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Basics on utility functions

Definition

A utility function is a strictly increasing, strictly concave map
U ∈ C 1(R+;R) satisfying the Inada conditions (named after after the
economist Ken-Ichi Inada):

1 U ′(0) := lim
x↘0

U ′(x) = +∞,

2 U ′(∞) := lim
x→∞

U ′(x) = 0.
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Basics on utility functions

For y > 0 we introduce the conjugate or Legendre transform of −U(−·) in
the sense of convex analysis,

J(y) := sup
x>0

(U(x)− xy),

and denote by I := (U ′)−1 the inverse of the derivative of U.

4 / 108



Basics on utility functions

J ∈ C 1(R+;R) is strictly decreasing, strictly convex, J ′(0) = −∞,
J ′(∞) = 0, J(0) = U(∞) and J(∞) = U(0). Moreover for any x > 0 we
have the conjugacy relation

U(x) = inf
y>0

(J(y) + xy),

in addition J ′ = −I and for any y > 0 we have

J(y) = U(I (y))− yI (y).
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Basics on utility functions

J is clearly decreasing and convex, as it is a supremum of convex (even
affine) functions. To show that J ∈ C 1(R+;R) we assume that
U ∈ C 2(R+;R). Then I ∈ C 1(R+;R) and for a fixed y > 0,
supx>0(U(x)− xy) is attained in x = I (y), so that

J(y) = U(I (y))− I (y)y .

This last expression shows that J ∈ C 1(R+;R) and

J ′(y) = U ′(I (y))︸ ︷︷ ︸
= y

I ′(y)− I ′(y)y − I (y) = −I (y).
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Basics on utility functions

Classical utility functions on R+ are

U(x) := log(x),

with corresponding conjugate

J(y) = sup
x>0

(U(x)− xy) =︸︷︷︸
x= 1

y

− log(y)− 1;

and for γ ∈ (−∞, 1) \ {0},

U(x) :=
1

γ
(xγ − 1),

with Legendre transform

J(y) = sup
x>0

(U(x)− xy) =︸︷︷︸
x=y

1
γ−1

1− γ
γ

y
γ
γ−1 − 1

γ
.

Note that for γ < 0, U is bounded from above by zero, while for γ > 0, U
is unbounded. Moreover, for γ → 0 we obtain the first case.
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Utility Optimization Problem

For x > 0 we introduce

v(x) := {V (x , ϑ) = x + (ϑ • S) | (x , ϑ) x-admissble strategy}

Suppose U is a utility function and define

u(x) := sup
V∈v(x)

E[U(VT (x , ϑ))],

for which we will assume that u(x0) <∞ for some x0 > 0.
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Utility Optimization Problem

U quantifies the subjective preferences by assigning to a monetary amount
z a subjective utility of U(z). The fact that U is increasing means that
more is better and the concavity of U captures the idea of risk aversion or
the effect that an extra dollar means more to a beggar than to a
millionaire.

For a given x > 0, u(x) can be interpreted as the maximal expected utility
one can obtain via investment from an initial wealth x and the standing
assumption implies that the optimisation problem is well-posed for at least
one x0.

Note that U is defined on R+ and VT ≥ 0, but U(0) ∈ [−∞,∞) exists
(as a limit x → 0), so that U(VT (x , ϑ)) is well-defined in [−∞,∞) .
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Utility Optimization Problem

Moreover we set E[U(VT )] := −∞ if (U(VT ))− /∈ L1(P), since
u(x) ≥ U(x) > −∞ for any x > 0, i.e. we do not lose any information if
we exclude such strategies.

If U is unbounded and S allows arbitrage, then u ≡ +∞, so the problem
just makes sense in an arbitrage-free model.

The standing assumption, i.e. u(x0) <∞ for some x0 > 0, implies that
u(x) <∞ for any x > 0.
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Setting

Recall the basic problem: maximise E[u(VT (x , ϑ))] over all ϑ ∈ Θx
adm.

Here, we have that
Θx

adm = {predictable S-integrable Rd -valued ϑ with
∫
ϑdS ≥ −x}.

With no loss of generality we can also impose that
(u(VT (x , ϑ)))− ∈ L1(P).
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Setting

We now fix t ∈ [0,T ], ϑ ∈ Θx
adm and define

Θ(t, ϑ) := {ψ ∈ Θx
adm|ψ = ϑ on [0, t]} .

The key idea now is to look at all the conditional problems to maximize
E[u(VT (x , ψ))|Ft ] over all ψ ∈ Θ(t, ϑ) (for every ϑ ∈ Θx

adm). So we
define the maximal conditional expected utility, given the initial wealth and
an initial strategy ϑ, i.e.

Jt(ϑ) := ess-supψ∈Θ(t,ϑ) E[u(VT (x , ψ))|Ft ]︸ ︷︷ ︸
=:Γt(ψ)

.

If F0 is trivial, then for all ϑ ∈ Θx
adm we have

J0(ϑ) = J0 = sup
ψ∈ϑxadm

E[u(VT (x , ψ))] = U(x) .
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Remark

One should be careful with the conditions on u and ϑ to ensure in the
sequel that there are no integrability problems, e.g. u ≥ 0 or u bounded
above might be useful assumptions. We do not take care of the exact
details here.
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Martingale Optimality Principle

The main result is then the following version of the martingale optimality
principle from stochastic calculus (dynamic programming principle):

Theorem (Martingale Optimality Principle (MOP) - with suitable
integrability assumed)

The following hold:
1 For every ϑ ∈ Θx

adm, the process

(Jt(ϑ))0≤t≤T

is a P-supermartingale.
2 A strategy ϑ∗ ∈ Θx

adm is optimal, i.e.

E[u(VT (x , ϑ∗))] = sup
ϑ∈Θx

adm

E[u(VT (x , ϑ))]

if and only if (Jt(ϑ
∗))0≤t≤T is a P-martingale.
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Proof

First we check that {Γt(ψ)|ψ ∈ Θ(t, ϑ)} is upward directed: for t ∈ [0,T ],
A ∈ Ft , ψ

1, ψ2 ∈ Θ(t, ϑ), we have ψ1IA + ψ2IAc ∈ Θ(t, ϑ) so with
A := {Γt(ψ

1) ≥ Γt(ψ
2)} ∈ Ft , we get

max{Γt(ψ
1), Γt(ψ

2)} = Γt(ψ
1IA + ψ2IAc ).

So there exists an sequence (ψn)n∈N in Θ(t, ϑ) with
Jt(ϑ) =↗ − limn→∞ Γt(ψ

n) and so monotone convergence holds:

E[Jt(ϑ)|Fs ] = lim
n→∞

E[Γt(ψ
n)|Fs ] = lim

n→∞

=Γs(ψn) and ψn∈Θ(t,ϑ)⊆Θ(s,ϑ)︷ ︸︸ ︷
E[u(VT (x , ψn))|Fs ]

≤ ess-supψ∈Θ(s,ϑ) Γs(ψ) = Js(ϑ) .
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Proof

Integrability of J(ϑ) goes analogously; one needs control on J0, e.g. U ≥ 0
or J0 = U(x) <∞ work.

Now we take ϑ∗ ∈ Θx
adm; then J(ϑ∗) is a P-supermartingale by 1). So

J(ϑ∗) is a P-martingale if and only if it has constant expectation; and on
[0,T ] this is equivalent to:

E[u(VT (x , ϑ∗))] = E[JT (ϑ∗)] = J0 = sup
ψ∈Θx

adm

E [u(VT (x , ψ))] .

