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Abstract

Five robustifications of L2Boosting for linear regression with various robustness
properties are considered. The first two use the Huber loss as implementing loss
function for boosting and the second two use robust simple linear regression for the
fitting in L2Boosting (i.e. robust base learners). Both concepts can be applied with
or without down-weighting of leverage points. Our last method uses robust corre-
lation estimates and appears to be most robust. Crucial advantages of all methods
are that they don’t compute covariance matrices of all covariates and that they
don’t have to identify multivariate leverage points. When there are no outliers, the
robust methods are only slightly worse than L2Boosting. In the contaminated case
though, the robust methods outperform L2Boosting by a large margin. Some of the
robustifications are also computationally highly efficient and therefore well suited
for truly high dimensional problems.
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1 Introduction

Freund and Schapire’s AdaBoost algorithm for classification (Freund and
Schapire, 1996) has attracted much attention in the machine learning com-
munity and related fields, mainly because of its good empirical performance.
Some boosting algorithms for regression were also proposed, but the first prac-
tical algorithm was not possible until Breiman (1999) showed, that boosting
can be viewed as a functional gradient descent algorithm. Friedman (2001)
then proposed LS Boost (least squares boosting, we will call it L2Boosting)
and also more robust boosting methods in conjunction with regression trees.
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Boosting with the L2-loss (L2Boosting) and componentwise linear fitting was
worked out in detail in Bühlmann (2006). It is essentially the same as Mallat
and Zhang’s (1993) matching pursuit algorithm in signal processing and very
similar to stagewise linear model fitting (see for example Efron et al. (2004)).
Boosting is then not just a black box tool, but fits sound linear models. It does
variable selection and coefficient shrinkage and for high dimensional problems,
it is clearly superior to the classical model selection methods (see Bühlmann,
2006).

The usage of the L2-loss is dangerous when there are outliers. Friedman (2001)
discussed some robust boosting algorithms with regression trees. In this paper
we develop some robust boosting algorithms for linear models by using either
robust implementing loss functions in boosting or robust estimators as base
(weak) learners. They all do variable selection and estimation of regression co-
efficients. Some of our methods are also well suited for very high dimensional
problems with many covariates and/or large sample size. Besides more classical
work in robust fitting and variable selection for linear models (Ronchetti and
Staudte (1994), Ronchetti et al. (1997), Morgenthaler et al. (2003), McCann
and Welsch (2007)), our approaches are closest to “robust LARS” (Van Aelst
et al., 2004): L2-boosting with infinitesimal small ν is equal to forward stage-
wise, which is again very similar to LARS (see Efron et al., 2004). However,
the concepts of robust loss functions and robust base learners are much more
general.

2 L2Boosting with componentwise linear least squares

We consider the linear model y = Xβ+ε with y ∈ Rn and X = (x1,x2, . . . ,xp) ∈
Rn×p and will use boosting methods for fitting it. For a boosting algorithm
we need a loss function L : R × R → R+

0 , that measures how close a fitted
value F̂ (xi) comes to the observation yi and a base learner (simple fitting
method), that yields a function estimate f̂ : Rp → R. L2Boosting uses the L2-
loss L(y, F ) = (y − F )2/2 and as base learner we take componentwise linear
least squares, which works as follows: a response r ∈ Rn with r̄ = 0 is fitted
against x1, . . . ,xp:

Componentwise linear least squares learner

f̂(x) = α̂ŝ + β̂ŝxŝ, x ∈ Rp

β̂j =
(xj − x̄j)

T r

(xj − x̄j)T (xj − x̄j)
, α̂j = −β̂jx̄j, 1 ≤ j ≤ p,

ŝ =arg min
1≤j≤p

||r− α̂j − β̂jxj||2 = arg max
1≤j≤p

|β̂j| · sd(xj) = arg max
1≤j≤p

|Cor(r,xj)|.
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In words: we fit a simple linear regression with one selected covariate. The
selected covariate is the one which gives the smallest residual sum of squares.
This is equivalent to the variable that gives the “largest contribution to the fit”
or has the highest absolute correlation with the response r. The requirement
r̄ = 0 is without loss of generality for boosting since we always center the
response variable before, see the algorithm below. The learner can be simplified
if all covariates are centered (mean subtracted). Then we can fit simple linear
regressions through the origin.

