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1. Introduction

The language of mathematical Finance allows to express many results of mar-
tingale theory via trading arguments, which makes it somehow easier to appreciate
their contents. Just to provide one illustrative example: let X = (Xn)n≥0 be a

martingale and let N b
a(t) count the upcrossings over the interval [a, b], then we can

find a predictable process V = (Vn)n≥0 such that

(b− a)N b
a(t) ≤ (a−Xt)

+
+ (V •X)t ,

where the right hand side’s stochastic integral corresponds precisely to the cumu-
lative gains and losses of a buy below a and sell above b strategy plus an option
payoff adding for the risk of buying low and loosing even more. Immediately Doob’s
upcrossing inequality follows by taking expectations. We shall somehow focus on
such types of arguments in the sequel, however, pushing them as far as possible.
Still most of the following proofs are adapted from Olav Kallenberg’s excellent book
[3] or from the excellent lecture notes [6], maybe with a bit different wording in
each case. For stochastic integration the reading of [6] is recommended.

Another important aspect is the two-sided character of many arguments, which
leads, e.g., to reverse martingale results.

2. Filtrations, Stopping times, and all that

Given a probability space (Ω,F , P ), a filtration is an increasing family of sub-σ-
algebras (Ft)t∈T for a given index set T ⊂ R ∪ {±∞}.

We shall often assume the “usual conditions” on a filtered probability space,
i.e. that a filtration is right continuous and complete, but we first name the prop-
erties separately:

(1) A filtration is called complete if each Ft contains all P -null sets from F for
t ∈ T . In particular every σ-algebra Ft is complete with respect to P .

(2) A filtration is called right continuous if Ft = Ft+ := ∩ε>0Ft+ε for all t ∈ T ,
where Ft+ε := ∩u∈T,u≥t+εFu for ε > 0.

Apparently every filtration (Ft)t∈T has a smallest right continuous and complete
filtration (Gt)t∈T extending in the sense that Ft ⊂ Gt for t ∈ T , namely

Gt = Ft+ = Ft+ .

It is called the augmented filtration.
1
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Notice that usual conditions are necessary if one expects P -nullsets to be part of
F0 to guarantee the process to be adapted, which appears in constructions like reg-
ularization procedures. For most purposes right continuous filtrations are enough
to obtain regularized processes (e.g. with cadlag trajectories) outside a P -nullset.

Definition 2.1. A T ∪{∞}-valued random variable τ is called an (Ft)t∈T -stopping
time or (Ft)t∈T -optional time if {τ ≤ t} ∈ Ft for all t ∈ T . A T ∪ {∞}-valued
random variable τ is called a weakly (Ft)t∈T -optional time if {T < t} ∈ Ft for all
t ∈ T .

We can collect several results:

(1) Let (Ft)t∈T be a right continuous filtration, then every weakly optional
time is optional.

(2) Suprema of sequences of optional times are optional, infima of sequences of
weakly optional times are weakly optional.

(3) Any weakly optional time τ taking values in R∪{±∞} can be approximated
by some countably valued optional time τn ↘ τ , take for instance τn :=
2−n[2nτ + 1].

A stochastic process is a family of random variables (Xt)t∈T on a filtered prob-
ability space (Ω,F , P ). The process is said to be (Ft)t∈T -adapted if Xt is Ft-
measurable for all t ∈ T . Two stochastic processes (Xt)t∈T and (Yt)t∈T are called
versions of each other if Xt = Yt almost surely for all t ∈ T , i.e. for every t ∈ T
there is a null set Nt such that Xt(ω) = Yt(ω) for ω /∈ Nt. Two stochastic processes
(Xt)t≥0 and (Yt)t≥0 are called indistinguishable if almost everywhere Xt = Yt for
all t ∈ T , i.e. there is a set N such that for all t ∈ T equality Xt(ω) = Yt(ω) holds
true for ω /∈ N . A stochastic process is called cadlag or RCLL (caglad or LCRL)
if the sample paths t 7→ Xt(ω) are right continuous and have limits at the left side
(left continuous and have limits at the right hand side). Given a stochastic process

(Xt)t∈T we denote by X̂ the associated mapping from T × Ω to R, which maps
(t, ω) to Xt(ω).

Given a general filtration: a stochastic process (Xt)t∈T is called progressively

measureable or progressive if X̂ : ((T ∩ [−∞, t]) × Ω,B(T ∩ [−∞, t]) ⊗ Ft) → R is
measureable for all t. An adapted stochastic process with right continuous paths
(or left continuous paths) almost surely is progressively measureable. A stochas-

tic process (Xt)t≥0 is called measureable if X̂ is measureable with respect to the
product σ algebra. A measureable adapted process has a progressively measureable
modification, which is a complicated result.

Given a general filtration we can consider an associated filtration on the convex
hull T of T , where right from right-discrete points (i.e. t ∈ T such that there is
δ > 0 with ]t, t + δ[∩T = ∅), a right continuous extension is performed. We can
introduce two σ-algebras on T × Ω, namely the one generated by left continuous
processes (the predictable σ-algebra) and the one generated by the right continuous
processes (the optional σ-algebra). Given a stochastic processes (Xt)t∈T then we
call it predictable if there is a predictable extension on T .

Most important stopping times are hitting times of stochastic processes (Xt)t∈T :
given a Borel set B we can define the hitting time τ of a stochastic process (Xt)t∈T
via

τ = inf{t ∈ T | Xt ∈ B} .
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There are several profound results around hitting times useful in potential theory,
we provide some simple ones:

(1) Let (Xt)t∈T be an (Ft)t∈T -adapted right continuous process with respect
to a general filtration and let B be an open set, then the hitting time is a
weak (Ft)t∈T -stopping time.

(2) Let (Xt)t∈T be an (Ft)t∈T -adapted continuous process with respect to a
general filtration and let B be a closed set, then the hitting time is a
(Ft)t∈T -stopping time.

(3) It is a very deep result in potential theory that all hitting times of Borel
subsets are (Ft)t∈T -stopping times, if usual conditions are satisfied and the
process is progressively measurable (Debut theorem).

The σ-algebra Ft represents the set of all (theoretically) observable events up
to time t including t, the stopping time σ-algebra Fτ represents all (theoretically)
observable events up to τ :

Fτ = {A ∈ F , A ∩ {τ ≤ t} ∈ Ft for all t ∈ T} .

Definition 2.2. A stochastic process (Xt)t∈T is called martingale (submartingale,
supermartingale) with respect to a filtration (Ft)t∈T if

E[Xt | Fs] = Xs

for t ≥ s in T (E[Xt | Fs] ≥ Xs for submartingales, E[Xt | Fs] ≤ Xs for super-
martingales).

Proposition 2.3. Let M be a martingale on an arbitrary index set T with respect
to a filtration (Gt)t∈T . Assume a second filtration (Ft)t∈T such that Ft ⊂ Gt for
t ∈ T and assume that M is actually also F adapted, then M is also a martingale
with respect to the filtration (Ft)t∈T .

Proof. The proof is a simple consequence of the tower property

E [Mt| Fs] = E [E [Mt| Gs]| Fs] = E [Ms| Fs] = Ms

for s ≤ t in T . �

Remember the Doob-Meyer decomposition for any integrable adapted stochastic
process (Xt)t∈N on the countable index set T = N: there is a unique martingale M
and a unique predictable process A with A0 = 0 such that X = M − A. It can be
defined directly via

At :=
∑
s<t

E[Xs −Xs+1 | Fs]

for t ∈ N, and X = M − A. The decomposition is unique since a predictable
martingale starting at 0 vanishes. If X is a super-martingale, then the Doob-Meyer
decomposition X = M −A yields a martingale and an increasing process A.

We shall need in the sequel a curious inequality for bounded, non-negative super-
martingales, see [4] (from where we borrow the proof). We state first a lemma
for super-martingales of the type Xs = E[A∞|Fs] − As, for s ≥ 0, where A is
a non-negative increasing process with A0 = 0 and limit at infinity A∞ (such a
super-martingale is called a potential). Assume 0 ≤ X ≤ c, then

E[Ap∞] ≤ p!cp−1E[X0] ,
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for natural numbers p ≥ 1. Indeed

Ap∞ =
∑

i1,...,ip

(Ai1+1 −Ai1) . . . (Aip+1 −Aip)

= p
∑
j

∑
j1,...,jp−1≤j

(Aj1+1 −Aj1) . . . (Ajp−1+1 −Ajp−1
)(Aj+1 −Aj)

= p
∑

j1,...,jp−1

(Aj1+1 −Aj1) . . . (Ajp−1+1 −Ajp−1
)(A∞ −Aj1∨...∨jp−1

) .