This means that ϑ∗ is optimal.
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Remark

Note that 2) includes the condition ϑ∗ ∈ Θx
adm. So if we just exhibit some

predictible S-integrable ϑ s.t. J(ϑ) is a P-martingale, we can only
conclude optimality of ϑ after we check that ϑ ∈ Θx

adm. [This is quite
often not handled properly in applications.]
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Remark

Now we want to exploit martingale optimality to get more information on
ϑ∗. First, we can prove that J(ϑ) has a càdlàg version; we use that and
decompose uniquely (by Doob-Meyer) as J(ϑ) = J0 + M(ϑ)− B(ϑ) with
M(ϑ) ∈M0,loc , B(ϑ) predictable, increasing, null at t = 0. Can we say
even more?

We look at

Jt(ϑ) = ess-supψ∈Θ(t,ϑ) E [u(VT (x , ψ))|Ft ]

= ess-supψ∈Θ(t,ϑ) E
[
u(Vt(x , ϑ) +

∫ T

t
ψudSu)|Ft

]
.

We expect that each of the conditional expectations, and hence also Jt(ϑ)
is an Ft-measurable functional of Vt(x , ϑ). So we also expect that Bt(ϑ)
depends on ϑ, Vt(x , ϑ) in a “nice” way.
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Remark

From martingale optimality we see that B(ϑ) is always increasing for each
ϑ and it is constant (null) for optimal ϑ∗. In other words, the “drift”
b(ϑ)” is always ≥ 0, and ≡ 0 for ϑ∗. This can be exploited to obtain
(non-linear) PDEs for the solution of the optimization problem.
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The Merton Problem

We have a bank account B̃ and a stock S̃ with:

dB̃t = B̃trdt, B̃0 = 1

dS̃t = S̃t (µdt + σdWt) , S̃0 > 0

for µ, r ∈ R, σ ∈ R+.

For finite time horizon T , we want to maximize the expected utility for
terminal wealth! We do this by re-parametrizing: u is defined on (0,∞),
so V (x , ϑ) must be > 0, so we can describe a strategy not via number of
shares (ϑ) but by fractions of wealth (π).
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The Merton Problem

Call V (x , ϑ), Ṽ (x , ϑ) the discounted and undiscounted wealth in terms of

ϑ, and define πt := ϑt S̃t
Ṽt(x ,ϑ)

= ϑtSt
V (x ,ϑ) . πt is the fraction at time t of total

wealth that is invested in stock; the fraction 1− πt is in the bank account.

Call X π := Ṽ (x , ϑ) the undicounted wealth expressed with π, with x fixed.
The self-financing condition for X π is then: dV (x , ϑ) = ϑdS , so

d

(
X π

B̃

)
=
πX π

B̃S
dS =

X π

B̃
π
dS

S

and so

dXπ
t = d

(
B̃t

Xπ
t

B̃t

)
= B̃td

(
Xπ
t

B̃t

)
+

Xπ
t

B̃t

dB̃t = πtX
π
t

=(µ−r)dt+σdW︷︸︸︷
dSt
St

+Xπ
t rdt

= rXπ
t dt + πtX

π
t ((µ− r)dt + σdWt).
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The Merton Problem

It is our goal to maximize E[U(X π
T )] over all allowed π = (π)0≤t≤T in the

sequel. For this purpose fix t ∈ [0,T ], strategy π and another strategy ψ
with ψ = π on [0, t]. Consider

Γt(ψ) = E[U(Xψ
T )|Ft ] = E

[
U(X π

t +

∫ T

t
dXψ

u )|Ft

]
= E

[
U(X π

t +

∫ T

t
(rXψ

u + ψuX
ψ
u (µ− r))du + ψuX

ψ
u σdWu)|Ft

]
.
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The Merton Problem

Our filtration F is generated by S̃ , B̃ or equivalently by W . Recall that W
has the Markov property, so “the situation is Markovian”: it seems
plausible that

Γt(ψ) should only depend on the current wealth X π
t and

it is sufficient to consider strategies ψ which only depend on current
wealth, ψt = g(t,Xψ

t ), since the optimal strategy has to be of this
type. Notice that this defines a stochastic differential equation for X .

So it is natural to guess that also after optimisation, this persists; we guess
that

Jt(π) = ess-supψ∈Θ(t,ϑ) E[U(Xψ
T )|Ft ] = k(t,X π

t )

for some function k(t, x). What do we get then?
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The Merton Problem

Assume k is nice and use Itô’s formula. This gives:

dJ(π) = ktdt + kx dX
π︸︷︷︸

=···

+
1

2
kxx d〈X π〉︸ ︷︷ ︸

=π2(Xπ)2σ2dt

.

So we get:

dJt(π) = kx(t,X π
t )πtX

π
t σdWt︸ ︷︷ ︸

=dMt(π)

+

(
∂k

∂t
+
∂k

∂x
rx +

∂k

∂x
px(µ− r) +

1

2

∂2k

∂x2
p2x2σ2

)
(t, x = X π

t , p = πt)
dt︸ ︷︷ ︸

=−dBt(π)=−b(t,πt ,Xπt )dt

.

By the martingale optimality principle, B(π) is always increasing and
constant at optimal π∗; so b(π) (respectively −b(π)) is always ≥ 0 (≤ 0),
and = 0 at optimal π∗.
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The Merton Problem

Treating p=̂πt and x=̂Xπ
t as independent variables leads us to guess that

k(t, x) should satisfy

sup
p>0

(
kt(t, x) + rxkx(t, x) + (µ− r)pxkx(t, x) +

1

2
σ2p2x2kxx(t, x)

)
= 0.

This is the so called Hamilton-Jacobi-Bellman (HJB) equation for our
control problem. It is a nonlinear PDE. Since k(T ,X π

T ) = JT (π) = u(X π
T )

we impose k(T , x) = u(x) for x > 0 as our boundary condition.
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The Merton Problem

The idea now is to try and solve the HJB equation to come up with a
candidate for the optimal strategy, π∗.

If we formally maximise over p we get the optimiser
p∗(t, x) = −µ−r

σ2
kx (t,x)
xkxx (t,x) . Plugging this in yields the HJB equation in the

form:

0 = kt(t, x) + rxkx(t, x)− 1

2

(µ− r)2

σ2

(kx(t, x))2

kxx(t, x)
, k(T , x) = U(x).
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The Merton Problem

This is a nonlinear second order PDE for k. Conceptually, we should now
to the following:

1 Find a sufficiently smooth solution k(t, x) to the HJB equation.

2 Define function p∗(t, x) from k as above.

3 Consider the SDE: dXt = rXtdt + p∗(t,Xt)Xt((µ− r)dt + σdWt)
obtained by using the ”candidate strategy” p∗(t,Xt) for π∗ (and
writing the self-financing equation), and prove that this has a solution
X ∗.

4 Define π∗t := p∗(t,X ∗t ) and show that π∗ is an allowed strategy.
(Then, by 3), X π∗ = X ∗.)

5 Prove that π∗ is optimal, either by direct argument (by comparing it
to all other allowed π), or by showing that X ∗ = Xπ∗ is such that
(J(π∗•) = k(•,Xπ∗

• ) = k(•,X ∗• ) is a martingale.

