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Introduction

Goal of this talk is ...

to present the paradigm of reservoir computing and connect it to
rNNs and signature re-presentations.
to apply random projections to construct true reservoirs and prove
related generalization results.
to highlight on the role of randomness in learning procedures and to
provide some explainations via signature techniques, random
projections and time series techniques.

(joint works with Christa Cuchiero, Lukas Gonon, Lyudmila Grigoryeva,
Wahid Khosrawi-Sardroudi, Thomas Krabichler, Martin Larsson, and
Juan-Pablo Ortega)
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CODE

CODE

First we stay in our comfort zone :-)

We consider differential equations of the form

dYt =
∑
i

Vi (Yt)du
i
t , Y0 = y ∈ E

to define evolutions in state space E depending on local characteristics,
initial value y ∈ E and the control u.
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CODE

CODEs: control as input

For this talk we fix y ∈ E and consider

u 7→W Evols,t(y)

and just train the readout and/or the vector fields.

Does this also correspond to classes of networks? Yes: these are
continuous time versions of rNNs, LSTMs, etc.

Used for time series, predictions, etc.
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CODE

Reservoir Computing (RC)

... We aim to learn an input-output map on a high- or infinite dimensional
input state space. Consider the input as well as the output as dynamic,
e.g. a time series,

Paradigm of Reservoir computing (Herbert Jäger, Lyudmila,
Grigoryeva, Wolfgang Maas, Juan-Pablo Ortega, et al.)

Split the input-output map into a generic part of generalized rNN-type
(the reservoir), which is not trained and a readout part, which is trained.

Often the readout is chosen linear and the reservoir has random features.
The reservoir is usually a numerically very tractable dynamical system.
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CODE

Applications of RC

Often reservoirs can be realized physically, whence ultrafast
evaluations are possible. Only the readout map W has to be trained.

One can learn dynamic phenomena without knowing the specific
characteristics.

It works unreasonably well with generalization tasks.
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CODE

An instance of RC in CODEs

Consider a controlled differential equation

dYt =
d∑

i=1

Vi (Yt)du
i
t , Y0 = y ∈ E

for some smooth vector fields Vi : E → TE , i = 1, . . . , d and d
independent (Stratonovich) Brownian motions ui , or finite variation
continuous controls, or a rough path. This describes a controlled dynamics
on E .

We want to learn the dynamics, i.e. the map

(input control u) 7→ (solution Y ).

Obviously a complicated, non-linear map, ...
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CODE

We introduce some notation for this purpose:

Definition

Let V : E → E be a smooth vector field, and let f : E → R be a smooth
function, then we call

Vf (x) = df (x) • V (x)

the transport operator associated to V , which maps smooth functions to
smooth functions and determines V uniquely.
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CODE

Theorem

Let Evol be a smooth evolution operator on a convenient vector space E
which satisfies (again the time derivative is taken with respect to the
forward variable t) a controlled ordinary differential equation

d Evols,t(x) =
d∑

i=1

Vi (Evols,t(x))dui (t)

then for any smooth function f : E → R, and every x ∈ E

f
(

Evols,t(x)
)

=

=
M∑
k=0

d∑
i1,...,uk=1

Vi1 · · ·Vik f (x)

∫
s≤t1≤···≤tk≤t

dui1(t1) · · · duik (tk)+

+ RM(s, t, f )

13 / 68



CODE

with remainder term

RM(s, t, f ) =

=
d∑

i0,...,uM=1

∫
s≤t1≤···≤tM+1≤t

Vi0 · · ·Vik f
(

Evols,t0(x)
)
dui0(t0) · · · duik (tM)

holds true for all times s ≤ t and every natural number M ≥ 0.

