

A Few Geometrical Problems in Finance

Pierre Henry-Labordère Equity Derivatives Quantitative Research SOCIÉTÉ GÉNÉRALE

Feb. 2009, Vienna

Some Problems and Tools

- 1. Problem: Calibration of Stochastic Volatility Models.

 Tool: Heat kernel expansion on a Riemannian manifold.
- 2. Problem: Large-strike behavior of the implied volatility. Tool: Schrödinger Semigroups Estimates.
- 3. Problem: Efficient discretization scheme for Monte-Carlo pricing. Tool: Combinatorial Hopf Algebra, Heat kernel on the Heisenberg group...

These tools arise in the Atiyah-Singer theorem...

Tool: HK expansion

Problem: Calibration of Stochastic Volatility Models.

- The dimensionless parameter in Finance is $[vol]^2\tau$ which is small \Rightarrow Asymptotic expansion.
- Try to find a systematic way of doing asymptotic expansion in Finance:
 - 1. Asymptotic smile for the SABR model at the first-order [Hagan-al]
 - 2. Asymptotic smile for basket at the zero-order [Avellaneda-al]
 - 3. Asymptotic swaption at the zero-order for LMM [Rebonato-Hull-White freezing argument]
 - \Rightarrow Heat kernel expansion.

Tool: HK expansion

Heat Kernel (1)

SDEs: $dx^i = b^i(x)dt + \sigma^i(x)dW_i$, $dW_idW_j = \rho_{ij}dt$ Backward Kolmogorov equation [Einstein Convention here]

$$\partial_{\tau} p(\tau, x|y) = Dp(\tau, x|y)$$

with
$$D = b^i \partial_i + \frac{1}{2} \rho_{ij} \sigma^i \sigma^j \partial_{ij}$$

Under a change of coordinates $x^i \to x^{i'}$,

$$b^{i'} = \frac{\partial x^{i'}}{\partial x^i} b^i + \underbrace{\frac{1}{2} \rho_{ij} \sigma_i \sigma_j \frac{\partial^2 x^{i'}}{\partial x^i \partial x^j}}_{\text{non cov.}}$$

Rewrite D as $D = g^{-\frac{1}{2}}(\partial_i + \mathcal{A}_i)g^{\frac{1}{2}}g^{ij}(\partial_j + \mathcal{A}_j) + Q$ By identifying the terms ∂_i and ∂_{ij} , we obtain

- ► Metric: $g_{ij} = 2 \frac{\rho^{ij}}{\sigma_i \sigma_i}$, $g = \det[g_{ij}]$, $g^{ij} = [g_{ij}^{-1}]$
- \blacktriangleright Connection: $\mathcal{A}^i = \frac{1}{2}(b^i g^{-\frac{1}{2}}\partial_i(g^{1/2}g^{ij})), \, \mathcal{A}_i = g_{ij}\mathcal{A}^j$
- ► Section Q: $Q = g^{ij}(A_iA_j b_jA_i \partial_jA_i), b_j \equiv g_{ji}b^i$

Heat Kernel (2)

To summarize a heat kernel equation on a Riemannian manifold M is constructed from the following three pieces of geometric data:

- 1. a metric g on M, which determines the second-order piece.
- 2. a connection \mathcal{A} on a line bundle \mathcal{L} , which determines the first-order piece.
- 3. a section of the bundle $End(\mathcal{L}) \simeq \mathcal{L} \otimes \mathcal{L}^*$, which determines the zeroth-order piece.

p continuous section of the bundle $(\mathcal{L} \boxtimes \mathcal{L}^*)$ over $\mathbb{R}^+ \times M \times M$ a

^aLet \mathcal{E}_1 and \mathcal{E}_2 two vector bundle on M. and let pr_1 be the projections from $M \times M$ onto the first and second factor M respectively. We denote the external product $\mathcal{E}_1 \boxtimes \mathcal{E}_2$ the vector bundle $pr_1^*\mathcal{E}_1 \otimes pr_2^*\mathcal{E}_2$ over $M \times M$

The heat kernel equation can now be simplified by applying the actions of the following groups:

 \triangleright The group of diffeomorphisms $Diff(\mathcal{M})$ which acts on the metric g_{ij} and the connection \mathcal{A}_i by

$$g_{ij} \stackrel{f \in \text{Diff}(\mathcal{M})}{\longrightarrow} (f^*g)_{ij} = g_{pk}\partial_i f^p(x)\partial_j f^k(x)$$

$$\mathcal{A}_i \stackrel{f \in \text{Diff}(\mathcal{M})}{\longrightarrow} (f^*\mathcal{A})_i = \mathcal{A}_p \partial_i f^p(x)$$