Taking expectations, observing that all terms except the last one are measurable
with respect to Fj1∨...∨jp−1

and inserting

Xj1∨...∨jp−1
= E[A∞ −Aj1∨...∨jp−1

| Fj1∨...∨jp−1
] ≤ c

we obtain the recursive inequality

E[Ap∞] ≤ pE[Ap−1
∞ ]c ,

which leads by induction to the desired result, since E[A∞] = E[X0] by the defini-
tion of a potential.

Let us now consider a non-negative super-martingale X bounded by a constant
c ≥ 0, then we can apply the previous inequality for the potentialX0, . . . , Xn, X∞, 0, 0, . . .

(notice here that also the filtration changes)with corresponding Ã
(n)
∞ = An+E[Xn−

X∞ | Fn] +X∞ ≥ An +X∞. If we let n tend to ∞ (notice the almost sure conver-
gence of the bounded super-martingale, see below), we obtain the result, namely
that

E[Mp
∞] ≤ p!cp−1E[X0] ,(2.1)

since M∞ = A∞ +X∞ = limn→∞ Ã
(n)
∞ .

3. Optional Sampling: the discrete case

The most important theorem of this section is Doob’s optional sampling theorem:
it states that the stochastic integral, often also called martingale transform, with
respect to a martingale is again a martingale. Most of the proofs stem from Olav
Kallenberg’s book [3].

Let us consider a finite index set T , a stochastic process X = (Xt)t∈T and an
increasing sequence of stopping times (τk)k≥0 taking values in T together with
bounded random variables Vk, which are Fτk , then

Vt :=
∑
k≥0

Vk1{τk<t≤τk+1}

is a predictable process. We call such processes simple predictable and we can define
the stochastic integral (as a finite sum)

(V •X)s,t :=
∑
k≥0

Vk(Xs∨t∧τk+1
−Xs∨t∧τk) .

By simple conditioning arguments we can prove the following proposition:

Proposition 3.1. Assume that the stopping times are deterministic and let X be a
martingale, then (V •X) is a martingale. If X is a sub-martingale and V ≥ 0, then
(V •X) is a sub-martingale, too. Furthermore it always holds that (V • (W •X)) =
(VW •X) (Associativity).
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This basic proposition can be immediately generalized by considering stopping
times instead of deterministic times, since for any two stopping times τ1 ≤ τ2 taking
values in T we have

1{τ1<t≤τ2} =
∑
k≥0

1{τ1<t≤τ2}1{tk<t≤tk+1}

for the sequence t0 < t1 < t2 < ... exhausting the finite set T . Whence we can
argue by Associativity (V • (W • X)) = (VW • X) that we do always preserve
the martingale property, or the sub-martingale property, respectively, in case of
non-negative integrands.

We obtain several simple conclusions from these basic facts (optional sampling
theorem):

(1) A stochastic process X is a martingale if and only if for each pair σ, τ of
stopping times taking values in T we have that E[Mτ ] = E[Mσ].

(2) For any stopping time τ taking values in T ∪ {∞} and any process M the
stopped process Mτ

Mτ
t := Mτ∧t

for t ∈ T is well defined. IfM is a (sub)martingale, Mτ is a (sub)martingale,
too, with respect to (Ft)t∈T and with respect to the stopped filtration
(Ft∧τ )t∈T .

(3) For two stopping times σ, τ taking values in T , and for any martingale M
we obtain

E [Mτ | Fσ] = Mσ∧τ .

For this property we just use that (Mt −Mt∧τ )t∈T is a martingale with re-
spect to (Ft)t∈T as difference of two martingales. Stopping this martingale
with σ leads to a martingale with respect to (Ft∧σ)t∈T , whose evaluation
at supT and conditional expectation on Fσ leads to the desired property.

These basic considerations are already sufficient to derive fundamental inequal-
ities, from which the important set of maximal inequalities follows.

Theorem 3.2. Let X be a submartingale on a finite index set T with maximum
supT ∈ T , then for any r ≥ 0 we have

rP [sup
t∈T

Xt ≥ r] ≤ E[XsupT 1{supt∈T Xt≥r}] ≤ E[X+
supT ]

and

rP [sup
t∈T
|Xt| ≥ r] ≤ 3 sup

t∈T
E[|Xt|] .

Proof. Consider the stopping time τ = inf{s ∈ T | Xs ≥ r} (which can take the
value ∞) and the predictable strategy

Vt := 1{τ≤supT}1{τ<t≤supT} ,

then E[(V •X)] ≥ 0 by Proposition 3.1, hence the first assertion follows. For the
second one take the sub-martingale |X|. �

Theorem 3.3. Let M be a martingale on a finite index set T with maximum supT

E[sup
t∈T
|Mt|p] ≤

( p

p− 1

)p
E[|MsupT |p]

for all p > 1.
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Proof. We apply the Levy-Bernstein inequalities from Theorem 3.2 to the sub-
martingale |M |. This yields by Fubini’s theorem and the Hölder inequality

E[sup
t∈T
|Mt|p] = p

∫ ∞
0

P [sup
t∈T
|Mt| > r]rp−1dr

≤ p
∫ ∞

0

E[|MsupT |1{supt∈T |Mt|≥r}]r
p−2dr

= pE
[
|MsupT |

∫ supt∈T |Mt|

0

rp−2dr
]

=
( p

p− 1

)
E
[
|MsupT |sup

t∈T
|Mt|p−1] ≤ ( p

p− 1

)
‖MsupT ‖p‖sup

t∈T
|Mt|p−1‖q ,

which yields the result. �

Finally we prove Doob’s upcrossing inequality, which is the heart of all further
convergence theorems, upwards or downwards. Consider an interval [a, b] and con-
sider a submartingale X, then we denote by N([a, b], X) the number of upcrossings
of a trajectory of X from below a to above b. We have the following fundamental
lemma:

Lemma 3.4. Let X be s submartingale, then

E[N([a, b], X)] ≤ E[(XsupT − a)]
+

b− a
Proof. Denote τ0 = minT , then define recursively the stopping times

σk := inf{t ≥ τk−1 | Xt ≤ a}
and

τk := inf{t ≥ σk | Xt ≥ b}
for k ≥ 1. The process

Vt :=
∑
k≥1

1{σk<t≤τk}

is predictable and V ≥ 0 such as 1− V . We conclude by

(b− a)E[N([a, b], X)] ≤ E[(V • (X − a)+)supT ]

≤ E[(1 • (X − a)+)supT ] ≤ E[(XsupT − a)+] .

Mind the slight difference of these inequalities to the one in the introduction. �

This remarkable lemma allows to prove the following deep convergence results
by passing to countable index sets:

Theorem 3.5. Let X be an L1 bounded submartingale on a countable index set
T , then there is a set A with probability one such that Xt converges along any
increasing or decreasing sequence in T .

Proof. By supt∈T E[|Xt|] < ∞ we conclude by the Lévy-Bernstein inequality that
the measurable random variable supt∈T |Xt| is finitely valued, hence along every
subsequence there is a finite inferior or superior limit. By monotone convergence
we know that for any interval the number of upcrossings is finite almost surely.
Consider now A, the intersection of sets with probability one, where the number
of upcrossings is finite over intervals with rational endpoints. A has again prob-
ability one and on A the process X converges along any increasing or decreasing
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subsequence, since along monotone sequences a finite number of upcrossings leads
to equal inferior and superior limits. Notice that we work here with monotone
convergence, since the number of upcrossings for increasing index sets is increasing,
however, its expectation is bounded. �

Theorem 3.6. For any martingale M on any index set we have the following
equivalence:

(1) M is uniformly integrable.
(2) M is closeable at supT .
(3) M is L1 convergent at supT .

