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Chapter I: The Brauer group of a field

§1. Central simple algebras and Brauer groups

Let K be a field. Let M, (K) denote the algebra of n x n-matrices with entries in
K. We call an algebra A over K a form or a descent over K of the matrix algebra if
for some field extension L/K, L @ A = M, (L). The algebra M,(K) has trivially
this property. We are interested in the study of nontrivial forms for the matrix
algebra. We call an algebra A over K central if the centre of A is K, and simple if
[A : K] < oo and the only two-sided ideals of A are 0 and A. We shall show that
the forms for the matrix algebra are precisely central simple algebras.

Lemma 1.1. Let A be a central simple algebra over K and B a K-algebra whose
only two-sided ideals are 0 and B. Then the only two-sided ideals of A @k B are 0
and A @k B.

Proof. By Wedderburn’s theorem, A = M, (D), D a division ring, and centre D =
centre M, (D) = centre A = K. Since every two-sided ideal of M, (D ®k B) comes
from a two-sided ideal of D ® ¢ B, we replace A by D and assume that A is a finite
dimensional central division algebra over K. Let A # 0 be a two-sided ideal of
A ®k B. Let {e;}icr be a K-basis for B. Every element a € A, a # 0, can be
uniquely written as >, ;a; ® ¢;, J C I, a; € A. We call £(a) = |J|. We choose
a € A with {(a) minimal. Replacing a by (aj:} ® 1)a, for some j, € J, we may
assume a;, = 1. Foranyd € A, o' = (d®1)a—a(d®1) =) (da; —a;d)®@e; € A and
l(a’) < {(a), aj, being 1, unless a’ = 0. Since ¢(a) is minimal, a’ = 0 = da; = a;d
forallt € J = a; € Kforalli € J =a € AN1® B. Since B is simple,
AN(1®B)=19B=101c A= A=AQk B. O

Lemma 1.2. Let A and B be K -algebras, then centre (A @ B) =
= centre AQg centre B.

Proof. Clearly, centre A ® i centre B C centre (A @k B). Let x € centre (A @k B).
Write z =), e; ® b;, {€;}icr a basis of A over K, the condition (1 ® b)z = z(1®b)
for all b € B implies, by the linear independence of {e;}, that bb; = b;b for all b € B.
Thus centre (A ®x B) C A®f centre B. Similarly, centre (A ®x B)centre A ®x B so
that centre (A ®x B) C (A ®k centre B) N (centre A @k B) C centre A @ centre B.

0

Proposition 1.3. If A and B are central simple algebras over K, then A Q@ B is
a central simple algebra over K.

Proof. Immediate from Lemma 1.1. and Lemma 1.2.. O
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Proposition 1.4. The following are equivalent.

1) A is a central simple algebra over K.

2) A is form over K for the matriz algebra.

Proof. Let A be a form over K for the matrix algebra and let L be a field extension
of K such that L @ A = M, (L). Then [A: K] = [M,(L) : L] = n®>. By Lemma
1.2.,

centre (L @k A) = L Q¢ centre A = centre M, (L) = L.

Thus [centre A : K] = [L®k centre A : L] = 1 and centre A = K. If A # 0 is a
two-sided ideal of A, then L ®@x A # 0 is a two-sided ideal of L @ A = M,(L).
Since M, (L) is simple we must have L®x A = L @k A; hence A = A. Suppose now
that A is a central simple algebra over K. Let K denote the algebraic closure of
K. By Lemma 1.1. and Lemma 1.2., K ®x A is central simple over K. Since the
only finite dimensional division algebra over an algebraically closed field is itself, it
follows, by Wedderburn’s theorem, that K @ A = M, (K). O

Let A be a central simple algebra over K. An extension L/K of fields is called a
splitting field for A if L®yx A = M,(L). Proposition 1.4. asserts that every central
simple algebra admits of a splitting field. In fact, we have the following

Proposition 1.5. Every central simple algebra A over K admits of a splitting field
L which is a finite extension of K.