 \triangleright The group of gauge transformations \mathcal{G} which acts on the conditional probability (and the call option \mathcal{C}) by

$$p(\tau, x|y) \xrightarrow{\mathcal{G}} p'(\tau, x|y) = e^{\chi(\tau, x) - \chi(0, y)} p(\tau, x|y)$$

Then p' satisfies the same equation as p with

$$\mathcal{A}_i' \equiv \mathcal{A}_i - \partial_i \chi$$
$$Q' \equiv Q + \partial_\tau \chi$$

If the connection \mathcal{A} is an exact form

$$A_i = \partial_i \Lambda$$

then by applying a gauge transformation

$$\mathcal{A}_i' = \mathcal{A}_i - \frac{\partial_i \Lambda}{\partial_i \Lambda} = \partial_i \Lambda - \frac{\partial_i \Lambda}{\partial_i \Lambda} = 0$$

The HK equation reduces to

$$\partial_{\tau} p'(\tau, x|y) = (\triangle + Q')p'(\tau, x|y)$$

The statement " \mathcal{A} is exact" is equivalent to $\mathcal{F} = 0$, where \mathcal{F} is given in a specific coordinate system by

$$\mathcal{F}_{ij} = \partial_i \mathcal{A}_j - \partial_j \mathcal{A}_i$$

Obvious(\Rightarrow): $\partial_i \partial_j \Lambda - \partial_j \partial_i \Lambda = 0$

Heat Kernel Expansion

Let M be a Riemannian manifold without a boundary. Then for each $x \in M$, there is a complete asymptotic expansion for small τ

$$p(\tau, x|y) = \frac{\sqrt{g(x)}}{(4\pi\tau)^{\frac{n}{2}}} \sqrt{D(x, y)} \mathcal{P}(x, y) e^{-\frac{d(x, y)^2}{4\tau}} \sum_{k=0}^{\infty} a_k(x, y) \tau^k$$

- ▶ d(x,y) is the geodesic distance: $d(x,y) = \min_C \int_0^1 \sqrt{g_{ij} \frac{dx^i}{dt} \frac{dx^j}{dt}} dt$. On a flat manifold \mathbb{R}^n , the geodesic curves are the straight lines and the geodesic distance is the Euclidean distance.
- ightharpoonup Van Vleck-Morette determinant D(x, y):

$$D(x,y) = g(x)^{-\frac{1}{2}} \det\left(-\frac{\partial^2 \frac{d(x,y)^2}{2}}{\partial x \partial y}\right) g(y)^{-\frac{1}{2}} \text{ with } g(x) = \det[g_{ij}(x,x)]$$

Parallel gauge transport: $\mathcal{P}(x,y) = e^{-\int_{\mathcal{C}(x,y)} \mathcal{A}_i dx^i}$ with $\mathcal{C}(x,y)$ a geodesic from the point x to y.

Heat Kernel Coefficients

The $a_i(x, y)$ are smooth functions on M and depend on geometric invariants such as the scalar curvature R.

$$a_0(x,y) = 1$$

$$a_1(x,x) = \frac{1}{6}R + Q$$

Problem: Calibration of SVMs

A (1-factor) stochastic volatility model (SVM) depends on two SDEs, one for the asset f and one for the volatility a. In a risk-neutral measure, we have

$$df = C(f)adW_1$$

$$da = b(a)dt + \sigma(a)dW_2$$

$$dW_1dW_2 = \rho dt$$

This model corresponds in our geometrical framework to a Riemann surface Σ , endowed with a two-by-two metric.

Isothermal Coordinates:

$$ds^2 = F(y)(dx^2 + dy^2)$$

Name	Conformal factor	Scalar curvature	Surface
Geometric	$F(y) \sim y^{-2}$	R = -1	\mathbb{H}^2
3/2-model	$F(y) \sim e^{\frac{-2y}{\sqrt{1-\rho^2}}}$	R = 0	\mathbb{R}^2
SABR	$F(y) \sim y^{-2}$	R = -1	\mathbb{H}^2
Heston	$F(y) \sim y^{-1}$	$R = -2a^{-2} < 0$	Baby Black Hole

$$ightharpoonup R = rac{\sigma(a)^2}{a} \left(rac{\sigma'(a)}{\sigma(a)} - rac{2}{a} \right).$$

ightharpoonup For $a\frac{\sigma'(a)}{\sigma} \le 2$: Σ is a Cartan-Hadamard manifold. \to The cutlocus is empty!

