
Chapter 3

Ordinary Differential Equations

”Chemistry is, well technically,
chemistry is the study of matter.
But I prefer to see it as the study
of change.”

— Walter H. White, Breaking
bad

In this chapter we deal with the numerical treatment of Ordinary Differential Equa-
tions (ODEs). ODEs describe mathematically the change of one or several state variables.
Such equations arise commonly in the study of chemical kinetics or process dynamics (e.g.
batch reactor kinetics). However, in the fewest instances of practical interest analytical
solutions are known and this motivates the present chapter.

3.1 Problem statement and examples

Consider the scalar first order Initial Value Problem (IVP){
y′(x) = f(x, y(x)) scalar first order ODE
y(x0) = y0 initial value.

(3.1)

The goal is to find the solution y(x), function of the independent variable x, satisfying
the differential equation and the initial value from the starting point x0 to some end point
x̄. We call [x0, x̄] the integration interval. The function f(x, y(x)), commonly referred
to as the right-hand side of the ODE, depends on the independent variable x and the
solution y(x) itself.

It is important to note that here we are not just looking for a number solving an
equation (like in the previous chapter), but rather for an entire function! Moreover,
Eq. (3.1) is called first order ODE because the highest derivative of y(x) appearing in
the equation is the first. Formally we can write down the solution as a so-called integral
equation

y(x) = y0 +

∫ x

x0

f(s, y(s))ds , x0 ≤ x ≤ x̄. (3.2)

1
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This may already suggest a way to obtain approximate solutions: numerical quadrature!
But again note that the function to integrate f depends on the solution y(x) itself.

Here and in the following we denote the independent variable generically by x, al-
though, in many cases x is the time (i.e. t). However, x may also be some displacement
or a (radial) coordinate, etc.

Let’s begin with a few (probably) familiar examples.

Example 3.1. A very simple example is the following ODE

y′(x) = y(x) (3.3)

with initial value y(x0) = y0. What the differential equation actually tells us is that at
every point in the x-y plane the slope of the solution y(x) is given by the value of y(x)
itself, e.g. the slope of y(x) at the point (x, y) = (1, 2) is simply 2. This can be visualized
with the so-called slope field, which is shown for Eq. (3.3) in the left panel of Figure 3.1.
The slope field shows the general trend of the solutions of the ODE. A particular solution
is then found by choosing an initial value and simply following the slope field (see the
blue and green lines in Figure 3.1). Actually, many numerical methods we shall see have
a straightforward graphical representation in the slope field. ▲

Example 3.2. As a second example consider the ODE

y′(x) = ay(x)− by2(x) = (a− by(x))y(x) (3.4)

with some initial value y(x0) = y0. The slope field of this example is shown in the right
panel of Figure 3.1 with a = 2 and b = 1. You can see that something special happens
for y = 0 and y = a/b: for these values the slope vanishes, i.e. the solution remains
constant. These points are so-called stationary points. At these points the derivative of
the solution is zero and such steady states are quite common in practice. ▲

Generally, one has to deal with systems of first order ODEs

y′1(x) = f1(x, y1(x), ..., yn(x))

...
y′n(x) = fn(x, y1(x), ..., yn(x)),

where yi(x), i = 1, ..., n, are functions of the independent variable x ∈ [x0, x̄]. To state
an IVP, we need to specify an integration interval [x0, x̄] and n initial values

y1(x0) = y1,0
...

yn(x0) = yn,0.

(3.5)

The double index notation is rather unaesthetic, but will be avoided with the following
definition. Let’s define

y(x) =

y1(x)
...

yn(x)

 , F(x,y(x)) =

f1(x, y1(x), ..., yn(x))
...

fn(x, y1(x), ..., yn(x))

 and y0 =

y1,0
...

yn,0

 , (3.6)
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Figure 3.1: ODE slope field and solutions to a few IVPs: left Eq. (3.3) and right Eq. (3.4).

which give us the opportunity to rewrite the first order system IVP in the compact form{
y′(x) = f(x,y(x)) system of first order ODEs
y(x0) = y0 initial values.

(3.7)

Let’s start with a probably familiar example of batch reactor kinetics.

Example 3.3. We consider the batch reactor kinetics for the network of two elementary
reactions

A+B → C rR1 = k1cAcB

C +B → D rR1 = k2cCcB,
(3.8)

where the cj , j = A,B,C,D, are the respective chemical species concentrations, and k1
and k2 the respective rate constants. The time evolution of the concentrations are then
given by the following system of four ODEs

dcA
dt

= −k1cAcB

dcB
dt

= −k1cAcB − k2cCcB

dcC
dt

= +k1cAcB − k2cCcB

dcD
dt

= +k2cCcB,

(3.9)

with some initial concentrations cj,0, j = A,B,C,D, respectively. Note that here the
independent variable is the time t. By defining

y(t) =


cA(t)
cB(t)
cC(t)
cD(t)

