation theorem

Let K be a compact topological Hausdorff space and let A ⊂ C (K ) be a
point separating subalgebra ((sub-)algebras here always contain the 1).
Let f ∈ C (K ) and ε > 0 be fixed. Then we can proceed as follows:

With g ∈ A, we have that |g | ∈ A. Indeed g(K ) ⊂ [a, b] for some
a, b, and take a polynomial p which approximates x 7→ |x | on [a, b] up
to accuracy ε. Then ‖|g | − p(g)‖∞ ≤ ε, however p(g) ∈ A.

With g , h ∈ A we have that max(g , h) = |g+h|
2 + |g−h|

2 ∈ A.

With g , g ∈ A we have that max(g , h) ∈ A.
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Introduction

Proof of the Stone Weierstrass approximation theorem

For every x ∈ K we construct fx ∈ A such that fx ≤ f + ε and
fx(x) = f (x). Indeed we can find (point separation) for every z ∈ K a
function gx ,z ∈ A with gx ,z(x) = f (x) and gx ,z(z) = f (z). Then there
exists an open neighborhood Vz 3 z such that gx ,z |Vz ≤ f |Vz + ε.
Due to compactness there is a finite subcover of (Vz) indexed by
z1, . . . , zn ∈ K . Define now fx = min(gx ,z1 , . . . , gx ,zn) ∈ A.

With an analogue argument we can construct an open cover (Ux)
such that fx ≥ f − ε on Ux 3 x , which has again a finite subcover
indexed by x1, . . . , xm. Define now g = max(fx1 , . . . , fxm) ∈ A, then
f − ε ≤ g ≤ f + ε globally.
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Introduction

Remarks

We could equally take a point separating, linear subspace A such that
with f , g ∈ A also max(f , g) ∈ A (order theoretic version of the Stone
Weierstrass approximation theorem).

A probabilistic version could look as follows: let ν be a measure with
full support on K and let µn,x = gn,xν be a family of probability
measures converging weakly to δx as n→∞, for x ∈ K . Assume that
x 7→ gn,x(y) is continuous for every y in the support of ν. Then the
span of x 7→ gn,x(y) is dense in C (K ).
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Introduction

Vector valued Stone Weierstrass approximation theorem

Let Y be a Banach space. Let B ⊂ C (K ;Y ) be an A-submodule, where A
a point separating subalgebra of C (K ). Assume furthermore that
(g(x))g∈B is a dense family in Y for every x ∈ K . Then B is dense in
C (K ;Y ) (this is related to Nachbin’s theorem).

The proof is simple: without restriction we can assume that A = C (K )
and that B is closed. Take f ∈ C (K ;Y ) and choose ε > 0. For every
x ∈ K choose gx ∈ B such that gx(x) = f (x). Then
({y ∈ K | ‖f (y)− gx(y)‖ < ε}) is an open cover of K which has a finite
subcover indexed by x1, . . . , xn ∈ X . Choose a partition of unity

∑
i ψi = 1

for this finite subcover, then g :=
∑

i ψigxi ∈ B is approximating f up to
accuracy ε.
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Introduction

Weighted Spaces

For several applications it is necessary to go beyond compact spaces. We
therefore consider weighted spaces (E , ρ), i.e. topological Hausdorff spaces
with ρ : E → R≥1 such that {ρ ≤ R} is compact for all R, where a similar
analysis as on compact spaces is possible.

We consider the closure Bρ(E ) of bounded continuous functions
Cb(E ;R) = Cb(E ) with respect to the ρ-norm

‖f ‖ρ := sup
x

|f (x)|
ρ(x)

.

In a similar manner we can define Bρ(E ;Y ) for vector valued functions.
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Introduction

Stone Weierstrass approximation theorem for weighted
spaces E

Let A a point separating subalgebra of Bρ(E ) of bounded functions, then
A is dense in Bρ(E ).

The proof follows directly from the compact case: it is sufficient to show
that f ∈ Cb(E ) ⊂ Bρ(E ) can be approximated by elements from A.
Choose R > 0, then we can find g ∈ A, such that g is close to f on
{ρ ≤ R} with distance less than 1 > ε > 0. Assume f has range bounded
by M, whence there is a polynomial p which closely approximates on
[−M − ‖g‖∞ − 1,M + ‖g‖∞ + 1] a function being x 7→ x on
[−M − 1,M + 1] and bounded by M + 1 otherwise. Consequently
p(g) ∈ A is close to f with distance less than ε+ M+1

R , but now globally in
ρ-norm (if R is chosen big enough such that M/R is small).
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Introduction

Vector valued Stone Weierstrass approximation theorem
for weighted spaces E

Let Y be a Banach space. Let B ⊂ Bρ(E ;Y ) be an A-submodule, where
A a point separating subalgebra of Bρ(E ) of bounded continuous
functions. Assume furthermore that (g(x))g∈B is a dense family in Y for
every x ∈ E . Then B is dense in Bρ(E ;Y ).