A lot of work has been done to understand the analysis, algebra and
geometry of this expansion (Kua-Tsai Chen, Gerard Ben-Arous, Terry
Lyons). It is a starting point of rough path analysis (Terry Lyons, Peter
Friz, etc).
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Definition

Consider the free algebra Ad of formal series generated by d
non-commutative indeterminates e1, . . . , ed . A typical element a ∈ Ad is
written as

a =
∞∑
k=0

d∑
i1,...,ik=1

ai1...ik ei1 · · · eik ,

sums and products are defined in the natural way. We consider the
complete locally convex topology making all projections a 7→ ai1...ik
continuous on Ad , hence a convenient vector space.
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CODE

Definition

We define on Ad smooth vector fields

a 7→ aei

for i = 1, . . . , d .
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CODE

Theorem

Let u be a smooth control, then the controlled differential equation

d Sigs,t(a) =
d∑

i=1

Sigs,t(a)eidu
i (t) , Sigs,s(a) = a (1)

has a unique smooth evolution operator, called signature of u and denoted
by Sig, given by

Sigs,t(a) = a
∞∑
k=0

d∑
i1,...,uk=1

∫
s≤t1≤···≤tk≤t

dui1(t1) · · · duik (tk) ei1 · · · eik . (2)
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CODE

Theorem (Signature is a reservoir)

Let Evol be a smooth evolution operator on a convenient vector space E
which satisfies (again the time derivative is taken with respect to the
forward variable t) a controlled ordinary differential equation

d Evols,t(x) =
d∑

i=1

Vi (Evols,t(x))dui (t) .

Then for any smooth (test) function f : E → R and for every M ≥ 0 there
is a time-homogenous linear W = W (V1, . . . ,Vd , f ,M, x) from AM

d to the
real numbers R such that

f
(

Evols,t(x)
)

= W
(
πM(Sigs,t(1))

)
+O

(
(t − s)M+1

)
for s ≤ t.
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CODE

Signature as reservoir

This explains that any solution can be represented – up to a linear
readout – by universal reservoir, namely signature.

This is used in many instances of provable machine learning by, e.g.,
groups in Oxford (Harald Oberhauser, Terry Lyons, etc), and also ...

... at JP Morgan, in particular great recent work on ’Nonparametric
pricing and hedging of exotic derivatives’ by Terry Lyons, Sina Nejad
and Imanol Perez Arribas.

in contrast to reservoir computing: signature is high dimensional
(i.e. infinite dimensional) and a precisely defined, non-random object.

Can we approximate signature by a lower dimensional random object
with similar properties?
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CODE

It is the assertion of the Johnson-Lindenstrauss (JL) Lemma that for every
0 < ε < 1 an N point set Q in some arbitrary (scalar product) space H,
can be embedded into a space Rk , where k = 24 log N

3ε2−2ε3 in an almost

isometric manner, i.e. there is a linear map f : H → Rk such that

(1− ε)‖v1 − v2‖2 ≤ ‖f (v1)− f (v2)‖2 ≤ (1 + ε)‖v1 − v2‖2

for all v1, v2 ∈ Q. It is remarkable that f can be chosen randomly from a
set of linear projection maps and the choice satisfies the desired
requirements with high probability.

The result is due to concentration of measure results in high dimensional
spaces and has been discovered in the eighties, for some details see below.
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In order to make this program work, we need a definition:

Definition

Let Q be any (finite or infinite) set of elements of norm one in AM
d . For

v ∈ AM
d we define the function

‖v‖Q := inf
{∑

j

|λj |
∣∣ ∑

j

λjvj = v and vj ∈ Q
}
.