Integrable geodesics:

$$d(x,y) = \left| \int_{y_1}^{y_2} \frac{F(y')dy'}{\sqrt{F(y') - C^2}} \right|$$

with the constant $C = C(x_1, y_1, x_2, y_2)$ determined by the equation

$$x_2 - x_1 = \int_{y_1}^{y_2} \frac{C}{\sqrt{F(y') - C^2}} dy'$$

LV: $df_t = \sigma(t, f)dW_t$ and $df_t = a_t C(f_t)dW_t$ have the same marginals if:

We have that the local vol² is the mean value of the stochastic vol² conditional to the forward:

$$\sigma^{2}(t,f) = C^{2}(f)\mathbb{E}[a_{t}^{2}|f_{t}=f]$$

$$\equiv C^{2}(f)\frac{\int_{0}^{\infty}a^{2}p(t,f,a|\alpha,f_{0})\sqrt{g}da}{\int_{0}^{\infty}p(t,f,a|\alpha,f_{0})\sqrt{g}da}$$

► Saddle point:

$$\sigma(t, f) = C(f)a_{\min}$$
, $a_{\min} \equiv a \mid \min_{(a, f \text{ fixed})} d(z, z_0)$

► Asymptotic local volatility $(\phi(f, a) \equiv d^2(f, a))$:

$$\sigma(T, f) = \sqrt{2g^{ff}(a_{\min})} \left(1 + \frac{T}{\phi''(a_{\min})} \left(\ln(Dg\mathcal{P}^2)'(a_{\min}) - \frac{\phi'''(a_{\min})}{\phi''(a_{\min})}\right) + \frac{g^{ff''}(a_{\min})}{g^{ff}(a_{\min})}\right)\right)$$

Use asymptotic map between local and implied volatilities [Time-dependent HKE]:

$$\sigma_{BS}(\tau, K) = \frac{\ln(\frac{K}{f_0})}{\int_{f_0}^{K} \frac{df'}{\sigma(f')}} \left(1 + \frac{\tau}{3} \left(\frac{1}{8} \left(\frac{\ln(\frac{K}{f_0})}{\int_{f_0}^{K} \frac{df'}{\sigma(f')}} \right)^2 + Q(f_{\text{av}}) + \frac{3\mathcal{G}(f_{\text{av}})}{4} \right) \right)$$

with $f_{\rm av} \equiv \frac{f_0 + K}{2}$, $\sigma(f) \equiv \sigma(0, f)$ and $\mathcal{G}(f) \equiv 2\partial_t \ln \sigma(0, f)$.

$$\sigma_{BS}(T,K) = \frac{\ln \frac{K}{f_0}}{\int_{f_0}^{K} \frac{df'}{\sqrt{2g^{ff}(a_{\min})}}} \left(1 + \frac{g^{ff}(a_{\min})T}{12} \left(-\frac{3}{4} \left(\frac{\partial_f g^{ff}(a_{\min})}{g^{ff}(a_{\min})}\right)^2 + \frac{\partial_f^2 g^{ff}(a_{\min})}{g^{ff}(a_{\min})} + \frac{1}{f_{av^2}}\right) + \frac{g^{ff'}(a_{\min})T}{2g^{ff}(a_{\min})\phi''(a_{\min})} \left(\ln(Dg\mathcal{P}^2)'(a_{\min}) - \frac{\phi'''(a_{\min})}{\phi''(a_{\min})} + \frac{g^{ff''}(a_{\min})}{g^{ff'}(a_{\min})}\right)\right)$$

SABR with a mean-reversion term

$$df_t = a_t f_t^{\beta} dW_t$$

$$da_t = \lambda (a_t - \bar{\lambda}) dt + \nu a_t dZ_t$$

$$C(f) = f^{\beta}, \ a_0 = \alpha, f_{t=0} = f_0$$

where W_t and Z_t are two Brownian processes with correlation $\rho \in (-1,1)$.