Proof.  Let K denote the algebraic closure of K and ¢ : K @x A = M,(K)
be an isomorphism of K-algebras. If {e;}, 1 < i < n? is a K-basis of A and
o(l®e;) = Ej’k Nijk€ik, 1€k}, 1 < 4,k < n denoting the standard basis of M, (K),
we set L = K(N\ijr), 1 < i < n? 1 <4, k <n. Then ¢ induces an L-algebra
homomorphism ¢ : L ® A — M, (L). Since L @ A is simple, ¢ is injective. Since
n?=[A:K|=[M,(L): L], ¢ is an isomorphism. Il

The isomorphism classes of central simple algebras over K form a set which we
denote by S. The set S is a commutative monoid, with tensor product over K as the
operation, and the class of K as the identity element. We introduce an equivalence
relation on S as follows. If A is a central simple algebra over K, A = M,(D,)
where D, is a central division algebra over K, whose isomorphism class is uniquely
determined by A. We define A ~ B (Brauer equivalent) if and only if Dy = Djp.
We denote by [A], the class of A in S/.. We note that if A is Brauer equivalent to
B and [A : K] = [B : K|, then A is isomorphic to B. Two algebras A and B are
Brauer equivalent if and only if M,(A) = M,(B) for some integers r and s.

The equivalence relation on S is compatible with the monoid structure on S, i.e.
A~ A B~ B = A®x B~ A" @k B'. Thus the set S/. is again a commutative
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monoid under the operation induced by tensor product over K. We use multiplica-
tive notation for this operation. The identity element is the class of all matrix
algebras over K. The following proposition shows that S/. is in fact a group.

Proposition 1.6. For a central simple algebra A over K, if A°P denotes the opposite
algebra, then A°P is central simple and [A][A°P] = [K] in S/~.

Proof. If A is central simple, clearly A°P is again central simple. The maps
A — EndgA, a — L, and A°? — EndgA, a — R,, L,, R, denoting the left
and right multiplications, induce a homomorphism ¢ : A Q@ x A°® — Endy A, since
L,oRy, =RyoL,, a,be A. Since A®y A is simple (1.1.), ¢ is injective. Further
[A®x A® : K] = [A: K]* = [EndgA : K] so that ¢ is surjective and hence an
isomorphism. For a choice of basis of A over K, Endg A is isomorphic to a matrix
algebra over K. OJ

The group S/ . is called the Brauer group of K, denoted by Br(K). The assignment
A +— D, yields a bijection between Br(K) and the set of isomorphism classes of
central division algebras over K. Thus the Brauer group classifies finite dimensional
central division algebras over K. If K is an algebraically closed field, then Br(K) is
trivial, since the only finite dimensional division algebra over K is itself. If K = R,
the field of real numbers, a classical theorem of Frobenius asserts that Br(R) ~ Z /27,
the nontrivial class being the class of the real quaternion algebra H. If K is a finite
field, in view of a celebrated theorem of Wedderburn, Br(K) is trivial.

The assignment K +— Br(K) is functorial. In fact, if K < L is an injection of
fields, we have an induced functorial homomorphism Br(K) — Br(L) defined by
[A] = [L ®k A]. We conclude this section by recording a proposition which will be
needed later.

Proposition 1.7. Let K(X) denote the rational function field in the variable X.
The inclusion K — K(X) induces an injection Br(K) — Br(K(X)).

Proof. Let A be a central simple algebra over K such that K(X) ®x A is iso-
morphic to a matrix algebra over K(X). Let ¢ : K(X) ®x A = M,(K(X))
be an isomorphism of K(X)-algebras. If K is finite, Br(K) is trivial so that
A S M,(K). Suppose K infinite. Let {e;}, 1 < i < n? be a basis of A over
K and let (1 ®e;) = Zj,k Nijk€jks 1€k}, 1 < j, k < n, denoting the matrix units
in MH(K(X)), )\ijk € K(X) Let f € K[X] be such that f - )\ijk € K[X] for all 4, j
and k. Then ¢ induces a K[X, 1/ f]-algebra homomorphism ¢ : K[X,1/f]®x A —
M, (K[X,1/f]). Since K is infinite, we can choose o € K such that f(a) # 0. Spe-
cialising ¢ at « yields a K-algebra homomorphism A — M, (K) which is necessarily
an isomorphism, since A is central simple over K of dimension n?. O



§ 2. Existence of Galois splitting fields

We begin with the following two theorems which show how a simple subalgebra sits
inside a central simple algebra. The proofs may be found, for example, in the book
of Albert.