We use the convention inf ∅ = +∞ since the function is only finite on
span(Q). Actually the function ‖.‖Q behaves precisely like a norm on the
span. Additionally ‖v‖Q1

≥ ‖v‖Q2
for Q1 ⊂ Q2 and ‖v‖Q ≥ ‖v‖ for all

sets Q of elements of norm one.
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Proposition

Fix M ≥ 1, ε > 0 and consider the free nilpotent algebra AM
d . Let

Q = −Q be any N point set of vectors with norm one, then there is linear
map f : AM

d → Rk (k being the above JL constant with N), such that∣∣〈v1, v2 − (f ∗ ◦ f )(v2)〉
∣∣ ≤ ε ,

for all v1, v2 ∈ Q. In particular∣∣〈v1, v2 − (f ∗ ◦ f )(v2))〉
∣∣ ≤ ε‖v1‖Q‖v2‖Q ,

for v1, v2 ∈ AM
d .
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Theorem (Cuchiero, Gonon, Grigoryeva, Ortega, Teichmann (2019))

Let u be a smooth control and f the previously constructed JL map
associated to a spanning N point set Q of norm one. We denote by r-Sig
the smooth evolution of

dZt =
d∑

i=1

f (f ∗(Zt)ei )du
i (t) , Z0 = f ∗(1)

a controlled differential equation on Rk . Then

〈u,Sigs,t(1)− f ∗(r-Sigs,t(1))〉

≤
(∣∣〈ΓSigs,t(1)(u), 1− f ∗(f (1))〉

∣∣+
+ Cε

d∑
i=1

∫ t

s
‖ΓSigr,t(1)(u)‖

Q
‖f ∗(Yr )ei‖Q dr

)
,

with constant C = sups≤r≤t, i

∣∣∣dui (r)
dr

∣∣∣, and for each u ∈ Q.
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Corollary

Let u be a smooth control and f the previously constructed JL map
associated to a spanning N point set Q of norm one. Assume additionally
1 = f ∗(f (1)), then∥∥∥Sigs,t(1)− f ∗(r-Sigs,t(1))

∥∥∥ ≤(
εC

d∑
i=1

∫ t

s
sup
‖u‖=1

∥∥ΓSigr,t(1)(u)
∥∥
Q
‖f ∗(Yr )ei‖Q dr

)
.

Hence f ∗(r-Sig) approximates Sig up to order ε and can be used as a proxy
for signature.
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r-Sig is a random dynamical system

It is fascinating that we can actually calculate approximately the vector
fields which determine the dynamics of r-Sig, i.e.

y 7→ f (f ∗(y)ei )

for each i = 1, . . . , d for y ∈ Rk .

Theorem

For M →∞ the linear vector fields

y 7→ f (f ∗(y)ei )

for i = 1, . . . , d , are built from matrices on Rk with asymptotically
normally distributed, (almost) independent entries.
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Randomness matters

Consider

dYt =
d∑

i=1

Vi (Yt)du
i (t) , Y0 ∈ E

where we observe one trajectory on [0,T ] and do not know the
characteristics.
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Randomized Signature

A random localized signature

there is a set of hyper-parameters θ ∈ Θ, and a dimension M.
depending on θ choose randomly matrices A1, . . . ,Ad on RM as well
as shifts β1, . . . , βd such that maximal non-integrability holds on a
starting point x ∈ RM .
one can tune the hyper-parameters θ ∈ Θ and dimension M such that

dXt =
d∑

i=1

σ(AiXt + βi )du
i (t) , X0 = x

locally (in time, as well as space) approximates CODE Y via a linear
readout W up to arbitrary precision. σ is a sigmoid function whose
only role is to localize the meaning of signature: outside a certain ball
the system is not expressive anymore.
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Problems of the presented approach

Signature as well as randomized signature are regression bases of a
polynomial type, whence they also come with the problems of
polynomial regressions, e.g. bad generalization properties.

If the dynamical system Y has stationarity properties, it is clear that
a representation through signature is sub-optimal, since it does not
have inherent stationarity properties. Randomized signature can help,
but has to be tuned.

Signature as well as randomized signature are continuous time
objects, which are used for discrete time time series by interpolation.
Can we directly construct signature like objects in discrete time,
possibly with stationarity properties?
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Universality in dynamic machine learning

Leaving the comfort zone ...

