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Some Problems and Tools

1. Problem: Calibration of Stochastic Volatility Models.
Tool: Heat kernel expansion on a Riemannian manifold.

2. Problem: Large-strike behavior of the implied volatility.
Tool: Schrédinger Semigroups Estimates.

3. Problem: Efficient discretization scheme for Monte-Carlo pricing.
Tool: Combinatorial Hopf Algebra, Heat kernel on the Heisenberg
group...

These tools arise in the Atiyah-Singer theorem...

CORPORATE &
INVESTMENT BANKING




Tool: HK expansion
Problem: Calibration of Stochastic Volatility Models.
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Motivations

e The dimensionless parameter in Finance is [vol]*T which is small
= Asymptotic expansion.

e Try to find a systematic way of doing asymptotic expansion in
Finance:

1. Asymptotic smile for the SABR model at the first-order
|Hagan-al]

2. Asymptotic smile for basket at the zero-order [Avellaneda-al]

3. Asymptotic swaption at the zero-order for LMM [Rebonato-
Hull-White freezing argument]|

= Heat kernel expansion.
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Tool: HK expansion

SG
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Heat Kernel (1)

SDEs: dz' = b'(z)dt + o' (x)dW,; , dW;dW; = p;;dt

Backward Kolmogorov equation |Einstein Convention here]
O-p(T, xly) = Dp(7,zly)

with D = bl@ + %pijaiaj(‘?ij

Under a change of coordinates z° — z*

) y
. (9:131 . 1 ({9237@
bZ — bZ _|_ _po'o'—

ox’ 2777 D,
TV
covariant 1101 COV.

Rewrite D as D = ¢72(0; + A))g2g" (0, + A) + Q

By identifying the terms J; and J;;, we obtain

» Metric: g;; = 20’2:, g = det[g;], ¢ = [g;;"]

» Connection: A’ :_%(bi — g720;(g"?g")), A; = gijA?'

» Section QI Q = g” (./4@./4] — bjAl — @Ai), bj = gjibl
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Heat Kernel (2)

To summarize a heat kernel equation on a Riemannian manifold M
is constructed from the following three pieces of geometric data:

1. a metric g on M, which determines the second-order piece.

2. a connection A on a line bundle £ , which determines the first-
order piece.

3. a section of the bundle End(L) ~ £ ® L*, which determines the
zeroth-order piece.

p continuous section of the bundle (£ X L*) over R* x M x M *

aLet & and & two vector bundle on M. and let pr; be the projections from M x M onto
the first and second factor M respectively. We denote the external product & X &, the vector
bundle pri&; ® pry&; over M x M
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Reduction Method (1)

The heat kernel equation can now be simplified by applying the ac-
tions of the following groups:

> The group of diffeomorphisms Diff(M) which acts on the metric
g;; and the connection A; by

9ij feﬁM) (f*9)ij = gu0if?(x)0; f* ()
./4@' fEDl—H(>M) (f*A)z — Ap(?zfp(x)

> The group of gauge transformations G which acts on the condi-
tional probability (and the call option C) by

g o
p(r,zly) — p(raly) = XTI p(r, aly)
Then p’ satisfies the same equation as p with
A = A —0ix
[
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Reduction Method (2)

If the connection A is an exact form
A; = 0\

then by applying a gauge transformation
A=A, —OAN=0,N—I\AN=0

The HK equation reduces to
O-p'(7, xly) = (& + Q)p(7, x[y)

The statement " A is exact" is equivalent to F = 0, where F is given
in a specific coordinate system by

.;Eij — 61./4] - (93.»42
ObViOU.S<:>>I 8Z8]A — ({9]3@/\ =0
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Heat Kernel Expansion

Let M be a Riemannian manifold without a boundary. Then for each
x € M, there is a complete asymptotic expansion for small 7

\/ _d(zy)? =
p(T,zly) = \/ (v, y)P(z,y)e * ar(z,y)r"

k=0

» d(z,y) is the geodesic distance: d(z,y) = ming fol Nt

On a flat manifold R", the geodesic curves are the straight lines and
the geodesic distance is the Euclidean distance.