A boosting algorithm constructs iteratively a function F̂ : Rp → R by consid-
ering the empirical risk n−1 ∑n

i=1 L(yi, F (xi)), xi ∈ Rp and pursuing iterative
approximate steepest descent in function space. This means that in each iter-
ation, the negative gradient of the loss function is fitted by the base learner.
L2Boosting is especially simple, because the negative gradient becomes the
current residual vector and the algorithm amounts to iteratively fitting of
residuals:

L2Boosting with componentwise linear least squares

(1) Initialize F̂ (0) ≡ arg min
a∈R

∑n
i=1 L(yi, a) ≡ ȳ. Set m = 0.

(2) Increase m by 1. Compute the negative gradient (also called pseudo re-
sponse) that is the current residual vector

ri = − ∂

∂F
L(y, F )|F=F̂ (m−1)(xi)

= yi − F̂ (m−1)(xi), i = 1, . . . , n.

(3) Fit the residual vector (r1, . . . , rn) to x1, . . . ,xp by the componentwise
linear least squares base procedure

(xi, ri)
n
i=1 −→ f̂ (m)(·).

(4) Update F̂ (m)(·) = F̂ (m−1)(·)+ν · f̂ (m)(·), where 0 < ν ≤ 1 is a step length
factor.

(5) Iterate steps 2 to 4 until m = mstop for some stopping iteration mstop.

The number of iterations m = mstop is usually estimated using a validation set
or with cross validation. The step-length factor ν is also called shrinkage factor
and is typically less crucial than mstop. The natural value is 1, but Friedman
(2001) was first to propose smaller values, and he argued empirically that this
is often a better choice. In fact, he demonstrated that small values of ν are
good and that the sensitivity of the boosting procedure is low with respect
to a whole range of small values of ν. We will always use ν = 0.3. Since the
base learner yields a linear model fit in one covariate and because of the linear
up-date in step 4, L2Boosting with componentwise linear least squares yields
a linear model fit (with estimated coefficient vector β̂(m)). Since least squares
fitting is used, the method is not robust to outliers.
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3 Robustifications

There are several ways to robustify L2Boosting with componentwise linear
least squares as described next. Whenever we need a robust location estimate
we will use the Huber estimator with MAD scale (see Huber (1964), Huber
(1981) and Hampel et al. (1986)). The Huber Ψ-function is given by

Ψc(x) = min{c, max{x,−c}} = x · min{1, c

|x|}.

As robust scale estimator we use the Qn estimator of Rousseeuw and Croux
(1993). It is defined as

Qn(x1, . . . , xn) = 2.2219 · {|xi − xj|; i < j}(k),

where k =
(

bn/2c+1
2

)

. That is, we take the k-th order statistic of the
(

n
2

)

inter-

point distances. The Qn estimator has a breakdown point of 50% and an
efficiency of 82% at the Gaussian distribution (Rousseeuw and Croux, 1993).

3.1 Boosting with a robust implementing loss function

The easiest robustification is to use a robust loss function, e.g. the Huber loss
function (the derivation yields the Huber Ψ-function):

Lc(y, F ) =











(y − F )2/2, |y − F | ≤ c,

c ∗ (|y − F | − c/2), |y − F | > c.

The parameter c should be chosen in dependence of the scale of y − F . We
choose it adaptively in each iteration as c = 1.345 ·MAD({yi − F̂ (m−1)(xi), i =
1, . . . , n}) as proposed in Friedman (2001). The negative gradient in step 2 of
the boosting algorithm then becomes the huberized residual vector. As learner
we can take componentwise linear least squares as described above. This means
we look in each iteration for the covariate that best fits the huberized residuals
(the criterion is the huberized residual sum of squares). We found that it is
better to also estimate an intercept in each iteration than robust centering the
covariates and estimate the intercept only at the beginning. We shall call this
version RobLoss boosting.