We enter the world of time series analysis:

the control u input is a discrete path indexed on Z≤0. Its values stay
in a compact set Dd ⊂ Rd .

the state space E is some bounded subset of a finite dimensional
space RN .

in order to guarantee solutions of such system stationarity is a
necessary requirement: no initial values are given.
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Universality in dynamic machine learning Filters

Filters and functionals

Filters U : (Dd)Z −→ RZ and functionals H : (Dd)Z −→ R:

Causal filter: for any two elements z,w ∈ (Dd)Z that satisfy that zτ = wτ

for all τ ≤ t, for any given t ∈ Z, we have that U(z)t = U(w)t .

Time-invariant filter: when U commutes with the time delay operator Uτ

defined by (Uτz)t := zt−τ , that is, Uτ ◦ U = U ◦ Uτ .

Bijection between causal time-invariant filters and functionals on (Dd)Z− :

U −→ HU(z) := U(ze)0

H −→ UH(z)t := H((PZ− ◦ U−t)(z)),

where U−t is the (−t)-time delay operator and PZ− : (Dd)Z −→ (Dd)Z− is
the natural projection. It is easy to verify that:

HUH
= H, for any functional H : (Dd)Z− −→ R,

UHU
= U, for any causal time-invariant filter U : (Dd)Z −→ RZ.

Let H1,H2 : (Dd)Z− −→ R, λ ∈ R, then UH1+λH2 (z) = UH1 (z) + λUH2 (z),
for any z ∈ (Dd)Z
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Universality in dynamic machine learning System identification

External system identification approach

One models directly the input/output system:

Linear systems (LTIs): The LTI system Uh : `∞− (R) −→ `∞− (R)
determined by h ∈ `1

−(R) is defined as

Uh(z)t =
∑
j∈Z−

hjzt+j =: (h ∗ z) (t),

where h ∗ z is the convolution product of h and z. Estimation via
impulse/response analysis. Not every LTI has a convolution
representation (Kantorovich, Akilov (1982)).

Nonlinear systems and Volterra series: polynomial expansions of
the form

U(z)t =
∞∑
j=1

0∑
m1=−∞

· · ·
0∑

mj=−∞
gj(m1, . . . ,mj)zm1+t · · · zmj+t , t ∈ Z−.

lack of parsimony, poor generalization properties.
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Universality in dynamic machine learning System identification

Internal system identification approach

Internal variables xt are introduced. Filter is modeled as a state-space
system {

xt = F (xt−1, zt),

yt = h(xt),

Classical problem in systems and control theory with profound
influence in the development of modern engineering sciences: the
realization problem. Kalman, Sussmann, Sontag for deterministic.
Akaike, Ruckebusch, Lindquist, Picci for stochastic.

Internal variables may be just auxiliary or encode unobservable factors
(stochastic volatility models and filtering theory)

Can be seen as a non-autonomous dynamical system or a
recurrent neural network (rNN)

State-space systems are recursively computable.
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Universality in dynamic machine learning System identification

The Echo State Property

Internal Representation =⇒ External Representation

State-space systems determine a filter when the following existence and
uniqueness property holds (echo state property (ESP)): for each
z ∈ (Dd)Z there exists a unique x ∈ (DN)Z such that for each t ∈ Z, the
relation above holds.

The state filter UF : (Dd)Z −→ (DN)Z is determined by
UF (z)t := xt ∈ DN

The reservoir filter UF
h : (Dd)Z −→ RZ is determined by the entire

reservoir system, that is, UF
h (z)t := h

(
UF (z)t

)
.