» Van Vleck-Morette determinant D(z,y):

2 d(z,y)?

Dl ) = gttt (=%t ) ) with gle) = deg o, )

» Parallel gauge transport: P(z,y) = e Jeen ™ with C(z,y) a
geodesic from the point z to .
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Heat Kernel Coefficients

The a;(x,y) are smooth functions on M and depend on geometric
invariants such as the scalar curvature R.

ao(x,y) - 1
1
ar(z,r) = 6R+Q
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Problem: Calibration of SVMs
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SVM and Riemann Surface

A (1-factor) stochastic volatility model (SVM) depends on two SDEs,
one for the asset f and one for the volatility a. In a risk-neutral
measure, we have

af = C(f)adWV;
da = b(a)dt + o(a)dW,
dWldWQ = pdt

This model corresponds in our geometrical framework to a Riemann
surface X, endowed with a two-by-two metric.
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Riemann Uniformization Theorem

[sothermal Coordinates:

ds* = F(y)(dx® + dy?)

Name Conformal factor Scalar curvature Surface
Geometric |  F(y) ~ y 2 R=-1 H
3/2-model | F(y) ~ e\/ﬁ R=0 R?

SABR Fly) ~y* R=-1 H

Heston Fly) ~y " R = —2a"* < 0 | Baby Black Hole

_ La)Q o(@ _ 2
> R = (U(a) )
> For ¢Z@ < 2: Y is a Cartan-Hadamard manifold. — The cut-

locus is empty!
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Metric with one Killing vector

Integrable geodesics:

[Py
ay) = | [ el

with the constant C' = C'(xy, y1, T2, ¥2) determined by the equation

/2/2 C d
Ty — 1 = y
2 1 " \/F(y’) — 02

/
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Asymptotic Local Volatility

LV: df; = o(t, f)dW,; and df, = a,C( f;)dW; have the same marginals
if:

We have that the local vol? is the mean value of the stochastic vol?
conditional to the forward:

o’(t, f) = C*([)Ea|fi = f]
_ 02<f>f000 a’*p(t, f,ala, fo)y/gda
[ p(t, f,ala, fo)\/g9da
» Saddle point:

O(ta f) - C(f)a’min y Amin = @ ’ (a }I}iiged) d<27 ZO)

» Asymptotic local volatility (¢(f,a) = d*(f,a)):
o(T, f) = 1/ 2¢/ T (amin) (1+
T gffl(amin) 2N/ . . Cbm(amin) gff”(amin)
gb”(amin) (gff(amin) <1D(D9P ) (amln) ¢”(amin)> -+ gff(amin) >)
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Asymptotic Implied Volatility for any SVM

Use asymptotic map between local and implied volatilities [Time-
dependent HKE]:

2
In(& - In
ops(r, K) = K(f;f), 1+ 1( K(f;;f) ) Q) + )
Its 57 It 5

with foo = 228 o(f) = 0(0, f) and G(f) = 20,In0(0, f).

OBS (T7 K) =

2
+ gff(amin>T _§ afgff(amin) i aJ%gff(almin) n 1
12 4 gff(amin) gff(amin) Fav2

gff/(amin)T

" (@)
* 29ff (amin)¢// (amin)

ff’ :
<ID(D9P2)/(amin) - ¢//(az;rr:) + g;ff’ ((Z::Z)))>
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SABR with a mean-reversion term

a = affdw,
da/t )\(at — )\)dt + VatdZt
C(f) :fﬁaa()z&aft:o:fo

where W, and Z; are two Brownian processes with correlation p €

(—1,1).

Lambda=-10%, Lambdabar=2%, f0=5.37%, beta=30%,
rho=11.48%, Nu=27.48%, T=5y
35
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SABR-BGM Model and H"*!