Remark 1 If we want to exactly apply the Gradient Boost algorithm of Fried-
man (2001) we have to do an additional line search between step 3 and 4. This
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means each f̂ (m) must be multiplied by a constant to minimize the Lc-loss.
Since we are going to use shrinkage ν = 0.3 it is not important to know the
optimal (greedy) step size exactly and we can omit the additional line search.

It is obvious that RobLoss boosting is only robust in “Y-direction” but not in
“X-direction”. We incorporate “X-direction-robustness” in the base procedure
when fitting the negative gradient in step 3 (alternatively, one could also bound
the loss function). The idea is to down-weight the leverage points and to
use weighted least squares for fitting (a Mallows type estimator). Since every
covariate is fitted alone, the weight of an observation is solely determined
by the value of the one covariate. Therefore, the same observation can have
different weights for the p candidate fits with the p covariates in one iteration,
according to its outlyingness of the corresponding coordinate. For the weights
we use (wposition

ij is the weight of observation i when fitting the j-th covariate)

wposition
ij = min{1, 1.345

|(xij − Huber(xj))/ MAD(xj)|
}.

We can go one step further and down-weight only the leverage points that
have also a large residual (a Schweppe type estimator). The weights we use in
iteration m are

wij =
Ψ1.345·wposition

ij

(

(yi − F̂ (m−1)(xi))/ MAD({yi − F̂ (m−1)(xi), i = 1, . . . , n})
)

Ψ1.345

(

(yi − F̂ (m−1)(xi))/ MAD({yi − F̂ (m−1)(xi), i = 1, . . . , n})
) .

So far, we only discussed how to fit the pseudo response to a covariate, but the
selection of the “best” covariate is equally important. It seems quite natural to
select the covariate that gives the smallest weighted residual sum of squares.
But since the p simple linear fits in each iteration use different weights for the
same observation, this can lead to bad choices. It is better to use the estimated
β̂j’s and to select the variable that has highest |β̂j| · Qn(xj): note that this
is of the form as used in the classical componentwise linear least squares
base procedure in section 2. Roughly speaking we choose the covariate that
contributes the most to the fit. We shall call this version RobLossW boosting.
Here is the formal description of the learner (wij as described above with ri

instead of yi − F̂ (m−1)(xi)):

Componentwise linear weighted least squares learner

f̂(x)= α̂ŝ + β̂ŝxŝ,

(α̂j, β̂j)= arg min
α,β

n
∑

i=1

wij(ri − α̂j − β̂jxij)
2,

5



ŝ= arg max
1≤j≤p

|β̂j| · Qn(xj).

3.2 Boosting with robust regression learner

Here we use the idea of iteratively fitting of residuals. Instead of fitting the
ordinary residuals by least squares, we use a robust linear regression:

Componentwise robust linear regression learner

f̂(x)= α̂ŝ + β̂ŝxŝ,

(α̂j, β̂j)= robust linear fit of r against xj,

ŝ= arg max
1≤j≤p

|β̂j| · scale(xj).

In each iteration of the boosting algorithm we calculate a robust linear regres-
sion with each covariate alone (and an intercept). This needs more computa-
tion than the RobLoss methods, since the robust fits are usually calculated
iteratively itself (the RobLoss methods do in some sense only the first iter-
ation of the iteration). As criterion for the variable selection we use again
arg maxj |β̂j| · scale(xj), where scale(xj) is a scale estimate that will be spec-
ified below. This is much better than using a robust estimation of residual
standard error.

For the robust linear fit of the base procedure we use two different types: M-
regression with Huber’s Ψ-function (and rescaled MAD of the residuals) and
a Schweppe type bounded influence (BI) regression (see for example Hampel
et al. (1986)) with Huber’s Ψ-function and position weights as described in
section 3.1. We chose these types of robust regression to have a direct com-
parison to the RobLoss methods. One could even use MM-regression, but this
would be computationally very expensive. The proposed algorithms will be
called RobRegM boosting and RobRegBI boosting. For the former method,
that is robust in “Y-direction” but not in “X-direction”, we use the standard
deviation as scale estimate for the variable selection and for the latter, that is
robust in “Y- and X-direction”, we use the Qn estimator.