The filters UF and UF
h are causal and time-invariant. HF

h is the reservoir
functional determined by HF

h := HUF
h

.
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Universality in dynamic machine learning System identification

Finite and infinite dimensional state spaces

External Representation =⇒ Internal Representation

Not every time-invariant causal filter admits a finite dimensional
realization:

Short term memory processes (γ(h) ∼ ah with |a| < 1) do (ARIMA)

Long memory processes (ρ(h) ∼ h2d−1, 0 < d < 1/2 (ARFIMA),
Hosking (1981)) don’t (Chan, Palma (1998))

In the reservoir computing context RKHS state spaces: Hermans,
Schrauwen (2012), Hamzi (2019), Tiňo (2019).
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Universality in dynamic machine learning Universality in dynamic ML

We formulate universality results for causal time-invariant filters in discrete
time with semi-infinite input.

1 Non-homogeneous variant of the state-affine systems (SAS):
identify sufficient conditions for the associated reservoir computers
with linear readouts to be causal, time-invariant, and fading memory.

2 Universal subset of this class characterized in the category of
fading memory filters with uniformly bounded outputs.

3 Echo state networks are universal: this is the dynamic analog of
the classical Cybenko and Hornik et al theorems in the static setup.
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Universality in dynamic machine learning The fading memory category

The fading memory property

Modeling property introduced by Volterra and von Neumann.

We want filters for which the inputs in the far past count less than
recent ones.

The weighted norm ‖ · ‖w on (Rd)Z− associated to the weighting
sequence w : N −→ (0, 1] as the map:

‖ · ‖w : (Rd)Z− −→ R+

z 7−→ ‖z‖w := supt∈Z− ‖ztw−t‖,

where ‖ · ‖ denotes the Euclidean norm in Rd . The space

`∞w (Rd) :=

{
z ∈

(
Rd
)Z−
| ‖z‖w <∞

}
,

endowed with weighted norm ‖ · ‖w forms a Banach space.
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Universality in dynamic machine learning The fading memory category

The fading memory property

We encode the fading memory property (FMP) as a continuity
property: the causal and time-invariant filter U : (Dd)Z −→ (R)Z has
the FMP whenever there exists a weighting sequence w : N −→ (0, 1]
such that the map HU : ((Dd)Z− , ‖ · ‖w ) −→ R is continuous. This
means that for any z ∈ (Dd)Z− and any ε > 0, there exists a δ(ε) > 0
such that for any s ∈ (Dd)Z− that satisfies that

‖z− s‖w = sup
t∈Z−

‖(zt − st)w−t‖ < δ(ε), then |HU(z)−HU(s)| < ε.

FMP does not depend on the weighting sequence: in the case of
uniformly bounded input sequences, if a filter has the FMP with
respect to a given weighting sequence, it necessarily has the same
property with respect to any other weighting sequence.
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Universality in dynamic machine learning The fading memory category

The fading memory property

It prevents pathological phenomena: LTIs admit a convolution
representation iff they are FMP (Boyd [1985])

Important lemma: Let M > 0 and let

KM :=

{
z ∈

(
Rd
)Z−
| ‖zt‖ ≤ M for all t ∈ Z−

}
= Bd(0,M)

Z−
.

KM is a compact topological space when endowed with the relative
topology inherited from (`∞w (Rd), ‖·‖w ).
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Universality in dynamic machine learning Universality via Stone-Weierstrass

Universality results in the deterministic setup

Goal: identify families of reservoir filters that are able to uniformly
approximate any time-invariant, causal, and fading memory filter with
deterministic inputs with any desired degree of accuracy. Such families of
reservoir computers are said to be universal.

Tools: The Stone-Weierstrass theorem for polynomial subalgebras of
real-valued functions defined on compact metric spaces.

Approach: One needs to prove that filters form polynomial algebras. If
Dd ⊂ Rn and HU1 ,HU2 : (Dd)Z− −→ R are the functionals associated to
the causal and time-invariant filters U1,U2 : (Dd)Z −→ RZ, one defines
HU1 · HU2 : (Dd)Z− −→ R and HU1 + λHU2 : (Dd)Z− −→ R, λ ∈ R, as

(HU1 ·HU2) (z) := HU1 (z)·HU2 (z) , (HU1+λHU2) (z) := HU1 (z)+λHU2 (z) , z ∈ (Dd)Z− .
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Universality in dynamic machine learning Universality via Stone-Weierstrass

The reservoir systems family is universal

Theorem: The set of all reservoir filters with uniformly bounded inputs in
KM and that have the FMP with respect to a given weighted norm ‖ · ‖w

Rw := {HF
h : KM −→ R | h ∈ C∞(DN),F : DN × Bd(0,M) −→ DN}

is universal, that is, it is dense in the set (C 0(KM), ‖ · ‖w ).