Proof. If M is closeable on an arbitrary index set T , then by definition there is
ξ ∈ L1(Ω) such that Mt = E[ξ | Ft] for t ∈ T , hence

E[Mt1A] ≤ E[E[|ξ| | Ft]1A] = E[|ξ|E[1A | Ft]]

for any A ∈ F , which tends to zero if P (A) → 0, uniformly in t, hence uniform
integrability. On the other hand a uniformly integrable martingale is bounded in
L1 and therefore we have one and the same almost sure limit along any subsequence
increasing to supT . If M is uniformly integrable, an almost sure limit is in fact L1.

Finally assume Mt → ξ for t → supT in L1, hence Ms → E[ξ | Fs], for s ∈ T
and the martingale property, hence Ms = E[ξ | Fs] for any s ∈ T , which concludes
the proof. �

We obtain the following beautiful corollary:

Corollary 3.7. Let M be a martingale on an arbitrary index set and assume p > 1,
then Mt converges in Lp for t→ supT if and only if it is Lp bounded.

Proof. If M is Lp bounded, then it is uniformly integrable (by Doob’s maximal
inequalities from Theorem 3.3) and convergence takes place in L1 by the previous
theorem, which in turn by Lp-boundedness is also a convergence in Lp. On the
other hand, if M converges in Lp, then it is by the Jensen’s inequality also Lp

bounded. �

Finally we may conclude the following two sided version of closedness:

Theorem 3.8. Let T be a countable index set unbounded above and below, then
for any ξ ∈ L1 we have that

E[ξ | Ft]→ E[ξ | F±∞]

for t→ ±∞.

Proof. By L1 boundedness we obtain convergence along any increasing or decreas-
ing subsequence towards limits M±∞. The upwards version follows from the pre-
vious Theorem 3.6, the downwards version follows immediately. �

This last theorem is often called reserve martingale convergence and can be used
to prove the strong law of large numbers and almost sure convergence of quadratic
variations:

(1) Let (ξi)i≥1 be an i.i.d. sequence of random variables in L1. Then we can
consider the filtration

F−n := σ(Sn, Sn+1, . . .)
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with Sn :=
∑n
i=1 ξi, for n ≥ 1. Since (ξ1, Sn, Sn+1, . . .) = (ξk, Sn, Sn+1, . . .)

for k ≤ n in distribution, we obtain

E[ξ1 | F−n] = E[ξk | F−n]

for k ≤ n. Whence

Sn
n

=
1

n
E[Sn | F−n] =

1

n

n∑
i=1

E[ξi | F−n]

=
1

n

n∑
i=1

E[ξ1 | F−n] = E[ξ1 | F−n]→ E[ξ1] ,

since the intersection of all tail σ algebras is trivial, i.e. all elements of the
intersection have probability either 0 or 1 (Hewitt-Savage 0− 1 law).

(2) Let (Wt)t∈[0,1] be a Wiener process and denote – for a fixed time 0 ≤ t ≤ 1

– by

V nt :=
∑
ti∈Πn

(Wti+1
−Wti)

2

the approximations of quadratic variation t along a refining sequence of
partitions Πn ⊂ Πn+1 of [0, t], whose meshes tend to zero. We know from
the lecture notes that the approximation takes place in L2, but we do not
know whether it actually holds almost surely. Consider the filtration

F−n := σ(V nt , V
n+1
t , . . .)

for n ≥ 1, whose intersection is actually trivial. Without loss of generality
we assume that each partition Πn contains n partition points by possibly
adding to the sequence intermediate partitions. Fix now n ≥ 2, then we
consider the difference between Πn−1 and Πn, which is just one point v
lying only in Πn and being surrounded by two nearest neighboring points
from Πn−1, i.e. u < v < w. Consider now a second Wiener process W̃s =
Ws∧v − (Ws −Ws∧v). Apparently

(Ṽ n−1
t , V nt , V

n+1
t , . . . ) = (V n−1

t , V nt , V
n+1
t , . . . )

in distribution, hence it holds that

E[Ṽ n−1
t − V nt | F−n] = E[V n−1

t − V nt | F−n] ,

which in turn means that

E[(W̃u − W̃v)(W̃v − W̃w) | F−n] = E[(Wu −Wv)(Wv −Ww) | F−n] .

Inserting the definition of W̃ yields the result that

E[V n−1
t − V nt | F−n] = 0

for n ≥ 1. Hence we have a martingale on the index set Z≤1, which by
martingale convergence tends almost surely to its L2 limit t.
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4. Martingales on continuous index sets

Martingale inequalities on uncountable index sets can often be derived from in-
equalities for the case of countable index sets if certain path properties are guaran-
teed. From martingale convergence results on countable index sets we can conclude
the existence of RCLL versions for processes like martingales, which is the main
result of this section. Most of the proofs stem from Olav Kallenberg’s book [3].

We need an auxiliary lemma on reverse submartingales first. Of course similar
statements hold for supermartingales.

Lemma 4.1. Let X be a submartingale on Z≤0. Then X is uniformly integrable if
and only if E[X] is a bounded (from below) sequence.

Proof. Let E[X] be bounded from below. We can then introduce a Doob-Meyer
type decomposition, i.e.

An :=
∑
k<n

E[Xk+1 −Xk | Fk] ,

which is well defined since all summands are positive due to submartingality and

E[A0] ≤ E[X0]− inf
n≥0

E[Xn] <∞ .

Whence X = M+A, where M is a martingale. Since A is uniformly integrable and
M is a martingale being closed at 0 by martingale convergence, hence uniformly
integrable, also the sum is uniformly integrable. The other direction follows imme-
diately since E[Xn] is decreasing for n → ∞. If it were unbounded from below, it
cannot be uniformly integrable. �

From this statement we can conclude by martingale convergence the following
fundamental regularization result:

Theorem 4.2. For any submartingale X on R≥0 with restriction Y to Q≥0 we
have:

(1) The process of right hand limits Y + exists on R≥0 outside some nullset A
and Z := 1AcY

+ is an RCLL submartingale with respect to the augmented
filtration F+.

(2) If the filtration is right continuous, then X has a RCLL version, if and only
if t 7→ E[Xt] is right continuous.

Proof. The process Y is L1 bounded on bounded intervals since the positive part is
an L1 bounded submartingale by Jensen’s inequality, hence by martingale conver-
gence Theorem 3.5 we obtain the existence of right and left hand limits and therefore
Y + is RCLL. Clearly the process Z is adapted to the augmented filtration F+.

The submartingale property follows readily, too: fix times s < t and choose sn ↘
s and tm ↘ t, with sn < t for all n ≥ 1. Then – by assumption – E[Ytm | Fsn ] ≥ Ysn .
By martingale convergence to the left we obtain

E[Ytm | Fs+] ≥ Zs
almost surely. Since the submartingale (Ytm))m≥1 has bounded expectations, we
conclude L1-convergence (due to uniform integrability by the previous lemma) and
therefore arrive at

E[Zt | Fs+] ≥ Zs .



10 JOSEF TEICHMANN

For the second assertion observe that if X is RCLL, then the curve E[X] is right
continuous by uniform integrability along decreasing subsequences and the previous
lemma. On the other hand if E[X] is right continuous Zt = E[Zt | Ft] ≥ Xt by
limits from the right, but E[Zt−Xt] = 0 by right continuity of E[X], hence Z and
X are indistinguishable. �

5. Stochastic Integration for caglad integrands

We follow here mainly Philip Protter’s book [5] on stochastic integration, which
is inspired by works of Klaus Bichteler, Claude Dellacherie and Paul-Andre Meyer,
see [2] and [4]: the idea is to crystallize the essential property (the “good integrator”
property), which guarantees the existence of stochastic integrals, and to derive all
properties of stochastic integrals from the good integrator property. Finally it
can be shown that every good integrator is the sum of a local martingale and a
finite variation process. This approach leads to an integration theory for caglad
integrands.

Let us introduce some notation: we denote by S the set of simple predictable
processes, i.e.