 , F(t,y(t)) =


−k1cAcB

−k1cAcB − k2cCcB
+k1cAcB − k2cCcB

+k2cCcB

 and y0 =


cA,0

cB,0

cC,0

cD,0

 , (3.10)
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we can write this IVP in form of Eq. (3.7) (just with the independent variable t instead
of x). ▲

Example 3.4. As another example consider the linear system of ODEs

y′(x) = Ay(x), (3.11)

where A ∈ Rn×n is a real square matrix and the initial value y(x0) = y0 ∈ Rn a real
vector. The solution to this IVP can be formally written as

y(x) = eAxy0, (3.12)

where we introduced the matrix exponential

eA =
∞∑
k=0

Ak

k!
. (3.13)

Let’s verify that this is indeed the solution to the IVP:

y′(x) =
d

dx

( ∞∑
k=0

Akxk

k!
y0

)

=
d

dx

(
I +Ax+

1

2
A2x2 +

1

6
A3x3 + ...

)
y0

=

(
A+A2x+

1

2
A3x2 + ...

)
y0

= A

(
I +Ax+

1

2
A2x2 +

1

6
A3x3 + ...

)
y0

= A

( ∞∑
k=0

Akxk

k!

)
y0

= Ay(x).

▲

So far we have seen only first order ODEs. A n-th order scalar ODE is given by

y(n)(x) = f(x, y(x), y′(x), ..., y(n−1)(x)), (3.14)

where f is a (in general) nonlinear function of the independent variable x, the solution
y(x) and it’s derivatives y′(x), y′′(x), ..., y(n−1)(x). To obtain a complete IVP, we have
to specify n initial values

y(x0) = y0, y′(x0) = y′0, ..., y(n−1)(x0) = y
(n−1)
0 , (3.15)

that specify the value of the solution y(x) and it’s (n− 1) first derivatives at x0.
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Example 3.5. A classical example of a second order ODE is given by the equation of
motion in physics

mẍ = F, (3.16)

i.e. Newton’s second law, linking the acceleration of a body ẍ to the net force F acting
on it. Here each overdot represents one time derivative. To form a complete IVP, one
has to specify the initial position x(t0) = x0 and velocity ẋ(t0) = v0 of the body, where
t0 is the initial time. ▲

All the numerical methods we shall see in this chapter are for first order ODEs. The
reason for this is that a n-th order ODE can simply be rewritten as a system of n first
order ODEs by doing the following relabeling

y0(x) = y(x) (3.17)
y′0(x) = y1(x) (3.18)
y′1(x) = y2(x) (3.19)

... (3.20)
y′n−2(x) = yn−1(x) (3.21)
y′n−1(x) = f(x, y0, y1, ..., yn−1). (3.22)

So we end up with a system of first order ODEs

y′(x) = f(x,y), (3.23)

where

y(x) =


y0(x)

...
yn−2(x)
yn−1(x)

 and f(x,y) =


y1(x)

...
yn−1(x)

f(x, y0, ..., yn−1)

 . (3.24)

Please note the notational difference between the right-hand side of the n-th order ODE
f and the one from the equivalent first-order system f !

Let’s illustrate this order reduction with a couple of examples.

Example 3.6. Consider the second order ODE

y′′ = f(x, y, y′), x ∈ [x0, x̄]

for some function f and with initial values

y(x0) = 1, y′(x0) = 2.

By relabeling as
y0(x) = y(x), y1(x) = y′(x),

we obtain the equivalent first order system Eq. (3.23) with

y(x) =

(
y0(x)
y1(x)

)
, f(x,y) =

(
y1(x)

f(x, y0(x), y1(x))

)
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and initial values

y(x0) =

(
1
2

)
.

▲

Example 3.7. Consider the third order ODE

y′′′ = −2y′′ + y′ + y2 − ex, x ∈ [x0, x̄]

with initial values
y(x0) = 1, y′(x0) = 0, y′′(x0) = 0.

By relabeling as
y0(x) = y(x), y1(x) = y′(x), y2(x) = y′′(x),

we obtain the equivalent first order system Eq. (3.23) with

y(x) =

y0(x)
y1(x)
y2(x)

 , f(x,y) =

 y1(x)
y2(x)

−2y2 + y1 + y20 − ex


and initial values

y(x0) =

1
0
0

 .

▲

Solving IVP analytically is generally difficult or even impossible. This motivates the
use of numerical methods.

3.2 The Euler methods

In the following we consider the scalar first order IVP{
y′(x) = f(x, y(x)) scalar first order ODE
y(x0) = y0 initial value.

