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SUMMARY

We consider variable selection in high-dimensional linear models where the number of covari-
ates greatly exceeds the sample size. We introduce the new concept of partial faithfulness and
use it to infer associations between the covariates and the response. Under partial faithfulness,
we develop a simplified version of the PC algorithm (Spirtes et al., 2000), which is computation-
ally feasible even with thousands of covariates and provides consistent variable selection under
conditions on the random design matrix that are of a different nature than coherence condi-
tions for penalty-based approaches like the lasso. Simulations and application to real data show
that our method is competitive compared to penalty-based approaches. We provide an efficient
implementation of the algorithm in the R-package pcalg.
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1. INTRODUCTION

Variable selection in high-dimensional models has recently attracted a lot of attention. A partic-
ular stream of research has focused on penalty-based estimators whose computation is feasible and
provably correct (Meinshausen & Bühlmann, 2006; Zou, 2006; Zhao & Yu, 2006; Candès & Tao,
2007; van de Geer, 2008; Zhang & Huang, 2008; Wainwright, 2009; Meinshausen & Yu, 2009;
Huang et al., 2008; Bickel et al., 2009; Wasserman & Roeder, 2009; Candès & Plan, 2009). An-
other important approach for estimation in high-dimensional settings, including variable selec-
tion, has been developed within the Bayesian paradigm; see, for example, George & McCulloch
(1993, 1997), Brown et al. (1999, 2002), Nott & Kohn (2005), Park & Casella (2008). These
methods rely on Markov chain Monte Carlo techniques and are typically very expensive for truly
high-dimensional problems.

In this paper, we propose a method for variable selection in linear models which is fundamen-
tally different from penalty-based schemes. From a practical perspective, it is valuable to have a
very different method in the tool-kit for high-dimensional data analysis, raising the confidence for
relevance of variables if they are selected by more than a single method. From a methodological
and theoretical perspective, we introduce the new framework of partial faithfulness. This is related
to, and typically weaker than, the concept of linear faithfulness used in graphical models, hence
the name partial faithfulness. We prove that partial faithfulness arises naturally in the context of
linear models if we make a simple assumption on the structure of the regression coefficients to
exclude adversarial cases; see Condition 2 and Theorem 1.

Partial faithfulness can be exploited to construct an efficient hierarchical testing algorithm,
called the PC-simple algorithm, which is a simplification of the PC algorithm (Spirtes et al., 2000)
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for estimating directed acyclic graphs. We prove consistency of the PC-simple algorithm for
variable selection in high-dimensional partially faithful linear models under assumptions on the
design matrix that are very different from coherence assumptions for penalty-based methods.
The PC-simple algorithm can also be viewed as a generalization of correlation screening or
sure independence screening (Fan & Lv, 2008). Thus, as a special case, we obtain consistency
for correlation screening under different assumptions and reasoning than those of Fan & Lv
(2008). We illustrate the PC-simple algorithm, using our implementation in the R-package pcalg
(R Development Core Team, 2009), on high-dimensional simulated examples and a real dataset
on riboflavin production by the bacterium Bacillus subtilis.

2. MODEL AND NOTATION

Let X = (X (1), . . . , X (p)) ∈ R
p be a vector of covariates with E(X ) = μX and cov(X ) = �X .

Let ε ∈ R with E(ε) = 0 and var(ε) = σ 2 > 0, such that ε is uncorrelated with X (1), . . . , X (p).
Let Y ∈ R be defined by the following random design linear model:

Y = δ +
p∑

j=1

β j X ( j) + ε, (1)

for some parameters δ ∈ R and β = (β1, . . . , βp)T ∈ R
p. We assume that E(Y 2) < ∞ and

E{(X ( j))2} < ∞ for j = 1, . . . , p.
We consider models in which some, or most, of the β j s are equal to zero. Our goal is to

identify the active setA = { j = 1, . . . , p; β j � 0} based on a sample of independent observations
(X1, Y1), . . . , (Xn, Yn) that are distributed as (X, Y ). We denote the effective dimension of the
model, that is, the number of nonzero β j s, by peff = |A|. We define the following additional
conditions:

Condition 1. �X is strictly positive definite.

Condition 2. The regression coefficients satisfy {β j ; j ∈ A} ∼ f (b)db, where f (·) denotes a
density on a subset of R

peff of an absolutely continuous distribution with respect to the Lebesgue
measure.

Condition 1 restricts the random design matrix. It is needed for identifiability of the regression
parameters from the joint distribution of (X, Y ), since β = �−1

X {cov(Y, X (1)), . . . , cov(Y, X (p))}T.
Condition 2 says that the nonzero regression coefficients are realizations from an absolutely
continuous distribution with respect to the Lebesgue measure. Once the β j s are realized, we fix
them such that they can be considered as deterministic in the linear model (1). This framework
is loosely related to a Bayesian formulation treating the β j s as independent and identically
distributed random variables from a prior distribution that is a mixture of a point mass at zero for
β j s with j /∈ A and a density with respect to Lebesgue measure for β j s with j ∈ A. Condition
2 is mild in the following sense: the zero coefficients can arise in an arbitrary way and only
the nonzero coefficients are restricted to exclude adversarial cases. Candès & Plan (2009) also
make an assumption on the regression coefficients using the concept of random sampling in
their generic S-sparse model, but there are no other immediate deeper connections between their
setting and ours. Theorem 1 shows that Conditions 1 and 2 imply partial faithfulness, and partial
faithfulness is used to obtain the main results in Theorems 3, 4 and 5. Condition 2, however, is
not a necessary condition for these results.

We use the following notation. For a set S ⊆ {1, . . . , p}, |S| denotes its cardinality, SC

is its complement in {1, . . . , p} and X (S) = {X ( j); j ∈ S}. Moreover, ρ(Z (1), Z (2) | W ) and
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parcov(Z (1), Z (2) | W ) denote the population partial correlation and the population partial covari-
ance between two variables Z (1) and Z (2) given a collection of variables W .

3. LINEAR FAITHFULNESS AND PARTIAL FAITHFULNESS

3·1. Partial faithfulness

We now define partial faithfulness, the concept that will allow us to identify the active set A
using a simplified version of the PC algorithm.

DEFINITION 1. Let X ∈ R
p be a random vector, and let Y ∈ R be a random variable. The

distribution of (X, Y ) is said to be partially faithful if the following holds for every j ∈ {1, . . . , p}:
if ρ(Y, X ( j) | X (S)) = 0 for some S ⊆ { j}C then ρ(Y, X ( j) | X ({ j}C )) = 0.

For the linear model (1) with Condition 1, β j = 0 if and only if ρ(Y, X ( j) | X ({ j}C )) = 0. Hence,
such a model satisfies the partial faithfulness assumption if for every j ∈ {1, . . . , p},

ρ
(
Y, X ( j) | X (S)) = 0 for some S ⊆ { j}C implies β j = 0. (2)

THEOREM 1. Assume that linear model (1) satisfies Conditions 1 and 2. Then partial faith-
fulness holds almost surely with respect to the distribution generating the nonzero regression
coefficients.