Consequence of:

HF1
h1
· HF2

h2
= HF

h , with h := h1 · h2 ∈ C∞(DN1 × DN2),

HF1
h1

+ λHF2
h2

= HF
h′ , with h′ := h1 + λh2 ∈ C∞(DN1 × DN2),

and where F : (DN1 × DN2)× Bd(0,M) −→ (DN1 × DN2) is given by

F (((x1)t , (x2)t), zt) := (F1((x1)t , zt),F2((x2)t , zt)) .
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Universality in dynamic machine learning Universality via Stone-Weierstrass

Linear reservoirs with polynomial readouts are universal

Linear reservoir computer:{
xt = Axt−1 + czt , A ∈MN , c ∈MN,d ,

yt = h(xt), h ∈ R[x].

Corollary

The set Lε formed by all the linear reservoir systems with matrices
A ∈MN such that σmax(A) < 1− ε is made of λρ-exponential fading
memory reservoir functionals, with λρ := (1− ε)ρ, for any ρ ∈ (0, 1). This
family is dense in (C 0(KM), ‖ · ‖wρ).
The same universality result can be stated for two smaller subfamilies of
Lε generated by diagonal and nilpotent matrices.

49 / 68



Universality in dynamic machine learning Universality via Stone-Weierstrass

Universality with linear readouts: SAS

Take two polynomials p(z) ∈MN,N [z ] and q(z) ∈MN,1[z ] on the variable
z with matrix coefficients, that is

p(z) := A0 + zA1 + z2A2 + · · ·+ zn1An1 ,

q(z) := B0 + zB1 + z2B2 + · · ·+ zn2Bn2

The non-homogeneous state-affine system (SAS) associated to p, q
and W is the reservoir system determined by the state-space
transformation: {

xt = p(zt)xt−1 + q(zt),

yt = W>xt .
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Integrability of SAS

Proposition

Consider a non-homogeneous SAS defined on IZ, I := [−1, 1]. If
maxz∈I ‖p(z)‖2 < 1 then:

The system has a unique causal and time-invariant solution:
xt =

∞∑
j=0

(
j−1∏
k=0

p(zt−k)

)
q(zt−j),

yt = W>xt .

(3)

(4)

We denote by Up,q
W : IZ −→ IZ and Hp,q

W : IZ− −→ R the
corresponding SAS reservoir filter and SAS functional, respectively.
Up,q

W has the fading memory property.
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Universality in dynamic machine learning Echo state networks are universal

Universality via internal approximation

Theorem

Let F : B‖·‖(0, L)× B‖·‖(0,M) −→ B‖·‖(0, L) be a continuous reservoir map.

(i) Existence of solutions: for each z ∈ KM there exists a x ∈ KL (not necessarily
unique) that solves the reservoir equation associated to F , that is,

xt = F (xt−1, zt), for all t ∈ Z−.

(ii) Uniqueness and continuity of solutions (ESP and FMP): if F is a contraction,
then the reservoir system associated to F has the echo state property. Moreover,
this system has a unique associated causal and time-invariant filter
UF : KM −→ KL with the fading memory property.