The most difficult step is usually the first one.
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The Merton Problem: an example

For power utility u(x) = 1
γ x

γ with γ < 1, γ 6= 0, we can solve the PDE
explicitly. This goes as follows. the wealth dynamics

dXπ
t

Xπ
t

= rdt + πt((µ− r)dt + σdWt), X
π
0 = x

give

Xπ
t = xE

(
rs +

∫
πs((µ− r)ds + σdWs)

)
t

and so, for ψ ∈ Θ(t, π),

Xψ
T = X π

t E
(
rs +

∫
ψs((µ− r)ds + σdWs)

)
t,T
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The Merton Problem: an example

So,

Γt(ψ) = E[U(Xψ
T )|Ft ] =

[
Xψ
T = X π

t
XψT
Xπt

U(x) = 1
γ x

γ

]
=

1

γ
(Xπ

t )γ

=:Γt(ψ)︷ ︸︸ ︷
E[U(E(· · ·ψ)t,T )|Ft ] .
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The Merton Problem: an example

So of course we set

Jt(π) =
1

γ
(Xπ

t )γ ess-supψ∈Θ(t,ϑ) Γt(ψ)

and we guess that k(t, x) = 1
γ x

γf (t).

Then kt = 1
γ x

γ ḟ (t), kx = xγ−1f (t), kxx = (γ − 1)xγ−2f (t) and plugging
this into the HJB equation yields

0 =
1

γ
xγ
(
ḟ (t) + γrf (t)− 1

2

(µ− r)

σ2

γ

γ − 1
f (t)

)
,

1

γ
xγ =

1

γ
xγf (T ) ,

or f (T ) = 1.
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The Merton Problem: an example

This ODE for f can be solved explicitly. The explicit candidate for the
optimal strategy is then π∗t = p∗(t,X ∗t ) = −µ−r

σ2
1

γ−1 = µ−r
σ2(1−γ)

which

prescribes to always hold a fixed proportion of total wealth (the so called
Merton proportion) in the stock (and the rest in the bank account). One
can check that this strategy is allowed and optimal.

The strategy π∗ being constant still involves trading, because the
corresponding ϑ∗ (optimal number of shares) is not constant. In case of
the Merton problem one could also argue directly that the strategy can
neither depend on time nor on current wealth, hence it has to be constant.
Given this fact, it is easy to calculate the value of π directly. The solution
of the HJB-equation is just making precise this type of reasoning.
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Abstract Utility optimization

In this section we study the basic problem of an optimal portfolio choice
with preferences given by expected utility. We take the standard model
with finite time T <∞, (Ω,F , (Ft)0≤t≤T ,P) a filtered probability space
satisfying the usual conditions, B ≡ 1 the bank account and the
discounted asset prices S = (St)0≤t≤T , where S is an Rd -valued
semimartingale. We impose absence of arbitrage via P 6= ∅.
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Abstract Utility optimization

We fix an initial capital x > 0 and consider a self-financing strategy (x , ϑ),
where ϑ is an Rd -valued predictable S-integrable process. We impose that
the strategy ϑ is x-admissible so that the wealth process

V (x , ϑ) = x + (ϑ • S) ≥ 0.

Our goal is to find a x-admissible strategy ϑ, so that this strategy
maximizes the expected utility from terminal wealth over ϑ, i.e. maximize
E[U(VT (x , ϑ))], where U is a utility function on R+.
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Abstract Utility optimization

Note that imposing (x , ϑ) to be a x-admissible strategy ties up with
dom(U) = R+ and we could have just imposed that VT (x , ϑ) ≥ 0.
Moreover, if dom(U) = (−a,∞) with 0 < a <∞, then we can just
translate by a, but if dom(U) = R, finding a good class of allowed
strategies becomes tricky.
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Abstract Utility optimization (primal problem)

Let U be a utility function as above and x > 0, the primal problem is

u(x) = sup
V∈v(x)

E[U(VT )].
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Abstract Utility optimization (primal problem)

Consider the set of positions that can be superreplicated from initial
wealth x > 0, with x-admissible self-financing strategies, i.e.

C(x) :=
{
f ∈ L0

+(FT ) | ∃V ∈ v(x) : f ≤ VT

}
= (x+GT (Θx

adm)−L0
+)∩L0

+,

where

Θx
adm := {ϑ = (ϑt)0≤t≤T | ϑ ∈ Θadm : (ϑ • S) ≥ −x} .
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Abstract Utility optimization (primal problem)

Note that v(x)T ⊆ C(x) and if f ∈ C(x) then E[U(f )] ≤ u(x), for the
latter take some V ∈ v(x) so that VT ≥ f ; since U is increasing we have
U(f ) ≤ U(VT ) and hence E[U(f )] ≤ E[U(VT )] ≤ u(x).
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Abstract Utility optimization (primal problem)

So the primal problem can be written as

u(x) = sup
f ∈C(x)

E[U(f )].

As we know already C(x) is easier to describe than v(x). Note also that if
f ∗ ∈ C(x) is optimal, then there is some ϑ∗ ∈ Θx

adm so that

f ∗ ≤ x + GT (ϑ∗)

and V (x , ϑ∗) ∈ v(x) is a solution to the primal problem, because

u(x) = E[U(f ∗)] ≤ E[U(VT (x , ϑ∗))] ≤ u(x).
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Abstract Utility optimization (dual problem)

In order to gain more information about the primal problem we want to
introduce a suitable dual problem using the conjugacy relation of U and J,
and exploiting the absence of arbitrage condition. Take Q ∈ P(6= ∅) and
denote by Z the density process of Q with respect to P, then
S ∈Mloc(Q) is a local martingale with respect to Q.

Let V = V (x , ϑ) ∈ v(x), then (ϑ • S) is well-defined and bounded below
by −x , hence by Ansel-Stricker (ϑ • S) ∈Mloc(Q) is a local martingale
with respect to Q, so it is also a Q-super-martingale.

Moreover, since Z is a density process of an equivalent probability measure
we have Z > 0 and E[Z0] = 1. So, if F0 is trivial or if we insist on Q = P
on F0, then Z0 ≡ 1.
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Abstract Utility optimization (dual problem)

This motivates the following set: for z > 0 we introduce the family of all
(Ft)t∈[0,T ]-adapted, positive, RCLL processes Z starting at z such that for
any V ∈ v(1), ZV is a P-supermartingale, i.e.

Z(z) := {Z | Z ≥ 0 : Z0 = z , ∀V ∈ v(1) : ZV cadlag super-mart.}.

Note that for any x > 0, v(x) = xv(1); so the last condition is equivalent
to saying that for any V ∈ v(x), ZV is a P-super-martingale.
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Abstract Utility optimization (dual problem)

Any Z ∈ Z(z) is itself a super-martingale, to see this take (x , ϑ) = (1, 0),
then V (1, 0) ≡ 1 ∈ v(1) so that ZV = Z is a super-martingale. Moreover,
Z(z) contains all density processes Q ∈ P with Q = P on F0. Finally,
Z(z) = zZ(1).
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Abstract Utility optimization (dual problem)

This set allows us to derive the dual problem in the following way: let
x , z > 0, V ∈ v(x) and Z ∈ Z(z), then ZV is a P-super-martingale
starting at Z0V0 = zx , so

E[ZTVT ] ≤ zx .