SABR-BGM Model given under the spot Libor measure \mathbb{Q} by $(\beta(t) = m \text{ if } T_{m-2} < t < T_{m-1})$

$$dF_{k} = a^{2}B^{k}(F,t)dt + \sigma_{k}(t)aC_{k}(F_{k})dZ_{k}, k = 1, \dots, n$$

$$da = \nu adZ_{n+1}; dZ_{i}dZ_{j} = \rho_{ij}dt \ i, j = 1, \dots, n+1$$

with

$$B^{k}(F,t) = \sum_{j=\beta(t)}^{k} \frac{\tau_{j} \rho_{jk} \sigma_{k}(t) \sigma_{j}(t) C_{k}(F_{i}) C_{i}(F_{k})}{(1 + \tau_{j} F_{j})} , C_{k}(F_{k}) = F_{k}^{\beta_{k}}$$

- Bond of maturity T: P(t,T)
- Swap: $s_{\alpha\beta,t} = \frac{P(t,T_{\alpha}) P(t,T_{\beta})}{\sum_{i=\alpha+1}^{\beta} \tau_i P(t,T_i)}$
- Libor $F_{\alpha,t} \equiv s_{\alpha(\alpha+1),t} = \frac{P(t,T_{\alpha})}{\tau_{\alpha+1}P(t,T_{\alpha+1})} 1.$

► The forward swap rate satisfies in the forward-swap measure (associated to the numeraire $C_{\alpha\beta}(t) = \sum_{i=\alpha+1}^{\beta} \tau_i P(t,T_i)$) the following driftless dynamics

$$ds_{\alpha\beta} = \frac{\partial s_{\alpha\beta}}{\partial F_k} \sigma_k(t) \phi_k(a, F_k) dZ_k$$

► The local volatility associated to the forward swap rate $(ds_{\alpha\beta} = \sigma_{loc}^{\alpha\beta}(s_{\alpha\beta}, t)dW_t)$ is then by definition

$$(\sigma_{loc}^{\alpha\beta})^{2}(s,t) \equiv \mathbb{E}^{\alpha\beta}[\rho_{ij}\sigma_{i}(t)\sigma_{j}(t)\phi_{i}(a,F_{i})\phi_{j}(a,F_{j})\frac{\partial s_{\alpha\beta}}{\partial F_{i}}\frac{\partial s_{\alpha\beta}}{\partial F_{i}}|s_{\alpha\beta}=s]$$

Hyperbolic Geometry \mathbb{H}^{n+1} and Geodesics

 \blacktriangleright New coordinates $[x_k]_{k=1\cdots n+1}$ (L is the Cholesky decomposition of the (reduced) correlation matrix: $[\rho]_{i,j=1\cdots n} = [\hat{L}\hat{L}^{\dagger}]_{i,j=1\cdots n}$

$$x_{k} = \sum_{i=1}^{n} \nu \hat{L}^{ki} \int_{F_{i}^{0}}^{F_{i}} \frac{dF'_{i}}{C_{i}(F'_{i})} + \sum_{i=1}^{n} \rho^{ia} \hat{L}_{ik} a , k = 1, \dots, n$$

$$x_{n+1} = \left(1 - \sum_{i,j}^{n} \rho^{ia} \rho^{ja} \rho_{ij}\right)^{\frac{1}{2}} a$$

- ► Metric on \mathbb{H}^{n+1} : $ds^2 = \frac{2(1-\sum_{i,j}^n \rho^{ia}\rho^{ja}\rho_{ij})}{\nu^2} \frac{\sum_{i=1}^n dx_i^2 + dx_{n+1}^2}{x_{n+1}^2}$
- ► Geodesic distance: $d(x, x^0) = \cosh^{-1} \left(1 + \frac{\sum_{i=1}^{n+1} (x_i x_i^0)^2}{2x_{n+1}x^0} \right)$

Numerical Tests

 $ightharpoonup \mathbb{H}^{n+1}$ stochastic volatility LMM easily calibrated to swaption cubes.

Problem: Implied Volatility wings asymptotics. Tool: Schrödinger Semigroups Estimates.

Problem: Implied Volatility wings asymptotics.