H01{0} +

n∑
i=1

∑
i

Hi1]Ti,Ti+1]

for an increasing, finite sequence of stopping times 0 = T0 ≤ T1 ≤ . . . Tn+1 < ∞
and Hi being FTi measurable, by L the set of caglad processes and by D the set of
cadlag processes on R≥0. These vector spaces are endowed with the metric

d(X,Y ) :=
∑
n≥0

1

2n
E
[
|(X − Y )|∗n ∧ 1

]
,

which makes L and D complete topological vector spaces. We call this topology
the ucp-topology (“uniform convergence on compacts in probability”). Notice that
predictable strategies as well as integrators are considered R valued here, which,
however, contains the Rn case.

Notice that we are dealing here with topological vector spaces, which are in
general not even locally convex. This leads also to the phenomenon that the metric
does not detect boundedness of sets, which is defined in the following way: A subset
B of a topological vector space D is called bounded, if it can be absorbed by any
open neighborhood U of zero, i.e. there is R > 0 such that B ⊂ RU . For instance
for the space of random variables L0(Ω) this translates to the following equivalent
statement: a set B of random variables is bounded in probability if for every ε > 0
there is c > 0 such that

P [|Y | ≥ c] < ε

for Y ∈ B, which is of course not detectable by the metric.
In order to facilitate the reasoning we shall use the following definition, which

seems slightly less general than the original ones which is treated in the subsequent
remark.

Definition 5.1. A cadlag process X is called good integrator if the map

JX : S→ D

with JX(H) := H0X0 +
∑n
i=1Hi(XTi+1∧t −XTi∧t), for H ∈ S, is continuous with

respect to the ucp-topologies.
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Remark 5.2. It would already be sufficient to require a good integrator to satisfy
the following property: for every stopped process Xt the map IXt : Su → L0(Ω),
where IXt(H) := JX(H)∞, from uniformly bounded, simple predictable processes
with the uniform topology Su to random variables with convergence in probability,
is continuous, i.e.

(5.1) IXt(H
k) := Hk

0X0 +

n∑
i=1

Hk
i (XTi+1∧t −XTi∧t)→ 0

if Hk → 0 uniformly on Ω× R≥0.
From continuity with respect to the uniform topology continuity with respect to

the ucp topologies, as claimed in the definition of a good integrator, immediately
follows. Indeed assume that IX is continuous with respect to the uniform topology,
fix n ≥ 0 and a sequence Hk → 0, which tends to 0 uniformly, then choose c ≥ 0
and define a sequence of stopping times

τk := inf{t | |(Hk •X)t| ≥ c}
for k ≥ 0, then

P [|(Hk •X)|∗n ≥ c] = P [|(Hk1[0,τk] •X)
n
| ≥ c]→ 0

as k → ∞ by assumption, hence JX : Su → D is continuous, i.e. we can map to
processes without loosing continuity.

Take now a sequence Hk → 0 in ucp, and choose c ≥ 0, ε > 0 and n ≥ 0. Then
there is some η > 0 such that

P [|(H •X)n|
∗ ≥ c] ≤ ε

for ‖H‖∞ ≤ η by continuity of JX : Su → D. Define furthermore stopping times

ρk := inf{s | |Hk
s | > η}

then we obtain

P [|(Hk •X)n|
∗ ≥ c] ≤ P [|(Hk1[0,ρk] •X)

n
| ≥ c] + P [ρk < n] < 2ε

if k is large enough since P [ρk < n]→ 0 as k →∞.
Clearly Property (5.1) holds if it only holds locally: indeed let τn be a localizing

sequence, i.e. τn ↗∞ with Xτn being a good integrator. Fix t ≥ 0 and a sequence
Hk → 0, which tends to 0 uniformly, then

P [|IXt(Hk)| ≥ c] ≤ P [|IXτn∧t(Hk)| ≥ c] + P [τn ≤ t]
for every n ≥ 0. Hence we can choose n large enough, such that the second term is
small by the localizing property, and obtain for k large enough that the first term
is small by Xτn being a good integrator.

Remark 5.3. The set S is dense in the ucp-topology in L, even the bounded simple
predictable processes are dense. Consider just the sequence of partitions introduced
at the beginning of the next subsection.

Remark 5.4. We provide examples of good integrators:

• Any process of finite variation A with is a good integrator, since for every
simple (not even predictable) process it holds that

|
∫ t

0

HsdAs| ≤ ‖H‖∞
( ∫ t

0

d|A|s + |A0|
)
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almost surely, for t ≥ 0.
• By Ito’s fundamental insight square integrable martingales M are good

integrators, since

E
[
(H •M)t

2] ≤ ‖H‖2∞(E[|Mt|2]
)

holds true for simple, bounded and predictable processes H ∈ Su.
• By the following elementary inequality due to Burkholder we can conclude

that martingales are good integrators: for every martingale M and every
simple, bounded and predictable process H ∈ Su it holds that

cP (|(H •M)|∗1 ≥ c) ≤ 18‖H‖∞‖M1‖1
for all c ≥ 0. For an easy proof of this inequality see, e.g., works of Klaus
Bichteler [2] or Paul-Andre Meyer [4, Theorem 47, p. 50]. Since the in-
equality is crucial for our treatment, we shall prove it here, too. Notice
that we are just dealing with integrals with respect to simple integrands,
hence we can prove it for discrete martingales on a finite set of time points.
Let M be a non-negative martingale first and H bounded predictable with
‖H‖∞ ≤ 1, then Z := M ∧ c is a supermartingale and we have

cP (|(H •M)|∗1 ≥ c) ≤ cP (|M |∗1 ≥ c) + cP (|(H • Z)|∗1 ≥ c) .
Since Z is a super-martingale we obtain by the Doob-Meyer decomposition
for discrete super-martingales Z = M̃ −A that

|(H • Z)| ≤ |(H • M̃)|+A ,

i.e. we have an upper bound being a sub-martingale. With |(H • M̃)|+ A
also its square is a sub-martingale. Hence we can conclude by Lemma 3.2
that

cP (|(H •M)|∗1 ≥ c) ≤ E[M1] + 2
1

c
E[(H • M̃)

2

1 +A2
1] ,

since

cP (|(H • Z)|∗1 ≥ c) ≤ cP
(∣∣|(H • M̃)|+A

∣∣∗
1
≥ c
)
≤

≤1

c
E
[(
|(H • M̃)|1 +A1

)2] ≤ 2
1

c
E[(H • M̃)

2

1 +A2
1] .

Ito’s insight allows to estimate the variance of the stochastic integral at time
1 by E[M̃2

1 ]. Both quantities M̃ and A of the Doob-Meyer decomposition

may, however, be estimated through E[A2
1] ≤ E[M̃2

1 ] ≤ 2cE[Z0] ≤ 2cE[M0],

see (2.1), since Z is non-negative (so A ≤ M̃ holds true) and Z ≤ c. This
leads to an upper bound

cP (|(H •M)|∗1 ≥ c) ≤ 9E[M0] .

Writing a martingale as difference of two non-negative martingales leads to
the desired result. Apparently the result translates directly to the fact that
M is a good integrator. We actually immediately obtain that JX : Su → D
is continuous, wherefrom – as we have seen before – the continuity even
with respect to the ucp topology on S follows.

By density and continuity we can extend the map JX to all caglad processes
Y ∈ L, which defines the stochastic integral (Y •X). As a simple corollary we can
prove the following proposition:
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Proposition 5.5. Let H,G ∈ L be given and let X be a good integrator, then
(G •X) is a good integrator and (H • (G •X)) = (HG •X).

Proof. Let X be a good integrator, then JX : L→ D is continuous with respect to
the ucp topologies. Let (Hk) be a sequence in Su converging uniformly to 0, then
HkG converges ucp for every G ∈ L, whence J(G•X) which satisfies

J(G•X)(H) = (HG •X)

is obviously continuous, and the desired formula holds by continuous extension. �

5.1. Approximation results. We know that H 7→ (H • X) is continuous with
respect to the ucp topologies on the left and right hand side. However, actually a
bit more is true.

Most important for the calculation and understanding of stochastic integrals is
the following approximation result: a sequence of partition tending to identity Πk

consists of stopping times 0 = T k0 ≤ . . . ≤ T kik < ∞ with mesh supi(T
k
i+1 − T ki )

tending to 0 and supi T
k
i →∞. We call the sequence of cadlag processes

Y Πk :=
∑
i

YTki 1[Tki ,T
k
i+1[

a sampling sequence for a cadlag process Y along Πk, for k ≥ 0. Notice that we do

not necessarily have that Y Πk → Y in ucp, nor Y Πk

− → Y− due to the presence of
large jumps.