A proof is given in the Appendix. This theorem is in the same spirit as a result by Spirtes et al.
(2000, Theorem 3.2) for graphical models, saying that non-faithful distributions for directed
acyclic graphs have Lebesgue measure zero, but we consider here the typically weaker notion of
partial faithfulness. A direct consequence of partial faithfulness is the following corollary.

COROLLARY 1. In the linear model (1) satisfying the partial faithfulness condition, the following
holds for every j ∈ {1, . . . , p}: ρ(Y, X ( j) | X (S)) � 0 for all S ⊆ { j}C if and only if β j � 0.

A proof is given in the Appendix. Corollary 1 shows that, under partial faithfulness, variables in
the active set A have a strong interpretation in the sense that all corresponding partial correlations
are different from zero when conditioning on any subset S ⊆ { j}C .

3·2. Relationship between linear faithfulness and partial faithfulness

To clarify the meaning of partial faithfulness, this section discusses the relationship between
partial faithfulness and the concept of linear faithfulness used in graphical models. This is the
only section that uses concepts from graphical modelling, and it is not required to understand the
remainder of the paper.

We first recall the definition of linear faithfulness. The distribution of a collection of random
variables Z (1), . . . , Z (q) can be depicted by a directed acyclic graph G in which each vertex
represents a variable, and the directed edges between the vertices encode conditional dependence
relationships. The distribution of (Z (1), . . . , Z (q)) is said to be linearly faithful to G if the following
holds for all i � j ∈ {1, . . . , q} and S ⊆ {1, . . . , q} \ {i, j}; Z (i) and Z ( j) are d-separated by Z (S)

in G if and only if ρ(Z (i), Z ( j) | Z (S)) = 0; see, e.g. Spirtes et al. (2000, p. 47). In other words,
linear faithfulness to G means that all and only all zero partial correlations among the variables
can be read off from G using d-separation, a graphical separation criterion explained in detail in
Spirtes et al. (2000).

Partial faithfulness is related to a weaker version of linear faithfulness. We say that the distri-
bution of (X, Y ), where X ∈ R

p is a random vector and Y ∈ R is a random variable, is linearly
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Fig. 1. Graphical representation of the models used in Examples 1–3.

Y -faithful to G if the following holds for all j ∈ {1, . . . , p} and S ⊆ { j}C :

X ( j) and Y are d-separated by X (S) in G if and only if ρ
(
X ( j), Y | X (S)) = 0.

Thus, linear Y -faithfulness to G means that all and only all zero partial correlations between Y
and the X ( j)s can be read off from G using d-separation, but it does not require that all and only
all zero partial correlations among the X ( j)s can be read off using d-separation.

We now consider the relationship between linear faithfulness, linear Y -faithfulness and partial
faithfulness. Linear faithfulness and linear Y -faithfulness are graphical concepts, which link a
distribution to a directed acyclic graph, while partial faithfulness is not a graphical concept.
From the definition of linear faithfulness and linear Y -faithfulness, it is clear that linear faithful-
ness implies linear Y -faithfulness. The following theorem relates linear Y -faithfulness to partial
faithfulness.

THEOREM 2. Assume that the distribution of (X, Y ) is linearly Y -faithful to a directed acyclic
graph in which Y is childless. Then partial faithfulness holds.

A proof is given in the Appendix. A distribution is typically linearly Y -faithful to several
directed acyclic graphs. Theorem 2 applies if Y is childless in at least one of these graphs.

We illustrate Theorem 2 by three examples. Example 1 shows a distribution where partial
faithfulness does not hold. In this case, Theorem 2 does not apply, because the distribution of
(X, Y ) is not linearly Y -faithful to any directed acyclic graph in which Y is childless. Examples
2 and 3 show distributions where partial faithfulness does hold. In Example 2, the distribution
of (X, Y ) is linearly Y -faithful to a directed acyclic graph in which Y is childless, and hence
partial faithfulness follows from Theorem 2. In Example 3, the distribution of (X, Y ) is not
linearly Y -faithful to any directed acyclic graph in which Y is childless, showing that this is not
a necessary condition for partial faithfulness.

Example 1. Consider the Gaussian linear model

X (1) = ε1, X (2) = X (1) + ε2, Y = X (1) − X (2) + ε, (3)

where ε1, ε2 and ε are independent standard Normal random variables. This model can be
represented by the linear model 1 with β1 = 1 and β2 = −1. Furthermore, the distribution of
(X, Y ) = (X (1), X (2), Y ) factorizes according to the graph in Fig. 1(a).

The distribution of (X, Y ) is not partially faithful, since ρ(Y, X (1) | ∅) = 0 but ρ(Y, X (1) |
X (2)) � 0. Theorem 2 does not apply, because the distribution of (X, Y ) is not linearly Y -faithful
to any directed acyclic graph in which Y is childless. For instance, the distribution of (X, Y ) is
not linearly Y -faithful to the graph in Fig. 1(a), since ρ(X (1), Y | ∅) = 0 but X (1) and Y are not
d-separated by the empty set. The zero correlation between X (1) and Y occurs because X (1) = ε1

drops out of the equation for Y due to a parameter cancellation that is similar to equation (A1) in
the proof of Theorem 1: Y = X (1) − X (2) + ε = ε1 − (ε1 + ε2) + ε = −ε2 + ε. The distribution
of (X, Y ) is linearly faithful, and hence also linearly Y -faithful, to the graph X (1) → X (2) ← Y ,
but this graph is not allowed in Theorem 2 because Y has a child.
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Such failure of partial faithfulness can also be caused by hidden variables. To see this, consider

X (1) = ε1, X (3) = ε3, X (2) = X (1) + X (3) + ε2, Y = X (3) + ε,

where ε1, ε2, ε3 and ε are independent standard Normal random variables. The distribution of
(X (1), X (2), X (3), Y ) factorizes according to the directed acyclic graph X (1) → X (2) ← X (3) → Y ,
and is linearly faithful to this directed acyclic graph. Hence, the distribution of (X (1), X (2), X (3), Y )
is partially faithful by Theorem 2. If, however, variable X (3) is hidden, so that we only observe
(X (1), X (2), Y ), then the distribution of (X (1), X (2), Y ) has exactly the same conditional indepen-
dence relationships as the distribution arising from (3). Hence, the distribution of (X (1), X (2), Y )
is not partially faithful.

Example 2. Consider the Gaussian linear model

X (1) = ε1, X (2) = X (1) + ε2, X (3) = X (1) + ε3, X (4) = X (2) − X (3) + ε4, Y = X (2) + ε,

where ε1, . . . , ε4 and ε are independent standard Normal random variables. This model can
be represented by the linear model (1) with β1 = β3 = β4 = 0 and β2 = 1. Furthermore, the
distribution of (X, Y ) = (X (1), . . . , X (4), Y ) factorizes according to the graph in Fig. 1(b).