Benaim-Friz formula (1)

Let the strictly decreasing function $\Psi:[0,\infty]\to[0,2]$ be

$$\Psi(x) = 2 - 4(\sqrt{x^2 + x} - x)$$

and let's define the class \mathbb{R}_{α} :

A positive real-valued measurable function g is regularly varying with index α , in symbols $g \in \mathbb{R}_{\alpha}$, if

$$g \in \mathbb{R}_{\alpha} \Leftrightarrow \lim_{x \to \infty} \frac{g(\lambda x)}{g(x)} = \lambda^{\alpha}$$

Ex: $g(x) = x^{\alpha} \in \mathbb{R}_{\alpha}$

We assume the integrability condition (IC) on the right tail ^a

$$\exists \ \epsilon > 0 : \mathbb{E}^{\mathbb{P}}[f_T^{(1+\epsilon)}] < \infty$$

 $^{^{\}mathrm{a}}f_{T}$: forward

Benaim-Friz formula (2)

Assuming the IC, then if $-\ln \mathcal{C}(\tau, k)$ a is a regularly varying function in k (or in K) with a positive index, we have

$$\frac{\sigma_{BS}(\tau,k)^2\tau}{k} \sim \Psi\left(-\frac{\ln \mathcal{C}(\tau,k)}{k}\right)$$

^aHere $\mathcal{C}(\tau,k)$ means a call option with moneyness k and maturity τ

Tool: Schrödinger Semigroups Estimates.

Under the risk-neutral measure \mathbb{P} : $df = A(t)C(f)dW_t$

- \triangleright Connection: $\mathcal{A}_f = -\frac{1}{2}\partial_f \ln C(f)$
- \triangleright Introducing the new coordinate $s = \sqrt{2} \int_{f_0}^f \frac{df'}{C(f')}$ and the new time

$$t' = \int_0^t A(s)^2 ds$$
, the new function $p'(t', s)$ defined by

$$p(t, f|f_0)df = p'(t', s(f)) \sqrt{\frac{C(f_0)}{C(f)}} ds$$

satisfies an (Euclidean) one-dimensional Schrödinger equation

$$\partial_{t'}p'(t',s) = (\partial_s^2 - Q(s))p'(t',s)$$

Time-homogeneous potential a: $Q(s) = -\frac{1}{2}(\ln C)''(s) + \frac{1}{4}((\ln C)'(s))^2$

^awhere the prime ' indicates a derivative according to s.

Time-homogeneous Potentials

LV Model	C(f)	Potential
BS	f	$Q(s) = -\frac{1}{8}$
Quad.	$af^2 + bf + c$	$Q(s) = -\frac{1}{8}(b^2 - 4ac)$
CEV	$f^{\beta}, 0 \le \beta < 1$	$Q_{CEV}(s) = \frac{\beta(\beta-2)}{8(f^{1-\beta} + \frac{s(1-\beta)}{\sqrt{2}})^2}$
LCEV	$\int f \min(f^{eta-1}, \epsilon^{eta-1})$	$Q_{LCEV}(s) = Q_{CEV}(s) \ \forall \ s \ge s_{\epsilon} \equiv \sqrt{2} \left(\frac{\epsilon^{1-\beta} - f^{1-\beta}}{(1-\beta)} \right)$
	with $\epsilon > f_0$	$= -\frac{1}{8} \epsilon^{2(\beta - 1)} \forall s < s_{\epsilon}$

21.53

LV model: df = C(t, f)dW

Introducing the new coordinate $s_t = \sqrt{2} \int_{f_0}^f \frac{df'}{C(t,f')}$, the new function p'(t,s(f))

$$p(t, f|f_0)df = p'(t, s(f)) \sqrt{\frac{C(t, f_0)}{C(t, f)}} e^{\frac{1}{\sqrt{2}} \int_{f_0}^f \frac{df'}{C(t, f')} \partial_t \int_{f_0}^{f'} \frac{df''}{C(t, f'')}} \underbrace{ds}$$

satisfies a one-dimensional (Euclidean) Schrödinger equation

$$\partial_t p'(t,s) = (\partial_{s^2} + Q(t,s))p'(t,s)$$

with the time-dependent scalar potential ^a

$$Q(t,s) = -(\partial_s \mu(t,s) + \frac{1}{2}\mu(t,s)^2) - \int_0^s \partial_t \mu(t,s') ds'$$

$$^{a}\mu(t,s) = \frac{1}{\sqrt{2}}\partial_{t}(\int_{f_{0}}^{f(s)} \frac{df'}{C(t,f')}) - \frac{1}{2}\partial_{s}\ln(C(t,s))$$

