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1. Introduction

Martin Hairer received the Fields medal at the ICM in Seoul 2014 for “his out-
standing contributions to the theory of stochastic partial differential equations”
(quoted from the ICM webpage), in particular for the creation of the theory of reg-
ularity structures. Martin was born 1975 into an Austrian family living in Switzer-
land: his father, Ernst Hairer, is a well-known mathematician in numerical analysis
working at the University of Geneva. Martin’s mother has worked as a teacher
in elementary school and in a Ludothek, his sister works in medical management,
and his brother teaches sports. Martin completed his PhD at Geneva university
under the supervision of Jean-Pierre Eckmann in 2001. He is Regius Professor of
mathematics at the University of Warwick, having previously held a position at
the Courant Institute of New York University. He is married to the mathematician
Xue-Mei Li, who also works at University of Warwick. Martin develops quite suc-
cessfully the audio editor software “Amadeus”, which silently reveals the Austrian
background.

Martin Hairer’s work on the solution of the KPZ equation and on regularity
structures is astonishing by its self-contained character, its crystal-clear exposition
and its far-reaching conclusions. I have rarely read research papers where a new
theory is built in a such convincing and lucid way.

The purpose of this article is to explain some elements of Martin Hairer’s work
on regularity structures and some aspects of my personal view on it. I am not able
to appreciate or even to describe the history, meaning and value of all problems
on stochastic partial differential equations, which can be solved with the theory of
regularity structures, but I do believe that there are still many future applications,
for instance in Mathematical Finance or Economics, to come.

2. Systems and noise

Loosely speaking there are two reasons to include random influences into deter-
ministic descriptions of a system’s time evolution: either there are absolute sources
of noise related to fundamental laws of physics, which need to be considered for a
full description of a system, or there are subjective sources of noise due to a funda-
mental lack of information, which in turn can be modeled as random influences on
the system. In both cases the irregularity of the concrete noise can lead to quite
ill-posed equations even though it is often clear, for instance through numerical
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experiments, that the corresponding equations are reasonable. This can already be
seen when simple stochastic systems like

d

dt
St = StẆt , S0 > 0

are considered. This is a linear growth equation, where the growth rate is white
noise Ẇt, e.g. (independent) Gaussian shocks with vanishing expectation and co-
variance δ(t − s). Simulation of this equation is simple but to understand the

formula analytically already needs Ito’s theory. Even though white noise Ẇt is
only defined in the distributional sense, already its integral with respect to time
is a (Hölder) continuous function, which gives hope for the previous equation to
have a reasonable interpretation, if one is able to define integrals along Brownian
motion.

There are two main approaches towards such noisy systems: deterministic ap-
proaches which consider any realization of noise as an additional deterministic input
into the system, or stochastic approaches which consider a realization of a noise as
stochastic input into the system. Rough path theory and regularity structures
belong to the first approach, stochastic analysis constitutes the second one.

The problem with (white) noises – by its very nature – is its persistent irregularity
or roughness. Let us consider again the simplest example of noise: white noise, or
its integrated version, Brownian motion. Taking a more physical point of view
white noise models velocity of a Brownian particle

Wt :=

∫ t

0

Ẇsds ,

i.e. a particle moving on continuous trajectories with independent increments being
random variables with vanishing expectation and variance proportional to time.
Simulation is easy, but apparently Brownian motion due to the independent nature
of its increments is a complicated mathematical object whose existence is already
an involved mathematical theorem. Brownian motion is on the other hand an
extremely important tool for modeling random phenomena. For instance many
important models in Mathematical Finance, where independent Gaussian shocks
are a modeling assumption, are driven by Brownian motions, for instance the Black-
Merton-Scholes model, the Heston model, the SABR model, etc.

Let us consider, e.g., the length of a Brownian trajectory to understand one cru-
cial aspect of irregularity. Consider first quadratic variation which is approximated
by

2n∑
i=0

(Wti/2n −Wt(i−1)/2n)
2
.

