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Some thoughts on regularity

Regularity

Analysis: from analytic to measurable functions.

Partial differential equations: from (weakly) differentiable functions to
distributions and viscosity solutions.

Stochastic Analysis: from bounded variation to semi-martingales.

Rough Analysis reveals the inner structure of low regularity objects
from, e.g., stochastic analysis.
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Some thoughts on regularity

Ito-Malliavin-Lyons

Solutions of stochastic differential equations driven by Brownian
motion are in general only measurable on Wiener space (Ito) with
weak differentiability properties under mild regularity assumptions on
the vector fields (Malliavin).

Solutions of stochastic differential equations can be split in a
measurable map (signature) and a differentiable map under mild
regularity assumptions on the vector fields (Lyons).

7 / 44



Some thoughts on regularity

Ito-Malliavin-Lyons

Solutions of stochastic differential equations driven by Brownian
motion are in general only measurable on Wiener space (Ito) with
weak differentiability properties under mild regularity assumptions on
the vector fields (Malliavin).

Solutions of stochastic differential equations can be split in a
measurable map (signature) and a differentiable map under mild
regularity assumptions on the vector fields (Lyons).

8 / 44



Some thoughts on regularity

Signature

Signature is the collection of all iterated integrals of a multi-variate path
u : R→ Rd with respect to some integration theory. Let us assume first
order calculus for the moment (finite variation paths, Stratonovich
Brownian motion).

Signature has many remarkable properties, most importantly linear
functionals on signature of a (continuous) finite variation or rough path u
(extended by time)

{
∑

k,i1,...,ik

`i1···ik

∫
0≤t1≤...tk≤t

dui1(t1) · · · duik (tk) | (i1, . . . , ik) ∈ {0, . . . , d}k
}

form a point separating algebra of path space functionals on paths starting
at 0.

Therefore signature is a universal linearizer on path space and often
analyzed from an algebraic point of view, since polynomials of signature
can be expressed as linear combinations of signature.
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Some thoughts on regularity

Characteristics of semi-martingales

Since signature appears as universal linearizer, one can linearize integrands
or characteristics of general stochastic processes, which relates those
processes to polynomial or affine theory.
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Some thoughts on regularity

Signature as a probabilistic object

It is the goal of this work to contribute to the probabilistic theory of
signatures of stochastic processes in a twofold way:

develop a dynamic theory of expectations of polynomials of signatures.

develop an affine theory for expectations of Fourier functionals of
signatures.

Notice that signature of, e.g., Brownian motion is a highly non-trivial
probabilistic object: we have hypo-ellipticity phenomena, moment
indeterminate laws, co-monotonicities, etc.
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Signatures

Section 2

Signatures
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Signatures

Controlled ordinary differential equations (CODE)

We consider differential equations of the form

dYt =
∑
i

Vi (Yt)du
i
t , Y0 = y ∈ E

to construction evolutions in state space E (could be a manifold of finite
or infinite dimension) depending on local characteristics, initial value
y ∈ E and the control u.

If the map y → YT is considered CODEs are a model for feedforward
neural networks, residual networks, etc (see joint work with Christa
Cuchiero and Martin Larsson).
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Signatures

CODEs: control as input

For this talk we fix y ∈ E and consider

u 7→W Evols,t(y)

and train the readout and/or the vector fields.

Does this also correspond to classes of networks? Yes: these are
continuous time versions of rNNs, LSTMs, etc.

It can be used for time series, predictions, etc.
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Signatures

Reservoir Computing (RC)

... We aim to learn an input-output map on a high- or infinite dimensional
input state space. Consider the input as well as the output dynamic, e.g. a
time series. An example: learn a given evolution on state space E :

Paradigm of Reservoir computing (Herbert Jäger, Lyudmila,
Grigoryeva, Wolfgang Maas, Juan-Pablo Ortega, et al.)

Split the input-output map into a generic part of generalized rNN-type
(the reservoir), which is not trained and a readout part, which is trained.

Often the readout is chosen linear and the reservoir has random features.
The reservoir is usually a numerically very tractable dynamical system.
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Signatures

Applications of RC

Often reservoirs can be realized physically, whence ultrafast
evaluations are possible. Only the readout map W has to be trained.

One can learn dynamic phenomena without knowing the specific
characteristics.

It works unreasonably well with generalization tasks.
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Signatures

An instance of RC are CODEs/RDEs/SDEs

Consider a controlled differential equation

dYt =
d∑

i=1

Vi (Yt)du
i
t , Y0 = y ∈ E

for some smooth vector fields Vi : E → TE , i = 1, . . . , d and d
independent (Stratonovich) Brownian motions ui , or finite variation
continuous controls, or a rough path, or a semi-martingale. This describes
a controlled dynamics on E .

We want to learn the dynamics, i.e. the map

(input control u) 7→ (solution Y ).