We impose that \mathcal{A} is flat:

$$\mathcal{F} = 0$$

$$\Rightarrow$$
 Reduction: $\partial_{\tau}p'(x,\alpha,\tau) = (\triangle_{\Sigma} + Q(x))p'(x,\alpha,\tau)$ Classification:

$$df = (\mu f + \nu)dW$$

$$da = a\sigma(a)(\gamma + \frac{1}{2}\partial_a \frac{\sigma(a)}{a})dt + \sigma(a)dZ, dWdZ = \rho dt$$

name	$\sigma(a)$	SDE
Heston	$\sigma(a) = \eta$	$dv = \sqrt{\delta}(2v\gamma + \eta(\eta - 1))dt + 2\eta\sqrt{\delta}\sqrt{v}dW_2$
GB-SABR	$\sigma(a) = \eta a$	$dv = \sqrt{\delta}(2\eta\gamma v^{\frac{3}{2}} + \eta^2 v)dt + 2\sqrt{\delta}\eta v dW_2$
3/2-model	$\sigma(a) = \eta a^2$	$dv = 2\sqrt{\delta}\eta(\eta + \gamma)v^2dt + 2\sqrt{\delta}\eta v^{\frac{3}{2}}dW_2$

INVESTMENT BANKING

$$c_1 p_N(c_2 t, x | \alpha) \le p'(t, x | \alpha) \le C_1 p_N(C_2 t, x | \alpha)$$

- J. Nash, Aronsov (58) Geometry: $\partial_t p'(t, x | \alpha) = \triangle_M p'(t, x | \alpha)$
- B. Simon (82) Mathematical Physics: $\partial_t p'(t, x | \alpha) = (\partial_x^2 + Q(x))p'(t, x | \alpha)$
- Yau (78) Geometry: $\partial_t p'(t, x | \alpha) = (\triangle_M + Q(x))p'(t, x | \alpha)$
- Norris-Stroock (Malliavin calculus) (83) Probability: $\partial_t p'(t, x | \alpha) = Dp'(t, x | \alpha)$
- Q. Zhang (00) Functional Analysis: $\partial_t p'(t, x | \alpha) = (\partial_x^2 + Q(x, t))p'(t, x | \alpha)$

$$\partial_t p'(t,s) = (\partial_s^2 - Q(s))p'(t,s)$$

We say that Q is in the Kato class K if

$$Q \in K \Leftrightarrow \limsup_{\delta \to 0} \sup_{x \in \mathbb{R}} \int_0^\delta dt \int_{\mathbb{R}} dy |Q(y)| p_G(t, y|x) = 0$$

with the free heat kernel $p_G(t,y|x) = \frac{1}{(4\pi t)^{\frac{1}{2}}} \exp(-\frac{(y-x)^2}{4t})$

- Black-Scholes: $Q(s) = -\frac{1}{8} \Rightarrow$ In the Kato class
- LCEV: $Q(s) = -\frac{1}{(s^2+1)} \Rightarrow$ In the Kato class
- Vasicek: $Q(s) = s^2 \Rightarrow \text{Not in the Kato class.}$

$$Q(y) \equiv y^2 = (y - x)^2 + 2(y - x)x + x^2$$

$$\int_{\mathbb{R}} dy |Q(y)| p_G(t, y|x) \cong \sqrt{t} + x^2$$

$$\int_0^{\delta} dt \int_{\mathbb{R}} dy |Q(y)| p_G(t, y|x) \cong \frac{2}{3} \delta^{\frac{3}{2}} + x^2 \delta$$

$$\sup_{x \in \mathbb{R}} \int_0^{\delta} dt \int_{\mathbb{R}} dy |Q(y)| p_G(t, y|x) = \infty$$

$$\lim_{\delta \to 0} \sup_{x \in \mathbb{R}} \int_0^{\delta} dt \int_{\mathbb{R}} dy |Q(y)| p_G(t, y|x) = \infty$$

Gaussian Estimates of Schrödinger Semigroups

Let $Q^{+} \equiv \max(Q, 0)$ and $Q^{-} = \max(-Q, 0)$.

• If $Q^+ \in K_{loc}$ and $Q^- \in K$. Then we have an upper bound

$$p'(t, y|x) \le C_1 e^{C_2 t} p_G(t, y|x), \ t > 0, \ x, y \in \mathbb{R}$$

with two constants C_1, C_2 . Note that the constant $C_2 = 0$ if $Q^+ = 0$.