Example 5.6. One important sequence of partition is constructed by a truncation
of the following one: let Y ∈ D be a cadlag process. For n ≥ 0 we can define a
double sequence of stopping times τni

τn0 := 0 and τni+1 := inf{s ≥ τni | |Ys − Yτni | ≥
1

2n
}

for i ≥ 0. This defines a sequence of partitions

Πn = {τn0 ≤ . . . τnn2n}

tending to identity. We have that

|Y− − Y Πn

− | ≤
1

2n
,

hence Y Πn

− → Y− in the ucp topology, and also Y Πn → Y in ucp.

Theorem 5.7. For any good integrator X we obtain that

(Y Πk

− •X)→ (Y− •X)

in the ucp topology in general (even though Y Πk does not necessarily converge to Y
in ucp), as well as the less usually stated but equally true ucp convergence result

(Y Πk

− •XΠk)→ (Y− •X)− .

Remark 5.8. Notice that so far we have no understanding on the continuity of
X 7→ (H • X) on the set of good integrators. Of course it is not ucp continuous.
The second assertion gives an answer in a very specific case.
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Proof. We know by previous remarks that there are sequences Y l of simple cadlag
processes converging ucp to Y , where Y l− → Y− holds true for the associated left
continuous processes. Hence we can write

((Y−−Y Πk

− )•X) = ((Y−−Y l−)•X) + ((Y l−− (Y l)
Πk

− )•X) + (((Y l)
Πk

− −Y
Πk

− )•X) ,

where the first and third term converge of course in ucp as l → ∞, the third even
uniformly in k. The middle term is seen to converge by direct inspection.

The proof of the second assertion follows from the fact that

(Y Πk

− •XΠk) = (Y− •XΠk)→ (Y− •X)− ,

where the limit assertion follows from the fact that (Y− • XΠk) only differs from

(Y Πk

− • X) on the ’last’ interval before t is reached by the stopping times in the

partition Πk, which is a quantity converging to 0 plus the last jump, i.e.

YTi(XTki+1∧t −XTki ∧t)1[Tit ,Tit+1[(t)− Yt∆Xt → 0

in ucp. it is chosen such that t ∈ [Tit , Tit+1[. �

Definition 5.9. Let X,Y be good integrators, then we define the quadratic (co-)
variation process by

[X,Y ] := XY − (X− • Y )− (Y− •X) .

Quadratic variation [X,X] is an non-decreasing (hence finite variation) process
for any good integrator. As a consequence of the previous approximation theorem
we obtain of course for two good integrators X,Y that

[XΠk , Y Πk ]t =
∑

Tki+1<t

(XTki+1
−XTki

)(YTki+1
− YTki )→ [X,Y ]t− ,

in ucp, since quadratic co-variation can be expressed by stochastic integrals as given
in the definition. Whence∑

i

(XTki+1∧t −XTki ∧t)(YTki+1∧t − YTki ∧t)→ [X,Y ]t

again in ucp.
Let us fix an important notations here: we shall always assume that X0− = 0

(a left limit coming from negative times), whereas X0 can be different from zero,
whence ∆X0 is not necessarily vanishing.

Proposition 5.10. Let H ∈ L be fixed, as well as two good integrators X,Y . Then

[(H •X), Y ] = (H • [X,Y ])

Proof. Let H ∈ S be fixed. Then apparently

[(H •X), Y ] =
(
H • [X,Y ]) ,

whence by continuity with respect to ucp topologies also the left hand side is con-
tinuous with respect to ucp topologies, which proves the result by continuity of
H 7→ (H •X) with respect to ucp. �
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5.2. Ito’s theorem. The set of semi-martingales is a vector space, in fact even
an algebra. More precisely: given finitely many semi-martingales X1, . . . , Xn then
f(X1, . . . , Xn) is also a semi-martingale for any C2 function f .

It is remarkable that Ito’s theorem can be concluded from its version for piece-
wise constant processes due to the following continuity lemma, which complements
results which have already been established for the approximation of stochastic
integrals. We state an additional continuity lemma:

Lemma 5.11. Let X1, . . . , Xn be good integrators, Πk a sequence of partitions
tending to the identity and f : Rn → R a C2 function, then for t ≥ 0∑
s≤t

{
f(XΠk

s )− f(XΠk

s− )−
n∑
i=1

∂if(XΠk

s− )∆Xi,Πk

s − 1

2

n∑
i,j=1

∂2
ijf(XΠk

s− )∆Xi,Πk

s ∆Xj,Πk

s

}
→k→∞

∑
s≤t

{
f(Xs)− f(Xs−)−

n∑
i=1

∂if(Xs−)∆Xi
s −

1

2

n∑
i,j=1

∂2
ijf(Xs−)∆Xi

s∆X
j
s

}
,

where the limit can be even understood in ucp topology.

Remark 5.12. Here we mean with XΠk the cadlag version of the sampled process
as introduced before.

Proof. The proof of this elementary lemma relies on Taylor expansion of f : ap-
parently the finitely many summands of the approximating series are small at s if

(∆XΠk

s )(2+) is small, hence only those jumps remain after the limit, which are at
time points where X actually jumps. Let us make this precise: first we know – by
the very existence of quadratic variation – that∑

s≤t

(∆Xi)
2 ≤ [Xi, Xi]t <∞

almost surely. Fix t ≥ 0 and ε > 0, then we find for every ω ∈ Ω a finite set
Aω of times up to t, where X jumps in a large way (defined by the condition
on B), and a possibly countable set of times Bω up to t, where X jumps and∑
s∈B ‖∆X‖

2 ≤ ε2, since every cadlag path has at most countably many jumps up
to time t. Furthermore we know that

f(y)−f(x)−
n∑
i=1

∂if(x)(y − x)
i−1

2

n∑
i,j=1

∂2
ijf(x)(y − x)

i
(y − x)

j
= o
(
‖y−x‖

)
‖y − x‖2

as y → x. This means that for ω ∈ Ω we can split the approximating sum into two
sums denoted by

∑
A, where ]T ki (ω), T ki+1(ω)] ∩Aω 6= ∅, and

∑
B corresponding to

jumps which appear at B and
∑
C over intervals, where no jumps appear in the

limit. We then obtain an estimate for the limiting sum
∑
B of the type∑

B

≤ 2ε2o
(
ε
)

for k large enough by uniform continuity of continuous functions on compact inter-
vals and jump size at most ε. Furthermore we obtain∑

C

≤ ‖[XTk , XTk ]‖o
(

max
i

1]Tki ,T
k
i+1]∩(A∪B)=∅‖XTki+1

−XTki
‖
)
.

The other part
∑
A behaves differently, but is a finite sum, hence it converges to

the respective limit (written with A in respective sense). Letting now tend ε → 0
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the result follows immediately. The argument is true uniformly along paths in
probability. �

We are now able to prove Ito’s formula in all generality:

Theorem 5.13. Let X1, . . . , Xn be good integrators and f : Rn → R a C2 function,
then for t ≥ 0

f(Xt) =

n∑
i=1

(∂if(X−) •Xi)t +
1

2

n∑
i,j=1

(∂2
ijf(X−) • [Xi, Xj ])

t
+

+
∑

0≤s≤t

{
f(Xs)− f(Xs−)−

n∑
i=1

∂if(Xs−)∆Xi
s −

1

2

n∑
i,j=1

∂2
ijf(Xs−)∆Xi

s∆X
j
s

}
.

Remark 5.14. Notice that f(X0) is in the second sum since we agreed that f(X0−) =
0.