Recall the Legendre transform of U, i.e. for any y > 0,

J(y) = sup
x>0

(U(x)− xy) ≥ U(x)− xy ,

to obtain, using the super-martingale property that

E[U(VT )] ≤ E[J(ZT ) + VTZT ] ≤ E[J(ZT )] + zx .

Taking the supremum over V ∈ v(x) and the infimum over Z ∈ Z(z)
yields the following expression

u(x) ≤ inf
Z∈Z(z)

E[J(ZT )] + zx .

So, for z > 0 it is a natural dual problem to look for

j(z) := inf
Z∈Z(z)

E[J(ZT )].
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Abstract Utility optimization (duality)

The primal problem maximizes a concave functional, while the dual
problem minimizes a convex functional.

In analogy to C(x), we introduce the set

D(z) :=
{
h ∈ L0

+ | ∃Z ∈ Z(z) : h ≤ ZT

}
to get the abstract equivalent version of the dual problem

j(z) = inf
h∈D(z)

E[J(h)],

this follows from the following two observations: Z(z)T ⊆ D(z) and if
h ∈ D(z), then E[J(h)] ≥ j(z).

43 / 108



Abstract Utility optimization (duality)

Moreover, note that if we fix z > 0 we obtain that

j(z) ≥ sup
x>0

(u(x)− xz),

and if we fix x > 0 we get

u(x) ≤ inf
z>0

(j(z) + zx).

This is very reminiscent of the conjugacy relation between U and J. We
will see that we actually get equalities above, plus solvability of the primal
as well as the dual problem at the expense of one extra assumption on U
(reasonable asymptotic elasticity).
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Introduction

We shall follow here in contents and notation the excellent thesis by
Alexander Veruurt which can be found at
https://arxiv.org/abs/1504.02988.

At the beginning we shall provide a bird’s eye perspective on the field and
some of its assertions from the point of view of FTAP.

46 / 108

https://arxiv.org/abs/1504.02988


Change of numeraire for local martingales

The only value which does not change nominally under changes of
numéraire is zero, whence it makes sense, as done in the setting of
stochastic portfolio theory, to consider portfolio wealth processes
non-negative and starting at some predefined value x , then change of
numeraire does not change the lower bound.

We can either look what change of numeraire does to portfolio wealth
processes or – on the dual side – equivalent separating measures Q. If Q is
an equivalent local martingale measure for a process S and the numeraire
N defines a strictly positive density process, then Q ′ defined through
dQ′

dQ := N is an equivalent local martingale measure for S/N by Bayes
formula.
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Change of numeraire for portfolios – additive

Let X be a (vector valued) semimartingale and ϕ ∈ L(X )), such that
(ϕ • X ) =

∑
i ϕ

iX i and (ϕ • X )− =
∑

i ϕ
iX i
− . Let furthermore N be a

strictly positive (real valued) semimartingale (with N− being strictly
positive as well), then

(ϕ • X )

N
= (ϕ • X

N
)

holds true. This follows from Ito’s formula

(ϕ • X )

N
= ((ϕ • X )− •

1

N
) + (

1

N −
• (ϕ • X )) + [(ϕ • X ),

1

N
]

= (ϕ • (X− •
1

N
) + (

1

N −
• X ) + [X ,

1

N
]) .

We apply the self-financing condition for the first term.
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Change of numeraire for portfolios – multiplicative

Let X be a vector valued semimartingale whose entries are strictly positive
together with X− and let π

X−
∈ L(X ) with

∑
i π

i = 1. Let furthermore N

be a strictly positive (real valued) semimartingale (as well as N−) starting.
The value process V satisfies the equation

V = 1 + (
πV−
X−
• X ) .

Then
1 + (πV−X−

• X )

N
=

1

N0
+ (

πV−
X−
• X
N

) .

The proof is the same as before.
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Growth Rates and Excess Growth Rates

Let V be a strictly positive process such that logV is a special
semimartingale such that logV = A + M, then A is called the integrated
growth rate of V .

Let X be a vector valued semimartingale whose entries are strictly positive
with X− strictly positive as well, and let π

X−
∈ L(X ) with

∑
i π

i = 1 be a

multiplicative strategy with value process V . Let Ai denote the integrated
growth rates of X i . Then V also has an integrated growth rate B and

B = (π • A) +
1

2
(
π

X 2−
• [X ,X ])− 1

2
[(
π

X−
• X ), (

π

X−
• X )] ,

where the quotient in the second and third part is understood
componentwise.
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Ito’s formula and the master equation

Let X be a vector valued semimartingale whose entries are strictly positive
together with X−, then N =

∑
i X

i is a strictly positive (real valued)
semimartingale (again as well as N−). Consider a C 2 function G , then for
Y := X

N we have by Ito’s formula

G (
X

N
) = (∇G (Y )− • Y ) +

1

2
(D2G (Y )− • [Y ,Y ])+

+
∑
s≤t

(G (Ys)− G (Ys−)−∇G (Y )−∆Ys −
1

2
D2G (Y )−∆[Y ,Y ]S)

Assume that G (Y ) is strictly positive (as well as G (Y )−), then we can
define a multiplicative strategy

πi = Y i
−(∇i logG (Y )− + 1−

∑
i

Y i
−∇i logG (Y )−)
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Ito’s formula and the master equation

and a finite variation process

G = −1

2
(
D2G (Y )−
G (Y )−

• [Y ,Y ])−

−
∑

0<s≤t

G (Ys)− G (Ys−)−∇G (Y )−∆Ys − 1
2D

2G (Y )−∆[Y ,Y ]S
G (Y )s−

.

This then leads to the following formula, the master equation,

V

N
=

G (Y )

G (Y0)

E( 1
Y −π • Y )

E(G + ( 1
Y −π • Y ))

,

where E denotes the stochastic exponential and the second part is of finite
total variation. Therefore the master equation appears just as a
multiplicative version of Ito’s formula.
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Basic Definitions

We place ourselves in a general continuous-time Itô model without
frictions (i.e. there are no transaction costs, trading restrictions, or any
other imperfections). Let the price processes Xi (·) of stocks i = 1, . . . , n
under the physical measure P be given by

dXi (t) = Xi (t)
(
bi (t)dt +

d∑
ν=1

σiν(t)dWν(t)
)
, i = 1, . . . , n

Xi (0) = xi > 0 .
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Basic Definitions

Here, W (·) = (W1(·), . . . ,Wd(·)) is a d-dimensional P-Brownian motion,
and we assume d ≥ n. We furthermore assume our filtration F to contain
the filtration FW generated by W (·), and the drift rate processes bi (·) and
matrix-valued volatility process σ(·) = (σiν(·))i=1,...,n,ν=1,...,d to be
F-progressively measurable and to satisfy the integrability condition

n∑
i=1

∫ T

0

(
|bi (t)|+

d∑
ν=1

(σiν(t))2

)
dt <∞ for all T ∈ (0,∞) .
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Basic Definitions

We define the (instantanous) covariance process a(t) = σ(t)σ′(t), with the
apostrophe denoting a transpose. Note that a(·) is a positive semi-definite
matrix-valued process. Finally, we assume the existence of a riskless asset
X0(t) ≡ 1, for all t ≥ 0; namely, without loss of generality we assume a
zero interest rate, by discounting the stock prices by the bond price.
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Basic Definitions

Now, let us consider the log-price processes; by Itô’s formula, we have

d logXi (t) =

(
bi (t)− 1

2
aii (t)

)
dt +

d∑
ν=1

σiνdWν(t)

= γi (t)dt +
d∑
ν=1

σiν(t)dWν(t) ,

where we have defined the growth rates γi (t) := bi (t)− 1
2aii (t). This

name is justified by the fact that

lim
T→∞

1

T

(
logXi (T )−

∫ T

0
γi (t)dt

)
= 0 P-a.s.

under, e.g., 1
T 2

∑n
i=1

∑d
ν=1

∫ T
0 E [(σiν(t))2]dt → 0 as T →∞.
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Investments

We proceed by defining which investment rules are allowed in our
framework.