Theorem 2.1. Let A be a central simple K-algebra and B a simple subalgebra.
Then the commutant B' = {a € A | ab = ba Vb € B} of B is again simple and
[B:K|[B': K|=[A:K].

Theorem 2.2. Let B be a simple subalgebra of a central simple algebra A. If
Y B — A is a K-algebra homomorphism, there exists a unit u of A such that
Y(x) = uzu" for all z € B. In particular, 1 extends to an inner automorphism of

A.

We call a commutative subring B of A, a mazimal commutative subring if B is not
properly contained in any commutative subring of A. We derive from Theorem 2.1.
the following

Corollary 2.3. Let L be a subfield of a central simple algebra A over K. Then L is
a mazimal commutative subring of A if and only if [A: K] = [L : K|?. In particular,
a subfield L of a central division algebra D over K is a mazimal commutative subfield

if and only if [D : K] =[L : K]*.

Proposition 2.4. Let A be a central simple algebra over K and L a subfield of A
which s a mazximal commutative subring. Then L is a splitting field for A.

Proof.  We regard A as the bimodule 4A;. The mapping A — EndpA given
by a — L, and mapping L. — EndpA given by x — R, commute to yield an
induced homomorphism ¢ : L ®x A — End;A. Since the field L is a maximal
commutative subring of A, [L : K]? = [A : K] = [A : L][L : K] = n? so that
[L®x A : L] =n®> = [End;A : L]. Since L @ A is central simple over L, ¢ is
indeed an isomorphism. The algebra End; A may be identified with M, (L) through
a choice of an L-basis for A. O

Lemma 2.5. If L is a splitting field for a central simple algebra A over K, then L
s a splitting field for A°? and for any B Brauer equivalent to A.

Proof. Let ¢ : L&A = M,(L) be an isomorphism of L-algebras. Then L@ A% =
(L ® A)°* = M,(L)°® = M,(L), the last isomorphism being given by matrix
transposition. The second assertion follows from the fact that L splits A if and only
if L splits D 4. O



In view of Lemma 2.5., it makes sense to talk of the splitting field of Brauer class.

Proposition 2.6. Let A be a central simple algebra over K and L a finite extension
of K. Then L is a splitting field for A if and only if there exists a central simple
algebra B, Brauer equivalent to A, which contains L as a mazimal commutative
subring. The algebra B is unique up to isomorphism.

Proof. 1f B, B’ are two central simple algebras Brauer equivalent to A and both
of which contain the field L as a maximal commutative subring, then [B : K| =
[L: K|? = [B': K] (see 2.3.). Thus B and B’ are two Brauer equivalent central
simple K-algebras of the same rank and hence isomorphic (see after 1.5.) This
proves the uniqueness of B up to isomorphism. Let B ~ A contain L as a maximal
commutative subring. Then L splits B by 2.4. and hence L splits A by 2.5..

Suppose A is a central simple algebra over K, split by a finite extension L over K.
We may assume without loss of generality, that A = D is a division algebra over K.
Since L also splits D°P, we have an isomorphism ¢ : L®x D°? = M, (L). We regard
L™ as a bimodule ;, L7, through ¢. Let m be the dimension of L™ regarded as a right
vector space over D. Then we have an injection L < EndpL™ = M,,(D). Thus
B = M,,(D) is a central simple algebra over K, Brauer equivalent to D, containing
L as a subfield. We have mn? = [L" : D|[D : K| = [L" : K| = n[L : K] so that
[L : K] = mn. Further [M,,(D) : K] = m?n?. In view of 2.3., L is a maximal
commutative subring of M,,(D). O

For a central simple algebra A over K, we define degree A = n if [A : K] = n? and
index A = degree D 4. We note that index A divides degree A.

Corollary 2.7. Let L be a finite extension of K which splits A. Then index A
divides [L : K.