Proof. Let Πk be a sequence of partitions tending to the identity, then Ito’s formula
reads by careful inspection

f(XΠk

t ) =

n∑
i=1

(∂if(XΠk

− ) •Xi,Πk)
t

+
1

2

n∑
i,j=1

(∂2
ijf(XΠk

− ) • [Xi,Πk , Xj,Πk ])
t
+

+
∑

0<s≤t

{
f(XΠk

s )− f(XΠk

s− )−
n∑
i=1

∂if(XΠk

s− )∆Xi,Πk

s − 1

2

n∑
i,j=1

∂2
ijf(XΠk

s− )∆Xi,Πk

s ∆Xj,Πk

s

}
,

since the process is piece-wise constant and the sum is just telescoping. By the
previously stated convergence result, however, this translates directly – even in ucp
convergence – to the limit for k →∞, which is Ito’s formula. �

5.3. Quadratic Pure jump good integrators. We call a good integrator qua-
dratic pure jump if [X,X]t =

∑
s≤t (∆Xs)

2
for t ≥ 0. It follows from Ito’s formula

that every cadlag, adapted and finite variation process X is quadratic pure jump.
Indeed the finite variation property yields a well-known Ito formula for f(x) = x2

(notice that the second order terms is missing in the sum) of the type

X2
t = 2(X− •X) +

∑
s≤t

{
X2
s −X2

s− − 2Xs−∆Xs

}
= 2(X− •X) +

∑
s≤t

(∆Xs)
2
,

which yields the result on the quadratic variation. Hence for every good integrator
M we obtain

[X,M ]t =
∑
s≤t

∆X∆M

for finite variation processes X with complete analogous arguments.

5.4. Stochastic exponentials. An instructive example how to calculate with
jump processes is given by the following process: let X be a good integrator with
X0 = 0, then the process

Zt = exp
(
Xt −

1

2
[X,X]t

) ∏
0≤s≤t

(1 + ∆Xs) exp
(
−∆Xs +

1

2
(∆Xs)

2)
satisfies Zt = 1 + (Z− •X)t and is called stochastic exponential.

For the proof we have to check that the infinite product is actually converging
and defining a good integrator. We show this by proving that it defines an adapted,
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cadlag process of finite variation. We only have to check this for jumps smaller than
1
2 , i.e. we have to check whether∑

s≤t

{log(1 + Us)− Us +
1

2
U2
s }

converges absolutely, where Us := ∆Xs1{|∆Xs|≤ 1
2}

, for s ≥ 0. This, however, is

true since | log(1 + x)− x+ 1
2x

2| ≤ Cx3 for |x| ≤ 1
2 and

∑
s≤t ∆Xs

2 ≤ [X,X] <∞
almost surely.

Hence we can apply Ito’s formula for the function exp(x1)x2 with good integra-
tors

X1
t = Xt −

1

2
[X,X]t

and

X2
t =

∏
0≤s≤t

(1 + ∆Xs) exp
(
−∆Xs +

1

2
(∆Xs)

2
) .

This leads to

Zt = 1 + (Z− •X)t −
1

2
(Z− • [X,X])t + (exp(X1

−) •X2)t +
1

2
(Z− • [X1, X1])t+

+
∑
s≤t

{
Zs − Zs− − Zs−∆X1

s − exp(X1
s−)∆X2

s −
1

2
Zs−(∆X1

s )
2}

=

= 1 + (Z− •X)t −
1

2
(Z− • [X,X])t +

1

2
(Z− • [X1, X1])t+

+
∑
s≤t

{
Zs−∆Xs − Zs−∆X1

s −
1

2
Zs−(∆X1

s )
2}

=

= 1 + (Z− •X)t −
1

2
(Z− • [X,X])t +

1

2
(Z− • [X1, X1])t+

+
∑
s≤t

{1

2
Zs−(∆Xs)

2 − 1

2
Zs−(∆X1

s )
2}

=

= 1 + (Z− •X)t ,

since

Zs = Zs− exp
(
∆Xs −

1

2
(∆Xs)

2)
(1 + ∆Xs) exp

(
−∆Xs +

1

2
(∆Xs)

2)
holds true, for s ≥ 0.

5.5. Lévy’s Theorem. Another remarkable application is Lévy’s theorem: con-
sider local martingales B1, . . . , Bn starting at 0 with continuous trajectories such
that [Bi, Bj ]t = δijt for t ≥ 0. Then B1, . . . , Bn are standard Brownian motions.

For this theorem we have to check that stochastic integrals along locally square
integrable martingales are locally square integrable martingales: indeed let X be a
locally square-integrable martingale and H ∈ L, then by localizing and the formula

(H •X)
τ

= (H •Xτ ) = (H1[0,τ ] •Xτ ) = (H1[0,τ ] •X)

we can assume that H is bounded and X is in fact a square integrable martingale
with E[X2

∞] < ∞. Then, however, we have by Ito’s insight that for sequence of
partitions tending to identity the process

(HΠk •X)
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is a square integrable martingale, which satisfies additionally

E[(HΠk •X)
2

∞] ≤ ‖H‖∞E[X2
∞] .

By martingale convergence this means that the limit in probability of the stochastic
integrals is also a square integrable martingale, whence the result.

This can be readily applied to the stochastic process

Mt := exp
(
i〈λ,Bt〉+

t

2
‖λ‖2

)
for t ≥ 0 and λ ∈ Rn, which is a bounded local martingale by the previous consid-
eration and Ito’s formula. A bounded local martingale is a martingale, whence

E[exp(i〈λ,Bt −Bs〉) | Fs] = exp(− t− s
2
‖λ‖2) .

6. Bichteler-Dellacherie-Mokobodzki Theorem

A semi-martingale X has a decomposition X = M+A, where M is a cadlag local
martingale and A is a cadlag process of finite variation. Of course all processes are
considered adapted with respect to the given filtration (with usual conditions). The
Bichteler-Dellacherie-Mokobodzki Theorem tells every good integrator is a semi-
martingale: we present here a proof of Christophe Stricker, which is particularly
simple and very instructive, and does not use the Doob-Meyer decomposition in
continuous time: instead we are just working with sets bounded in probability.

We can apply in the sequel an L2 version of Komlos theorem (even though we
can also just work with weak convergence): let (gn)n≥1 be a bounded sequence in

L2(P ), then we can find elements hn ∈ Cn := conv(gn, gn+1, . . .) which converge
almost surely and in L2(P ) to some element h. For the proof we take

A = sup
n≥1

inf
g∈Cn

‖g‖2 ,

then there are elements hn ∈ conv(gn, gn+1, . . .) such that ‖hn‖2 ≤ A+ 1
n . Fix ε > 0,

then there is n large enough such that for all k,m ≥ n the inequality ‖hk + hm‖2 >
4(A − ε) holds true, since the sup is along an non-decreasing sequence!. By the
parallelogram-identity we then obtain

‖hk − hm‖2 = 2‖hk‖2 + 2‖hm‖2 − ‖hk + hm‖2 < 4(A+
1

n
)− 4(A− ε) = 4ε+

1

n
,

which yields the assertion of L2(P ) convergence. By passing to a subsequence the
almost sure convergence follows, too.

Remark 6.1. It is of utmost importance to understand that the convex hull of a set
of random variables, which is bounded in probability, is not necessarily bounded in
probability. Take for instance a sequence of non-negative, independent, identically
distributed random variables (Xn) with infinite first moment. Then LLN tells that
1
n

∑n
i=1Xi →∞ almost surely by monotone convergence. Whence the convex hull

of (Xn) is not bounded in probability even though apparently the sequence itself
is.

We shall actually prove something more general here: we even consider the good
integrator property without path properties.
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Remark 6.2. Notice that due to the absence of path properties the running maxi-
mum process is actually defined as essential supremum over [0, t], i.e. the smallest
random variable X∗t which dominates Xs for all 0 ≤ s ≤ t.

Theorem 6.3. Let X be a stochastic processes (without any assumption on path
properties), such that the convex set{

(H •X)t | ‖H‖∞ ≤ 1 with H ∈ Su jumping only at deterministic times
}

is bounded in probability for any t ≥ 0. Then there exists a càdlàg local martingale
M and a finite variation process A such that X = M +A.