By arguments going back to Paul Lévy it is clear that the previous sum converges
almost surely to t, which means in turn that almost surely Brownian motion has
infinite length since any continuous curve with finite length would have a vanishing
quadratic variation. Therefore naive Lebesgue-Stieltjes integration with respect to
Brownian motion is not an option, also Brownian trajectories are almost surely too
rough for Young integration.

Mathematically speaking one needs an integration theory with respect to curves,
which are not of finite total variation (like Brownian motion), in order to make sense
of equations involving Brownian motion or white noise (like the Black-Merton-
Scholes equation). Kiyoshi Ito’s approach to deal with this problem is stochastic
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integration: by arguments from L2-martingale theory a particular set of integrands,
namely locally square integrable predictable ones, is singled out such that limits of
Riemannian sums exist almost surely. Ito’s insight allows, e.g., to solve stochastic
differential equation in its integral form by fixed point arguments. For instance the
Black-Merton-Scholes equation now reads

St = S0 +

∫ t

0

SsdWs ,

where the right hand side is defined via stochastic integration and well understood in
its probabilistic and analytic properties. Ito’s stochastic calculus is a wonderful tool
to work with, in particular in Mathematical Finance, as long as stochastic integra-
tion works well. This, however, might get problematic if one considers more general
stochastic processes, which are not real-valued (as in the Black-Scholes equation)
anymore but, e.g., distribution-valued like multi-dimensional white noises.

Brownian motion appears as integral of a one-dimensional white noise, but we
also can consider multivariate versions of white noises, where independent shocks in
a space-time manner appear. Of course the irregularity of such noises is worse. The
analogue of Wt, i.e. integration with respect to time, is not function valued anymore
but only defined in the distributional sense. Hence non-linear equations containing
space-time white noises need to come up with a theory how to define non-linear
functions of generalized functions, which is a well-known and hard problem. Such
multivariate white noises appear in several important equations from physics, and
even in equations of Mathematical Finance, it is important to understand non-
linear equations where such noises appear. Regularity structures provide a way to
solve this problem in a surprisingly elegant way.

3. Regularity structures

Regularity structures have been introduced by Martin Hairer in a series of papers
to provide solution concepts for Stochastic partial differential equations (SPDEs)
like the Kardar-Parisi-Zhang (KPZ) equation, the Φ4

3 equation, the parabolic An-
derson model, etc. These equations often came so far with excellent motivations
from mathematical physics, convincing solution chunks in several regimes and sur-
prisingly deep conclusions from those, but rarely with mathematically satisfying
(dynamic) solution concepts. For a discussion of these issues we refer mainly to
Martin Hairer’s article [Hairer(2014a)] in Inventiones Mathematicae, but also to
the great introductory paper [Hairer(2014b)].

Let us take for instance the Φ4
3-equation

∂tu = ∆u− u3 + ξ

on R≥0 × R3 (with periodic boundary conditions in space), where u is a scalar
function and ξ is a space-time white noise. This important SPDE from quantum
mechanics has a very singular additive term, namely space-time white noise. If
one counts (parabolically) time twice as much as space dimension, ξ is regular of

order − 5
2 − ε, for any ε > 0 (we denote this by − 5

2

−
). This irregularity cannot

be regularized by the heat kernel, which raises regularity only by 2 (due to well-
known Schauder estimates). The resulting object is not a function yet and therefore
any non-linear operation on it is problematic. If, however, we consider the mild
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formulation of the Φ4
3-equation through convolution with the Green’s function K

u = K ∗ (ξ − u3) +K ∗ u0 ,

and if we hope for a Banach fixed point argument, we are faced with non-linear
operations on K ∗ ξ already after one iteration step: in particular we need an
interpretation of (K ∗ ξ)3. It has been shown by Martin Hairer that under suitable,
now well understood re-normalizations of the Φ4

3 equation of the type

∂tuε = ∆uε − u3 + Cεuε + ξε ,

where ξε → ξ as ε→ 0 is a mollification of the white noise and Cε →∞ is some con-
stant depending on the mollification, one can formulate a solution concept: indeed
the limit uε → u as ε→ 0 exists, u does not depend on the particular mollification
involved, and the structure of the “infinities” is actually well described. More de-
tails can be found in Section 6 of [Hairer(2014b)] or Section 9 of [Hairer(2014a)].
The solution theory of the dynamic Φ4

3 is one convincing argument for the power
and beauty of regularity structures.