We expect that RobLoss and RobRegM boosting perform similar and likewise
for RobLossW and RobRegBI boosting. The former methods first huberize
the residuals and then use (weighted) least squares and the latter methods
use robust methods with the same huberization and weighting. As already
mentioned, the RobLoss methods do in some sense the first iteration of the
robust fitting of the RobReg methods. The great advantage of the former
methods is that they are much faster. Thus, the latter methods must achieve
better performance to be worthwhile.
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3.3 Boosting with robust correlation learner

It is also possible to use robust correlation estimators to construct a base
procedure. The idea is the following: in each iteration, the covariate with the
highest robust correlation with the residuals is chosen, see also the selection
in classical componentwise least squares described in section 2. We shall call
this version RobCor boosting:

Robust correlation learner

f̂(x) = α̂ŝ + β̂ŝxŝ,

β̂j =RobCor(xj, r) · Qn(r)/Qn(xj), α̂j = Huber(r) − β̂j · Huber(xj),

ŝ =arg max
1≤j≤p

|RobCor(xj, r)|.

Recall that it is not important to have very accurate β̂j’s because we use
shrinkage ν = 0.3. As robust correlation estimate we use a proposal from
Huber (1981) with the Qn estimator as module:

RobCor(x,y) =
Qn

(

x

Qn(x)
+ y

Qn(y)

)2 − Qn

(

x

Qn(x)
− y

Qn(y)

)2

Qn

(

x

Qn(x)
+ y

Qn(y)

)2
+ Qn

(

x

Qn(x)
− y

Qn(y)

)2 .

3.4 Stopping the boosting iteration

To stop the boosting iteration, we propose to use cross validation or a separate
validation set. After each iteration we use the actual model to predict on the
validation sample and we measure the quality of the fit. For L2Boosting we
use the mean squared prediction error on the validation set and for the robust
methods, we use a robust measure of prediction error. Ronchetti et al. (1997)
propose to use the Huber loss of the errors of the validation set. We found that
using the Qn-estimator of the errors on the validation set gives better results
and therefore, we tune all robust boosting methods with the Qn-estimator.

3.5 Properties of the robust boosting methods

An unaesthetic property of RobCor boosting with ν = 1 is that the same
covariate can be chosen consecutively. This is because the robust correlation
between the residuals and a covariate is usually not equal to zero after fitting
the covariate in the iteration before. This is in contrast to L2Boosting and the
RobReg methods, where, with ν = 1, we cannot improve the fit by selecting
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and fitting the same covariate as in the iteration before. For the RobLoss
methods it can also happen that they choose the same covariate consecutively
(even with ν = 1). Note however that for the advocated proposal with ν < 1,
the differences in qualitative behavior disappear.

RobCor boosting empirically shows the following behavior: after running for
a large number of iterations, it always selects the same variable and gets
stuck. Then the estimated coefficients are all of approximately equal size and
successive coefficients are of opposite sign. This means that RobCor boosting
estimates the coefficient of the selected variable too high and in the next
iteration it undoes the previous step. The good thing is that this doesn’t
happen until over-fitting occurs, so we would stop the iteration before anyway.
We can also delay getting stuck by choosing a smaller ν.

Regarding the break down point we can state the following simple proposition:

Proposition 1 The boosting method inherits the breakdown point of the base
procedure.

Since we are performing only a finite number of iterations, the whole boosting
algorithm can only break down whenever the base learner breaks down in one
iteration. RobCor boosting has therefore a breakdown point of 0.5.

4 Simulation study

In this section we compare the different boosting methods on simulated data
sets from a linear model y = Xβ +ε as described at the beginning of section 2
and hence, all our results are only for linear regression. In this simulation
study we mainly limit ourselves to giving an overview of the behavior of the
different robust boosting methods. To this end, we will analyze the methods
in a rather low and a rather high-dimensional setting; one could analyze the
methods over a wider range of parameter settings, but this is beyond the scope
of this paper. Using real data, we will also show the computational feasibility
for very high-dimensional settings.