Proof. It is of course enough to fix t = 1 and prove the statement on [0, 1], where
from it follows by concatenation for [0,∞[. We shall also assume X0 = 0. The
proof is now split is several steps:

(1) From the assumption it follows immediately that the not necessarily convex
set {

|(H •X)t|∗ | ‖H‖∞ ≤ 1
}

is bounded in probability. Indeed, if it were untrue there exists ε > 0 and
a sequence Hn of strategies uniformly bounded by 1 such that

P
(
|(Hn •X)t|∗ ≥ n

)
> ε ,

which can also be seen via stopping when n is exceeded, i.e. we find stopping
times τn (with values in an appropriately chosen finite set depending on n,
due to the nature of the essential supremum, and in order to stay on finite
deterministic grids)

P
(
|(Hn •X)t|τn = |(Hn1[0,τn] •X)t| ≥ n

)
> ε ,

which in turn contradicts the assumption. Additionally we can write∑
i

(Xti+1
−Xti)

2 = X2
tn − 2(H •X)tn ,

where H =
∑
iXti1]ti,ti+1] along each deterministic grid. Now |H|∗1 ≤ |X|∗1

by the previous consideration, whence we can conclude that the convex hull{
[X,X]Π | for any partition with deterministic times Π

}
is bounded in probability. Therefore we can find a probability measure
Q ∼ P such that

sup
Π
EQ
[
[X,X]Π1

]
+ E[(|X|∗1)2] + sup

‖H‖∞≤1

EQ[(H •X)] ≤ U <∞

by the Nikisin-Yan theorem.
(2) By choosing appropriate strategies H, e.g. taking on [ti, ti+1[ the value

signE[Xti+1
−Xti |Fti ]

we obtain that the good integrator (without path properties!) is actually
of finite mean variation

m-var(X) = sup
Π
EQ

[∑
i

∣∣E[Xti+1
−Xti |Fti ]

∣∣] < U

with respect to Q.
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Take finally a strategy H =
∑
i ai1]ti,ti+1] uniformly bounded by 1 with

grid Π = {0 = t0 < . . . < tn}, then we can define a discrete martingale

Mtj :=

j−1∑
i=0

ai(Xti+1 −Xti)−Ati ,

where Ati = aiE[Xti+1
−Xti |Fti ]. By Doob’s maximal inequality we obtain

that E[(|M |∗tn)2] ≤ 4E[M2
tn ] ≤ 16U , whence

EQ[sup
t∈Π

[|(H •X)|t] ≤ 4
√
U + m-var(X)

with the right hand side not depending on n and H. So we obtain

sup
‖H‖∞≤1

EQ[|(H •X)|∗1] <∞ .

(3) Finally this yields for a strategy H =
∑
i ai1]ti,ti+1] uniformly bounded by

1 with grid Π = {0 = t0 < . . . < tn}

(H •X)2 =
∑
i

a2
i (Xti+1

−Xti)
2 + 2(K •X)

with K =
∑
j aj(

∑j−1
i ai(Xti+1

−Xti))1]tj ,tj+1
, where K ≤ |(H •X)|∗. By

the previous result the convex hull of |(H •X)|∗1 is bounded in probability
for ‖H‖∞ ≤ 1, whence the convex hull of (H•X)2 is bounded in probability
since the convex set

sup
‖K‖∞≤|(H•X)|∗1

Q
[
(K•X) ≥ c

]
≤ Q

[
(K•X) ≥ c, |(H•X)|∗1 < b

]
+Q

[
|(H•X)|∗1 ≥ b

]
is bounded in probability and the sum of two convex sets bounded in prob-
ability is convex and bounded in probability; the first set being the convex
hull of ∑

i

a2
i (Xti+1 −Xti)

2 .

With these preliminary steps there exists a measure Q ∼ P such that

sup
‖H‖∞≤1,Π

EQ[(H •X)2
1 + [X,X]Π + (H •X)1] <∞ .

The discrete time martingale

MΠ
t =

∑
ti≤t

(
(Xti+1

−Xti)− E[Xti+1
−Xti |Fti ]

)
1[ti,ti+1[

for t ∈ Π is well defined square integrable martingale with respect to the corre-
sponding discrete filtration . Furthermore

sup
Π
EQ

[(
MΠ

1

)2]
<∞

yielding a weakly converging sequenceMΠk (which can be chosen refining with mesh
going to 0) converging to a limit M1. We denote the continuous time martingale
with càdlàg trajectories generated by M1 by M , i.e. almost surely Mt = E[M1 | Ft]
for 0 ≤ t ≤ 1 and define A = X −M . Notice that A as well as X does a priori not
have path properties, in contrast to the càdlàg martingale M .

We consider now the set of all time points belonging to the partitions Πk and
denote it by Π, i.e. Π = ∪Πk.
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Choosing a partition σ = {0 = s0 < . . . < sn} consisting of points in Π we can
readily prove that for any element Y ∈ L2(Q) with unit length

E[Y
∑
i

|Asi+1 −Asi |] ≤ sup
k

(E
[∣∣∑

i

E[Xti+1 −Xti |Fti ]
∣∣2])1/2 ,

which in turn can be estimated by weak convergence

sup
‖H‖∞≤1,Π

EQ[(H •X)2
1 + 2[X,X]Π] <∞ .

Whence the total variation of A calculated via time points chosen from Π is finite.
This is not enough to conclude that the total variation is finite, in contrast to claims
[7]. We have to argue here a bit further.

Even though we do not have a finite total variation of A yet we can still follow
Rao’s classical calculus with so called natural processes, namely for every square
integrable càdàg martingale N and every sequence of partitions chosen in Π and
tending towards the identity we have

lim
n→∞

E[(Nσn
− •Aσn)] = lim

n→∞
E[
∑
i

Nti(Xti+1 −Xti)]

= lim
n→∞

E[
∑
i

N1E[Xti+1
−Xti |Fti ]] = E[N1A1]

since A = X−M and M is an L2 martingale. Assume now that we have constructed
two martingales M1 and M2 with associated partition points Π1 ⊂ Π2, then we
can ask whether they are equal. Indeed it holds that

M1 −M2 = A2 −A1

by construction, i.e. on Π1 we can consider the square integrable càdlàg martingale
A2 − A1 and perform the above calculus with N = A2 − A1 and A = A2 − A1.
Hence we obtain E[(A2

t − A2
t )

2] = 0 for every 0 ≤ t ≤ 1, so A2 is a version of A1.
Additionally we have that A1 also has finite total variation on Π2. Therefore we
can conclude that A1 has finite total variation since Π2 was arbitrary.

For the rest of the proof we just apply Girsanov’s theorem in its general form. �

7. Doob-Meyer decomposition

The decomposition of good integrators X into a finite variation process A and
a local martingale M can be refined for super-martingales even beyond càdlàg
trajectories. Actually the finite variation process can be chosen predictable and
increasing.

We shall first prove the result for bounded, non-negative supermartingales X
using estimates for discrete super-martingales. Subsequently The proof will follow
lines from [7]. Then we shall use a stopping argument which has to be done with
some care due to absence of path properties.

Theorem 7.1. Let S be a bounded, non-negative super-martingale (without any
path properties) on [0, 1], then there exists a càdlàg local martingale M and a pre-
dictable, increasing finite variation process A such that S = M −A. The decompo-
sition is unique up to versions of A and indistinguishibility of M .

Let S be a non-negative super-martingal such that a sequence τn of stopping
times exist which stops S at level n, i.e.

Sτn = S ∧ n+ (Sτn − n)1[τn,1[ ,
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in particular E[Sτn ] ≤ E[S0] is assumed. Then S can be decomposed in càdlàg local
martingale M and an increasing, predictable process A as S = M − A. Again the
decomposition is unique up to indistinguishibility.