Obviously a complicated, non-linear map, ...
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Signatures

Transport operators

We introduce some notation for this purpose:

Definition

Let V : E → E be a smooth vector field, and let f : E → R be a smooth
function, then we call

Vf (x) = df (x) • V (x)

the transport operator associated to V , which maps smooth functions to
smooth functions and determines V uniquely.
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Signatures

Taylor expansion

Theorem

Let Evol be a smooth evolution operator on a convenient manifold E
which satisfies (again the time derivative is taken with respect to the
forward variable t) a controlled ordinary differential equation

d Evols,t(x) =
d∑

i=1

Vi (Evols,t(x))dui (t)

then for any smooth function f : E → R, and every x ∈ E

f
(

Evols,t(x)
)

=

=
M∑
k=0

d∑
i1,...,ik=1

Vi1 · · ·Vik f (x)

∫
s≤t1≤···≤tk≤t

dui1(t1) · · · duik (tk)+

+ RM(s, t, f )
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Signatures

Taylor expansion

with remainder term

RM(s, t, f ) =

=
d∑

i0,...,iM=1

∫
s≤t0≤···≤tM≤t

Vi0 · · ·ViM f
(

Evols,t0(x)
)
dui0(t0) · · · duiM (tM)

holds true for all times s ≤ t and every natural number M ≥ 0.

A lot of work has been done to understand the analysis, algebra and
geometry of this expansion (Kua-Tsai Chen, Gerard Ben-Arous, Terry
Lyons). It is a starting point of rough path analysis (Terry Lyons, Peter
Friz, etc).
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Signatures

Hopf algebraic interpretation

Definition

Consider the free algebra Ad of formal series generated by d
non-commutative indeterminates e1, . . . , ed (actually a Hopf Algebra). A
typical element a ∈ Ad is written as

a =
∞∑
k=0

d∑
i1,...,ik=1

ai1...ik ei1 · · · eik ,

sums and products are defined in the natural way. We consider the
complete locally convex topology making all projections a 7→ ai1...ik
continuous on Ad , hence a convenient vector space.
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Signatures

Vector fields in Ad

Definition

We define on Ad smooth vector fields

a 7→ aei

for i = 1, . . . , d .
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Signatures

Signature

Theorem

Let u be a smooth control, then the controlled differential equation

d Sigs,t(a) =
d∑

i=1

Sigs,t(a)eidu
i (t) , Sigs,s(a) = a (1)

has a unique smooth evolution operator, called signature of u and denoted
by Sig, given by

Sigs,t(a) = a
∞∑
k=0

d∑
i1,...,uk=1

∫
s≤t1≤···≤tk≤t

dui1(t1) · · · duik (tk) ei1 · · · eik . (2)

Actually Sig(e) takes values in a Lie group G and any element of G can be
reached up to arbitrary order of accuracy by such evolutions starting at e.
Additionally the restriction of linear maps on G is an algebra.
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Signatures

Signature as an abstract reservoir

Theorem (Signature is a reservoir)

Let Evol be a smooth evolution operator on a convenient vector space E
which satisfies (again the time derivative is taken with respect to the
forward variable t) a controlled ordinary differential equation

d Evols,t(x) =
d∑

i=1

Vi (Evols,t(x))dui (t) .

Then for any smooth (test) function f : E → R and for every M ≥ 0 there
is a time-homogenous linear W = W (V1, . . . ,Vd , f ,M, x) from AM

d to the
real numbers R such that

f
(

Evols,t(x)
)

= W
(
πM(Sigs,t(1))

)
+O

(
(t − s)M+1

)
for s ≤ t.
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Signatures

Signature as reservoir

This explains that any solution can be represented – up to a linear
readout – by a universal reservoir, namely signature. Similar
constructions can be done in regularity structures, too (branched
rough paths, etc).

This is used in many instances of provable machine learning by, e.g.,
groups in Oxford (Harald Oberhauser, Terry Lyons, etc), and also ...

... at JP Morgan, in particular great recent work on ’Nonparametric
pricing and hedging of exotic derivatives’ by Terry Lyons, Sina Nejad
and Imanol Perez Arribas.

in contrast to reservoir computing: signature is high dimensional
(i.e. infinite dimensional) and a precisely defined, non-random object.

Can we approximate signature by a lower dimensional random object
with similar properties?
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Signatures

Signature for semi-martingales

We shall consider now R≥0 as time interval except otherwise mentioned.
The stochastic basis satisfies usual conditions.