4.1 Design

The sample size of the training set (and also the validation set, used to
stop the iteration) is n = 100 and the number of covariates is p = 10 in
the first example and p = 100 in the second example (there is no test set
needed, since the true parameters of the model are known). The true coef-
ficient vector β is an arbitrary permutation of (8, 7, 6, 5, 4, 0, 0, 0, 0, 0)T for
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p = 10 and (18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 0, . . . , 0)T for p = 100. Thus, we
have peff = 5 effective and pnoise = 5 noise variables for p = 10 or peff = 10
and pnoise = 90 for p = 100, respectively. We use two design matrices for the
covariates and four error distributions. For the first design (normal design),
the covariates are generated according to a multivariate normal distribution
with mean zero and Cov(xi,xj) = Σij = 0.5|i−j|. The second design (leverage
design) is the same, except that 10% of the data-points are shifted by 4

√
peff

in the direction (1, 1, . . . , 1)T . This is done after the true y-values have been
determined. Therefore we have bad leverage points. The error distributions
are defined as follows:

e1 Standard Normal N (0, 12)
e2 90% N (0, 12) and 10% N (0, 52)
e3 90% N (0, 12) and 10% Slash (i.e. N (0, 12)/U(0, 1))
e4 90% N (0, 12) and 10% Cauchy (location zero and scale five)

The errors are multiplied by a constant to give a signal-to-noise ratio of 4 in
the first example and 9 in the second example for normal errors. Each setting
is replicated 100 times.

4.2 Performance measure

Our main performance measure is the mean squared prediction error, which
can be calculated as

̂intercept
2
+ (β̂ − β)TΣ(β̂ − β).

where β̂0 is the estimated intercept (the true intercept being zero), β̂ is the
estimated parameter vector, β is the true parameter vector (as defined in
section 4.1) and Σ is the covariance matrix of the covariates (as defined in
section 4.1). We also assess the variable selection performance by using ROC
curves. Moreover, we give the results of a small runtime study.

4.3 Results for p = 10

Table 1 gives the average over 100 replicates of the mean squared prediction
error when stopping with the validation set. The results are as expected. For
the normal design with error e1, L2Boosting performs significantly best. The
robust methods are only slightly worse, except perhaps RobCor boosting which
is significantly worse than the other robust methods. For the normal design
with error e2, e3 and e4, L2Boosting performs much worse than the robust
methods, and RobCor boosting is still worse than the other robust methods.
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Design Method e1 e2 e3 e4

Normal L2 7.7 (0.4) 25.5 (1.4) 2600 (2000) 1874 (1038)

RobLoss 8.9 (0.5) 11.4 (0.6) 9.9 (0.5) 12.5 (0.7)

RobRegM 8.8 (0.5) 11.4 (0.6) 9.7 (0.5) 12.5 (0.7)

RobLossW 9.1 (0.5) 11.5 (0.6) 10.5 (0.5) 12.3 (0.7)

RobRegBI 9.1 (0.5) 11.8 (0.6) 10.4 (0.5) 12.1 (0.7)

RobCor 11.3 (0.7) 13.8 (0.8) 12.2 (0.7) 13.1 (0.7)

Leverage L2 242 (2) 258 (2) 2895 (2136) 1894 (994)

RobLoss 245 (2) 251 (2) 247 (2) 259 (2)

RobRegM 245 (2) 251 (2) 248 (2) 258 (2)

RobLossW 101 (5) 180 (8) 147 (8) 199 (9)

RobRegBI 99 (5) 162 (7) 132 (6) 168 (7)

RobCor 16 (1) 22 (1) 18 (1) 21 (1)

Table 1
Mean squared prediction error of the different boosting methods when stopping
with a validation set, averaged over 100 replicates for p = 10. The standard errors
are given in parentheses.