Definition

Define a portfolio as an F-progressively measurable vector process π(·),
(often) uniformly bounded in (t, ω), where πi (t) represents the proportion
of wealth invested in asset i at time t, and satisfying∑n

i=1 πi (t) = 1 for all t ≥ 0. We say that π(·) is a long-only portfolio if
πi (t) ≥ 0 for all i = 1, . . . , n. For future reference, we also define the set

∆n
+ := {x ∈ Rn :

∑
xi = 1 and xi > 0 for all i = 1, . . . , n}.

We denote the wealth process of an investor investing according to
portfolio π(·), with initial wealth w > 0, by V w ,π(·), if it exists under
certain integrability conditions (see next slide).

Note that portfolios are self-financing by definition.
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Investments

We also define a more general class of investment rules, which we shall call
trading strategies.

Definition

A trading strategy is an F-progressively measurable process h(·) that takes
values in Rn and satisfies the integrability condition

n∑
i=1

∫ T

0

(
|hi (t)bi (t)|+ h2

i (t)aii (t)
)
dt <∞ P-a.s.

For any t, hi (t) is the amount of money invested in stock i . Again, we let
V w ,h(·) denote the wealth process of an investor following the trading
strategy h(·) and starting with initial wealth w ≥ 0. We write
V h(·) := V 1,h(·). We require h(·) to be x-admissible for some x ≥ 0,
written as h(·) ∈ Ax , meaning that V 0,h(t) ≥ −x for all t ∈ [0,T ] a.s.
We shall write A := A0.
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Investments

Note that each portfolio generates a trading strategy by setting
hi (t) = πi (t)V w ,π(t) ∀t ∈ [0,T ]. We assume the admissibility condition
to exclude doubling strategies. On the contrary, one can define a trading
strategy h(·) ∈ Ax by specifying it as the proportions invested in stocks at
each time, πi (t) = hi (t)/V w ,h(t), provided that w > x and similarly to a
portfolio but with the exception that in general now

∑n
i=1 πi (t) 6= 1; that

is, there is a non-zero holding of cash π0(t).
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Wealth process

The wealth process associated to a portfolio π(·) and initial wealth
w ∈ R+ can be seen to evolve as

dV w ,π(t)

V w ,π(t)
=

n∑
i=1

πi (t)
dXi (t)

Xi (t)
= bπ(t)dt +

d∑
ν=1

σπν(t)dWν(t),

with the portfolio’s rate of return bπ(t) :=
∑n

i=1 πi (t)bi (t) and its
volatility coefficients σπν(t) :=

∑n
i=1 πi (t)σiν(t) (very slightly abusing

notation). Hence we have, by Itô’s formula, that

d logV w ,π(t) =

(
bπ(t)− 1

2

d∑
ν=1

(σπν(t))2

)
dt +

d∑
ν=1

σπν(t)dWν(t)

= γπ(t)dt +
d∑
ν=1

σπν(t)dWν(t),

where γπ(t) := bπ(t)− 1
2

∑d
ν=1(σπν(t))2 is the growth rate of the

portfolio π.
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Wealth process

Note the disappearance of the drift processes from this expression; since
we may write

γπ(t) =
n∑

i=1

πi (t)bi (t)− 1

2

n∑
i ,j=1

πi (t)aij(t)πj(t) =
n∑

i=1

πi (t)γi (t) + γ∗π(t),

where the excess growth rate is defined as

γ∗π(t) :=
1

2

 n∑
i=1

πi (t)aii (t)−
n∑

i ,j=1

πi (t)aij(t)πj(t)

 ,

it follows directly that

d logV π(t) = γ∗π(t)dt +
n∑

i=1

πi (t)d logXi (t) ,

which also motivates the nomenclature for γ∗π(·).
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The market portfolio

We define a particular portfolio, the market portfolio µ(·), by

µi (t) :=
Xi (t)

X (t)
, X (t) :=

n∑
i=1

Xi (t).

We assume there is only one share per company (or, equivalently, that
Xi (·) is the capitalisation process of company i), so µi (t) is the relative
market weight of company i at time t. The wealth process associated to
the market portfolio is

dV w ,µ(t)

V w ,µ(t)
=

n∑
i=1

µi (t)
dXi (t)

Xi (t)
=

n∑
i=1

Xi (t)

X (t)

dXi (t)

Xi (t)
=

dX (t)

X (t)
,

and hence
V w ,µ(t) =

w

X (0)
X (t) .
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The market portfolio

The wealth resulting from the market portfolio is therefore simply equal to
a constant times the total market size: µ(·) is a buy-and-hold strategy. In
Stochastic Portfolio Theory (SPT), one measures the performance of
portfolios with respect to the market portfolio (i.e. one uses the market
portfolio as a ‘benchmark’ — this is similar to the approach taken in the
Benchmark Approach to finance, developed by Platen and Heath). The
market portfolio is therefore of great importance.
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First Calculations

We obtain that

d logV w ,µ(t) = γµ(t)dt +
d∑
ν=1

σµν(t)dWν(t),

which gives that

d logµi (t) = (γi (t)− γµ(t))dt +
d∑
ν=1

(σiν(t)− σµν(t))dWν(t) .

Equivalently, the relative market weights evolve as

dµi (t)

µi (t)
=
(
γi (t)− γµ(t)+

+
1

2

d∑
ν=1

(
σiν(t)− σµν(t)

)2
)
dt +

d∑
ν=1

(
σiν(t)− σµν(t)

)
dWν(t)

=
(
γi (t)− γµ(t) +

1

2
τµii (t)

)
dt +

d∑
ν=1

(
σiν(t)− σµν(t)

)
dWν(t) .
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First Calculations

Here, we have defined the matrix-valued covariance process of the stocks
relative to the portfolio π(·) as

τπij (t) :=
d∑
ν=1

(σiν(t)− σπν(t))(σjν(t)− σπν(t))

= (π(t)− ei )
′a(t)(π(t)− ej) = aij(t)− aπi (t)− aπj(t) + aππ(t) ,

where ei is the i-th unit vector in Rn, and

aπi (t) :=
n∑

j=1

πj(t)aij(t), aππ(t) :=
n∑

i ,j=1

πi (t)πj(t)aij(t) .
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First Calculations

Note that we have the following relation:

n∑
j=1

πj(t)τπij (t) =
n∑

j=1

πj(t)aij(t)− aπi (t)−
n∑

j=1

πj(t)aπj(t) + aππ(t)

= 0, i = 1, . . . , n

since the first two and last two terms cancel each other. Finally, note also
that

τµij (t) =
d 〈µi , µj〉 (t)

µi (t)µj(t)dt
, 1 ≤ i , j ≤ n .
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Useful properties

Let us start by defining the relative returns process of stock i with respect
to portfolio π(·) as

Rπi (t) := log

(
Xi (t)

V w ,π(t)

)∣∣∣∣
w=Xi (0)

.