(iii) Internal approximation: let F1,F2 : B‖·‖(0, L)× B‖·‖(0,M) −→ B‖·‖(0, L) be
continuous reservoir maps s.t. F1 is a contraction with 0 < r < 1 and F2 has the
existence of solutions property. Let UF1 ,UF2 : KM −→ KL be the corresponding
filters. Then, for any ε > 0, we have that

‖F1 − F2‖∞ < δ(ε) := (1− r)ε implies that |||UF1 − UF2 |||∞ < ε.
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Universality in dynamic machine learning Echo state networks are universal

Theorem (Echo state networks are universal)

Let U : I
Z−
d −→

(
Rd
)Z− be a causal and time-invariant filter that has the fading

memory property. Then, for any ε > 0 there is an echo state network{
xt = σ (Axt−1 + Czt + ζ) ,

yt = W xt .

whose associated generalized filters UESN : I
Z−
d −→

(
Rd
)Z− satisfy that

|||U − UESN|||∞ < ε.

When the approximating echo state network satisfies the echo state property,
then it has a unique filter UESN associated which is necessarily time-invariant.

The corresponding reservoir functional HESN : I
Z−
d −→ Rd satisfies that

|||HU − HESN|||∞ < ε.
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Reservoir computing The concept

Reservoir computing

State-space system in which the state function is chosen quasi-randomly
and remains unchanged during the training stage.

Readout is preferably linear so that data intensive applications become
tractable.

Availability of realizations with dedicated hardware.
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Reservoir computing Signature representation theorem

Is this reasonable?

We start with the linearity requirement and show that any analytic filter
admits state-space representation with linear readouts. This is carried out
by using a discrete-time signature process on the free algebra of infinite
series in d indeterminates e1 . . . , ed

Ad =
{ ∞∑

k=0

d∑
i1,...,ik=1

ai1···ik ei1 · · · eik
}

This is an infinite dimensional, complete locally convex algebra with
component-wise convergence. Denote by

AM
d = πM(Ad)

the canonical projection on series up to degree M.
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Reservoir computing Signature representation theorem

The discrete-time signature process

Proposition

Let 0 < λ < 1 and let r > 0 be such that r < (1−
√
λ)/λ. Consider the

state-space system on Ad with inputs in Vr := B‖·‖1
(0, r) ⊂ `∞− (Rd) given

by
xt = λxt−1 + λxt−1zt + zt .

Let L := 1/λ(1− λr) and VL := B‖·‖∞(0, L) ⊂ `∞− (Ad). This system has
the (Vr ,VL)-ESP and determines a unique state filter
US : (Vr , ‖·‖∞) −→ (VL, ‖·‖∞) given by

US(z)t :=
∞∑
j=1

0∑
m1=−∞

m1−1∑
m2=−∞

· · ·
mj−1−1∑
mj=−∞

λ|mj |zt+mj · · · zt+m1 . (5)
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Reservoir computing Signature representation theorem

Signature representation theorem

Theorem (Cuchiero, Gonon, Grigoryeva, Teichmann, JPO (2019))

Any analytic filter U : (Vr , ‖·‖∞) −→ (VL, ‖·‖∞) admits a reservoir filter
representation through the signature state filter US , that is, the filter U
determines a unique densely defined linear operator W : Ad → RN such
that

U(z)t = W (US(z)t).

Let US
M be the finite dimensional truncation of the signature filter at level

M. Then∥∥∥U(z)−WπM(US
M(z))

∥∥∥
∞
≤ L

(
1−
‖z‖∞
r

)−1(‖z‖∞
r

)M+1

.
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Reservoir computing Signature representation theorem

The truncated filter is the reservoir filter associated to the linear
readout induced by W ◦ πM and the reservoir map
FM : πM(B‖·‖(0, L))× B‖·‖(0, r) −→ πM(B‖·‖(0, L)) defined by

FM(x, z) := πMF ((πM)∗(x), z) = λx + λπM(xz) + z .

Equivalently,

US
M = UFM

= πM(US)

This can be read by saying that the (truncated) Volterra series
expansion of any analytic filter coincides with the unique solution of
the state-space system in the proposition (respectively, above).