SABR-BGM Model given under the spot Libor measure Q by (5(t) =
mif T, o <t <T, 1)
dFk — CLQBk(F, t)dt + O'k(t)CLCk(Fk)de , k= 1, e, N
da = l/a,dZn_H; , dZZde = pljdt Z,] = ]., IR O 1
with
k

Bk(F, t) = .zﬂ(:) ijjkgk(t)(?j—i(_tlf;;)ﬂ)ci<Fk> , CL(Fy) = Fkﬁk

e Bond of maturity 7 P(¢,T)
P(t.Ty)=P(T)
Zz a—i—lTZ (t ,TZ)

P(t7Ta) _ 1
Tat1P(t,Tot1)

® Swap: S, =

o Libor F,; = Sq(at1)t =
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Local Volatility

» The forward swap rate satisfies in the forward-swap measure (as-

sociated to the numeraire C,5(t) = f wi1 TiP(t,T5)) the following

driftless dynamics

0503
8Fk

» The local volatility associated to the forward swap rate (ds.; =
0 (505, t)dW,) is then by definition

dSag ( )gbk(a Fk)de

(2P (st) = B polthos)oa, F)ola. F) G lsn = s
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Hyperbolic Geometry H"* I 'and Geodesics

» New coordinates [x]j=1..41 (L is the Cholesky decomposition of
the (reduced) correlation matrix: [p]; j=1... = [LL']; j=1..)

~o [T dE] -
= LFi i ey, ’kzlj...’
o= 3o / RN .

i

Ton = (L= p“p"piy)2a
i

. 21=327 p'p7%pij) S da?+da?
n+1. 2 __ i,j J i=1 4L n+l
» Metric on H"™: ds® = .- -

» Geodesic distance: d(x, ") = cosh™ (1 X Z?jll(a:i—x?)Q)

0
2Tp 4125
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Numerical Tests

> H"™! stochastic volatility LMM easily calibrated to swaption

Swaption 5*15
23%
—e—USD —=|—USD, MC
21% JPY JPY, MC
19% —%—EUR —e—EUR, MC
£ 17%
2
£ 15%
o
3 13% o
2
E‘ 11% - - SRS
9%
7%
5% T T T T T T T
50% 70% 90% 110% 130% 150% 170% 190%
Moneyness
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Problem: Implied Volatility wings asymptotics.
Tool: Schrodinger Semigroups Estimates.
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Problem: Implied Volatility wings asymptotics.
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Benaim-Friz formula (1)

Let the strictly decreasing function W : [0, 00] — [0, 2] be
U(r)=2—-4(Va’+z —x)
and let’s define the class R,:
A positive real-valued measurable function g is regularly varying with
index «, in symbols g € R,,, if
A
g eR, & lim {2 _
Ex: g(x) =2* € R,
We assume the integrability condition (IC) on the right tail

Je>0: B <

& fr: forward
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Benaim-Friz formula (2)

Assuming the IC, then if —InC(7, k) * is a regularly varying function
in k (or in K) with a positive index, we have

ops(T, k)*T v ~InC(, k)
k k

*Here C(T, k) means a call option with moneyness k and maturity 7
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Tool: Schrédinger Semigroups Estimates.
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Separable Local Volatility

Under the risk-neutral measure P: df = A(t)C(f)dW,
> Connection: Ay = —39;InC(f)

> Introducing the new coordinate s = /2 f ff Cdf;, and the new time
t = fo s)*ds, the new function p/(t', s) defined by
g C'(f
Pl L = (0 [ s
N——

satisfies an (Euclidean) one-dimensional Schrodinger equation

Opp'(t',5) = (0; — Q(s))p/(t', 5)
Time-homogeneous potential *: Q(s) = —1(In C)'(s)+ 1((In C) (s))?

dwhere the prime ’ indicates a derivative according to s.
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Time-homogeneous Potentials

LV Model C'(f) Potential
BS f Q(s) = —
Quad. af*+bf +c Q(s) = —5(b* — 4dac)
CEV ff0<p<1 Qepv(s) = 8(f1—ﬁ‘§is(21)ﬂm)2
LCEV | fmin(f7 ", e ) | Quopv(s) - Qomv () Vs = s = V2T b )
with € > f = -2V s < s,
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Dupire LV Model
LV model: df = C(t, f)dW

Introducing the new coordinate s, = /2 f ff cif ol the new function

't s(f))

p(t, f1fo)df = Pt s(F)) <(’; {;; bl ll i gy

A\ g

-~

satisfies a one-dimensional (Euclidean) Schrodinger equation

atp/<t7 5) - (852 + Q<t7 S))p/(t, S)

with the time-dependent scalar potential *

Qlt.) = ~(Duplt,5) + p(t,s)) - / “Ouult, $)ds'