(3.25)

The goal is to find an approximation to the solution y(x) for x0 ≤ x ≤ x̄.
The idea is to discretize the integration interval [x0, x̄] in N equal subintervals

xj = x0 + jh, j = 0, 1, ..., N, (3.26)

where the so-called step size is
h =

x̄− x0
N

, (3.27)

and approximate the solution by "following" the slope field. Since f(x0, y0) gives the
slope at x0, we follow this direction until x1, i.e. we connect the line segment

y1 − y0
x1 − x0

= f(x0, y0), (3.28)
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Figure 3.2: Illustration of the explicit Euler method.

which immediately gives the explicit expression

y1 = y0 + (x1 − x0)︸ ︷︷ ︸
h

f(x0, y0) = y0 + hf(x0, y0). (3.29)

This procedure is then repeated from x1 to x2, etc., and we obtain the so-called Euler
method

yj+1 = yj + hf(xj , yj) , j = 0, 1, ..., N − 1. (3.30)

This is illustrated in Figure 3.2. The Euler method is commonly also referred to by
explicit Euler and Euler forward method.

A different method is obtained by tracing a line segment backward from x1

y1 − y0
x1 − x0

= f(x1, y1), (3.31)

which immediately gives the implicit1 expression

y1 = y0 + (x1 − x0)︸ ︷︷ ︸
h

f(x1, y1) = y0 + hf(x1, y1). (3.32)

The repetition of this procedure gives the so-called implicit Euler method

yj+1 = yj + hf(xj+1, yj+1) , j = 0, 1, ..., N − 1. (3.33)

This is illustrated in Figure 3.3 and is also known as the Euler backward method in the
literature.

We stress that to obtain yj+1 you have to solve the (possibly nonlinear) Eq. (3.33).
In order to do this, you could apply the methods we have seen in Chapter 2!

1y1 appears on both sides of Eq. (3.32) and is therefore only implicitly defined!
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Figure 3.3: Illustration of the implicit Euler method. Also shown are a few trial values
for yj+1 at which the slopes do not trace back to yj .

Example 3.8. Let’s illustrate the Euler methods by the following IVP{
y′(x) = −y(x) + 2 cos(x)

y(0) = 1

for x ∈ [0, 4]. One easily verifies that the exact solution is given by

y(x) = sin(x) + cos(x).

By applying the Euler methods we get:

• explicit Euler method (EE):

yj+1 = yj + hf(xj , yj)

= yj + h(−yj + 2 cos(xj))

= (1− h)yj + 2h cos(xj)

• implicit Euler method (IE):

yj+1 = yj + hf(xj+1, yj+1)

= yj + h(−yj+1 + 2 cos(xj+1))

The latter equation has to be solved for yj+1, which in this simple (linear) example
gives

yj+1 =
1

1 + h
(yj + 2h cos(xj+1)) .
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Figure 3.4: Euler methods applied to the example IVP.

N h EE |yN − y(x̄)| IE |yN − y(x̄)|
8 2−1 2.666E-01 1.830E-01
16 2−2 1.105E-01 9.295E-02
32 2−3 5.097E-02 4.688E-02
64 2−4 2.453E-02 2.354E-02
128 2−5 1.204E-02 1.180E-02

Table 3.1: Errors for the explicit and implicit Euler methods with decreasing step size.

In the left panel of Figure 3.4 is shown the result of the above methods (with h = 1/2,
i.e. N = 8) together with the exact solution. Obviously, the Euler methods are only an
approximation of the exact solution! ▲

Let’s now apply the above methods for various step sizes h and compare the obtained
results with the exact solution, that is we study the influence of h (or N) on the accuracy
of the approximation. To this end we compute the absolute difference between the
approximate solution at the last step and the exact solution |yN − y(x̄)|, the so-called
(absolute) error. The result is shown in Table 3.1. From the table we see that the absolute
error decreases with smaller step sizes (or accordingly larger number of subintervals N).
A result which you have surely anticipated! The table tells us even more: the error
decreases proportionally to the step size h (or inversely proportional to the number of
subintervals N). This is further illustrated graphically in the right panel of Figure 3.4
(note the double logarithmic axes!).

The Euler methods can easily be applied to systems of first order ODE. Just replace
the scalar yj ’s and f(xj , yj) by corresponding vectors: yj and f(xj ,yj). Done!

In Eq. (3.27) we have chosen a constant step size h. However, the step size can
easily be varied at each step, i.e. h = hj . For instance, the step size could be varied
according the magnitude of the right-hand side or, better, on the basis of an estimate of
the approximation error.
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3.3 Error estimation and convergence

When solving IVP approximately, it is crucial to have an estimate of the committed
approximation error. For simplicity we limit the presentation to the scalar IVP Eq. (3.25)
with a constant step size.

To analyze the accuracy of so-called one-step2 methods we consider the general ex-
pression

yj+1 = yj + hΦ(xj , yj , yj+1, h) (3.34)

and call Φ the increment function, h the step size and yj is the numerical approximation
to the exact solution y(xj) at xj . For the two Euler methods the increment functions
read

Φ(xj , yj , yj+1, h) = f(xj , yj) explicit Euler
Φ(xj , yj , yj+1, h) = f(xj+1, yj+1) implicit Euler.