The leverage design shows more differences. L2Boosting performs quite badly,
while RobLoss and RobRegM boosting are the worst of the robust methods.
RobCor boosting outperforms the remaining methods by far.

Furthermore, we’d like to compare the robust boosting methods with alterna-
tive methods such as robust LARS (RLARS ). However, the methodology and
available software for RLARS does not readily yield estimates for parameters
and is rather intended for variable selection. Therefore, we compare the ro-
bust boosting methods and RLARS using ROC curves. In order to keep the
number of figures at a manageable size, we only show the ROC curves for e1
and e4 for both designs (averaged over 100 repetitions). For the normal design
and error e1 (Figure 1a), all methods perform equally well. In the presence
of severe outliers (Figure 1b), L2 boosting performs very badly, while the re-
maining methods perform comparably well. In the leverage design (Figure 2),
RobCor is clearly dominant for both error settings.

In order to give an impression of the runtime, we give the processor time for
one method call averaged over 100 repetitions. We only show the results for
error e1 and both designs. All calculations were done on an AMD Athlon 64
X2 Dual Core Processor 5000+ with 2.6 GHz and 4 GB RAM running on
Linux and using R 2.5.1. For the boosting methods, the maximal number of
iterations was chosen large enough such that the estimates (with the maximal
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(b) Normal design - e4

Fig. 1. p = 10, Normal design: ROC curves comparing the variable selection
properties of different robust boosting methods and RLARS.
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(a) Leverage design - e1

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

FPR

T
P

R

RLARS
L2
RCor
RLo
RLoW
RRegM
RRegBI

(b) Leverage design - e4

Fig. 2. p = 10, Leverage design: ROC curves comparing the variable selection
properties of different robust boosting methods and RLARS.

number of iterations) overfit slightly. The result is given in table 2. For all
methods, the runtime for the leverage design is larger. RobCor and RLARS
are especially fast in the leverage design (L2 needs more iterations to reach its
optimum which explains why it is slower).

4.4 Results for p = 100

Table 3 gives the average (over 100 and 20 replicates for normal and leverage
design, respectively) of the mean squared prediction error when stopping with
the validation set.

In the normal design, L2 boosting with error e1 performs best and RobCor
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Method ave(tNormal) [s] ave(tLeverage) [s]

L2 2.5 (0.3) 7.3 (0.5)

RobLoss 3.6 (0.5) 11.0 (0.6)

RobRegM 51 (7) 153 (9)

RobLossW 3.7 (0.4) 7.4 (0.6)

RobRegBI 22 (3) 59 (7)

RobCor 3.9 (0.3) 4.2 (0.4)

RLARS 2.7 (0.1) 2.8 (0.1)

Table 2
Average runtime in seconds over 100 repetitions for both designs. Standard errors
are given in parentheses. RobRegM is particularly slow, while RLARS and RobCor

are very fast, especially in the leverage design.

Design Method e1 e2 e3 e4

Normal L2 241 (9) 744 (30) 34680 (32287) 40706 (25760)

RobLoss 267 (10) 399 (17) 330 (13) 436 (20)

RobRegM 273 (10) 397 (16) 336 (13) 435 (18)

RobLossW 293 (10) 413 (18) 347 (12) 457 (20)

RobRegBI 286 (10) 420 (18) 347 (12) 455 (19)

RobCor 381 (13) 519 (22) 448 (18) 481 (16)

Leverage L2 1279 (33) 1742 (72) 1888 (144) 77419 (73321)

RobLoss 1352 (39) 1598 (72) 1430 (44) 1548 (45)

RobRegM 1350 (39) 1581 (66) 1433 (43) 1548 (46)

RobLossW 1422 (37) 1664 (57) 1523 (47) 1660 (43)

RobRegBI 1429 (38) 1644 (54) 1516 (47) 1697 (50)

RobCor 1691 (74) 1739 (74) 1748 (105) 1629 (83)

Table 3
Mean squared prediction error of the different boosting methods when stopping
with a validation set, averaged over 100 replicates for the normal and 20 replicates
for the leverage design for p = 100. The standard errors are given in parentheses.