Let us introduce some notation: we denote by S the set of simple
predictable processes, i.e. for ω ∈ Ω, s ∈ T

Hs(ω) = H0(ω)1{0}(s) +
n∑

i=1

Hi (ω)1]Ti (ω),Ti+1(ω)](s)

for an increasing, finite sequence of stopping times
0 = T0 ≤ T1 ≤ . . .Tn+1 <∞ and Hi being FTi

measurable, by L the set
of adapted, caglad processes and by D the set of adapted, cadlag
processes on R≥0.
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Signatures

These vector spaces are endowed with the metric

d(X ,Y ) :=
∑
n≥0

1

2n
E
[
|(X − Y )|∗n ∧ 1

]
,

which makes L and D complete topological vector spaces. We call this
topology the ucp-topology (“uniform convergence on compacts in
probability”). Notice that predictable strategies as well as integrators are
considered R valued here, which, however, contains the Rn case.
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Signatures

Good integrators

Definition

An adapted, cadlag process X is called good integrator if the map

JX : S→ D

with

(H • X )t := JX (H)t := H0X0 +
n∑

i=1

Hi (XTi+1∧t − XTi∧t) ,

for H ∈ S, is continuous with respect to the ucp-topologies on the
respective spaces (this can even be weakened).
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Signatures

Bichteler-Dellacherie Theorem

X is a good integrator if and only if X = M + A, where M is a local
martingale and A is a process of finite total variation, i.e. X is a
semimartingale.
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Signatures

The Emery topology

The Emery topology on the set of semimartingales SEM is defined by the
metric

dE (S1, S2) :=
∑
n≥0

1

2n
sup

K∈S, ‖K‖∞≤1
E
[
|(K • (S1 − S2))|∗n ∧ 1

]
.

We can by means of the Bichteler-Dellacherie theorem easily prove the
following important theorem.

Theorem

The set of semi-martingales SEM is a topological vector space and
complete with respect to the Emery topology.
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Signatures

Theorem

For every semi-martingale X the map JX from the space L of càglàd
processes to SEM of semi-martingales is continuous.
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Signatures

Ito’s formula

We are now already able to formulate and prove Ito’s formula in all
generality:

Theorem

Let X 1, . . . ,X n be good integrators and f : Rn → R a C 2 function, then
for t ≥ 0

f (Xt) =
n∑

i=1

(∂i f (X−) • X i )t +
1

2

n∑
i ,j=1

(∂2
ij f (X−) • [X i ,X j ])

t
+

+
∑

0≤s≤t

{
f (Xs)− f (Xs)− −

n∑
i=1

∂i f (Xs)−∆X i
s −

1

2

n∑
i ,j=1

∂2
ij f (Xs)−∆X i

s∆X j
s

}
.

(we apply X0− = 0 here.)
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Signatures

Semimartingale Signature (existence)

Theorem

Let X 1, . . . ,X n be good integrators. Consider a free algebra Ad of power
series generated by (non-commutative) generators e0, ei , eij , eijk , . . ., for
i ≤ j ≤ k ≤ . . . ∈ {1, . . . , d}, then semimartingale signature

sem-Sig = 1 +

∫ .

0
(sem-Sigs ds)e0 +

d∑
i=1

(sem-Sig− •X i )ei+

+
d∑

i≤j=1

(sem-Sig− •[X i ,X j ])eij+∑
i≤j≤k

(
∑
s≤.

sem-Sigs− ∆X i
s∆X j

s ∆X k
s )eijk + . . .

is a well defined Ad valued process.
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Signatures

Semi-martingale Signature (density)

The set of all 〈`, sem-Sig〉 for ` ∈ (Ad)∗ is an algebra of semimartingales.
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Signature Stochastic Differential Equations (SDEs)
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Signature Stochastic Differential Equations (SDEs)

Sig-SDEs

Indeed, if X satisfies the generic equation

dXt = b(X̂t)dt +

√
a(X̂t)dBt , X0 ∈ S ⊆ Rd , (3)

where (X̂t)t≥0 is signature of t 7→ (Xt , t) and b and a are linear maps, then

Ito’s formula yields that the characteristics of (X̂t)t≥0 are linear in

(X̂t)t≥0,

A exp(〈u, x〉) = exp(〈u, x〉)〈R(u), x〉 and A(〈u, x〉) = 〈L(u), x〉, for x
in the state space with R and L being quadratic and linear operators
expressible by natural operations on Ad .

(X̂t)t≥0 is a Ad -valued linear, hence affine and polynomial process.
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Signature Stochastic Differential Equations (SDEs)

Sig-SDEs as affine and polynomial processes

This means that (under appropriate conditions)

I ... E[X̂T ] can be computed via polynomial technology, i.e. by solving
an infinite dimensional linear ODE.

I ... logE[exp(〈u, X̂T 〉)] can be computed via affine technology, i.e. by
solving an infinite dimensional Riccati ODE.

Sig-SDEs go beyond Markovian settings due to possibly
path-dependent coefficients. Signature itself remains Markovian with
linear characteristics, which is the essential feature.

Special cases are Markovian SDEs with b and a analytic in X .

If b and a only depend on the signature up to order 1 and 2
respectively, then (X̂≤Nt )t≥0 is a finite dimensional polynomial process.
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