We discretize the interval I = [x0, x̄] (on which we seek the approximate solution)
uniformly in N subintervals

xj = x0 + hj , j = 0, 1, ..., N, (3.35)

where the constant step size is given by

h =
x̄− x0
N

. (3.36)

We then define the local truncation error (LTE) at the j-th step as

ej = y(xj)− y(xj−1)− hΦ(xj−1, y(xj−1), y(xj), h). (3.37)

In words: the LTE is the error after one step of a method executed with the exact
solution.

However, in practice it is crucial to have an estimate of the error after a certain
number of steps, e.g. at the end of the integration interval. For this we define the global
truncation error (GTE) at the j-th step as

Ej = y(xj)− yj . (3.38)

In words: the GTE is the cumulated error after j steps.
The LTE of a method is usually computed with simple Taylor expansions under

the assumption that the function f(x, y) and the solution y(x) are sufficiently often
2One-step methods because they depend only on the current yj and the next step yj+1.
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continuously differentiable. Let’s compute the LTE of the explicit Euler method:

ej = y(xj)− y(xj−1)− hf(xj−1, y(xj−1))

= y(xj−1 + h)− y(xj−1)− hf(xj−1, y(xj−1)) (xj = xj−1 + h)

= y(xj−1) + h y′(xj−1)︸ ︷︷ ︸
ODE
= f(xj−1,y(xj−1))

+
h2

2
y′′(xj−1) + · · · − y(xj−1)− hf(xj−1, y(xj−1)) (Taylor expansion)

= y(xj−1) + hf(xj−1, y(xj−1)) +
h2

2
y′′(xj−1) + · · · − y(xj−1)− hf(xj−1, y(xj−1))

=
h2

2
y′′(xj−1) + . . .

= O(h2)

This tells us that the LTE of the Euler method is proportional to h2. Try as an exercise
to compute the LTE for the implicit Euler method. You should also get |ej | = O(h2).

We define that a method has order of accuracy p if

|ej | = Chp+1 = O(hp+1), (3.39)

where C > 0 is a constant (independent of h!). Note especially the subtlety between p
and p+1 in this definition. This will become clear in the following. Therefore, the Euler
methods have order of accuracy p = 1. We have already observed this experimentally at
the end of the previous section.

So we have seen that the LTE can be easily estimated with Taylor expansions. Let’s
now try to relate the LTE to the more practically meaningful GTE at the end of the
integration, i.e. EN . This will be slightly technical, but don’t be afraid. Also note that
nobody will ask you to do these steps in an exam. We do this only for explicit methods3

which then take the form
yj+1 = yj + hΦ(xj , yj , h). (3.40)

Let the method have order of accuracy p, that is we have for the LTE

|ej | = |y(xj+1)− y(xj)− hΦ(xj , y(xj), h)| = Chp+1. (3.41)

Moreover, we have to assume a so-called Lipschitz condition for the increment function
Φ

|Φ(x, y, h)− Φ(x, y∗, h)| ≤ L|y − y∗| ∀x ∈ [x0, x̄] and ∀y, y∗ ∈ I[x0, x̄]. (3.42)

Now let’s state the obvious

y(xN ) = y(xN−1) + h
y(xN )− y(xN−1)

h
(3.43)

and the final integration step (to reach x̄ = xN !)

yN = yN−1 + hΦ(xN−1, yN−1). (3.44)
3Doing it for implicit methods is slightly more cumbersome and in the end one draws the same

conclusion.
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By subtracting Eq. (3.43) from Eq. (3.44) we get

y(xN )− yN = y(xN−1) + h
y(xN )− y(xN−1)

h
− yN−1 − hΦ(xN−1, yN−1)

EN = y(xN−1)− yN−1 + h

(
y(xN )− y(xN−1)

h
− Φ(xN−1, yN−1)

)
EN = EN−1 + h

(
y(xN )− y(xN−1)

h
− Φ(xN−1, yN−1)

)
,

where we have used the definition of the GTE in the second and third equality. Now we
simply add zero to the right-hand side

EN = EN−1 + h

(
y(xN )− y(xN−1)

h
− Φ(xN−1, y(xN−1))

)
+ h

(
Φ(xN−1, y(xN−1))− Φ(xN−1, yN−1)

)
,

that is we simply added and subtracted hΦ(xN−1, y(xN−1)). By taking the absolute
value of the last equation and applying the triangle inequality we get

|EN | ≤ |EN−1| + h

Eq. (3.41)

≤ Chp︷ ︸︸ ︷∣∣∣∣y(xN )− y(xN−1)

h
− Φ(xN−1, y(xN−1))

∣∣∣∣
+ h

∣∣∣∣Φ(xN−1, y(xN−1))− Φ(xN−1, yN−1)

∣∣∣∣︸ ︷︷ ︸
Eq. (3.42)

≤ L|y(xN−1)−yN−1|=L|EN−1|

.