The distribution of (X, Y ) is partially faithful, since ρ(Y, X ( j) | X ({ j}C )) � 0 only for j = 2,
and ρ(Y, X (2) | X (S)) � 0 for any S ⊆ {1, 3, 4}. In this example, partial faithfulness follows from
Theorem 2, since the distribution of (X, Y ) is linearly Y -faithful to the graph in Fig. 1(b) and Y is
childless in this graph. The distribution of (X, Y ) is not linearly faithful to the graph in Fig. 1(b),
since cor(X (1), X (4)) = 0 but X (1) and X (4) are not d-separated by the empty set. Moreover, there
does not exist any other directed acyclic graph to which the distribution of (X, Y ) is linearly
faithful. Hence, this example also illustrates that linear Y -faithfulness is strictly weaker than
linear faithfulness.

Example 3. Consider the Gaussian linear model

X (1) = ε1, X (2) = X (1) + ε2, X (3) = X (1) + ε3, Y = X (2) − X (3) + ε,

where ε1, ε2, ε3 and ε are independent standard Normal random variables. This model can
be represented by the linear model (1) with β1 = 0, β2 = 1 and β3 = −1. Furthermore, the
distribution of (X, Y ) = (X (1), X (2), X (3), Y ) factorizes according to the graph in Fig. 1(c).

The distribution of (X, Y ) is partially faithful, since ρ(Y, X ( j) | X ({ j}C )) � 0 for j ∈ {2, 3},
ρ(Y, X (2) | X (S)) � 0 for any S ⊆ {1, 3} and ρ(Y, X (3) | X (S)) � 0 for any S ⊆ {1, 2}. However,
in this case partial faithfulness does not follow from Theorem 2, since the distribution of (X, Y )
is not linearly Y -faithful to the graph in Fig. 1(c), since cor(X (1), Y ) = 0 but X (1) and Y are not
d-separated by the empty set. Moreover, there does not exist any other directed acyclic graph to
which the distribution of (X, Y ) is linearly Y -faithful.

4. THE PC-SIMPLE ALGORITHM

4·1. Population version of the PC-simple algorithm

We now explore how partial faithfulness can be used for variable selection. In order to show the
key ideas, we first assume that the population partial correlations are known. In § 4·2 we consider
the more realistic situation where they are estimated.

First, using S = ∅ in expression (2) yields that β j = 0 if cor(Y, X ( j)) = 0 for some j ∈
{1, . . . , p}. This shows that the active set A cannot contain any j for which cor(Y, X ( j)) = 0.
Hence, we can screen all marginal correlations between pairs (Y, X ( j)), j = 1, . . . , p, and build
a first set of candidate active variables

A[1] = {
j = 1, . . . , p; cor

(
Y, X ( j)) � 0

}
. (4)
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We call this the step1 active set or the correlation screening active set, and we know by partial
faithfulness that

A ⊆ A[1]. (5)

Such correlation screening may greatly reduce the dimensionality of the problem, and due to (5),
we could use other variable selection methods on the reduced set of variables A[1].

Furthermore, for each j ∈ A[1] expression (2) yields that

ρ
(
Y, X ( j) | X (k)) = 0 for some k ∈ A[1] \ { j} implies β j = 0. (6)

That is, for checking whether the j th covariate remains in the model, we can additionally screen
all partial correlations of order 1. We only consider partial correlations given variables in the
step1 active set A[1]. This is similar to what is done in the PC algorithm, and yields a large
computational reduction while still allowing us to eventually identify the true active set A. Thus,
screening partial correlations of order 1 using (6) leads to a smaller active set

A[2] = {
j ∈ A[1]; ρ

(
Y, X ( j) | X (k)) � 0 for all k ∈ A[1] \ { j}} ⊆ A[1].

This new step2 active set A[2] further reduces the dimensionality of the candidate active set,
and because of (6) we still have that A[2] ⊇ A. We can continue screening higher-order partial
correlations, resulting in a nested sequence of stepm active sets

A[1] ⊇ A[2] ⊇ · · · ⊇ A[m] ⊇ · · · ⊇ A. (7)

A stepm active setA[m] could be used for dimension reduction together with any variable selection
method in the reduced linear model with covariates corresponding to indices inA[m]. Alternatively,
we can continue the algorithm until the candidate active set does not change anymore. This leads
to the PC-simple algorithm, shown in pseudo-code in Algorithm 1.

Algorithm 1: The population version of the PC-simple algorithm.

Step 1. Set m = 1. Do correlation screening, and build the step1 active set
A[1] = { j = 1, . . . , p; cor(Y, X ( j)) � 0} as in (4).

Step 2. Repeat:
m = m + 1;
construct the stepm active set:

A[m] ={ j ∈A[m−1]; ρ(Y, X ( j) | X (S)) � 0 for all S ⊆A[m−1]\{ j} with |S| = m − 1},
until |A[m]| � m.

The value m that is reached in Algorithm 1 is called mreach:

mreach = min
{

m;
∣∣A[m]∣∣ � m

}
. (8)

The following theorem shows correctness of the population version of the PC-simple algorithm.

THEOREM 3. For the linear model (1) satisfying Condition 1 and partial faithfulness, the
population version of the PC-simple algorithm identifies the true underlying active set, i.e.
A[mreach] = A = { j = 1, . . . , p; β j � 0}.

A proof is given in the Appendix. Theorem 3 shows that partial faithfulness, which is often
weaker than linear faithfulness, is sufficient to guarantee correctness of the population PC-simple
algorithm. The PC-simple algorithm is similar to the PC algorithm (Spirtes et al., 2000, § 5.4.2), but
there are two important differences. First, the PC algorithm considers all ordered pairs of variables
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in (X (1), . . . , X (p), Y ), while we only consider ordered pairs (Y, X ( j)), j ∈ {1, . . . , p}, since
we are only interested in associations between Y and X ( j). Second, the PC algorithm considers
conditioning sets in the neighbourhoods of both Y and X ( j), while we only consider conditioning
sets in the neighbourhood of Y .

4·2. A sample version of the PC-simple algorithm

For finite samples, the partial correlations must be estimated. We use the following shorthand
notation:

ρ(Y, j | S) = ρ
(
Y, X ( j) | X (S)), ρ̂(Y, j | S) = ρ̂

(
Y, X ( j) | X (S)),

ρ(i, j | S) = ρ
(
X (i), X ( j) | X (S)), ρ̂(i, j | S) = ρ̂

(
X (i), X ( j) | X (S)),

where the hat-versions denote sample partial correlations. These can be calculated recursively,
since for any k ∈ S we have

ρ̂(Y, j | S) = ρ̂(Y, j | S \ {k}) − ρ̂(Y, k | S \ {k})ρ̂( j, k | S \ {k})
[{1 − ρ̂(Y, k | S \ {k})2}{1 − ρ̂( j, k | S \ {k})2}]1/2

.

In order to test whether a partial correlation is zero, we apply Fisher’s Z -transform

Z (Y, j | S) = 1

2
log

{
1 + ρ̂(Y, j | S)

1 − ρ̂(Y, j | S)

}
. (9)

Classical decision theory in the Gaussian case yields the following rule. Reject the null-hypothesis
H0(Y, j | S) : ρ(Y, j | S) = 0 against the two-sided alternative HA(Y, j | S) : ρ(Y, j | S) � 0
if (n − |S| − 3)1/2|Z (Y, j | S)| > 	−1(1 − α/2), where α is the significance level and 	(·) is
the standard Normal cumulative distribution function. Even in the absence of Gaussianity, this
rule gives a reasonable thresholding operation.