The theory of regularity structures is based on a natural still ingenious split
between algebraic properties of an equation and the analytic interpretation of
those algebraic structures. These considerations are profoundly motivated by re-
normalization theory from mathematical physics, however, the crucial point is their
precise mathematical meaning and their clear structure. Another source of inspira-
tion for regularity structures is Terry Lyons’ Rough Path Theory, see [Lyons(2006)],
which is somehow extended from curves to functions on higher dimensional spaces,
an aspect which is outlined in the book [FrizHairer(2014)].

The bridge between the algebraic and analytic world is done by the so called re-
construction operator R, whose existence is a beautiful result from wavelet analysis
interesting by itself. Regularity structures also come with precise numerical approx-
imation results and are therefore very useful to establish numerical techniques. In
the sequel we highlight on the cornerstones of the regularity structures without any
proofs but with emphasis on meaning and ideas. Proofs are analytically involved,
but due to the intriguing structure of the theory, which is briefly highlighted in the
sequel, all the hours spent with [Hairer(2014a)] fly by quickly.

Let A ⊂ R be an index set, bounded from below and without accumulation
point, and let T =

⊕
α∈A Tα be a direct sum of Banach spaces Tα graded by A.

Let furthermore G be a group of linear operators on T such that, for every α ∈ A,
every Γ ∈ G, and every τ ∈ Tα, one has Γτ − τ ∈

⊕
β<α Tβ .

The triple T = (A, T,G) is called a regularity structure with model space T
and structure group G. Given τ ∈ T , we shall write ‖τ‖α for the norm of its
Tα-projection.

What about the meaning of elements of T : they represent expansions of “func-
tions” at some space-time point in terms of “model functions” of regularity α,
namely elements of Tα. In order to make this precise Martin Hairer introduces
“models”, which do nothing else than mapping an abstract expansion to a gener-
alized function (respecting Hölder regularity orders) for each point in space time.

Let us be a bit more precise on that in the sequel: given a test function φ on Rd,
we write φλx as a shorthand for the re-scaled function

φλx(y) = λ−dφ
(
λ−1(y − x)

)
.
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For r > 0 we denote by Br the set of all functions φ : Rd → R with φ ∈ Cr, its
norm ‖φ‖Cr ≤ 1 and supported in the unit ball around the origin. At this point
we can say what we mean by regularity of order α < 0 of a distribution η, namely
that there exists a constant C such that the inequality∣∣η(φλx)

∣∣ ≤ Cλα
holds uniformly over φ ∈ Br, x ∈ K and λ ∈ ]0, 1]. Regularity of order α ≥ 0 will
just be Hölder regularity.

Given a regularity structure T and an integer d ≥ 1, a model for T on Rd consists
of maps

Π: Rd → L
(
T,D′(Rd)

)
Γ: Rd × Rd → G

x 7→ Πx (x, y) 7→ Γxy

such that ΓxyΓyz = Γxz and ΠxΓxy = Πy. Furthermore, given r > | inf A|, for any
compact set K ⊂ Rd and constant γ > 0, there exists a constant C such that the
inequalities∣∣(Πxτ

)
(φλx)

∣∣ ≤ Cλα‖τ‖α , ‖Γxyτ‖β ≤ C|x− y|α−β‖τ‖α ,

hold uniformly over φ ∈ Br, (x, y) ∈ K, λ ∈ ]0, 1], τ ∈ Tα with α ≤ γ, and β < α.
In words: for every space-time point x ∈ Rd the distribution Πxτ interprets each
τ ∈ T accordingly. The role of the group G also becomes clear at this point: G is
a collection of linear maps on T which encode how expansions of a fixed analytic
object transform when considering different space-time points.