By making use of the order of accuracy and Lipschitz condition we obtain

|EN | ≤ (1 + Lh)|EN−1|+ Chp+1

which says that we can estimate the GTE at step N by a relation for the GTE at step
N − 1. By repeatedly using this relation we get

|EN | ≤ (1 + Lh) |EN−1|︸ ︷︷ ︸
≤(1+Lh)|EN−2+Chp+1

+Chp+1

≤ (1 + Lh)2 |EN−2|︸ ︷︷ ︸
≤(1+Lh)|EN−3+Chp+1

+Chp+1

(
1 + (1 + Lh)

)

≤ (1 + Lh)3 |EN−3|︸ ︷︷ ︸
≤(1+Lh)|EN−4+Chp+1

+Chp+1

(
1 + (1 + Lh) + (1 + Lh)2

)
...

≤ (1 + Lh)N |E0|︸︷︷︸
=|y(x0)−y0|=0!

+Chp+1
N−1∑
i=0

(1 + Lh)i = Chp+1
N−1∑
i=0

(1 + Lh)i
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For the last term we can use the geometric series formula4 and one further trick to get

N−1∑
i=0

(1 + Lh)i =
(1 + Lh)N − 1

1 + Lh− 1
=

≤eNhL︷ ︸︸ ︷
(1 + Lh)N −1

Lh
≤ eNhL − 1

Lh
.

To convince yourself of the last inequality just use the series definition of the exponential
function, or, have a look at Figure 3.5. Now we can finally come to a conclusion

|EN | ≤ Chp+1 e
N

x̄−x0
N

hL − 1

Lh
= Chp

eL(x̄−x0) − 1

L
= C̃hp = O(hp).

This tells us that if the LTE of a method is O(hp+1), then the GTE is O(hp), that is the
definition of the order of accuracy of a method Eq. (3.39) makes sense!

3.4 Runge-Kutta methods

As we have seen, the Euler methods are first-order accurate, i.e. |EN | = O(h). So to
make the error a hundred times smaller we have to decrease the step size h by the same
factor. This means that we have to make hundred times more integration steps, or in
other words, a hundred times more work! A natural question then comes up: can we do
better? Of course the answer is positive and these higher-order methods are the subject
of this section. Again to simplify the presentation, we limit ourselves to the scalar IVP
Eq. (3.25) with a constant step size.

4Geometric series formula
N∑
i=0

qi = qN+1−1
q−1

.
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The Euler methods evaluated the slopes either at the present step xj or at the new
step xj+1. A first improvement could be to evaluate the slope somewhere between xj
and xj+1. A first try would be right in the middle, which would result in a method of
the form

yj+1 = yj + hf
(
xj + h/2, ỹj+1/2

)
, (3.45)

where ỹj+1/2 is an (yet unknown!) approximation of the solution at xj+h/2. One simple
way to approximate ỹj+1/2 could be through half an explicit Euler step

ỹj+1/2 = yj +
h

2
f(xj , yj). (3.46)

The method is illustrated in the left panel of Figure 3.6. From the figure one already
gets the impression that the new method gives a better approximation than the explicit
Euler method.

To show that the new method is indeed better, let’s compute the local truncation
error

ej+1 = y(xj+1)−
(
y(xj) + hf

(
xj +

h

2
, y(xj) +

h

2
f(xj , y(xj))

))
(3.47)

The computations proceed as for the Euler methods with heavy usage of Taylor series
expansions. On the one hand we have

y(xj+1) = y(xj) + hy′(xj) +
h2

2
y′′(xj) +O(h3)

= y(xj) + hf(xj , y(xj))

+
h2

2

(
∂f

∂x
(xj , y(xj)) +

∂f

∂y
(xj , y(xj)) · f(xj , y(xj))

)
+O(h3),

(3.48)

where we made use of the ODE and its first derivative
y′ = f(x, y)

y′′ =
∂f

∂x
(x, y) +

∂f

∂y
(x, y) · f(x, y).

(3.49)

On the other hand we have

f

(
xj +

h

2
, y(xj) +

h

2
f(xj , y(xj))

)
= f(xj , y(xj))

+
h

2

∂f

∂x
(xj , y(xj))

+
h

2

∂f

∂y
(xj , y(xj)) · f(xj , y(xj)) +O(h2).

(3.50)

Plugging Eq. (3.48) and Eq. (3.50) into Eq. (3.47)

ej+1 =

[
y(xj) + hf(xj , y(xj)) +

h2

2

(
∂f

∂x
(xj , y(xj)) +

∂f

∂y
(xj , y(xj)) · f(xj , y(xj))

)
+O(h3)

]
−
[
y(xj) + h

(
f(xj , y(xj)) +

h

2

∂f

∂x
(xj , y(xj)) +

h

2

∂f

∂y
(xj , y(xj)) · f(xj , y(xj)) +O(h2)

)]
= O(h3).
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Therefore the new method has order of accuracy p = 2! So it is indeed better than the
Euler method. Note that we silently assumed that the function f(x, y) and the solution
y(x) are sufficiently often continuously differentiable.