Lemma

We have that τπii (t) = d
dt 〈R

π
i 〉 (t) ≥ 0.
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Proof

We get that

dRπi (t) = (γi (t)− γπ(t))dt +
d∑
ν=1

(σiν(t)− σπν(t))dWν(t).

From this and the defining equation, we see that τπij (t) = d
dt

〈
Rπi ,R

π
j

〉
(t),

and thus

τπii (t) =
d

dt
〈Rπi 〉 (t) ≥ 0.
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Useful properties

Lemma

We have the numéraire-invariance property

γ∗π(t) =
1

2

( n∑
i=1

πi (t)τρii (t)−
n∑

i ,j=1

πi (t)πj(t)τρij (t)
)

for any two portfolios π(·) and ρ(·). In particular, we have that

γ∗π(t) =
1

2

n∑
i=1

πi (t)τπii (t),

which is non-negative for any long-only portfolio π(·).

69 / 108



Proof

By definition of τρij (t) we have that

n∑
i=1

πi (t)τρii (t) =
n∑

i=1

πi (t)aii (t)− 2
n∑

i=1

πi (t)aρi (t) + aρρ(t)

and

n∑
i ,j=1

πi (t)πj(t)τρij (t) =
n∑

i=1

πi (t)πj(t)aij(t)− 2
n∑

i=1

πi (t)aρi (t) + aρρ(t).
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Proof

Putting these equations together, we see that

1

2

( n∑
i=1

πi (t)τρii (t)−
n∑

i ,j=1

πi (t)πj(t)τρij (t)
)

=

=
1

2

( n∑
i=1

πi (t)aii (t)−
n∑

i ,j=1

πi (t)πj(t)aij(t)
)

=

= γ∗π(t)

proving the first statement.
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Proof

Now, choosing ρ(·) = π(·) we see that we may write the excess growth
rate as

γ∗π(t) =
1

2

n∑
i=1

πi (t)τπii (t);

that is, as the weighted average of the stocks’ variances relative to π(·).
We conclude that for all long-only portfolios we have γ∗π(t) ≥ 0.
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Remark

Note that for π(·) = µ(·), we get that the excess growth rate of the
market portfolio is

γ∗µ(t) =
1

2

n∑
i=1

µi (t)τµii (t),

namely the weighted average of the stocks’ variances relative to the
market. This is interpreted as a measure of the ‘intrinsic volatility’ of the
market.
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Ordered statistics

As this will be useful later, let us introduce some notation:

Definition

We shall use the reverse-order-statistics notation, defined by

θ(1)(t) := max
1≤i≤n

{θi (t)}

θ(i)(t) := max
(
{θ1(t), . . . , θn(t)} \ {θ(1)(t), . . . , θ(i−1)(t)}

)
, i = 2, . . . , n

for any Rn-valued process θ(·). Thus we have

θ(1)(t) ≥ θ(2)(t) ≥ . . . ≥ θ(n)(t).
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Functionally generated portfolios

The biggest advantage of SPT over classical approaches to constructing
well-performing portfolios is that in general it does not require estimation
of the drifts or volatilities of the stocks. The machinery of SPT, i.e., the
way in which virtually all relative arbitrages are constructed, involves what
Robert Fernholz has called functionally generated portfolios (FGPs).

Definition

Let U ⊂ ∆n
+ be a given open set. Call G ∈ C2(U, (0,∞)) a generating

function for the portfolio π(·) if G is such that x 7→ xiDi log G(x) is
bounded on U, and if there exists a measurable, adapted process g(·) such
that

d log

(
V π(t)

V µ(t)

)
= d log G(µ(t)) + g(t)dt, ∀t ≥ 0, a.s.
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Remark

We can interpret the above equation as follows: the process measuring the
performance of the portfolio π(·) relative to the market can be decomposed
into a stochastic part of infinite variation, written as a deterministic
function of the market weights process, plus a finite variation part g(t)dt.
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Master equation

Proposition

Let a function G as in the previous definition generate the portfolio π(·).
Then we have the following expression, for i = 1, . . . , n:

πi (t) =
(
Di log G(µ(t)) + 1−

n∑
j=1

µj(t)Dj log G(µ(t))
)
· µi (t).

Note that this defines a portfolio indeed, in particular,
∑n

i=1 π(t) = 1.
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Proof

The proof follows from the following lemma:

Lemma

For a portfolio π(·) satisfying the above formula, we have that π(·) is
generated by G, i.e.

log

(
V π(T )

V µ(T )

)
= log

(
G(µ(T ))

G(µ(0))

)
+

∫ T

0
g(t)dt a.s.,

where

g(t) :=
−1

2G(µ(t))

n∑
i ,j=1

D2
ijG(µ(t))µi (t)µj(t)τµij (t)

is called the drift process.

78 / 108



Proof

We clearly have

d log

(
V π(T )

V ρ(T )

)
= γ∗π(t)dt +

n∑
i=1

πi (t)d log

(
Xi (t)

V ρ(T )

)
.

Setting ρ(·) = µ(·) this becomes

d log

(
V π(T )

V µ(T )

)
= γ∗π(t)dt +

n∑
i=1

πi (t)d logµi (t).

Now, recall the dynamics of logµi (·) and µi (·), respectively, and apply the
numéraire-invariance property to get

d log

(
V π(T )

V µ(T )

)
=

n∑
i=1

πi (t)

µi (t)
dµi (t)− 1

2

n∑
i ,j=1

πi (t)πj(t)τµij (t) dt.
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Proof

In order for us to relate V π(T )/V µ(T ) to G(µ(0)) and G(µ(T )), we need
to derive a useful expression for the dynamics of log G(µ(·)). Note the
relation

D2
ij log G(µ(t)) =

D2
ijG(µ(t))

G(µ(t))
− DiG(µ(t)) · DjG(µ(t))

and introduce the notation gi (t) := Di log G(µ(t)),
N(t) := 1−

∑n
j=1 µj(t)gj(t); then we have that

d log G(µ(t)) =
n∑

i=1

gi (t)dµi (t) +
1

2

n∑
i ,j=1

D2
ij log G(µ(t))d 〈µi , µj〉 (t)

=
n∑

i=1

gi (t)dµi (t) +
1

2

n∑
i ,j=1

(
D2
ijG(µ(t))

G(µ(t))
− gi (t)gj(t)

)
µi (t)µj(t)τµij (t)dt.
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Proof

Finally the defining equation becomes πi (t) = (gi (t) + N(t))µi (t); we
compute

n∑
i=1

πi (t)

µi (t)
dµi (t) =

n∑
i=1

gi (t)dµi (t) + N(t)d
( n∑

i=1

µi (t)
)

=
n∑

i=1

gi (t)dµi (t)

and
n∑

i ,j=1

πi (t)πj(t)τµij (t) =
n∑

i ,j=1

(gi (t) + N(t))(gj(t) + N(t))µi (t)µj(t)τµij (t)

=
n∑

i ,j=1

gi (t)gj(t)µi (t)µj(t)τµij (t),

hence,

d log

(
V π(T )

V µ(T )

)
=

n∑
i=1

gi (t)dµi (t)− 1

2

n∑
i ,j=1

gi (t)gj(t)µi (t)µj(t)τµij (t)dt,

and the result follows.
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A first example: diversity

We call a market model diverse on [0,T ] if

∃ δ ∈ (0, 1) such that µ(1)(t) < 1− δ for all t ∈ [0,T ] P-a.s.