Models interpret abstract expansions (elements of T ) at each space time point x:
these model functions constitute a frame (at each point in space time) on which one
can construct generalized functions expressible in this frame with point-varying co-
ordinates. Martin Hairer calls these generalized functions “modeled distributions”.
In particular they depend on the model (Π,Γ).

Given a regularity structure T equipped with a model (Π,Γ) over Rd, the space
Dγ = Dγ(T ,Γ) is given by the set of functions f : Rd →

⊕
α<γ Tα such that, for

every compact set K and every α < γ, the exists a constant C with

(3.1) ‖f(x)− Γxyf(y)‖α ≤ C|x− y|γ−α

uniformly over x, y ∈ K.
A priori it is not at all clear whether modeled distributions actually allow for an

interpretation as distribution on space time: the most fundamental result in the
theory of regularity structures then states that given a modeled distribution f ∈ Dγ
with γ > 0, there exists a unique distribution Rf on Rd such that, for every x ∈ Rd,
Rf equals Πxf(x) near x up to order γ. More precisely, one has the following
reconstruction theorem, whose proof relies on deep results from wavelet analysis (for
the beautiful proof see Martin Hairer’s Inventiones article [Hairer(2014a)], Theorem
3.10):

Let T be a regularity structure and let (Π,Γ) be a model for T on Rd. Then,
there exists a unique linear map R : Dγ → D′(Rd) such that

(3.2)
∣∣(Rf −Πxf(x)

)
(φλx)

∣∣ . λγ ,

uniformly over φ ∈ Br and λ ∈ ]0, 1], and locally uniformly in x ∈ Rd.
In other words: modeled distributions, i.e. functions into the space of abstract

expansions, come with appropriate consistency conditions (3.1), which still allow
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to construct a distribution such that the model (Π,Γ) remains tangent up to given
order γ as in (3.2). Notice that the existence of the reconstruction operator should
be interpreted as the construction of an integral

(Rf)(φ) = “

∫ ∑
α∈A

fα(x)(Πxτα)(x)φ(x)dx ” ,

where we write f(x) =
∑
α∈A fα(x)τα in a sloppy way for f ∈ Dγ and where

we write a value for the distribution Πxτα at x even though this is not possible
in all cases of interest. Notice also that the existence of such integrals is highly
non-trivial, since we are performing summations over very singular objects.

At this point it might become clear where regularity structures are leading us:
translate a “real world equation” into an equation on abstract expansions, solve this
equation and translate the solution – via the reconstruction operator back to “real
world”. To realize this idea it is necessary to understand how linear equations are
translated to abstract expansion spaces, which is the world of Schauder estimates.
Classical Schauder estimates tell that for a kernel K : Rd → R being smooth
everywhere, except for a singularity at the origin of approximate homogeneity β−d
for some β > 0, the integral operator K : f 7→ K ∗ f maps Cα, i.e. α-Hölder
continuous functions, into Cα+β for every α ∈ R (except for those values for which
α + β ∈ N). In the theory of regularity structures this naturally amounts to
lifting the integral operator K to an operator on modeled distributions K : Dγ →
Dγ+β , which commutes with reconstruction, i.e. K ∗ Rf = RKf for all modeled
distributions f ∈ Dγ .

Martin Hairer needs three basic ingredients for such a type of construction:

(1) in order to describe the behavior of regular (smooth in the classical sense)
parts of the integral operator K polynomials should be part of the given
regularity structure.

(2) an abstract integration operator I : T → T , which encodes the action of K
on singular objects.

(3) a compatibility of the given model, abstract integration and the to-be-lifted
integral kernel K, i.e. between ΠxIτ and K ∗Πxτ near x.