The sample version of the PC-simple algorithm is obtained by replacing the statements about
ρ(Y, X ( j) | X (S)) � 0 in Algorithm 1 by

(n − |S| − 3)1/2|Z (Y, j | S)| > 	−1(1 − α/2).

The resulting estimated set of variables is denoted by Â(α) = Âm̂reach (α), where m̂reach is the
estimated version of the quantity in (8). The only tuning parameter α of the PC-simple algorithm
is the significance level for testing the partial correlations.

The PC-simple algorithm is very different from a greedy scheme, since it screens many cor-
relations or partial correlations at once and may delete many variables at once. Furthermore,
it is a more sophisticated pursuit of variable screening than the marginal correlation approach
in Fan & Lv (2008) or the low-order partial correlation method in Wille & Bühlmann (2006).
Castelo & Roverato (2006) extended the latter and considered a limited-order partial correlation
approach. However, their method does not exploit the trick of the PC-simple algorithm that it is
sufficient to consider only conditioning sets S, that have survived in the previous stepm−1 active
set A[m−1]. Therefore, the algorithm of Castelo & Roverato (2006) is often infeasible and must
be approximated by a Monte Carlo approach.

Since the PC-simple algorithm is a simplified version of the PC algorithm, its computational
complexity is bounded above by that of the PC algorithm. The computational complexity is difficult
to evaluate exactly, but a crude bound is O(ppeff ); see Kalisch & Bühlmann (2007, formula (4)).
We show in § 6 that we can easily use the PC-simple algorithm in problems with thousands of
covariates.

 at E
T

H
-B

ibliothek on July 21, 2010 
http://biom

et.oxfordjournals.org
D

ow
nloaded from

 

http://biomet.oxfordjournals.org
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5. ASYMPTOTIC RESULTS IN HIGH DIMENSIONS

5·1. Consistency of the PC-simple algorithm

We now show that the PC-simple algorithm is consistent for variable selection, even if p is
much larger than n. We consider the linear model (1). To capture high-dimensional behaviour, we
let the dimension grow as a function of sample size and thus, p = pn and also the distribution of
(X, Y ), the regression coefficients β j = β j,n , and the active setA = An with peff = peffn = |An|
change with n. Our assumptions are as follows.

Assumption 1. The distribution Pn of (X, Y ) is multivariate Normal and satisfies Condition 1
and the partial faithfulness condition for all n.

Assumption 2. The dimension satisfies pn = O(na) for some 0 � a < ∞.

Assumption 3. The cardinality of the active set peffn = |An| = |{ j = 1, . . . , pn; β j,n � 0}| is
such that peffn = O(n1−b) for some 0 < b � 1.

Assumption 4. The partial correlations ρn(Y, j | S) = ρ(Y, X ( j) | X (S)) satisfy

inf{|ρn(Y, j | S)|; j = 1, . . . , pn, S ⊆ { j}C , |S| � peffn with ρn(Y, j | S) � 0}� cn,

where c−1
n = O(nd ) for some 0 � d < b/2, and b is as in Assumption 3.

Assumption 5. The partial correlations ρn(Y, j | S) and ρn(i, j | S) = ρ(X (i), X ( j) | X (S))
satisfy

(i) sup
n, j,S⊆{ j}C ,|S| � peffn

|ρn(Y, j | S)| � M < 1,

(ii) sup
n,i � j,S⊆{i, j}C ,|S| � peffn

|ρn(i, j | S)| � M < 1.

Assumption 1 is made to simplify asymptotic calculations, and it is not needed in the population
case. Unfortunately, it is virtually impossible to check Assumptions 1–5 in practice, with the
exception of Assumption 2. However, this is common to assumptions for high-dimensional
variable selection, such as the neighbourhood stability condition (Meinshausen & Bühlmann,
2006), the irrepresentable condition (Zhao & Yu, 2006) or the restrictive eigenvalue assumption
(Bickel et al., 2009). A more detailed discussion of Assumptions 1–5 is given in § 5·2.

Letting Ân(α) denote the estimated set of variables from the PC-simple algorithm in § 4·2 with
significance level α, we obtain the following consistency result.

THEOREM 4. Consider the linear model (1) satisfying Assumptions 1–5. Then there exists a
sequence αn → 0 (n → ∞) and a constant C > 0 such that the PC-simple algorithm satisfies

pr{Ân(αn) = An} = 1 − O{exp(−Cn1−2d )} → 1 (n → ∞),

where d is as in Assumption 4.

A proof is given in the Appendix. The value αn , despite being the significance level of
a single test, is a tuning parameter that allows one to control Type I and II errors over the
many tests that are pursued in the PC-simple algorithm. A possible choice yielding consistency
is αn = 2{1 − 	(n1/2cn/2)}. This choice depends on the unknown lower bound of the partial
correlations in Assumption 4.

5·2. Discussion of the conditions of Theorem 4

There is much recent work on high-dimensional and computationally tractable variable se-
lection, most of it considering versions of the lasso (Tibshirani, 1996) or the Dantzig selector
(Candès & Tao, 2007). Neither of these methods exploits partial faithfulness. Hence, it is inter-
esting to discuss our conditions with a view towards these established results.
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For the lasso, Meinshausen & Bühlmann (2006) proved that a so-called neighbourhood stability
condition is sufficient and almost necessary for consistent variable selection, where the word
almost refers to the fact that a strict inequality with the relation < appears in the sufficient condition
whereas for necessity, there is a � relation. Zou (2006) and Zhao & Yu (2006) gave a different,
but equivalent, condition. In the latter work, it is called the irrepresentable condition. The adaptive
lasso (Zou, 2006) or other two-stage lasso and thresholding procedures (Meinshausen & Yu, 2009)
yield consistent variable selection under weaker conditions than the neighbourhood stability or
irrepresentable condition; see also Example 4 below. Such two-stage procedures rely on bounds
for ‖β̂ − β‖q (q = 1, 2) whose convergence rate to zero is guaranteed under possibly weaker
restricted eigenvalue assumptions on the design (Bickel et al., 2009) than what is required by
the irrepresentable or neighbourhood stability condition. All these different assumptions are not
directly comparable with our Assumptions 1–5.

Assumption 2 allows for an arbitrary polynomial growth of dimension as a function of sample
size, while Assumption 3 is a sparseness assumption in terms of the number of effective variables.
Both Assumptions 2 and 3 are fairly standard assumptions in high-dimensional asymptotics. More
critical are the partial faithfulness requirements in Assumption 1, and the conditions on the partial
correlations in Assumptions 4 and 5.

We interpret these assumptions with respect to the design X and the conditional distribution
of Y given X . Regarding the random design, we assume Condition 1 and Assumption 5(ii).
Requiring Condition 1 is rather weak, since it does not impose constraints on the behaviour of
the covariance matrix �X = �X ;n in the sequence of distributions Pn (n ∈ N), except for strict
positive definiteness for all n. Assumption 5(ii) excludes perfect collinearity, where the fixed
upper bound on partial correlations places some additional restrictions on the design. Regarding
the conditional distribution of Y given X , we require partial faithfulness. This becomes more
explicit by invoking Theorem 1: partial faithfulness follows by assuming Condition 2 in § 2 for
every n, which involves the regression coefficients only. Assumptions 4 and 5(i) place additional
restrictions on both the design X and the conditional distribution of Y given X .