Tremendous numerical efficiency: already in discrete time and no
need to compute infinite sums.
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Reservoir computing Signature representation theorem

What about randomness?

Two possible answers:

Random projections and Johnson-Lindenstrauss (JL) Lemma:
finite dimensional random projections of the signature process are
able to approximate analytic filters with arbitrarily small error and
high probability.

Formulation of PAC-type bounds on the estimation and
approximation errors committed when using randomly chosen
elements within a given family of reservoir systems: ESNs, SAS.

Both answers yield randomly chosen reservoir systems with linear
readouts that approximate analytic filters with arbitrarily small error and
high probability. The reservoir computing paradigm is mathematically
reasonable.
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Reservoir computing Signature representation theorem

JL reduction of truncated signature representations

Given a Hilbert space H, a N-point set Q in it, and 0 < ε < 1, there is a

linear map f : H −→ Rk with k =
⌊

24 log N
3ε2−2ε3

⌋
that approximately preserves

the distances of the points in Q:

(1− ε) ‖v1 − v2‖2 ≤ ‖f (v1)− f (v2)‖2 ≤ (1 + ε) ‖v1 − v2‖2

The projection is randomly drawn from a distribution (standard Gaussian
on the entries) on the space of matrices with the right dimensions and the
probability that the above inequalities are satisfied is bounded below by
1− (1/N2)
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Reservoir computing Signature representation theorem

Corollary

Let WπMUS
M be the truncated signature representation of the analytic filter

U :
(
Vr , ‖·‖∞

)
−→

(
VL, ‖·‖∞

)
. Then, for any 0 < ε < 1 and sufficiently large M ∈ N,

there exists a (random) projection

f : AM
d −→ RK , with K =

⌊
24 log(dimAM

d )

3ε2 − 2ε3

⌋
such that the reservoir map F̂K : SK × B‖·‖(0, r) −→ SK with

SK := f ∗f
(
πM(B‖·‖(0, L))

)
and given by

F̂K (x̂, z) = f ∗f

(
λx̂ + λ

d∑
i=1

z iπM(x̂ei ) + z iei

)

is such that ∥∥∥WπMUS
M − i∗SK (WπM)U F̂K

∥∥∥ ≤ εC
∥∥WπM

∥∥
2

4(1− λ2)
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Perspectives and Outlook

What does ML give to MF?

numerical evaluation of almost any thought experiment becomes
feasible: we see ’solutions’ of problems numerically which we have
never seen before.

new concepts of modeling.
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Perspectives and Outlook

What does MF give to ML?

it is important to mathematize problems to support understanding.

roles of randomness.
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Perspectives and Outlook

Summary and Outlook

construct universal and randomized reservoirs beyond (branched)
rough paths, for instance in the realm of regularity structures.

improve the JL argument and adapt it to algebraic structures.

66 / 68



Perspectives and Outlook

Summary and Outlook

construct universal and randomized reservoirs beyond (branched)
rough paths, for instance in the realm of regularity structures.

improve the JL argument and adapt it to algebraic structures.

67 / 68



Perspectives and Outlook

References

H. Bühler, L. Gonon, J. Teichmann, and B. Wood:
Deep Hedging, Arxiv, 2018.
C. Cuchiero, M. Larsson, J. Teichmann:
Controlled neural ordinary differential equations, working paper, 2019.
C. Cuchiero, L. Gonon, L. Grigoryeva, J.-P. Ortega, J. Teichmann:
Representation of Dynamics by randomized signatures, working paper,
2019.
T. Lyons, Rough paths, Signatures and the modelling of functions on
streams Terry Lyons, Arxiv, 2014.

68 / 68


	CODE
	Universality in dynamic machine learning
	Filters
	System identification
	Universality in dynamic ML
	The fading memory category
	Universality via Stone-Weierstrass
	Echo state networks are universal

	Reservoir computing
	The concept
	Signature representation theorem

	Perspectives and Outlook