This leads to the introduction of admissible models where the desired lift K can
actually be performed for certain kernels of homogeneity β − d. All proofs can be
found in Section 5 of [Hairer(2014a)].

With all these ingredients we can return to the Φ4
3 equation introduced at the

beginning of this section and see how regularity structures enter the stage: we can
construct a tailor-made regularity structure, which is generated in a free way by
variables representing ξ, (K ∗ ξ)3, K ∗(K ∗ ξ)3, etc, and by space-time polynomials.
Let us replace K by an abstract integration operator I, ξ by an abstract variable

Ξ of order − 5
2

−
, and u by Φ, then we can – having Banach’s fixed point theorem in

mind – build a regularity structure generated by Ξ, I(Ξ)
3
, etc. Associated orders

of regularity are − 5
2

−
, − 3

2

−
, etc. There will be only finitely many generators of

negative orders in a minimal model space T (i.e. a Banach fixed point consideration
makes sense). The Φ4

3-equation is then translated into a fixed point equation on
the coefficient space Dγ with respect to this roughly described regularity structure
T , i.e.

Φ = I(Ξ− Φ3) + polynomials ,
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where ’polynomials’ denote terms describing the ’smooth’ part of the operator K.
Apparently the equation can be solved abstractly by the very construction in

some Dγ spaces if we consider models where Ξ is mapped to a mollified noise, since
then it is easy to define the meaning of objects like I(Ξ)

3
. Reconstruction then

yields a solution of the Φ4
3-equation with mollified noise and initial value u0.

If, however, the mollified noise converges to white noise, the actual power of the
regularity structures is revealed: as outlined we obtain solutions for each model
(Π,Γ), first in Dγ , and second – via reconstruction – as distributions on space
time if noise is mollified. However, the algebraic structure of T prescribes pre-
cisely which “products” of distributions have to be defined appropriately, which in
turn means to construct models even for singular noises. This procedure involves
re-normalizations, i.e. the real world equation being satisfied after reconstruction
changes. Notice that re-normalizing products has to be done only for finitely many
elements of T of regularity order less than zero (in this sub-critical situation) to
guarantee a well-defined model, well-defined modeled distributions and well-defined
reconstruction. Re-normalization groups, whose dimension depends on the partic-
ular situation, govern the structure of different models which can be defined as
limits of models with mollified noises. Hence the re-normalization of the real world
equation is transferred to re-normalization of models, which can be analyzed by
methods from group theory and algebra. The corresponding solution concept of
the SPDE does not depend on the chosen mollification and satisfies all necessary
requirements, hence deserves to be called the solution of the Φ4

3-equation.

4. Ito calculus, rough paths and Regularity Structures

Let us consider two natural examples of regularity structures, which explain the
following discussion:

4.1. The polynomial regularity structure. The most classical example of a
regularity structure is the polynomial one: the abstract expansion are abstract
polynomials in d variables X1, . . . , Xd, models are concrete polynomials, A = N
and we can identify G with the group of translations acting on R[X1, . . . , Xd] via
Γhp := p(.− h) for h ∈ Rd.

The canonical polynomial model is then given by

(4.1)
(
ΠxX

k
)
(y) = (y − x)k , Γxy = Γy−x .

If we choose the canonical polynomial model, then the space of modeled distribu-
tions Dγ corresponds to the space of Hölder continuous functions Cγ (with proper
understanding for integer γ). In other words the canonical regularity structure on
Rd speaks about Hölder functions and their local Taylor expansions (see Section 3
of [Hairer(2014b)]).

4.2. A regularity structure for rough paths. Given α ∈ ( 1
3 ,

1
2 ) and n > 1.

Define A = {α − 1, 2α − 1, 0, α}. We consider a free vector space T generated by
n order α elements Wj , n order α − 1 elements Ξj , and n2 order 2α − 1 elements
WjΞi, and one order 0 element 1.