• Assuming that Q^+ and Q^- are both in the Kato class K, we have also a lower bound

$$c_1 e^{c_2 t} p_G(t, y|x) \le p'(t, x|y), \ t > 0, \ x, y \in \mathbb{R}$$

with two constants c_1 and c_2 .

a $Q^{+}(y)1(y \leq N) \in K$

Providing that the scalar potential associated to a local volatility function belongs to the Kato class, we have the Gaussian bounds on the function p'(t,s)

$$c_1 e^{c_2 t} p_G(t, s) \le p'(t, s) \le C_1 e^{C_2 t} p_G(t, s)$$

This inequality translates directly on an estimation of the conditional probability $p(t, f|f_0)$

$$c_1 e^{c_2 t} p_G(t, s) \le p'(t', s(f)) = \frac{C(f)^{\frac{3}{2}}}{\sqrt{2C(f_0)}} p(t, f|f_0) \le C_1 e^{C_2 t} p_G(t, s)$$

Gaussian Estimates of European Options

We can directly translate the Gaussian bounds on the conditional probability p'(t', s(K)) into bounds on the implied volatility as

$$C(\tau, k) = \max(f_0 - K, 0) + \frac{\sqrt{C(K)C(f_0)}}{\sqrt{2}} \int_0^{\tau} p'(t', s(K))dt'$$

The large strike behavior of the implied volatility:

$$\frac{\sigma_{BS}(\tau,k)^2 \tau}{k} \sim_{k \to \infty} \Psi\left(\frac{-\frac{1}{2}\ln(C(K)) + \frac{(\int_{f_0}^K \frac{df'}{C(f')})^2}{2\tau}}{k}\right)$$

If s(K) is the leading term, $\sigma_{BS}(\tau, k) \sim_{k \to \infty} \frac{k}{\int_{f_0}^K \frac{df'}{C(f')}}$

Short-time limit of the IV $\tau \ll 1$, $f_{\rm av} = \frac{f_0 + K}{2}$:

$$\sigma_{BS}(\tau,k) = \frac{k}{\int_{f_0}^K \frac{df'}{C(f')}} \left(1 + \frac{\tau}{3} \left(\frac{1}{8} \left(\frac{k}{\int_{f_0}^K \frac{df'}{C(f')}} \right)^2 + Q(f_{av}) \right) \right) \int_{f_0}^{f_0} \frac{df'}{C(f')} df'$$

For $0 \le \beta < 1$, we have

$$\sigma_{BS}(k,\tau) \sim_{k \to \infty} \frac{k(1-\beta)}{K^{1-\beta}}$$

and for $\beta = 1$, we have $\sigma_{BS}(\tau, k) \sim 1$.

This result should be compared with the result obtained using the Lee moment formula:

$$\limsup_{k \to \infty} \frac{\sigma_{BS}(\tau, k)^2 \tau}{k} = 0$$

as all the moments exist.

- Dupire Local volatility: Gaussian estimates of SE with potentials Q(t,s) belonging to the non-autonomous Kato class.
- General SVMs: R is not bounded from below by -K, K > 0 and/or Q is unbounded. Need Generalization of the Li-Yau estimates.

$$Q_{\rm LN-SABR}(a) = -\frac{a^2}{8(1-\rho^2)}$$

$$Q_{\rm LN-SABR}(a_{\rm min}) = -\frac{\nu^2 k^2}{8(1-\rho^2)} \to_{k\to\infty} \infty!$$

Numerical Methods in Finance

Available Numerical Methods in Finance

- PDE: Only when the number of assets is small.
- Monte-Carlo, Quasi Monte-Carlo: Euler, Milstein, stochastic Runge-Kutta, Ninomiya-Victoir, Cubature...
- ⇒ Combinatorial Hopf algebra. Similar structure in
 - Renormalization in Quantum Field Theory: Connes-Kreimer
 - Butcher Hopf algebra in deterministic Runge-Kutta methods
 - Combinatorics of multi-zeta Riemann functions (polylogarithm): Zagier, Cartier, Kontsevitch, ..

$$dx_t = \sum_{i=0}^n V_i \diamond dW_t^i , \ \frac{dW_t^0}{} \equiv dt$$

$$f(x_t) = \sum_{(i_1,...,i_k) \in \mathcal{A}_r} V_{i_1}...V_{i_k} f(x) \int_{0 < t_1 < ... < t_k < t} odW_{t_1}^{i_1}..._o dW_{t_k}^{i_k} + R_r$$

with $V_i = V_i^k \partial_k$.

$$ightharpoonup$$
 Graduation: $[dW^0] = 1$ and $[dW^i] = \frac{1}{2}$ $i = 1, \dots, n$.

