

(Danckwerts) and Chemical Engineers 1999 and Chemical

Steady state tubular reactor

$$
\frac{1}{Pe} \frac{u_{i+1} - 2u_i + u_{i-1}}{\Delta z^2} - \frac{u_i - u_{i-1}}{\Delta z} - Da \cdot u_i^n = 0
$$

$$
u_0 - \frac{1}{Pe} \frac{u_1 - u_0}{\Delta z} = 1 \longrightarrow u_0 = \frac{1}{1 + \frac{1}{Pe \Delta z}} \left(\frac{1}{Pe \Delta z} u_1 + 1\right)
$$

$$
\frac{u_{N+1} - u_N}{\Delta z} = 0 \longrightarrow u_{N+1} = u_N
$$

 $i = 1, 2, ..., N$

System of nonlinear equations!!!

Numerical Methods for Chemical Engineers 12

- 1. Solve the steady state tubular reactor for 20 different Peclet numbers (between 0.01 and 100) and for a first ($n=1$) and a second ($n=2$) order reaction. Use a Damköhler number of unity. Complete the template $rhs.m$ by implementing the non-linear equations to solve.
- 2. Plot the conversion at the end of the reactor $1 \frac{c_{\text{out}}}{c_{\text{in}}}$ vs. the Peclet number for both reaction orders number for both reaction orders. Also plot the ratio between the conversions of the first order and second order reaction

• What is better for these reactions, a lot of back-mixing (Pe small, CSTR) or ideal plug flow (Pe large, PFR)?

●What influence does the reaction order have overall and at low or high Peclet numbers?

Complete the template TubReact_steady_state.m

```
% compute right-hand side function f
           function f = rhs(u, Pe, Da, n);
           % function f = rhs(u);
           %
           % Purpose: compute the right-hand function of the spatially discretized
           % (non-dimensionalized) advection-diffusion-reaction equation for a
           % tubular reactor
           %
           % du/dtheta = - du/dz + 1/Pe d^2u/dz^2 - Da u^n
           %
                     % using backward finite differences for the advection term and central
           % finite differences for the diffusion term
           %
           % Input: u ... concentration
           % Pe ... Peclet number
           % Da ... Damkoehler number
                   % n ... order of reaction
           %
           % Output: f ... right-hand side function, i.e. du/dtheta
           %
           % Notes: None.
           % 
              % get number of grid points
             N = length(u);
              % compute grid spacing \Delta z (since non-dimensionalized 1/(N+1))
             dz = 1./(N + 1);
              % compute boundary values u_{0} and u_{N+1}
             Pedz = Pe^*dz;
              u0 = 0.; % ... COMPLETE HERE ...
              uNp1 = 0.; % ... COMPLETE HERE ...
              % set up u array with boundary values, i.e. "ghost points"
              % uGH = [u_{0},u_{1},u_{2}, ... ,u_{N-1},u_{N},u_{N+1}]
             uGH = [u0; u; uNp1];f = zeros(size(uGH)); % ... COMPLETE HERErhs.m
                                                                          Slide 12
```


Array indexing (Matlab one-based indexing)

TubReact_steady_state.m

```
% set parameters
N = 100; % number of grid points
NPe = 20; % number of Peclet numbers
Pe = logspace(-2,2,NPe); % generate NPe Peclet numbers log. spaced
                          % between 0.01 and 100
Da = 1.; % Damkoehler number
% Steady State n = 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
n = 1; % reaction order
% allocate array for concentrations
u = zeros(N, 1);
% allocate array for conversion & residuum
Conversion_n1 = zeros(NPe, 1);res\_n1 = zeros(NPe, 1);% solve BVP for all desired Peclet numbers
for iPe=1:NPe
   % ... COMPLETE HERE ...
 f = \omega(u) zeros(length(u),1);
  res\_n1(iPe) = norm(f(u), Inf);end
% ...
                                                          Define a function handle and
                                                          use fsolve
```


Dynamic tubular reactor

Boundary conditions:

$$
u(0) - \frac{1}{Pe} \frac{\partial u}{\partial z}(0) = 1 \qquad \frac{\partial u}{\partial z}(1) = 0
$$

 $i = 1, 2, ..., N$

System of nonlinear ODEs!!! Stiff...

1.Solve the dynamic tubular reactor from initial 0 to final time of 5 with MATLAB's ode23s

Use the r hs.m from assignment 1 and the template TubReact_dynamic.m

Consider only a first order reaction with Pe=100 and $Da=1$

- 2.Plot the conversion at the end of the reactor vs. dimensionless time
- 3.At what time does the solution reach a steady state, i.e. how many reactor volumes of solvent will you need?