Assumption 4 is used for controlling the Type II errors in the many tests of the PC-simple
algorithm; see the proof of Theorem 4. This assumption is slightly stronger than requiring
all nonzero regression coefficients to be larger than a detectability-threshold, which has been
previously used for analyzing the lasso in Meinshausen & Bühlmann (2006), Zhao & Yu (2006)
and Meinshausen & Yu (2009). Clearly, assumptions on the design X are not sufficient for
consistent variable selection with any method and some additional detectability assumption
is needed. Our Assumption 4 is restrictive, as it does not allow small nonzero low-order partial
correlations. Near partial faithfulness (Robins et al., 2003), where small partial correlations would
imply that corresponding regression coefficients are small, would be a more realistic framework
in practice. However, this would make the theoretical arguments much more involved, and we do
not pursue this in this paper.

Although our assumptions are not directly comparable to the neighbourhood stability or ir-
representable condition for the lasso, it is easy to construct examples where the lasso fails to
be consistent while the PC-simple algorithm recovers the true set of variables, as shown by the
following example.

Example 4. Consider a Gaussian linear model as in (1) with p = 4, peff = 3, σ 2 = 1, μX =
(0, . . . , 0)T

�X =

⎛
⎜⎜⎝

1 ρ1 ρ1 ρ2

ρ1 1 ρ1 ρ2

ρ1 ρ1 1 ρ2

ρ2 ρ2 ρ2 1

⎞
⎟⎟⎠ , ρ1 = −0·4, ρ2 = 0·2,
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where β1, β2, β3 are fixed independently and identically distributed realizations from N (0, 1)
and β4 = 0.

It is shown in Zou (2006, Corollary 1) that the lasso is inconsistent for variable selection in this
model. On the other hand, Assumption 1 holds with probability 1 because of Theorem 1, and also
Assumption 5 is true. Since the dimension p is fixed, Assumptions 2, 3 and 4 hold automatically.
Hence, the PC-simple algorithm is consistent for variable selection. It should be noted though that
the adaptive lasso is also consistent for this example.

We can slightly modify Example 4 to make it high-dimensional. Consider peff = 3 active
variables, with design and coefficients as in Example 4. Moreover, consider pn − peff noise
covariates, which are independent of the active variables, with pn satisfying Assumption 2. Let
the design satisfy Condition 1 and Assumption 5(ii); for example, by taking the noise covariates
to be mutually independent. Then Assumptions 1–5 hold with probability 1, implying consistency
of the PC-simple algorithm, while the lasso is inconsistent.

5·3. Asymptotic behaviour of correlation screening

Correlation screening is equivalent to sure independence screening of Fan & Lv (2008), but
our assumptions and reasoning via partial faithfulness are very different. Denote by Â[1]

n (α) the
correlation screening active set, estimated from data, using significance level α, obtained from
the first step of the sample version of the PC-simple algorithm. We do not require any sparsity
conditions for consistency. We define:

Assumption 4′ as Assumption 4 but for marginal correlations cor(Y, X ( j)) = ρn(Y, j) only.

Assumption 5′ as Assumption 5 but for marginal correlations cor(Y, X ( j)) = ρn(Y, j) only.

THEOREM 5. Consider the linear model (1) satisfying Assumptions 1, 2, 4′ and 5′. Then there
exists a sequence αn → 0 (n → ∞) and a constant C > 0 such that:

pr
{
Â[1]

n (αn) ⊇ An
} = 1 − O{exp(−Cn1−2d )} → 1 (n → ∞),

where d > 0 is as in Assumption 4′.

A proof is given in the Appendix. A possible choice for αn is αn = 2{1 − 	(n1/2cn/2)}. As
pointed out above, we do not make any sparsity assumptions. However, for nonsparse problems,
many correlations may be nonzero and Â[1] can still be large; for example, almost as large as the
full set {1, . . . , p}.

Under some restrictive conditions on the covariance �X of the random design, Fan & Lv
(2008) have shown that correlation screening, or sure independence screening, overestimates the
active set A, as stated in Theorem 5. Theorem 5 shows that this result also holds under very
different assumptions on �X when partial faithfulness is assumed in addition. Hence, our result
justifies correlation screening as a more general tool than what it appears to be from the setting
of Fan & Lv (2008), thereby extending the range of applications.

6. NUMERICAL RESULTS

6·1. Analysis for simulated data

We simulate data according to a Gaussian linear model as in (1) with δ = 0, and p covariates
with μX = (0, . . . , 0)T and covariance matrix �X ;i, j = ρ|i− j |, where �X ;i, j denotes the (i, j)th
entry of �. In order to generate values for β, we follow Condition 2: a certain number of
coefficients β j have a value different from zero. The values of the nonzero β j s are sampled
independently from a standard normal distribution and the indices of the nonzero β j s are evenly
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Fig. 2. Receiver operating characteristic curves for the simulation study in § 6·1; PC-simple algorithm
(solid), lasso (dashed), elastic net (dotted). The solid vertical lines indicate the false positive rate of

the PC-simple algorithm using the default α = 0·05.

spaced between 1 and p. We consider two settings: a low-dimensional setting where p = 19,
peff = 3, n = 100; ρ ∈ {0,0·3,0·6} with 1000 replicates; and a high-dimensional one where
p = 499, peff = 10, n = 100; ρ ∈ {0,0·3,0·6} with 300 replicates.

We evaluate the performance of the methods using receiver operating characteristic curves that
measure the accuracy for variable selection independently from the issue of choosing good tuning
parameters. We compare the PC-simple algorithm to the lasso (Efron et al., 2004) and elastic net
(Zou & Hastie, 2005), using the R-packages pcalg, lars and elasticnet, respectively. For the elastic
net, we vary the �1-penalty parameter only while keeping the �2-penalty parameter fixed at the
default value from the R-package.

In the low-dimensional settings shown in Figs. 2(a), 2(c), 2(e), the PC-simple algorithm clearly
dominates the lasso and elastic net for small false positive rates, which is a desirable property.
When focusing on the false positive rate arising from the default value for α = 0·05 in the
PC-simple algorithm, indicated by the vertical lines, the PC-simple algorithm outperforms the lasso
and elastic net by a large margin. If the correlation among the covariates increases, the performance
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of the elastic net deteriorates, whereas the performances of the PC-simple algorithm and the lasso
do not vary much.

In the high-dimensional settings shown in Figs. 2(b), 2(d), 2(f ), the difference between the
methods is small for small false positive rates. The lasso performs the best, elastic net is the worst,
and the PC-simple algorithm is between. For larger false positive rates, the differences become
more pronounced. Up to the false positive rate corresponding to the default value of α = 0·05,
the PC-simple algorithm is never significantly outperformed by either the lasso or the elastic net.