2u(t, s (1" ) — $0.n(C (1, 5)) .
SG
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Gauge free Stochastic Volatility Models

We impose that A is flat:
F =0

= Reduction: 0.p'(z,a,7) = (As + Q(x))p'(z, a, T)
Classification:

df = (nf+v)d W
da = a ()(fy+ 6’ g))dt—l—a( VdZ , dWdZ = pdt

name o(a) SDE
Heston | o(a)=n |dv=V§2uy+n(n— 1))dt + 20V /vdW,

GB-SABR | o(a) =na | dv = Vé(©2nyv2 + nPv)dt + 2/ onudW,

3/2-model | o(a) = na®|  dv = 2von(n + y)v2dt + 2/ onv2dW,
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Gaussian Estimates of Heat Kernel Semi-
groups: A Famous Problem

cip(cat, T|a) < p'(t, zfa) < Cipy(Cot, x|

e J. Nash, Aronsov (58) Geometry: 0:p'(t, x|a) = App'(t, x|)

e B. Simon (82) Mathematical Physics: 0p/(t, z|la) = (0 +
Q(x))p'(t, z|a)

e Yau (78) Geometry: Oip/(t, x|a) = (A + Q(x))p (¢, x|a)

e Norris-Stroock ~ (Malliavin ~ calculus)  (83)  Probability:
o' (t, x|a) = Dp'(t, x|a)

e ). Zhang (00) Functional Analysis: Op/(t,x|a) =
Q(x,t))p'(t, z|o)
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Autonomous Kato class

Op'(t,s) = (0; — Q(s))p'(t. s)
We say that @ is in the Kato class K if

QEK@hmsup/ dt/dy]Q Npa(t,y|lz) =0
0

zelR

exp( (y;t x)? )

with the free heat kernel pg(t, y|x) = ° t)%
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Examples of Potentials in the Kato class

e Black-Scholes: Q(s ) = —: = In the Kato class
e LCEV: Q(s) = = In the Kato class

~@m
e Vasicek: Q(s) = s* = Not in the Kato class.

Q) =y*=(y—2)*+2(y —2)z +2°
[ tiQ@lpotte) = Vi + 22

2;
/dt/dy\Q Mpa(t, ylz) —5 2

sup/ dt/dle Npa(t,ylr) =
zeR

lim sup/ dt/dy\@ )pa(t, y|lz) =

0—0 zeR
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Gaussian Estimates of Schrddinger Semi-
groups
Let @7 = max(Q,0) and @~ = max(—Q, 0).
o If Q" € K, “ and Q- € K. Then we have an upper bound
P(t,yle) < Cre®'plt,yle), t >0, z,y €R

with two constants C), (5. Note that the constant Cy = 0 if
QT =0.

e Assuming that Q* and )~ are both in the Kato class K, we have
also a lower bound

ce®pa(t,yle) < p'(t xly), t >0, 2,y €R

with two constants ¢; and cs.

"QYYly<N)e K
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Gaussian Estimates

Providing that the scalar potential associated to a local volatility
function belongs to the Kato class, we have the Gaussian bounds on
the function p/(¢, s)

c1e®'pa(t, s) < Pty s) < Cre™pelt, s)

This inequality translates directly on an estimation of the conditional
probability p(t, f|o)

c(f)

Cot
QC(fO)p<t7 f’f0> < C'l6 pG(ta S)

e pe(t,s) < p'(t',s(f)) =
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Gaussian Estimates of European Options

We can directly translate the Gaussian bounds on the conditional
probability p'(t', s(K)) into bounds on the implied volatility as

C(1,k) = max(fy — K,0) + VO \/§ /OTp’(t',S(K))dt'

The large strike behavior of the implied volatility:

fK df’ )2
Mo O C(f’
T

ops(T, k)*T —;In(C(K)) +
A k

If s(K) is the leading term, ops(7, k) ~ . fKLdf/
fo C(")