Now, by how much do you have to decrease the step size to get an error that is a
hundred times smaller? Ten times! Hence the amount of computational work you have
to do is also reduced and this explains the interest in higher-order methods.

Approximate solutions of IVP can be constructed by following a path in the ODE’s
slope field. In this respect, we introduce a very intuitive notation for the new method
above:

k1 = f(xj , yj)

k2 = f(xj + h/2, yj + h/2k1)

yj+1 = yj + hk2.

(3.51)

The k1 and k2 are approximations of the slopes and the next integration step yj+1 is
obtained by combining them. This method is known in the literature under the name of
Runge’s method.

Another method is given by

k1 = f(xj , yj)

k2 = f(xj + h, yj + hk1)

yj+1 = yj +
h

2
(k1 + k2) ,

(3.52)

which is known as Heun’s method. It takes a full explicit Euler step, computes an ap-
proximation of the slope at xj+1 and then computes yj+1 by taking the average slope
(see the right panel of Figure 3.6). This method has order of accuracy p = 2 (try to show
it!).

Both Runge’s and Heun’s method are explicit one-step methods. When we con-
structed Runge’s, we took half an explicit Euler step Eq. (3.46). Instead, one could take
half an implicit Euler step to get

k1 = f

(
xj +

h

2
, yj +

h

2
k1

)
yj+1 = yj + hk1,

(3.53)

which is known as the implicit midpoint method. Implicit because the midpoint slope k1
is only implicitly defined! Yet another implicit method is given by

k1 = f(xj , yj)

k2 = f

(
xj + h, yj +

h

2
(k1 + k2)

)
yj+1 = yj +

h

2
(k1 + k2) ,

(3.54)

which is known as implicit trapezoidal method. Both implicit methods are second order
accurate. They are illustrated in Figure 3.7.



CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS 16

So far we have seen a few explicit and implicit examples of higher-order methods.
These are representatives of a large family of one-step methods known as Runge-Kutta
methods. They have the following form

yj+1 = yj + h

s∑
i=1

biki, (3.55)

where

ki = f

(
xj + cih, yj + h

s∑
l=1

ailkl

)
. (3.56)

Here s is the number of stages, ci the nodes, bi the weights, ail the Runge-Kutta matrix
and ki the slopes.

It is convenient write Runge-Kutta methods with the so-called Butcher tableau:

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass
b1 b2 · · · bs

=
c A

bT (3.57)

It is customary to not write the zeros at and above the diagonal in the Runge-Kutta
matrix. A few Runge-Kutta methods written with a Butcher tableau are given below

• explicit Euler
0

1

• implicit Euler
1 1

1

• Runge’s method
0
1
2

1
2

0 1

• Heuns’s method
0
1 1

1
2

1
2

• implicit midpoint method
1
2

1
2

1
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• implicit trapezoidal method
0
1 1

2
1
2

1
2

1
2

• "The" Runge-Kutta method (order of accuracy p = 4)
(Also known as classical Runge-Kutta method and simply RK4 )

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

The last example is probably the most well-known Runge-Kutta method and is illustrated
in Figure 3.8. It is explicit and fourth-order accurate.

Explicit Runge-Kutta methods are characterized by a lower triangular Runge-Kutta
matrix

A =


0
a21 0
...

. . .
as1 · · · 0

 .

As you probably have guessed, there is a tight connection between Runge-Kutta
methods and quadrature. To see this, let’s look at the LTE of a Runge-Kutta method

ej+1 = y(xj+1)−

(
y(xj) + h

s∑
i=1

biki

)

= y(xj+1)− y(xj)− h
s∑

i=1

biki

=

∫ xj+1

xj

y′(x)dx− h
s∑

i=1

biki

=

∫ xj+1

xj

f(x, y(x))dx− h
s∑

i=1

biki.

Note that the ki are evaluation of f ! Therefore a Runge-Kutta method has the form of
a quadrature rule with nodes xj + cih and weights bi.

The implicit midpoint/trapezoidal method have the midpoint/trapezoidal quadrature
rule as their basis. The Runge-Kutta method has the Simpson quadrature rule as basis.

Example 3.9. Let’s illustrate the seen Runge-Kutta methods by the same example IVP
as for the Euler methods {

y′(x) = −y(x) + 2 cos(x)

y(0) = 1
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for x ∈ [0, 4]. One again easily verifies that the exact solution is given by

y(x) = sin(x) + cos(x).

By applying the seen Runge-Kutta methods we get:

• Runge’s method
k1 = f(xj , yj)

= −yj + 2 cos(xj)

k2 = f(xj + h/2, yj + h/2k1)

= −
(
yj +

h

2
k1

)
+ 2 cos

(
xj +

h

2

)
yj+1 = yj + hk2.