Further examples, with p = 1000, peff = 5, n = 50 and equicorrelated design �X ;i, j = 0·5
for i � j and �X ;i,i = 1 for all i , are reported in Bühlmann (2008).

The computing time of the PC-simple algorithm on ten different values of α has about the same
order of magnitude as the lasso or elastic net for their whole solution paths. Hence, the PC-simple
algorithm is certainly feasible for high-dimensional problems.

6·2. Prediction-optimal tuned methods for simulated data

We now compare the PC-simple algorithm to several existing methods when using prediction-
optimal tuning. It is known that the prediction-optimal tuned lasso overestimates the true
model (Meinshausen & Bühlmann, 2006). The adaptive lasso (Zou, 2006) and the relaxed lasso
(Meinshausen, 2007) correct lasso’s overestimating behaviour and prediction-optimal tuning for
these methods yields a good amount of regularization for variable selection.

We simulate from a Gaussian linear model as in (1) with p = 1000, peff = 20,
n = 100, and δ = 0, μX = (0, . . . , 0)T, �X ;i, j = 0·5|i− j |, σ 2 = 1, β1, . . . , β20 independently
and identically ∼ N (0, 1), β21 = · · · = β1000 = 0, using 100 replicates. We consider the follow-
ing performance measures:

‖β̂ − β‖2
2 = ∑p

j=1(β̂ j − β j )2 (MSE Coeff ),

EX [{X T(β̂ − β)}2] = (β̂ − β)cov(X )(β̂ − β)T (MSE Pred),∑p
j=1 I (β̂ j � 0, β j � 0)/

∑p
j=1 I (β j � 0) (true positive rate),∑p

j=1 I (β̂ j � 0, β j = 0)/
∑p

j=1 I (β j = 0) (false positive rate),

where I (·) denotes the indicator function.
We apply the PC-simple algorithm for variable selection and then use the lasso or the adaptive

lasso to estimate the coefficients for the submodel selected by the PC-simple algorithm. We
compare this procedure to the lasso, the adaptive lasso and the relaxed lasso. For simplicity, we
do not show results for the elastic net, since this method was found to be worse in terms of
receiver operating characteristic curves than the lasso; see § 6·1.

Prediction-optimal tuning is pursued with a validation set having the same size as the training
data. For the adaptive lasso, we first compute a prediction-optimal lasso as initial estimator β̂init,
and the adaptive lasso is then computed by solving the following optimization problem:

argminβ∈Rp

⎧⎨
⎩

n∑
i=1

(
Yi − X T

i β
)2 + λ

p∑
j=1

w−1
j |β j |

⎫⎬
⎭ ,

where w−1
j = |β̂init, j |−1 and λ is again chosen in a prediction-optimal way. The computations are

done with the R-package lars, using rescaled covariates for the adaptive step. The relaxed lasso
is computed with the R-package relaxo. The PC-simple algorithm with the lasso for estimating
coefficients is computed using the R-packages pcalg and lars, using optimal tuning with respect to
the α-parameter for the PC-simple algorithm and the penalty parameter for lasso. For the PC-simple
algorithm with the adaptive lasso, we first compute weights w j as follows. If the variable has not
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Fig. 3. Boxplots of performance measures for the simulation study in § 6·2 considering the following
prediction-optimal tuned methods: the PC-simple algorithm with lasso coefficient estimation (pcl), the
PC-simple algorithm with adaptive lasso (pcal), the adaptive lasso (al), the relaxed lasso (r) and the

lasso (l).

been selected, we set w j = 0. If the variable has been selected, we let w j be the minimum value of
the test statistic (n − 3 − |S|)1/2 Z (Y, j | S) over all iterations of the PC-simple algorithm. With
these weights w j , we then compute the adaptive lasso as defined above.

The results are shown in Fig. 3. As expected, the lasso yields too many false positives, while
the adaptive lasso and the relaxed lasso have much better variable selection properties. The PC-
simple-based methods clearly have the lowest false positive rates, but pay a price in terms of the
true positive rate and mean squared errors. In many applications, a low false positive rate is highly
desirable even when paying a price in terms of power. For example, in molecular biology where
a covariate represents a gene, only a limited number of selected genes can be experimentally
validated. Hence, methods with a low false positive rate are preferred, in the hope that most of
the top-selected genes are relevant, as sketched in the next section.

6·3. Real data: riboflavin production by Bacillus subtilis

We consider a high-dimensional real dataset on riboflavin production by the bacterium B.
subtilis, kindly provided by DSM Nutritional Products. There is a continuous response variable
Y , which measures the logarithm of the riboflavin production rate, and there are p = 4088
covariates corresponding to the logarithms of expression levels of genes. The main goal is to
genetically modify B. subtilis in order to increase its riboflavin production rate. An important
step is to find genes that are most relevant for the production rate.

We use data from a genetically homogeneous group of n = 71 individuals. We run the PC-
simple algorithm on the full dataset for various values of α. Next, we compute the lasso and
elastic net, choosing the tuning parameters such that they select the same number of variables as
the PC-simple algorithm.

Table 1 shows that there is overlap between the selected variables of the three different methods.
This overlap is highly significant when calibrating with a null-distribution that consists of random
noise. On the other hand, we see that the variable selection results of the lasso and elastic net
are more similar than the results of the PC-simple algorithm and either of these methods. Hence,

 at E
T

H
-B

ibliothek on July 21, 2010 
http://biom

et.oxfordjournals.org
D

ow
nloaded from

 

http://biomet.oxfordjournals.org
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Table 1. Variable selection for a real dataset on riboflavin production by
B. subtilis. The columns show the number of variables selected by (a) the
PC-simple algorithm, (b) by both the PC-simple algorithm and the lasso,
(c) by both the PC-simple algorithm and the elastic net and, (d) by both the

lasso and the elastic net
(a) (b) (c) (d)
α for PC-simple Selected PC-lasso PC-enet lasso-enet

0·001 3 0 0 2
0·01 4 2 1 3
0·05 5 2 1 3
0·15 6 3 2 3

the PC-simple algorithm seems to select genes in a different way than the penalty-based methods
lasso and elastic net. This is a desirable finding, since for any large-scale problem, we want to
see different aspects of the problem by using different methods. Ideally, results from different
methods can then be combined to obtain results that are better than those achieved by a single
procedure.

APPENDIX

Proof of Theorem 1. Consider the linear model (1) satisfying Conditions 1 and 2. In order to prove that
the partial faithfulness assumption holds almost surely, it suffices to show that the following holds for all
j ∈ {1, . . . , p} and S ⊆ { j}C : β j � 0 implies that ρ(Y, X ( j) | X (S)) � 0 almost surely with respect to the
distribution generating the β j s.