Proof. Let B ~ A contain L as a maximal commutative subring (2.6.). Then
index A = index B | degree B = [L : K]|. O

Theorem 2.8. Let D be a central division algebra over K. Then there erists a
mazimal commutative subfield L of D which is separable over K.

Proof. Let [D : K] = n?® We prove the theorem by induction on n, the theorem
being trivial for n = 1. Assume first that D contains an element ¢ # K, which
is not purely inseparable over K. Let L # K be a subfield of K(c¢), containing
K and separable over K. If L is a maximal commutative subfield of D, we are
through. Otherwise, let D' denote the commutant of L in D. Then, by 2.1., D’
is a central division algebra over L whose dimension is strictly less than n?. By
induction assumption, D’ contains a maximal commutative subfield L' separable
over L. Using 2.3., it is easy to see that L’ is a maximal commutative subfield of



D. Further, L' is separable over K, and the theorem is proved. To exhibit such
an element ¢ € D, we take any element A € D, A ¢ K. The only case to consider
is when A" € K for some integer m (otherwise take A\ = ¢). Let \’»" € K and
MW" ¢ K. Let o denote the inner automorphism of D given by \"~'. Then o? =1
so that (0 — 1)? = 0 (note that char K = p) and 0 — 1 # 0. Let r > 1 be an integer
such that (0 —1)" # 0 and (o — 1)"' = 0. Let y € D be such that (o — 1)"(y) # 0.
Ifa=(oc—1)""!(y) and b = (6 — 1)"(y), then it may be checked that if c = b~'a,
then oc =1 + ¢ so that ¢ is not purely inseparable over K. O

Corollary 2.9. If A is a central simple algebra over K, there exists a finite Galois
extension L over K which splits A.

Proof. We assume, without loss of generality, that A is a central division algebra
over K. Let L; be a maximal commutative subfield of A, separable over K. By
2.4., L, splits A. Since any field containing L, is again a splitting field for A, we
may choose L to be the Galois closure of L, over K. U

§ 3. Crossed-Products

Let L be a finite Galois extension of K with Galois group G(L/K) = G. Then the
action of G on L makes both the additive group L and the multiplicative group
L* = L\ {0} into Z[G]-modules, Z[G] denoting the group ring. For any group G
and a Z[G]-module M, we shall define, in a later section, the cohomology groups
H"(G, M), for each integer n > 0. We shall here give an ad hoc definition of
H?*(G, L").

A (normalized) 2-cocycle of G with values in L* is a map f : G x G — L* with the
property f(1,1) =1, and for oy, 03, 03 € G,

Ulf(027U3)f(01,02,03)_1f(01,02,03)f(0'1,0'2)_1 =1.

If f is a normalized 2-cocycle, it may be verified that f(1,0) = f(o,1) = 1 for all
o € G. The 2-cocycles form an abelian group under the operation

(f + g)(alaaZ) = f(0'110.2)g(0'110.2)'

This group is denoted by Z?(G,L*). A (normalized) 2-coboundary is a map d0h :
G x G — L* of the form (o,7) — o(h(7))h(o7)~! where h : G — L* is a map
with h(1) = 1. Clearly 0h is a 2-cocycle and the 2-coboundaries form a subgroup
denoted by B*(G, L*) of Z*(G, L*). Let H*(G,L*) = Z*(G, L*)/B*(G, L*). We call
H?(G, L*) the second cohomology group of G with coefficients in L*.

Let f € Z?(G, L*). For each o € G, let e, denote a symbol. Let (K, G, f) be the free
left L-vector space on the set {e,}, o € G, as a basis. We define a multiplication on
(K, @, f) by setting

(Aeq)(per) = Ao(p) f(o, T)esr (*)
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and extending it to (K, G, f) by distributivity. The algebra (K, G, f) so defined is
called a crossed-product over L.