A model is called weakly diverse on [0,T ] if

∃ δ ∈ (0, 1) such that
1

T

∫ T

0
µ(1)(t)dt < 1− δ P-a.s.
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A first example: diversity

A natural question to ask is whether there exists an Itô model that fits our
diversity framework at all. Let δ ∈ (1/2, 1), d = n, and let σ(·) ≡ σ be a
constant matrix satisfying the non-degeneracy condition. Let
g1, . . . , gn ≥ 0; then, for t ∈ [0,T ], set

d logXi (t) = γi (t)dt +
d∑
ν=1

σiνdWν(t) i = 1, . . . , n,

where, for some constant M > 0,

γi (t) := gi1{Xi (t)6=X(1)(t)} −
M

δ

1{Xi (t)=X(1)(t)}

log
(
(1− δ)X (t)/Xi (t)

) .
This system of SDEs has a unique strong solution, and that the diversity
holds.
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A first example: diversity

We introduce the following non degeneracy condition:

∃ ε > 0 such that ξ′a(t)ξ ≥ ε||ξ||2, for all ξ ∈ Rn, t ≥ 0 P-a.s.

By easy calculations we see that

∃ ζ > 0 such that γ∗µ(t) ≥ ζ for all t ∈ [0,T ] P-a.s.

holds true under diversity.
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A first example: diversity

Proposition

If a model is diverse and non degeneracy holds, then

∃ ζ > 0 such that γ∗µ(t) ≥ ζ for all t ∈ [0,T ] P-a.s. .

Lemma

If non degeneracy holds, then for any long-only portfolio π(·) we have

ε

2
(1− π(1)(t)) ≤ γ∗π(t) a.s. .
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A first example: diversity

By definition of τπij (t) and by non degeneracy we have the inequality

τπii (t) = (π(t)− ei )
′ a(t) (π(t)− ei ) ≥ ε||π(t)− ei ||2

= ε
(

(1− πi (t))2 +
∑
j 6=i

π2
j (t)

)
.

Whence we conclude that

γ∗π(t) ≥ ε

2

n∑
i=1

πi (t)
(

(1− πi (t))2 +
∑
j 6=i

π2
j (t)

)
=
ε

2

( n∑
i=1

πi (t)(1− πi (t))2 +
n∑

j=1

π2
j (t)(1− πj(t)

)
=
ε

2

n∑
i=1

πi (t)(1− πi (t)) ≥ ε

2
(1− π(1)(t)).
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A first example: diversity

Definition

Define the diversity-weighted portfolio µ(p)(·) with parameter p ∈ (0, 1) by

µ
(p)
i (t) :=

(µi (t))p∑n
j=1(µj(t))p

i = 1, . . . , n.
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A first example: diversity

One can check that this portfolio is generated by the function

Gp : x 7→
( n∑

i=1

xpi

)1/p
.

We compute, for µ ∈ Rn and i , j = 1, . . . , n,

D2
ijGp(µ) =

{
(1− p)(Gp(µ))1−2pµp−2

i

(
µpi − (Gp(µ))p

)
(i = j)

(1− p)(Gp(µ))1−2p(µiµj)
p−1 (i 6= j)

and the bounds

1 =
n∑

i=1

µi (t) ≤
n∑

i=1

µpi (t) ≤
n∑

i=1

(1

n

)p
= n1−p.
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A first example: diversity

By the master equation this implies that the drift process equals

g(t) = − 1− p

2Gp(µ)

− n∑
i=1

(Gp(µ))1−pµpi τ
µ
ii +

n∑
i ,j=1

(Gp(µ))1−2pµpi µ
p
j τ

µ
ij


=

1− p

2

 n∑
i=1

µ
(p)
i τµii −

n∑
i ,j=1

µ
(p)
i µ

(p)
j τµij


= (1− p)γ∗

µ(p)(t)

and therefore that

log

(
V µp(T )

V µ(T )

)
= log

(
Gp(µ(T ))

Gp(µ(0))

)
+ (1− p)

∫ T

0
γ∗
µ(p)(t)dt a.s.
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A first example: diversity

Now we get the lower bound

log

(
Gp(µ(T ))

Gp(µ(0))

)
≥ −1− p

p
log n,

which implies that V µp(T )/V µ(T ) ≥ n−(1−p)/p, P-a.s., since γ∗
µ(p)(·) is a

non-negative process for the long-only portfolio µ(p)(·).
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A first example: diversity

By the previous lemma and together with the observation that

µ
(p)
(1)(t) ≤ µ(1)(t), to get∫ T

0
γ∗
µ(p)(t)dt ≥ ε

2

∫ T

0
(1− µ(p)

(1)(t))dt ≥ ε

2

∫ T

0
(1− µ(1)(t))dt >

1

2
εδT .

We conclude that

log

(
V µp(T )

V µ(T )

)
> (1− p)

(
εδT

2
− log n

p

)
a.s. .
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A first example: diversity

Therefore, if we have
T ≥ 2 log n/pεδ,

(i.e., if T is big enough) we get that

P(V µ(p)
(T ) > V µ(T )) = 1.

Therefore, the diversity-weighted portfolio is a relative arbitrage with
respect to the market over long enough time horizons, under the
conditions of weak diversity and non-degeneracy. Note that this is a

portfolio and therefore invests only in the stocks, since
∑

i µ
(p)
i (·) = 1.
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A second example: entropy

Definition

Define the entropy-weighted portfolio πc(·) with parameter c > 0 to be
the portfolio generated by a version of the Shannon entropy function

Hc(x) := c + H(x) := c −
n∑

i=1

xi log xi .

Here, H is the standard Shannon entropy function. One can check that

πci (t) =
µi (t)(c − logµi (t))∑n
j=1 µj(t)(c − logµj(t))

, i = 1, . . . , n.
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A second example: entropy

Once again, we compute for general µ ∈ Rn

D2
ijHc(µ) = − 1

µi
δij i , j = 1, . . . , n,

with δij the Kronecker-delta, which implies for the drift process

g(t) =
1

2Hc(µ(t))

n∑
i=1

µi (t)τµii (t) =
γ∗µ(t)

Hc(µ(t))
,

where we have used properties of excess growth rate.
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A second example: entropy

The last thing we need for the construction of a relative arbitrage is the
bound

c < Hc(x) ≤ c + log n;

using this together with the master equation we get that

log

(
V µp(T )

V µ(T )

)
= log

(
Hc(µ(T ))

Hc(µ(0))

)
+

∫ T

0

γ∗µ(t)

Hc(µ(t))
dt

> − log

(
Hc(µ(0))

c

)
+

ζT

c + log n
a.s.
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A second example: entropy

We conclude that, if

T > T∗(c) :=
1

ζ
(c + log n) log

(
c + H(µ(0))

c

)
,

or, alternatively,

T > T∗ :=
1

ζ
H(µ(0)) = lim

c→∞
T∗(c), and c > 0 is chosen sufficiently large,

then the entropy-weighted portfolio πc(·) is a relative arbitrage with
respect to the market portfolio over the time horizon [0,T ].
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An interesting model class

Consider stochastic process models for discounted prices (actually
capitalizations) of the from

dXi (t) = δσ2dt + 2
√

Xi (t)σ
n∑

j=1

vijdB
j(t)

where Xi (0) > 0, the matrix v is just invertible, σ > 0 and δ ≥ 0.