Thus, let j ∈ {1, . . . , p} such that β j � 0, and let S ⊆ { j}C . We recall that ρ(Y, X ( j) | X (S)) = 0 if
and only if the partial covariance parcov(Y, X ( j) | X (S)) between Y and X ( j) given X (S) equals zero, see
Anderson (1984, p. 37, Definition 2.5.2). Partial covariances can be computed using the recursive formula
given in Anderson (1984, p. 43, equation (26)). This shows that the partial covariance is linear in its
arguments, and that parcov(ε, X ( j) | X (S)) = 0 for all j ∈ {1, . . . , p} and S ⊆ { j}C . Hence,

parcov
(
Y, X ( j) | X (S)

) = parcov

(
δ +

p∑
r=1

βr X (r ) + ε, X ( j) | X (S)

)

=
p∑

r=1

βr parcov
(

X (r ), X ( j) | X (S)
)

= β j parcov
(

X ( j), X ( j) | X (S)
) +

p∑
r=1,r � j

βr parcov
(

X (r ), X ( j) | X (S)
)
.

Since β j � 0 by assumption, and since parcov(X ( j), X ( j) | X (S)) � 0 by Condition 1, the only way for
parcov(Y, X ( j) | X (S)) to equal zero is if there is a special parameter configuration of the βr s, such that

p∑
r=1,r � j

βr parcov
(

X (r ), X ( j) | X (S)
) = −β j parcov

(
X ( j), X ( j) | X (S)

)
. (A1)

But such a parameter constellation has Lebesgue measure zero under Condition 2. �

Proof of Corollary 1. The implication from the left- to the right-hand side follows from the fact that
β j � 0 in the linear model (1) if and only if ρ(Y, X ( j) | X ({ j}C )) � 0. The other direction follows from the
definition of partial faithfulness, by taking the negative of expression 2. �
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Proof of Theorem 2. Suppose that (X, Y ) = (X (1), . . . , X (p), Y ) is linearly Y -faithful to a directed
acyclic graph G in which Y is childless, i.e. any edges between Y and the X ( j)s, j = 1, . . . , p, point
towards Y . We will show that this implies that the distribution of (X, Y ) is partially faithful, by showing
that ρ(Y, X ( j) | X ({ j}C )) � 0 implies that ρ(Y, X ( j) | X (S)) � 0 for all S ⊆ { j}C .

Thus, let j ∈ {1, . . . , p} such that ρ(Y, X ( j) | X ({ j}C )) � 0. By linear Y -faithfulness, this implies that Y
and X ( j) are not d-separated by X ({ j}C ) in G, meaning that X ({ j}C ) does not block all d-connecting paths
between X ( j) and Y . All paths between X ( j) and Y must be of the form X ( j) − · · · − · · · − X (r ) → Y ,
where − denotes an edge of the form ← or →. First suppose that r � j . Then, because X (r ) cannot be
a collider on the given path, since we know that the edge from X (r ) to Y points towards Y , the path is
blocked by X (r ) ∈ X ({ j}C ), and hence the path is blocked by X ({ j}C ). Thus, since X ({ j}C ) does not block all
paths between X ( j) and Y , there must be a path where r = j , or, in other words, there must be an edge
between X ( j) and Y : X ( j) → Y . Such a path X ( j) → Y cannot be blocked by any set X (S), S ⊆ { j}C .
Hence, there does not exist a set S that d-separates X ( j) and Y . By linear Y -faithfulness, this implies that
ρ(X ( j), Y | X (S)) � 0 for all S ⊆ { j}C . �

Proof of Theorem 3. By partial faithfulness and equation (7),A ⊆ A[mreach]. Hence, we only need to show
that A is not a strict subset of A[mreach]. We do this using contra-position. Thus, suppose that A ⊂ A[mreach]

strictly. Then there exists a j ∈ A[mreach] such that j /∈ A. Fix such an index j . Since j ∈ A[mreach], we know
that

ρ
(
Y, X ( j) | X (S)

)
� 0 for all S ⊆ A[mreach−1] \ { j} with |S| � mreach − 1. (A2)

This statement for sets S with |S| = mreach − 1 follows from the definition of iteration mreach of the PC-
simple algorithm. Sets S with lower cardinality are considered in previous iterations of the algorithm, and
since A[1] ⊇ A[2] ⊇ . . ., all subsets S ⊆ A[mreach−1] with |S| � mreach − 1 are considered.

We now show that we can take S = A in (A2). First, the supposition A ⊂ A[mreach] and our choice of j
imply that

A ⊆ A[mreach] \ { j} ⊆ A[mreach−1] \ { j}.
Moreover, A ⊂ A[mreach] implies that |A|� |A[mreach]| − 1. Combining this with |A[mreach]| � mreach yields
that |A| � mreach − 1. Hence, we can indeed take S = A in (A2), yielding that ρ(Y, X ( j) | X (A)) � 0.

On the other hand, j /∈ A implies that β j = 0, and hence ρ(Y, X ( j) | X (A)) = 0. This is a contradiction,
and hence A cannot be a strict subset of A[mreach]. �

Proof of Theorem 4. A first main step is to show that the population version of the PC-simple algorithm
infers the true underlying active set An , assuming partial faithfulness. We formulated this step as a separate
result in Theorem 3.

The arguments for controlling the estimation error due to a finite sample size are similar to the ones
used in the proof of Theorem 1 in Kalisch & Bühlmann (2007). We proceed in two steps, analyzing first
partial correlations and then the PC-simple algorithm.

We show an exponential inequality for estimating partial correlations up to order mn = o(n). We use the
following notation: K mn

j = {S ⊆ {0, . . . , pn} \ { j}; |S| � mn} ( j = 1, . . . , pn). We require more general
versions of Assumptions 4 and 5, where the cardinality of the condition sets are bounded by the number
mn as follows.

Assumption 4mn . The partial correlations ρn(Y, j | S) = ρ(Y, X ( j) | X (S)) satisfy

inf{|ρn(Y, j | S)|; j = 1, . . . , pn, S ⊆ { j}C , |S| � mn with ρn(Y, j | S) � 0} � cn,

where c−1
n = O(nd ) for some 0 � d < b/2, and b is as in Assumption 3.

Assumption 5mn . The partial correlations ρn(Y, j | S) and ρn(i, j | S) = ρ(X (i), X ( j) | X (S)) satisfy

(i) sup
n, j,S⊆{ j}C ,|S| � mn

|ρn(Y, j | S)| � M < 1, (ii) sup
n,i � j,S⊆{i, j}C ,|S| � mn

|ρn(i, j | S)| � M < 1.
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We will later see in Lemma A3 that we need mn � peffn only, and hence, Assumptions 4mn and 5mn coincide
with Assumptions 4 and 5, respectively.

We have, for mn < n − 4 and 0 < γ < 2,

sup
S∈K mn

j , j=1,...,pn

pr{|ρ̂n(Y, j | S) − ρn(Y, j | S)| > γ } � C1n exp(n − mn − 4) log

(
4 − γ 2

4 + γ 2

)
,

where 0 < C1 < ∞ depends on M in Assumption 5mn only. This bound appears in Kalisch & Bühlmann
(2007, Corollary 1): for proving it, we require the Gaussian assumption for the distribution and Assumption
5mn . It is now straightforward to derive an exponential inequality for the estimated Z -transformed partial
correlations. We define Zn(Y, j | S) = g{ρ̂n(Y, j | S)} and zn(Y, j | S) = g{ρn(Y, j | S)}, where g(ρ) =
1
2 log{(1 + ρ)/(1 − ρ)}.