Proposition 3.1. The multiplication defined above makes (K, G, f) into a central
simple algebra over K. The map L — (K,G, f), x v zeq, is an injection of L
onto a subfield of (K, G, f) which is a mazimal commutative subring. In particular,
(K,G,f): K]=[L: K]

Proof. The condition (€,,€,,)€s, = €4, (€5,€4,) is equivalent to the condition that f
is a 2-cocycle. Thus (K, G, f) is an associative algebra. The fact that f is normalized
implies that e; is the identity element of (K, G, f). Since (K, G, f) is a (left) vector
space over L of dimension |G| = [L : K], it follows that

(K,G,f): K] =[(K,G,f): L][L: K] = [L: K]*.

Let # = ) %y, €5, T, € L be a central element of (K, G, f). Then, for every
a € L*, the condition ax = xa implies z, = 0 for 0 # 1. Thus x = x1e;. The
condition ze, = e,z for all 0 € G implies that o(x;) = z; for all ¢ € G so that
x1 € K. We next prove that (K, G, f) is simple. Let A be a non-zero two-sided
ideal of (K, G, f). Forz € A,z #0,ifx =3 __, x,€,, we define /(x) = the number
of , # 0 in this expression. Let x € A be an element with ¢(z) minimal. Let o,
be such that z,, # 0. Multiplying « on the left by z_ ! and on the right by e_!, we
may assume ¥ = 1-e; + > x,¢,. For every d € L, {(dx — xd) < ((x), unless
drx — xd = 0. Since dx — xd € A, it follows that dx — xd = 0 for every d € L,
ie. z, =0 for all 0 # 1. Thus z = e; € A so that A = (K, G, f). Finally, since
[(K,G, f) : K] = [L: KJ? by 2.3., it follows that L is a maximal commutative
subring of (K, G, f). O

Corollary 3.2. If {e! },cc are non-zero elements of (K,G, f) satisfying e, x =
o(z)el, then there exist non-zero elements u, € L*, for each o € G such that

[
€, = Uy€q.

Proof. Since €’ e;' commutes with every element of L, L being a maximal commu-
tative subring of (K, G, f),ele; ' =u, € L*. O

» oo

The following proposition asserts that the isomorphism class of (K, G, f) is uniquely
determined by the cohomology class [f] of f in H?*(G, L*).

Proposition 3.3. Let f,g € Z*(G,L*). Then (K,G, f) and (K, G, g) are isomor-
phic if and only if f — g € B*(G, L*).

Proof. Suppose f = g+ 0h where h : G — L* is a map with h(1) = 1. Let {e,},
{e.}o € G, be bases of (K,G, f) and (K, G, g) respectively, satisfying (%) with

respect to f and g. The map e, — h(o)el, © +— x, x € L can be verified to induce
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an isomorphism of the K-algebras (K, G, f) onto (K, G, g). Suppose conversely that
¢ (K,G,f) — (K,G,g) is an isomorphism of K-algebras. Since Le| and ¢(Le;)
are simple subalgebras of (K, G, g), both isomorphic to L, in view of 2.2., there
exist a unit u € (K, G, g) such that p(ze;) = u(ze})u"! for all z € L. Replacing
¢ by Intu™" o ¢, we may assume that p(xe;) = xe|. Then, since {p(e,)},0 € G,
satisfy (%) there exists u, € L* such that p(e,) = usel, with u; = 1 by 3.2.. Let
h: G — L* be defined by h(o) = u,. It is easily verified that f = g + dh. O

Proposition 3.4. For f € Z*(G,L*), the algebra (K, G, f) is isomorphic to a
matriz algebra if and only if f € B*(G, L*).

Proof. Let f € B*(G, L*). In view of 3.3., it is enough to show that (K, G, f) is a
matrix algebra for f = 1, the trivial cocycle. The assignment p(e,) = o, ¢(x) = Ry,
r € L, R, denoting multiplication by z, extends to a K-algebra homomorphism
¢: (K,G, f) — EndgL, which is indeed an isomorphism. Conversely, if (K, G, f) —
M,(K), n = [L : K], since (K,G,1) = M,(K), it follows from 3.3. that f €
B2(G, L*). O

Proposition 3.5. Let f,g € 7Z*(G, L") then the algebra (K, G, f + g) is Brauer
equivalent to (K, G, f) ®k (K, G, g).