• Heun’s method:
k1 = f(xj , yj)

= −yj + 2 cos(xj)

k2 = f(xj + h, yj + hk1)

= −(yj + hk1) + 2 cos(xj + h)

yj+1 = yj +
h

2
(k1 + k2)

• Implicit midpoint method:

k1 = f

(
xj +

h

2
, yj +

h

2
k1

)
= −

(
yj +

h

2
k1

)
+ 2 cos

(
xj +

h

2

)
yj+1 = yj + hk1

Note that k1 is only implicitly defined and we have to solve for it, which in this
simple (linear) example just gives

k1 =
1

1 + h/2

(
−yj + 2 cos

(
xj +

h

2

))
• Implicit trapezoidal method:

k1 = f(xj , yj)

= −yj + 2 cos(xj)

k2 = f

(
xj + h, yj +

h

2
(k1 + k2)

)
= −

(
yj +

h

2
(k1 + k2)

)
+ 2 cos(xj + h)

yj+1 = yj +
h

2
(k1 + k2)
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Here k2 is only implicitly defined and solving for it gives

k2 =
1

1 + h
2

(
−yj −

h

2
k1 + 2 cos (xj + h)

)

• (The/Classical) Runge-Method (RK4):

k1 = f(xj , yj)

= −yj + 2 cos(xj)

k2 = f(xj + h/2, yj + h/2k1)

= −(yj + h/2k1) + 2 cos(xj + h/2)

k3 = f(xj + h/2, yj + h/2k2)

= −(yj + h/2k2) + 2 cos(xj + h/2)

k4 = f(xj + h, yj + hk3)

= −(yj + hk3) + 2 cos(xj + h)

yj+1 = yj +
h

6
(k1 + 2k2 + 2k3 + k4)

In Figure 3.9 and Figure 3.10 are shown the results of the above methods (with h = 1,
i.e. N = 4). Moreover, in the left panel of Figure 3.10 is shown the final GTE, that is at
x = x̄ = 4, for all methods. As you can see, Runge’s, Heun’s and both implicit methods
are second order accurate, i.e. |EN | = O(h2). However, the classical Runge-Kutta
method is fourth-order accurate, i.e. |EN | = O(h4). ▲

Runge-Kutta methods can be applied to systems of first order ODEs in a straight-
forward manner: simply replace the scalar yj and f(xj , yj) by corresponding vectors yj

and f(xj ,yj).
The step size can also easily be varied, i.e. h = hj . In practice, the step size is

changed to reach a certain prescribed accuracy5. However, we will not discuss the issue
of adaptive step sizes in this lecture and we refer to [2, 1, 3, 4] and references therein.

5In MATLAB’s ode45 the desired accuracy can be set with the RelTol and AbsTol property values.
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2

f(xj, yj) = k1

f(xj + h/2, ỹj+ 1/2) = k2

y(x)

x

y
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xj+ 1

yj+ 1

k1
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Figure 3.6: Runge’s method (left panel) and Heun’s method (right panel).
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Figure 3.7: Implicit midpoint method (left panel) and implicit trapezoidal method (right
panel).



CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS 21

y(x)

x

y

xj

yj

xj+ 1

yj+ 1

xj +
h
2

k1

k2

k3

k4

Figure 3.8: "The"/classical Runge-Kutta method.
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Figure 3.9: Runge’s and Heun’s method (left panel), and implicit trapezoidal and mid-
point method (right panel) applied to the IVP in Example 3.9.
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Figure 3.10: Classical Runge-Kutta method applied to the IVP in Example 3.9 (left
panel) and errors for all seen Runge-Kutta methods in Example 3.9 (right panel).
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3.5 Multistep methods

So far we have seen only one-step methods which compute an approximation of yj+1 at
xj+1 solely from an approximation yj at xj (maybe with the help of intermediate stages).
In contrast, so-called multistep methods use the information available from previous steps
xj−1, yj−1, xj−2, yj−2, ... In doing so, the variation of the step size becomes more involved
and therefore we shall keep it constant.