LEMMA A1. Suppose that the Gaussian assumption from Assumptions 1 and 5mn hold. Define L =
1/{1 − (1 + M)2/4}, with M as in Assumption 5mn . Then, for mn < n − 4 and 0 < γ < 2L,

sup
S∈K mn

j , j=1,...,pn

pr{|Zn(Y, j | S) − zn(Y, j | S)| > γ }

� O(n)

(
exp

[
(n − 4 − mn) log

{
4 − (γ /L)2

4 + (γ /L)2

}]
+ exp{−C2(n − mn)}

)

for some constant C2 > 0.

We omit the proof since this is Lemma 3 in Kalisch & Bühlmann (2007).
We now consider a version of the PC-simple algorithm that stops after a fixed number of m iterations. If

m � m̂reach, where m̂reach is the estimation analogue of (8), we set Â[m] = Â[m̂reach]. We denote this version
by PC-simple(m) and the resulting estimate by Â(α, m).

LEMMA A2. Consider Assumptions 1–3, 4mn and 5mn . Then, for mn satisfying mn � mreach,n and
mn = O(n1−b) with b as in Assumption 3, there exists a sequence αn → 0 such that

pr{Ân(αn, mn) = An} = 1 − O{exp(−Cn1−2d )} → 1 (n → ∞) for some C > 0.

A concrete choice of αn is αn = 2{1 − 	(n1/2cn/2)}, where cn is the lower bound from Assumption 4mn ,
which is typically unknown.

Proof . Obviously, the population version of the PC-simple(mn) algorithm is correct for mn � mreach,n;
see Theorem 3. An error can occur in the PC-simple(mn) algorithm if there exists a covariate X ( j) and a
conditioning set S ∈ K mn

j for which an error event E j |S occurs, where E j |S denotes the event that an error
occurred when testing ρn(Y, j | S) = 0. Thus,

pr{an error occurs in the PC-simple(mn)-algorithm}

� pr

⎛
⎝ ⋃

S∈K mn
j , j=1,...,pn

E j |S

⎞
⎠ � O

(
pmn+1

n

)
sup

S∈K mn
j , j

pr(E j |S ), (A3)

using that the cardinality of the index set {S ∈ K mn
j , j = 1, . . . , pn} in the union is bounded by O(pmn+1

n ).
Now

E j |S = E I
j |S ∪ E I I

j |S , (A4)

where

Type I error E I
j |S : (n − |S| − 3)1/2|Zn(Y, j | S)| > 	−1(1 − α/2) and zn(Y, j | S) = 0,

Type II error E I I
j |S : (n − |S| − 3)1/2|Zn(Y, j | S)| �	−1(1 − α/2) and zn(Y, j | S) � 0.
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Choose α = αn = 2{1 − 	(n1/2cn/2)}, where cn is from Assumption 4mn . Then,

sup
S∈K mn

j , j=1,...,pn

pr
(

E I
j |S

) = sup
S∈K mn

j , j
pr[|Zn(Y, j | S) − zn(Y, j | S)| > {n/(n − |S| − 3)}1/2cn/2]

� O(n) exp
{− C3(n − mn)c2

n

}
, (A5)

for some C3 > 0, using Lemma A1 and the fact that log{(4 − δ2)/(4 + δ2)} � − δ2/2 for 0 < δ < 2.
Furthermore, with the choice of α = αn above,

sup
S∈K mn

j , j=1,...,pn

pr
(

E I I
j |S

) = sup
S∈K mn

j , j
pr

[|Zn(Y, j | S)| � {n/(n − |S| − 3)}1/2cn/2
]

� sup
S∈K mn

j , j
pr

(|Zn(Y, j | S) − zn(Y, j | S)| > cn

[
1 − {n/(n − |S| − 3)}1/2/2

])
,

because infS∈K mn
j , j {|zn(Y, j | S)|; zn(Y, j | S) � 0} � cn since |g(ρ)| = | 1

2 log{(1 + ρ)/(1 − ρ)}| � |ρ| for
all ρ and using Assumption 4mn . This shows the crucial role of Assumption 4mn in controlling the Type II
error. By invoking Lemma A1, we then obtain

sup
S∈K mn

j , j
pr

(
E I I

j |S
)
� O(n) exp

{ − C4(n − mn)c2
n

}
(A6)

for some C4 > 0. Now, by (A3)–(A6) we get

pr{an error occurs in the PC-simple(mn)-algorithm}
� O

[
pmn+1

n nexp
{−C5(n − mn)c2

n

}]
� O

[
na(mn+1)+1exp

{−C5(n − mn)n−2d
}]

= O[exp{a(mn + 1) log(n) + log(n) − C5(n1−2d − mnn−2d )}] = o(1),

because n1−2d dominates all other terms in the argument of the exp-function, due to mn = O(n1−b) and
the Assumption in 4mn that d < b/2. This completes the proof. �

Lemma A2 leaves some flexibility for choosing mn . The PC-algorithm yields a data-dependent stopping
level m̂reach,n , that is, the sample version of (8).

LEMMA A3. Consider Assumptions 1–5. Then,

pr(m̂reach,n = mreach,n) = 1 − O{exp(−Cn1−2d )} → 1 (n → ∞)

for some C > 0, with d is as in Assumption 4.

Proof . Consider the population version of the PC-simple algorithm, with stopping level mreach as defined
in (8). Note that mreach = mreach,n = O(n1−b) under Assumption 3. The sample PC-simple(mn) algorithm
with stopping level in the range of mn � mreach {mn = O(n1−b)}, coincides with the population version on
a set A having probability P[A] = 1 − O{exp(−Cn1−2d )}; see the last formula in the proof of Lemma A2.
Hence, on the set A, m̂reach,n = mreach. �

Lemma A2 with mn = peffn together with Lemma A3, and using that mreach,n � peffn , complete the
proof of Theorem 4. �

Proof of Theorem 5. By definition, An ⊆ A[1] for the population version. Denote by Zn(Y, j) the
quantity as in (9) with S = ∅ and by zn(Y, j) its population analogue, i.e. the Z -transformed population
correlation. An error occurs when screening the j th variable if Zn(Y, j) has been tested to be zero but in fact
zn(Y, j) � 0. We denote such an error event by E I I

j . Note that sup j=1,...,pn
pr(E I I

j ) � O(n) exp(−C1nc2
n),

for some C1 > 0; see formula (A6) above. We do not use any sparsity assumption for this derivation, but
we do invoke Assumption 4′, which requires a lower bound on nonzero marginal correlations. Thus, the
probability of an error occurring in the correlation screening procedure is bounded: for some C2 > 0,

pr
( ∪ j=1,...,pn E I I

j

) = O(pnn) exp
(−C1nc2

n

) = O
[
exp

{
(1 + a) log(n) − C1n1−2d

}]
= O

{
exp

(−C2n1−2d
)}

. �
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BÜHLMANN, P. (2008). Invited discussion on “Sure independence screening for ultra-high dimensional feature space”

(auths. J. FAN and J. LV). J. R. Statist. Soc. B 70, 884–7.
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