Depending on δ (see Revuz-Yor, Chapter IX) the solutions behave quite
differently but do exist strongly as non-negative semi-martingales:

In case δ = 0 the solution is a martingale, which touches 0 almost
surely and stays there.

In case δ ≥ 2 the solution does not reach 0.

In case δ ≤ 1 the point 0 is reached almost surely.

Furthermore the process is affine, i.e. its Fourier-Laplace transform is
exponentially affine in its initial value (for each i separately, not jointly!).

97 / 108



Arbitrage properties

The market price of risk (λi (t)) is given by

1

2
√
Xi (t)

∑
j

(v−1)ij(δσ
2)

which does never define an equivalent measure change, because the
resulting process would correspond to δ = 0 and does not behave the same
way and it is only well defined for δ ≥ 2, i.e. pathwise square integrable in
time.

Whence the market (1,X1, . . . ,Xn) has a supermartingale deflator for
δ ≥ 2, i.e. we do not have unbounded profits with bounded risk. However,
arbitrages exist in the market, since (NFLVR) is not satisfied. We are
actually not interested in these types of arbitrages which need the bank
account, but rather in relative arbitrages with respect to the market
portfolio.
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The market portfolio

The process X (t) =
∑

i Xi (t) (sometimes scaled to 1) is called the market
portfolio and is a valid strictly positive portfolio.

The market consisting of portfolios formed by trading in a self-financing
way in X1, . . . ,Xn has a super-martingale deflator Y being a continuous
super-martingale itself.

Whence also the market formed by X1
X1+...+Xn

, . . . , Xn
X1+...+Xn

has a
super-martingale deflator namely Y (X1 + . . .+ Xn) being a
super-martingale itself. We expect arbitrages to exist, even if only trading
in the stocks: an arbitrage is seen relative to the marketportfolio.
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Absence of arbitrage

We now give the definition of a relative arbitrage:

Definition

(Relative arbitrage) Let h(·) and k(·) be trading strategies. Then h(·) is
called a relative arbitrage (RA) over [0,T ] with respect to k(·) if their
associated wealth processes satisfy

V h(T ) ≥ V k(T ) a.s., P(V h(T ) > V k(T )) > 0.

Usually, we will only consider and construct relative arbitrages using
portfolios that do not invest in the riskless asset at all. However, it is also
possible to create a RA using a trading strategy that has a non-trivial
position in the riskless asset, as we show in the following example, which
uses results from Johannes Ruf on hedging European claims in Markovian
markets where NA is allowed to fail.
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An example

Define an auxiliary process R(·) as a Bessel process with drift −c, i.e.

dR(t) =
( 1

R(t)
− c
)
dt + dW (t)

for t ∈ [0,T ], c ≥ 0 constant and W (·) a BM. We have that the Bessel
process R(·) is strictly positive. Define a stock price process by

dS(t) =
1

R(t)
dt + dW (t), S(0) = R(0) > 0

for t ∈ [0,T ], so S(t) = R(t) + ct > 0 forall t ∈ [0,T ]. The market price
of risk is θ(t, s) = 1/(s − ct) for (t, s) ∈ [0,T ]× R+ with s > ct.
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An example

The reciprocal 1/Z θ(·) of the local martingale deflator hits zero exactly
when S(t) hits ct. For a general payoff function p, and
(t, s) ∈ [0,T ]× R+ with s > ct, it is true that a claim paying p(S(T )) at
time t = T has value function

hp(t, s) : = Et,s [Z̃ θ,t,s(T )p(S(T ))]

= EQ[p(S(T ))1{mint≤u≤T {S(u)−cu}>0}
∣∣F(t)]

∣∣∣
S(t)=s

=

∫ ∞
cT−s√
T−t

e−z
2/2

√
2π

p(z
√
T − t + s)dz

− e2c(s−ct)

∫ ∞
cT−2ct+s√

T−t

e−z
2/2

√
2π

p(z
√
T − t − s + 2ct)dz .
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An example

Now define another stock price process by

dS̃(t) = −S̃2(t)dW (t),

so P is already a martingale measure for S̃(·). We have S̃(·) = 1/S(·), with

c = 0, and also θ̃(·) ≡ 0, so Z θ̃(·) ≡ 1. Applying Itô’ formula, note that

d log S̃(t) = −S̃(t)dW (t)− 1

2
S̃2(t)dt = d logZ θ(t);

hence S̃(t) = S̃(0)Z θ(t) and

Z̃ θ,t,s(T ) =
S̃(T )

S̃(t)

∣∣∣∣∣
S̃(t)=1/s

.
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An example

Thus we may compute the hedging price of one unit of this stock as

ν1(t, s) : = Et,s [Z̃ θ̃,t,s(T )S̃(T )] = Et,s [S̃(T )]

= Et,s [Z̃ θ,t,1/s(T )S̃(t)] = sEt,s [Z̃ θ,t,1/s(T )]

= s ·

(∫ ∞
−1/s√
T−t

e−z
2/2

√
2π

dz −
∫ ∞

1/s√
T−t

e−z
2/2

√
2π

dz

)

= 2sΦ

(
1

s
√
T − t

)
− s < s.

104 / 108



An example

In other words, this stock has a “bubble”. The corresponding optimal
strategy (expressed in the number of stocks the investor holds) is the
derivative of the hedging price with respect to s, i.e.

η1(t, s) = 2Φ

(
1

s
√
T − t

)
− 1− 2

s
√
T − t

ϕ

(
1

s
√
T − t

)
< 1

for (t, s) ∈ [0,T )× R+.
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An example

Now η1(·, ·) is a relative arbitrage with respect to η2(t, s) := 1 (i.e. just
holding the stock). Namely, define ν̄ := ν1(0, S̃0); since

V ν̄,η2
(T ) = ν̄S̃(T ) < S̃(T ) = V ν̄,η1

(T ) a.s.,

we see that η1(·, ·) is a relative arbitrage with respect to η2(·, ·). However,
it is not a ‘real’ arbitrage, since for η̂(·, ·) := η1(·, ·)− η2(·, ·) we have
V ν̄,η̂(0) = 0 and V ν̄,η̂(T ) = (1− ν̄)S̃(T ) > 0, but since η1(·, ·) < 1 for
t ∈ [0,T ), we get that η̂(·, ·) < 0 for t ∈ [0,T ) and thus the wealth
process is unbounded below; i.e. η̂ is not admissible.
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An example

The holding in the riskless asset ϕ(·) corresponding to strategy η1(·, ·) can
be computed using the self-financing equation dV = ϕdB + η1dS̃ = η1dS̃
and V = ϕB + ηS̃ , which gives that

ϕ(t) = V (t)− η1(t, S̃(t))S̃(t) =

∫ t

0
η1(u, S̃(u))dS̃(u)− η1(t, S̃(t))S̃(t),

which can, given the history up to time t, be computed. Note that ϕ(·) is
not Markovian, and is in general non-zero.
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