For ease of presentation, we limit the discussion to the scalar IVP Eq. (3.25). We
start from the integral equation equivalent to the ODE (see Eq. (3.2)) between xj and
xj+1

y(xj+1) = y(xj) +

∫ xj+1

xj

f(x, y(x))dx. (3.58)

The idea is to approximate the integral using interpolation. Suppose we have some
approximations yj−1 ≈ y(xj−1) and yj ≈ y(xj). We can then approximate the right-
hand side of the ODE f(x, y) by the linear interpolation polynomial6

p1(x) = f(xj−1, yj−1)L0(x) + f(xj−1, yj−1)L1(x)

= f(xj−1, yj−1)
x− xj

xj−1 − xj
+ f(xj , yj)

x− xj−1

xj − xj−1

= −fj−1
x− xj

h
+ fj

x− xj−1

h
,

where we introduced the notation f(xj , yj) = fj and used the constant step size h =
xj − xj−1. This obviously represents an approximation of f over [xj−1, xj ]. By extrapo-
lating p1(x) over the interval [xj , xj+1] we can try to approximate the integral equation
Eq. (3.58) by

yj+1 = yj +

∫ xj+1

xj

p1(x)dx

= yj −
fj−1

h

∫ xj+1

xj

(x− xj)dx+
fj
h

∫ xj+1

xj

(x− xj−1)dx

= yj −
fj−1

h

(
x2

2
− xjx

)∣∣∣∣xj+1

xj

+
fj
h

(
x2

2
− xj−1x

)∣∣∣∣xj+1

xj

= yj −
fj−1

h

(
1

2

(
x2j+1 − x2j

)
− xj (xj+1 − xj)

)
︸ ︷︷ ︸

=···=h2/2

+
fj
h

(
1

2

(
x2j+1 − x2j

)
− xj−1 (xj+1 − xj)

)
︸ ︷︷ ︸

=···=3h2/2

= yj −
fj−1

h

h2

2
+

fj
h

3h2

2
6See Chapter 1.
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So we get an explicit update formula

yj+1 = yj + h

(
3

2
fj −

1

2
fj−1

)
, (3.59)

which is known in the literature as the two-step Adams-Bashforth method (AB2). This
method makes use of the known yj−1 and yj to compute yj+1, hence two-step method!
See Figure 3.11 for an illustration.

However, to apply the method Eq. (3.59) to an IVP, one needs also an approximation
to y1. This can easily be produced by any7 one-step method of the previous section.

Let’s now have a look at the method’s accuracy properties. Similar error and accu-
racy definitions as for one-step methods hold for multistep methods. For instance, let’s
compute the LTE of the above method (again tacitly assuming that the function f(x, y)
and the solution y(x) are sufficiently often continuously differentiable):

ej+1 = y(xj+1)−
(
y(xj) + h

(
3

2
f(xj , y(xj))−

1

2
f(xj−1, y(xj−1))

))
ODE
= y(xj+1︸︷︷︸

xj+h

)− y(xj)− h
3

2
y′(xj) + h

1

2
y′(xj−1︸︷︷︸

xj−h

)

Taylor
= y(xj) + hy′(xj) +

h2

2
y′′(xj) +

h3

6
y′′′(xj) + · · ·

− y(xj)

− 3h

2
y′(xj)

+
h

2

(
y′(xj)− hy′′(xj) +

h2

2
y′′′(xj) + · · ·

)
=

5

12
h3y′′′(xj) + · · ·

= O(h3).

Like for one-step methods one can show that if the LTE is O(hp+1), then the GTE is
O(hp). So this motivates the definition, that we call a multistep method p-th order
accurate if the LTE is O(hp+1).

So the two-step Adam-Bashforth methods is second order accurate. Although this
method is computationally as expensive as the first order accurate explicit Euler method
(one new evaluation of f per step since you already have fj−1 = f(xj−1, yj−1)), it has
higher accuracy. Thereby it is computationally more efficient. This explains the interest
in multistep methods. These methods gain computational efficiency by using information
from previous integration steps (one-step methods use only the last one!).

Implicit multistep can also be easily constructed. This leads to Adams-Moulton and
Backward Difference Formula (BDF) methods. However, we shall not treat them in this
lecture and we refer to [2, 1, 3, 4] and references therein.

7Actually, you want to choose a one-step method that has at least the same order of accuracy than
the multistep method you want to apply.
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Figure 3.11: Two-step Adam-Bashforth method.

Example 3.10. Let’s apply the above multistep method to the now familiar example
IVP: {

y′(x) = −y(x) + 2 cos(x)

y(0) = 1

for x ∈ [0, 4]. Applying the two-step Adam-Bashforth method (AB2) gives

yj+1 = yj + h

(
3

2
fj −

1

2
fj−1

)
= yj + h

(
3

2
(−yj + cos(xj))−

1

2
(−yj−1 + cos(xj−1))

)
=

(
1− 3h

2

)
yj +

h

2
yj−1 + h (cos(xj)− cos(xj−1)) .

To compute the needed y1 Runge’s method was used. The left panel of Figure 3.12 shows
the approximate solution with h = 1/2 (N = 8).

The right panel of the same figure shows the error as a function of the step size. As
you can see, the method is indeed second order accurate. ▲

Solving first order systems with multistep methods is easy: just replace the scalar yj
and f(xj , yj) by corresponding vectors yj and f(xj ,yj).

3.6 Review questions

Here a few review questions8 for the present chapter:

(a)
8FAQs at exams...
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Figure 3.12: Two-step Adam-Bashforth method applied to the example IVP.
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