worst. If the outliers get more severe, L2 boosting performs worse. RobCor
stays the worst of the robust boosting methods in terms of mean squared
prediction error. In the setting with leverage design, the performance of L2

boosting decreases with increasing severity of the outliers. At first sight it
might surprise, that the prediction error in the normal design and with error
e3 is so much larger than the one in the leverage design. However, the standard
error in the normal design is huge, as well. This indicates that during the 100
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(a) Normal design - e1
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(b) Normal design - e4

Fig. 3. p = 100, Normal design: ROC curves comparing the variable selection
properties of different robust boosting methods and RLARS. In the case of error e1
all methods perform comparably well. If the severity of the outliers is increased, L2

boosting breaks down and the robust boosting methods become slightly dominant
over RLARS.

repetitions of the normal design setting a huge outlier was generated that
accounts for most of the variance in the data. This rare event didn’t occur in
the leverage design setting, where only 20 replicates were computed. However,
by inspecting the leverage setting using error e4 one sees that L2 boosting in
the leverage design is as vulnerable to outliers as in the normal design. The
performance of the other robust boosting methods seems rather stable. Again,
RobCor is the worst of the robust boosting methods in terms of prediction
error.

As before, we compare the variable selection properties of the methods using
ROC curves and show again only the ROC curves for e1 and e4 for both de-
signs (averaged over 100 repetitions in the normal and 20 repetitions in the
leverage design). For the normal design and error e1 (Figure 3a), all meth-
ods perform equally well. In the presence of severe outliers (Figure 3b), L2

boosting performs very badly. All robust boosting methods slightly outper-
form RLARS. In the leverage design and with error e1 (Figure 4a), RobCor
and RLARS are slightly dominant, while with error e4 RobCor becomes the
dominant method (Figure 4b).

In order to give an impression of the runtime, we give the processor time for
one method call averaged over 100 repetitions in the normal and 20 repetitions
in the leverage design. We only show the results for error e1 and both designs
(see section 4.3 for details on hardware and software) in table 4. The runtime
for the leverage design is in general larger. RobCor is in the normal design
among the three fastest methods but outperforms the others in the leverage
design by far.
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(b) Leverage design - e4

Fig. 4. p = 100, Leverage design: ROC curves comparing the variable selection
properties of different robust boosting methods and RLARS. In the case of error e1
RobCor and RLARS are for small FPR slightly dominant over the other methods.
With error e4, RobCor becomes the dominant method for small FPR.

Method tNormal [s] tLeverage [s]

L2 15.1 (0.1) 207 (17)

RobLoss 18.6 (0.7) 376 (41)

RobRegM 346 (14) 5267 (596)

RobLossW 33 (1.6) 293 (32)

RobRegBI 178 (6) 1037 (121)

RobCor 22.7 (0.4) 37 (4)

RLARS 204.4 (0.1) 219 (1.8)

Table 4
Average Runtime in seconds over 100 repetitions for normal and 20 repetitions for
leverage design. Standard errors are given in parentheses. RobRegM is particularly
slow and RobCor is very fast, especially in the leverage design.

5 Real data

5.1 Small Scale

As a real data set we analyze the measurements of Maguna et al. (2003) (see
also Maronna et al. (2006)). There are 38 observations (17 monocarboxylic,
9 dicarboxylic and 12 unsaturated carboxylic acids) and the goal is to pre-
dict the logarithm of the aquatic toxicity (y) from nine molecular descriptors
(x1, . . . , x9). The scatterplot matrix of the data (not included) shows a quite
good linear dependence between y and x1 except for some outliers. The other
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covariates have no clear “univariate” influence on y.

We applied the boosting methods with shrinkage factor ν = 0.3 and used 5-fold
cross-validation to stop the boosting iterations. The results are as follows: L2-,
RobLoss and RobRegM boosting select several times x1 and x3 at the beginning
and then also some other covariates. The residual plots (not included) show
no outliers. RobLossW, RobRegBI and RobCor boosting select only several
times x1 and then stop. The residual plots (not included) indicate some clear
outliers that are leverage points.

