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Introduction

Introduction

Goal of this talk is ...

to present some classical results around Takens’ theorem due to Floris
Takens, Jaroslov Stark, and many others.
to present a continuous time version of Takens’ theorem.
to highlight on some applications to (financial) time series analysis..
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Introduction

Classical Modeling

It is a classical modeling paradigm to specify a state space M, on which a
certain (Markovian) dynamics takes place, and to specify a transition
operator T : M → M, which specifies the dynamics locally.

The evolution according to the dynamics T is then given by (T k(x))k≥0.

Often we do not observe the state space itself, but rather φ : M → R, e.g.
we collect knowledge on (φ(T k(x)))k≥0. We call this sequence (time
series) the observations.

It is an important question in which relation the observations are to the
original dynamics. Floris Takens’ theorem from 1980 gives a very
surprising answer to this question.
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Introduction

Informal statement of Takens’ theorem

Let M be a m dimensional compact manifold. Let T and φ be generic
(and satisfying some mild regularity conditions), then the map

Φ := Φ(T ,φ) : x 7→ (φ(T kx))k=0,...,2m

embeds M into R2m+1. This means in particular that

φ(T 2m+1x) = G (φ(x), φ(Tx), . . . , φ(T 2mx))

for some function G on Φ(M). On Φ(M) the dynamics appears in a
normalized form as shift to the left combined with G :

G := π2m ◦ Φ ◦ T ◦ Φ−1

and is well defined (π2m projects on the last component).
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Introduction

Consequences

It follows from this surprising result ...

that the dynamics, expressed through T : M → M in a Markovian
way can also be expressed on Φ(M) via G and a shift.
that the state space M can be realized (in the sense of an
embedding) as a subset of R2m+1 (numerical model).
that we can write a delay equation instead of the Markovian
representation, i.e.

y = (y0, . . . , y2m) ∈ Φ(M) 7→ (y1, . . . , y2m,G (y)) ∈ Φ(M)

is an equivalent dynamics of delay type. This has tremendous
consequences in learning theory (just learn G to represent a dynamics
numerically without constructing the state space neither the full
dynamics).
that results with multivariate observation φ : M → Rl are formulated
accordingly. Important is that the embedding space is more than 2m
dimensional. 7 / 29
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Introduction

Delay equation models versus Markov models

In the landscape of models we can distinguish between delay equation
models and Markovian models. Classically Markovian models are very
popular but delay equation models are also successful, in particular
recently.

Well known examples of delay equation modeling include ...

joint models for S&P and VIX indices of delay equation type, Volterra
equations, rough volatility models, etc.
delay embedding models for classical dynamical systems.
large language models.
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Takens theorem

Classical version [Takens 1980]

Let M be a compact manifold of dimension m and T : M → M be a
smooth diffeomorphism. There exists an open dense set of
(T , φ) ∈ D∞(M,M)× C∞(M,R) (referred to later as generic) such that

Φ(T ,φ) : M → R2m+1

is an embedding.

(We do not achieve minimal regularity assumptions here.)
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Takens theorem

Remarks

Of course several improvements, in particular of the genericity
condition, are possible and done.

We aim, however, for a controlled version of the result, i.e. a result
for systems of the type

xk+1 = T (xk , yk) ; yk+1 = g(yk) ; x0 = x ∈ M and y0 = y ∈ N .

Notice that we know the forcing dynamics g , but we do not observe y .
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Takens theorem

Classical version for controlled systems [Stark 1999]

Let M be a compact manifold of dimension m, N be a compact manifold
of dimension n and T : M × N → M a smooth map such that
Ty ; = T (., y) is a smooth diffeomorphism for each y ∈ N. Let furthermore
g be a diffeomorphism. Assume that the periodic orbits of g of period less
than 2d are distinct and d > 2(m + n) + 1, then there exists a generic set
of (T , φ) such that

(x , y) 7→ Φ(T ,g ,φ)(x , y) := (φ(x), φ(T (x , y)), . . . , φ(T (xd−1, yd−1))) ∈ Rd

is an embedding.
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Takens theorem

Classical version for stochastic systems [Stark 2003]

Let M be a compact manifold of dimension m, N be a compact manifold
of dimension n and T : M × N → M a smooth map such that
Ty ; = T (., y) is a smooth diffeomorphism for each y ∈ N. Let furthermore
µ be a measure on N absolutely continuous with respect to Lebesgue
measure. Let d > 2m, then there exists a generic set of (T , φ) such that

x 7→ Φ(T ,g ,φ)(x) := (φ(x), φ(T (x0, ω0)), . . . , φ(T (xd−1, ωd−1))) ∈ Rd

is an embedding almost surely with respect to µ∞.