Replace the vector fields $V_0, V_1, ..., V_d$ by letters $\varepsilon_0, \varepsilon_1, ..., \varepsilon_d$:

$$X_{0,1}(\omega) = \sum_{(i_1,\dots,i_k)\in\mathcal{A}_r} \varepsilon_{i_1}\dots\varepsilon_{i_k} \int_{0< t_1<\dots< t_k<1} d\omega^{i_1}(t_1)\dots d\omega^{i_k}(t_k)$$

ightarrow Nice element of a (graded) non-commutative Hopf algebra. CORPULINVESTMENT B

SG

Define operations on \mathcal{H}_r

- a scalar multiplication ×
- sum +
- concatenation.
- coproduct $\Delta: \mathcal{H}_r \to \mathcal{H}_r \otimes \mathcal{H}_r$
- unit $\varepsilon: \mathcal{H}_r \to k$
- counit η
- antipode $a: \mathcal{H}_r \to \mathcal{H}_r$

(Graded) Hopf algebra of words (2)

- -Hopf algebra $\mathcal{H}_r = \text{Algebra} + \text{Bialgebra} + \text{antipode}$
- ightharpoonup Primitive elements : $\Delta(x) = x \otimes 1 + 1 \otimes x$
- \Rightarrow Lie algebra \mathcal{G}_r : $a(\mathcal{L}) = -\mathcal{L}$
- $\triangleright \exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$
- ightharpoonup Group-like elements $\Delta(g) = g \otimes g$: $G_r = exp(\mathcal{G}_r)$:
- $\triangleright a(g) = g^{-1}$
- $\triangleright \log(\exp) = 1$

Group-like element

Theorem 0.1 (Chen) $X_{0,1}(\omega)$ is a group-like element of \mathcal{H}_r $X_{0,1}(\omega) = \exp(\mathcal{L})$

for a primitive element (Lie polynomial) \mathcal{L} in \mathcal{G}_r

Theorem 0.2 (Yamato)

$$\mathcal{L}_t = tV_0 + \dots + W_t^m V_m + \sum_{r=2} \sum_{J \in \mathcal{A}_r} c_J W_t^J V^J$$

with the iterated Brownian integrals

$$W_t^J = \int_{0 \le t_{j_1} \le \dots \le t_{j_m} \le t} dW_{u_1}^{j_1} \dots \diamond dW_{u_m}^{j_m} , \ V^J = [\dots [V_{j_1}, V_{j_2}] \dots V_{j_m}] , \ J = (j_1, \dots, j_m)$$

 c_J are some constants.

- Carr-Madan: Classify models that can be written as a functional of a BM: ⇒ Abelian Lie algebra.
- Classify models that can be written as a functional of W_i , $\int_0^1 W_t^{[i]} dW_t^{j]}$ (Levy area): $V_0 = 0$, $\{V_i\}$ 1-step nilpotent Lie algebra: Heisenberg Lie algebra.

Discretization scheme à la Ninomiya-Victoir

Weak order discretization scheme ^a

$$\Pi[\exp(\varepsilon_0 + \frac{1}{2} \sum_{i=1}^{d} \varepsilon_i \varepsilon_i)] = \sum_{p=1}^{P} \lambda_p \Pi[\mathbb{E}[\exp(\mathcal{L}_p)]]$$

Weak order 3.0 at d = 1 (Denuelle-PHL 2007):

$$\mathcal{L}_{\pm} = e^{\frac{1}{24}[\epsilon_1,\epsilon_1,\epsilon_0]} e^{\pm \frac{1}{2\sqrt{12}}[\epsilon_1,\epsilon_0]} e^{\Delta W_n^1 \epsilon_1 + \epsilon_0} e^{\pm \frac{1}{2\sqrt{12}}[\epsilon_1,\epsilon_0]} e^{\frac{1}{24}[\epsilon_1,\epsilon_1,\epsilon_0]} e^{-\frac{1}{240}[\epsilon_1,\epsilon_1,\epsilon_1,\epsilon_0]}$$

with $\lambda_{\pm} = \frac{1}{2}$. Use the Hopf algebra structure to simplify the computations!

^aΠ: truncation operator with respect to the grading.

Book