Again without restriction we can assume that A = Bρ(E ;Y ) and again it
is sufficient to show that f ∈ Cb(E ;Y ) ⊂ Bρ(E ;Y ) can be approximated
by elements from B. Choose R > 0, then we can choose g ∈ B, such that
g is close to f on {ρ ≤ R} with distance less than 1/3 > ε > 0. Assume
without restriction that f has range bounded by 1/3. The function
h = 1 ∧ 1

1/3+‖g‖ is bounded continuous on E , therefore it lies in A.

hg ∈ B is still close to f with distance less than ε+ 1
R but now globally (if

R is chosen large enough as above).
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Introduction

Remark

We can replace the Banach space Y by any locally convex vector
space and obtain analogue results for the locally convex spaces of
vector valued continuous functions on K or E , respectively.

In the real valued case an order theoretic version is possible, too.

In both cases we can generalize the assumptions to subsets A or B,
respectively, of bounded functions, whose restrictions on compacts of
the form {ρ ≤ R} contain a point separating subalgebra. The proof is
analogous.
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UAT on compact and weighted spaces

Universal approximation theorems

Universal approximation theorems aim for easy constructions of
subalgebras or submodules on weighted spaces in order to apply Stone
Weierstrass type approximation theorems.

We shall introduce the notion of activating families and additive families
for this purpose.
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UAT on compact and weighted spaces

Additive point separating families

Let E be a weighted space. A set of bounded continuous functions
L ⊂ Bρ(E ) is called additive point separating family if it is closed under
addition, contains the 1 and point separating.

We remark that this definition also makes sense for vector valued functions.
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UAT on compact and weighted spaces

Activating families

Let Y be a Banach space. A family Φ of continuous functions ϕ : R→ R
is called activating if the space

AΦ :=
{∑

i

αiϕi (βi .+ γi )| for αi ∈ Y , βi , γi ∈ N, ϕi ∈ Φ and n ∈ N
}

is dense in C ([0, 1];Y ).

Typically Φ is a singleton (’an activation function’). Notice that it is
sufficient that this property holds for Y = R, since then it holds for all
finite dimensional spaces, whence for all finite dimensional subspaces of Y ,
wherefrom the general assertion follows by vector valued Stone-Weierstrass
on [0, 1].
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UAT on compact and weighted spaces

UAT

Let Y be a Banach space, E a weighted space, Φ and activating family of
functions and L an additive family, then

NNΦ =
{∑

i

αiϕi (li )| for αi ∈ Y , li ∈ L and n ∈ N
}

is dense in Bρ(E ;Y ).
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UAT on compact and weighted spaces

Proof of UAT

For the proof we have to show that the closure B of NNΦ is a Bρ(E )
submodule which satisfies the condition that (g(x))g∈B is dense for every
x ∈ E .

Assume first that Y = R, then the algebra A generated by L is point
separating and therefore dense. This algebra, however, lies in the closure
of NNΦ. Indeed consider l ∈ L, then sin(l) as well as cos(l) lie in the
closure since we can approximate sin and cos by functions from AΦ

uniformly (notice that l has bounded range). Therefore
sin(k1l1 + · · ·+ knln) and cos(k1l1 + · · ·+ knln) lie in the closure, for li ∈ L
and ki ∈ N (addivity!). By uniform trigonometric approximation we obtain
therefore that all polynomials of elements from L lie in the closure.

For the general case it is sufficient to show it for finite dimensional
subspaces of Y , where it clearly holds.
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UAT on compact and weighted spaces

Remark

We could replace [0, 1] in the definition of activating families above
by compacts in a weighted topological vector space Z . Of course
members of the additive family have to map into compacts of Z then.
A completely analogous result holds true then.

We can also consider activating families of functions ϕ : Z → Z , αi

should then be linear maps from Z to Y . The important property of
the dense subspace of Bρ(K ⊂ Z ;Y ) is its invariance under affine
maps.

Elements of NNΦ are called neural networks with activating family Φ
initialized by L.

The space of real valued neural networks NNΦ is again an additive
family. Whence deeper networks are dense, too.
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UAT on compact and weighted spaces

Activating families

If ϕ : R→ R is a discriminatory function, i.e. a Borel measure is
vanishing if and only if∫

phi(βx + γ)µ(dx) = 0

for integers β, γ ∈ N, then Φ = {ϕ} is an activating family.

If the Fouriertransform of ϕ : R→ R only vanishes at 0, then
Φ = {ϕ} is an activating family.

If ϕ(x) = max(0, x), then Φ = {ϕ} is an activating family.
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UAT on compact and weighted spaces

Different topologies

From the previous results we can also conclude densities in Lp spaces or
C k or Besov spaces Bα,p.

21 / 21


	Introduction
	UAT on compact and weighted spaces