Proof. First we prove the theorem for bounded, non-negative super-martingales
0 ≤ S ≤ c. Indeed in this case we obtain for any partiation Π that the sampled
super-martingale SΠ admits a discrete Doob-Meyer decomposition with respect to
the approriately discretized filtration. For this Doob-Meyer decomposition SΠ =
MΠ −AΠ

E[MΠ
1 ] ≤ 2cE[S0]

holds true, whence we can find a sequence of partitions Πk, refining and with

mesh converging to 0, such MΠk

1 → M1 weakly in L2(P ). With this random
variable we can define a càdlàg square-integrable martingale M via conditioning,
and additionally A = M − S, which is a conditionally increasing process. The
process is indeed increasing when sampled on time points ∪Πk and therefore of
finite variation thereon. Also naturality as in the previous proof holds true, i.e.

lim
n→∞

E[(Nσn
− •Aσn)] = E[N1A1] ,

hence we can conclude that on increasing sets of time points Π1 ⊂ Π2 with asso-
ciated Doob-Meyer decompositions S = M1 − A1 = M2 − A2 we do actually have
uniqueness in version for A and uniqueness up to indistinguishability for M1 and
M2. Therefore the decomposition into a finite variation process A and a càdlàg
martingale is proved, where A is additionally increasing. It remains to prove that
A is actually predictable. This, however, follows from general facts on so called
natural processes A, i.e. finite variation processes which satisfy

E[(N− •A)1] = E[N1A1]

Second we prove the theorem for a general super-martingale S. Choose a stop-
ping time τn, which stops the super-martingale S at level n. Then

Sτn = S ∧ n+ (Sτn − n)1[τn,1[

holds true. Clearly S ∧ n is a bounded super-martingale and therefore we have, by
the previous consideration, a Doob-Meyer decomposition. The second term can be
written as

(Sτn − n− E[Sτn − n])1[τn,1[ + E[Sτn − n]1[τn,1[ ,

where the first summand is a càdlàg martingale and the second part is a decreasing
process, if n is larger than E[S0]. Whence we have a decomposition into a mar-
tingale Mn and an non-decreasing finite variation process An. Furthermore this
decomposition is unique. Whence for n ≥ m apparently

(Mn)τm = Mm

as well as (An)τm = Am. Therefore we can define a càdlàg local martingale M and
an increasing finite variation process A such that

S = M −A .
�

Remark 7.2. Assume that S is a non-negative càgàg super-martingale of class (D),
i.e. the set of all random variables Sτ for all possible stopping times with values in
[0, 1] is uniformly integrable, then the Doob-Meyer decomposition actually can be
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done with a martingale M . Indeed, since the Doob-Meyer decomposition for stop-
ping times τn stopping the process when it reaches level n works with a martingale,
we obtain a sequence of martingales Mτn for the Doob-Meyer decomposition of Sτn .
By uniform integrability Mτn is uniformly integrable and hence M is a martingale.

8. Stochastic Integration for predictable integrands

For many purposes (i.e. martingale representation) it is not enough to consider
only caglad integrands, but predictable integrands are needed. This cannot be
achieved universally for all good integrators, but has to be done case by case.
The main tool for this purpose are Hp spaces, for 1 ≤ p < ∞, which are spaces of
martingales with certain integrability properties, the most important being H1. We
present first the Hp and specialize then to p = 1 and p = 2. This is inspired by [6]
and does explicitly not make use of the fundamental theorem of local martingales.

Main tool for the analysis are the Burkholder-Davis-Gundy inequalities:

Theorem 8.1. For every p ≥ 1 there are constants 0 < cp < Cp such that for
every martingale

cpE
[
[M,M ]

p
2
∞
]
≤ E

[
(|M |∗∞)

p] ≤ CpE[[M,M ]
p
2
∞
]

holds true.

Remark 8.2. The inequalities follow from the same inequalities for discrete mar-
tingales, which can be proved by deterministic methods. In fact equations of the
type

(h •M)T + [M,M ]
p
2

T ≤ (|M |∗T )
p ≤ Cp[M,M ]

p
2

T + (g •M)T

hold true, with predictable integrands h, g and martingales M on a finite index set
with upper bound T hold, see [1].

Let M be a martingale and let us take a sequence of refining partitions Πn

tending to identity, for which MΠn → M in ucp and [MΠn ,MΠn ] → [M,M ] in
ucp. Fix some time horizon T > 0, then by monotone convergence

E
[
(|MΠn |∗T )

p]→ E
[
(|M |∗T )

p]
as n → ∞, since the sequence of partitions is refining. If E

[
(|M |∗T )

p]
= ∞, we

obtain that all three quantities are infinity. If E
[
(|M |∗T )

p]
< ∞ we obtain by

dominated convergence that

E
[
[MΠm −MΠn ,MΠm −MΠn ]

p
2

T

]
≤ E

[
(|MΠm −MΠn |∗T )

p]→ 0

which means by

E
[∣∣[MΠm ,MΠm ]

1
2 − [MΠn ,MΠn ]

1
2

T

∣∣p] ≤ E[[MΠm −MΠn ,MΠm −MΠn ]
p
2

T

]
the Lp convergence of the quadratic variations to [M,M ]. This yields the result for
any T > 0 and hence for T →∞.

Remark 8.3. The case p = 2 can be readily derived from Doob’s maximal inequality,
see Theorem 3.3, and we obtain

E
[
[M,M ]∞

]
= E

[
M2
∞
]
≤ E

[
(|M |∗∞)

2] ≤ 4E[M2
∞
]

= E
[
[M,M ]∞

]
.
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Definition 8.4. Let p ≥ 1 be given. Define the vector space Hp as set of martin-
gales M where

‖M‖pHp := E
[
(|M |∗∞)

p]
<∞

holds true.

By the Burkholder-Davis-Gundy inequalities the following theorem easily fol-
lows:

Theorem 8.5. For p ≥ 1 the space Hp is a Banach space with equivalent norm

M 7→ E
[
[M,M ]

p
2
∞
] 1
p
.

For p = 2 the equivalent norm is in fact coming from a scalar product

(M,N) 7→ E
[
[M,N ]T

]
.

Additionally we have the following continuity result: Mn → M in Hp, then (Y •
Mn) → (Y • M) in ucp for any left-continuous process Y ∈ L. In particular
[Mn, N ]→ [M,N ] in ucp.

In the next step we consider a weaker topology of Lp type on the set of simple
predictable integrands. The following lemma tells about the closure with respect
to this topology.

Lemma 8.6. Let A be an increasing finite variation process and V a predictable
process with

(|V |p •A)t <∞ ,

then there exists a sequence of bounded, simply predictable processes V n in bS such
that

(|V − V n|p •A)t → 0 ,

as n→∞.

Proof. By monotone class arguments it is sufficient to prove the lemma for LCRL
processes, for which it is, however, clear, since they can be approximated in the
ucp topology by simply predictable processes. �

The main line of argument is to construct for predictable processes V satisfying
certain integrability conditions with respect to [M,M ] a stochastic integral (V •M)
for M ∈ Hp. We take the largest space H1 in order to stay as general as possible.

Proposition 8.7. Let M ∈ H1 be fixed and let V n be a sequence of bounded, simple
predictable processes such that

E
[
(|V − V n|2 • [M,M ])

1
2∞
]
→ 0

then the sequence (V n•M) is a Cauchy sequence in H1 defining an element (V •M),
which does only depend on V and not on the approximating sequence V n and which
is uniquely determined by

[(V •M), N ] = (V • [M,N ])

for martingales N .
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Proof. This is a direct consequence of the Burkholder-Davis-Gundy inequalities,
since

E
[
|(V n •M)− (V m •M)|∗∞)

]
≤ C1E

[
((V n − V m)2 • [M,M ])

1
2

∞
]
→ 0

as n,m→∞. Whence (V •M) is a well-defined element of H1, which only depends
on V and not on the approximating sequence. For all martingales N and all simple
predictable strategies the formula

[(V n •M), N ] = (V n • [M,N ])

holds true by basic rules for LCRL integrands. By passing to the limit we obtain
the general result. Uniqueness is clear since [M,M ] = 0 means M = by Burkholder-
Davis-Gundy inequalities. �

Definition 8.8. Let M ∈ H1, then we denote by L1(M) the set of predictable
processes V such that

E
[
(|V |2 • [M,M ])

1
2∞
]
<∞ .

Apparently we have constructed a bounded linear map L1(M) → H1, V 7→
(V •H). The set of integrands L1(M) is not the largest one, we can still generalize
it by localization, which defines the set L(M): a predictable process V is said to

belong to L(M) if (|V |2 • [M,M ])
1
2∞ is locally integrable, which means for bounded

variation processes nothing else than just being finite, see [6]. Notice that this is the
largest set of integrands given that we require that the integral is a semi-martingal
having a quadratic variation, which coincides with (V 2 • [M,M ]). Notice also that
by the same argument every local martingale is in fact locally H1, which in turn
means that we can define for any semi-martingale a largest set of integrands.
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ETH Zürich, D-Math, Rämistrasse 101, CH-8092 Zürich, Switzerland
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