A closer look at the data shows that all the clear outliers are unsaturated car-
boxylic acids. RobLossW, RobRegBI and RobCor boosting lead to the insight
that there is no linear model which fits all the data well. L2-, RobLoss and
RobRegM boosting find a second variable (x3) that seems to explain also the
unsaturated carboxylic acids, but this is doubtful.

5.2 Large Scale

In addition to the small scale problem of the last section, we’d like to ex-
plore the feasibility of variable selection using robust boosting in very high-
dimensional settings. As seen for high dimensions in section 4.4, RobCor is
faster than most of the other robust methods tested and in addition to that,
it is very competitive in variable selection. Therefore, RobCor seems to be
the candidate of choice for robust variable selection using boosting in high-
dimensions. In order to test the feasibility of the robust methods, we analyzed
a dataset with n = 71 samples consisting of one continuous response variable
and p = 4088 explanatory variables. The dataset arose from Riboflavin pro-
duction in Bacillus subtilis in collaboration with DSM Nutritional Products:
There are 4088 genes whose expression levels have a potential influence on
the production of Riboflavin, which is the continuous response variable. The
relation was measured in 71 different settings.

We used RobCor boosting and RLARS in order to identify the most important
genes for Riboflavin production. Since this project is still ongoing, there is no
definitive list of genes with which the results could be compared.

However, we compare the stability of both methods when introducing outliers
in the original data set (10% leverage points with peff = 5, see section 4.1).
We compute the intersection of the best 20 and 50 variables selected using
both methods. This is done for the original data with and without outliers. In
order to check the variability of the results, we used 10-fold cross-validation
and averaged the results over the individual runs. The results are shown in
Table 5. It can be seen, that this intersection rate between the methods stays
constant even though outliers were introduced. The intersection rate is to be
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interpreted as follows: from a total of p = 4088 genes, when selecting 20 or 50
genes with either method, about 5 or 10 of these genes were chosen by both
methods, respectively. In such high-dimensional problems, the set of genes
which are chosen by both methods can be a valuable source of information.
Moreover, the runtime for each CV step was noted. RobCor took on average
275 seconds (s.e. 31 seconds), while RLARS took on average 5330 seconds
(s.e. 5 seconds). I.e., RobCor was about an order of magnitude faster than
RLARS.

20 variables 50 variables

Original data 0.27 (0.05) 0.19 (0.03)

Original data with outliers 0.27 (0.04) 0.19 (0.03)

Table 5
Intersection rates: Intersection of selected variables using RobCor and RLARS di-
vided by the number of variables selected (20 and 50). When introducing outliers,
the ratio stays constant.

6 Conclusions

We compared several robust boosting methods and robust LARS to L2Boosting.
For the ideal normal case, the robust methods are only slightly worse than
L2Boosting. In the contaminated case though, the robust methods outper-
form L2Boosting by a large margin. An advantage of the boosting methods
(for example over robust LARS) is that they don’t have to compute covariance
matrices of the covariates or to identify multivariate leverage points.

RobLoss, RobLossW and RobCor boosting are computationally efficient and
hence well suited also for truly high dimensional problems. In the high di-
mensional setting, the differences between the methods are less pronounced,
because the methods not only have to cope with outliers but also with high
dimensional observations.

The additional computations of RobRegM and RobRegBI boosting do not pay
off. They have no clear advantage over RobLoss and RobLossW boosting in
terms of prediction error or success in variable selection as measured by the
ROC curve. However, they come with an immensely increased computational
burden.

RobCor performs especially well at variable selection: In several settings it
outperforms all other methods we tested and is never worse. In addition to
that, RobCor is comparatively fast. Especially in the high-dimensional con-
taminated case, RobCor becomes the by far fastest method. The combination
of computational efficiency and superior variable selection properties makes
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RobCor the best of the analyzed candidates for high-dimensional robust vari-
able selection.

In practice, it is always a good advice to employ more than one method and
to compare the results. Our robustified versions of L2Boosting offer additional
possibilities for good, advanced data analysis.
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