Short-time limit of the IV 7 << 1, fo, = &£

2
k [ 1 k
ops(T.k) = 7 |1+3 §< K df’) + Q(far) EQJ
fo C(f) fo C(f)

CORPORATE &
INVESTMENT BANKING




Example: CEV model

For 0 < 3 < 1,we have
k(1 —0)
K15
and for 3 =1, we have opg(7, k) ~ 1.
This result should be compared with the result obtained using the
Lee moment formula:

ops(T, k)*T

UBS(ka 7_) ~Ek—oo

lim sup =0

k—o0 k
as all the moments exist.
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Extensions and Questions

e Dupire Local volatility: Gaussian estimates of SE with potentials
Q(t, s) belonging to the non-autonomous Kato class.

e General SVMs: R is not bounded from below by —K, K > 0
and/or @) is unbounded. Need Generalization of the Li-Yau esti-
mates.

QLN—SABR(a) = -

QLN—SABR(amin) = T o k—o oo!
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Numerical Methods in Finance

Available Numerical Methods in Finance
e PDE: Only when the number of assets is small.

e Monte-Carlo, Quasi Monte-Carlo: Euler, Milstein, stochastic
Runge-Kutta, Ninomiya-Victoir, Cubature...

= Combinatorial Hopf algebra. Similar structure in
e Renormalization in Quantum Field Theory: Connes-Kreimer
e Butcher Hopf algebra in deterministic Runge-Kutta methods

e Combinatorics of multi-zeta Riemann functions (polylogarithm):
Zagier, Cartier, Kontsevitch, ..
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Taylor-Stratonovich Expansion

n

dzy =Y ViodW;, dW) = di

1=0

fla) = Y Vi Vif(x) / odW}'....dW}* + R,
(i) €A, O<t1<...<tp<t

> Graduation : [dWV°] =1 and [dWi =% i=1,---n.

T2

Replace the vector fields Vg, Vi, ..., V; by letters gy, €1, ..., 4

Xuw= Y ane, / Ao (ty)...dw (1)

(01,eyi)EA, 0<ty<...<tp<1

— Nice element of a (graded) non-commutative Hopf algebra.  coworarea
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(Graded) Hopf algebra of words (1)

Define operations on H,

e a scalar multiplication X

e sum —+

e concatenation .

e coproduct A :'H, — 'H, ® H,
e unit ¢ : H, — k

e counit 7

e antipode a : H, — 'H,
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(Graded) Hopf algebra of words (2)

-Hopf algebra H, = Algebra + Bialgebra + antipode

> Primitive elements : A(z) =21+ 1«
= Lie algebra G,: a(L) = —-L
> exp(t) = 3 ogy

> Group-like elements A(g) = g ® g: G, = exp(G,):
> a(g) =g~

> log(exp) =1
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Group-like element

Theorem 0.1 (Chen) Xo;(w) is a group-like element of H,,
Xo1(w) =exp(L)

for a primitive element (Lie polynomial) £ in G,
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Yamato thm. and Carr-Madan Brownian rep.

Theorem 0.2 (Yamato)
Lo=tVot —+ WVt > > e, W/V

with the iterated Brownian integrals
WtJ :/ dWlﬁ Ode:: ) VJ = [[V717V72]V7m] ) J = (jla"' 7jm)
0<t, <<t <t
¢y are some constants.

e Carr-Madan: Classify models that can be written as a functional
of a BM: = Abelian Lie algebra.

e Classify models that can be written as a functional of Wj,
fol W/ AW/ (Levy area): Vo = 0, {V;} 1-step nilpotent Lie al-
gebra: Heisenberg Lie algebra.
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Discretization scheme a la Ninomiya-Victoir

Weak order discretization scheme #

P

Mlexp(zy + %Zilsisi)] = S A MEfexp(L,)]

p=1
Weak order 3.0 at d = 1 (Denuelle-PHL 2007):

1 1
Lo = ei[61761,60}6172\/5[ﬁlveo}eAWiq-HOeir/ﬁ[61760]6i[61761,60}6—ﬁ[6176176176160]

with Ay = % Use the Hopt algebra structure to simplify the com-
putations!

*II: truncation operator with respect to the grading.
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