We choose G = Rn and define the action on T via

Γx1 = 1 , ΓxΞi = Ξi , ΓxWi = Wi − xi , Γx(WjΞi) = WjΞi − xjΞi .
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This is a regularity structure on R and models for this regularity structure are
precisely rough paths of order α with values in Rn. Let us be more precise on this.
Take a model (Π,Γ), then the formulas(

Πs1
)
(t) = 1 ,

(
ΠsWj

)
(t) = Xj

t −Xj
s(

ΠsΞj
)
(ψ) =

∫
ψ(t) dXj

t ,
(
ΠsWjΞi

)
(ψ) =

∫
ψ(t) dXi,js,t ,

for test functions ψ define a (geometric) rough path (s, t) 7→ (Xj
t −Xj

s ,X
i,j
s,t), fur-

thermore Γsu = ΓXu−Xs
. Apparently X only needs to be Hölder continuous of

order α, whereas X satisfies a sort of Hölder condition of order 2α. The algebraic
relationships for models translate to the relationships for rough paths.

Modeled distributions appear in this setting as natural integrands with respect
to rough paths: take Y Ξj+Y ′iWiΞj ∈ D3α−1, then reconstruction actually defines a
curve, which can be seen as the integral

∫
Y dXj (see Section 3 of [Hairer(2014b)]).

At this point it is clear that the split between algebraic structures, which depend
on the concrete SPDE, and their analytic reconstruction is crucial for the flexibility
on introducing re-normalizations. In contrast Ito’s stochastic calculus does work
differently: stochastic integration is introduced via martingale arguments, so the
problem that the increment of Brownian motion on an interval of length ∆t only
scales like

√
∆t is cured by predictability of integrands. No additional term of

order ∆t is introduced to replace the missing order. More precisely: locally in time

the stochastic integral
∫ t
0
hsdWs looks like hs∆Ws, hence miraculously Riemannian

sums converge even though the local expansion is only given up to order
√

∆t.
Rough path theory, such as regularity theory, argues that an integral along a path

with low regularity, like a trajectory of Brownian motion, can only be defined if an
additional term of order ∆t is introduced describing the integral locally up to order
∆t. The set of integrands changes with respect to Ito integration: for stochastic
integration every locally square integrable predictable integrand is eligible, whereas
in case of rough path theory predictability is replaced by several analytic conditions
(in particular also anticipative integrands are possible).

Ito’s approach has the advantage of a robust large set of integrands, namely all
bounded predictable processes, which work for a large set of integrators, namely
all semi-martingales. Not only Brownian motion is a possible integrator but also
Lévy processes, or more general jump processes. On the other hand regularity
of the stochastic integral is low: usually a stochastic integral depends only in a
measurable way on the integrator and not better.

Rough path theory or the theory of regularity structures in contrast has the ad-
vantage of a considerably more regular dependence of the integral on the integrator.
The price to pay is a less robust, more regular set of integrands. To be precise here,
the regularity is described in terms of regularities of the reconstruction operator,
which depends in a continuous way on the model. This amazing fact means for
instance in case of the SABR model (a particular stochastic volatility model)

dXt = XtYtdW
1
t , dYt = σYtdW

2
t , X0 ≥ 0 , Y0 ≥ 0 ,

that the solution process (X,Y ) only depends in a measurable way on the Brownian
input paths (W 1,W 2), whereas in a continuous way on Brownian motion together
with its Lévy areas (W 1,W 2,

∫
W 1dW 2 − W 2dW 1) (which is an essential part

of a model describing integration with respect to Brownian motion in the world of
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regularity structures). In other words: the expected higher regularity of the solution
map of a stochastic differential equation is discovered by introducing stochastic
integration in a deterministic way. This important insight is the content of Terry
Lyons’ Universal Limit Theorem of rough path theory, which appears now as one
particular case of a regularity structure, see for instance [Lyons(2006)]

It remains one interesting topic for future research to describe settings where
both somehow complementary approaches to deal with rough objects, namely sto-
chastic integration and the theory of regularity structures, are combined.
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