(Notice that we have to know the stochastic driver ω = (ωk)k≥0 to
construct the random embedding.)
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Takens theorem

Remarks

The random embedding leads to a delay equation representation of
type

G (φ(x), φ(T (x0, ω0)), . . . , φ(T (xd−1, ωd−1)), ω0, . . . , ωd−1, ωd) ,

to represent φ(T (xd , ωd)), which hold almost surely with respect to
µ∞.

Generalizations for the type of measure on N∞ are of course possible
and known.
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Takens theorem in continuous time

Stochastic Setting for this talk

Let X be the solution of the Markovian system on some high dimensional
compact state space M, which, for simplicity, is embedded in Rn (and
allows us to use Ito calculus without further ado).

dX x
t =

r∑
i=0

V i (Xt)dB
i
t ; X

x
0 = x

with smooth vector fields V 0, . . . ,V r of C∞
b type well defined around M.

We shall now reformulate deterministic and stochastic Takens in this
setting (analogously the controlled version could be reformulated).
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Takens theorem in continuous time

The deterministic case r = 0

For any T > 0 the map

x 7→ Φ(V ,φ)(x) :=
(
t 7→ φ(X x

t )
)
t∈[0,T ]

∈ C ([0,T ],R)

is an embedding for a generic set of (V 0, φ).

(Notice the absence of dimension of M in this formulation, but the infinite
amount of information instead.)
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Takens theorem in continuous time

The stochastic case r > 0

For any T > 0 the map

x 7→ Φ(V ,φ)(x) :=
(
t 7→ φ(X x

t )
)
t∈[0,T ]

∈ C ([0,T ],R)

is an embedding for a generic set of (V 0, . . . ,V r , φ) almost surely with
respect to Wiener measure.

(Notice again the absence of dimension of M in this formulation, but the
infinite amount of information instead.)
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Takens theorem in continuous time

Interpretation for r = 0

Since
d

ds
|s=0φ(X

x
t+s) = dφ(X x

t )V (X x
t )

we obtain a representation as delay differential equation

dsφ(X
x
s ) = G (φ(X x

[s−T ,s])ds
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Takens theorem in continuous time

Interpretation for r > 0

Completely analogously we obtain a representation as delay stochastic
differential equation

dsφ(X
x
s ) =

r∑
i=0

G i (φ(X x
[s−T ,s])dB

i
s

where, however, G i depends on the stochastic driver B (continuity in
rough path sense with respect to the driving noise can be achieved, but
certainly regularity with respect to the observation path).
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Takens theorem in continuous time

An example and an (easy) stochastic proof

Given the above Ito diffusion on a compact state space, where we observe
the d Brownian motions together with (φ(X x

t ))t≥0, then an iteration of

(φ(X x),B i ) 7→ d

dt
[φ(X x),B i ] = dφ(X x)V i (X x)

constructs (in the generic case) sufficiently many features, which become
point separating on M, whence yielding an embedding.

It shows that we can (in case of high frequency observations of the process
together with the noise) construct the embedding.
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Generative Models for financial time series

Theorem

If one can reconstruct from observations the Brownian motion (or a more
general stochastic process driving the evolution), then a representation of
(φ(X x

t ))t≥0 as stochastic delay equation with regular characteristics with
respect to noise and observation path is possible.

A reconstruction is often possible via the quadratic covariation: let
Yt := ψ(X x

t ) for a sufficiently regular other observation map ψ such that

dYt = µtdt +ΣtdBt

with almost surely invertible Σt (this is an assumption!). Then under mild
conditions

B +

∫ .

0
Σ−1
t µtdt = (

√
d

dt
[Y ,Y ]

−1

• Y ) .

With an estimation of the drift parameters one obtains a fully specified
stochastic delay equation representation for φ(X x).
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Generative Models for financial time series

An example

Consider a (unknown) high dimensional Ito dynamics (X x
t )t≥0, where

(φ(X x
t ))t≥0 describes a continuously observed time series of discounted

price processes. A subset of those prices is enough to identify B up to the
market price of risk. Under the equivalent martingale measure we obtain a
delay representation of the dynamics, which can be learned in terms of the
strong representation

φ(X x
t+∆)− φ(X x

t ) =
∑
w

lw
(
(φ(X x

t−s)[−T ,0]

)
Sigwt,t+∆(B)

which holds almost surely with respect to the equivalent martingale
measure. lw as a function of the path can be learned efficiently from the
observations. This is a regression based non-linear time series model.

Background UAT: integrable maps on path spaces can be strongly
approximated by, e.g., signature components (see work with Christa
Cuchiero and Philipp Schmocker on weighted spaces).
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Generative Models for financial time series
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