Proof. (A sketch of a proof) Let L = K () and let f = 2™ 4+ a,_12" ' +... +a, €
K[z] be the minimal polynomial of o over K. Since f is separable, f'(a) # 0. The

element
e=f'(a)”! Z a; Z o @ a1

1<i<n  0<j<n—1

can be verified to be an idempotent of L@y L C (K, G, f)®k (K,G,g) = A. There
exists a map (K, G, f 4+ g) — A given by e, — e(el @ e2), t—e(l®@1) =e(1® ),
(€L, e,,e!, e denoting the defining bases of (K, G, f +g), (K,G, f) and (K, G, g)
respectively, which induces an isomorphism of (K, G, f + g) onto eAe. We have
eAe ~ A, so that the proposition is proved. O

§ 4. Thee Brauer group is torsion

Let L be a finite Galois extension of K with Galois group G(L/K) = G. Let
Br(L/K) be the subset of Br(K) consisting of those Brauer classes which are split
by L. Obviously, Br(L/K) is a subgroup of Br(K). For f € Z*(G, L*), the algebra
(K, @, f) is central simple over K and contains L as a maximal commutative subring
by 3.1. and is therefore split by L (2.4.). In view of 3.3., we have a well-defined
map ¢ : H*(G,L*) — Br(L/K) given by [f] — [(K,G, f)], which, by 3.5. is a
homomorphism. The map c is injective, by 3.4.. The map c is also surjective, in
view of the following

Proposition 4.1. FEvery central simple algebra over K, split by a finite Galois
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extension L/K is Brauer equivalent to a crossed-product over L.

Proof. Let A be a central simple algebra over K, split by a finite Galois extension
L of K. In view of 2.6., A ~ B, where B contains L as a maximal commutative
subring. By 2.2., every 0 € G(L/K) can be extended to an inner automorphism
Int u, of B, u, being a unit of B. We choose u; = 1. Since Int (u,u,) and Int (u,)
both extend o7 € G, it follows that u,u,u ! commutes with L and hence belongs

to L*. Let f(0,7) = usu,u;!, 0,7 € G. Then f(1,1) = 1 and the condition
(Ugy Ugy ) Ugy = Ug, (UgyUy,) implies that f is a 2-cocycle. The map e, — u,,  +—
x,x € L, 0 € G defines a homomorphism ¢ of (K, G, f) onto A. Since (K,G, f) is

simple and [(K, G, f) : K] = [A: K] =n?, ¢ is indeed an isomorphism. O

Corollary 4.2. Fvery central simple algebra over K is Brauer equivalent to a
crossed product over some finite Galois extension of K.

Proof. Immediate from 2.9. and 4.1.. O
Thus, we have the following

Theorem 4.3. Let L be a finite Galois extension of K with Galois group G. Then
we have an isomorphism ¢ : H*(G, L*) = Br(L/K) given by [f] — [(K, G, f)].

Remark. It is not true in general that over a field K, every central division alge-
bra isomorphic to a crossed-product (i.e. every central division algebra contains a
maximal commutative subfield, Galois over K). There are counterexamples due to
Amitsur (Israel Journal Math., 12 (1972)). However, it is still an open question
whether any central division algebra over K of degreep, p a prime, is a crossed-
product.

For a central simple algebra A over K, we define the exponent of A, abbreviated
exp A, to be the order of [A] in Br(K). The following theorem shows that exp A is
finite for every central simple algebra A over K.

Theorem 4.5. The group Br(K) is torsion. In fact, for any central simple algebra
A over K, exp A divides index A; i.e., ifindex A=m, AQ A...® A (m-times) is
1somorphic to a matriz algebra over K.

Proof. Since the exponent and index are Brauer class invariants, it suffices to prove
the theorem for a division algebra D. Let [D : K] = n? so that index D = n. In
view of 4.2., D is Brauer-equivalent to a crossed product over some finite Galois
extension L of K. Let ¢ : (K,G, f) — M,,(D) be an isomorphism of K-algebras,
G = G(L/K), m > 1. Since L is a maximal commutative subring of (K,G, f),
[L : K]? = [(K,G,f) : K] = [Myu(D) : K] = m?n? so that [L : K] = mn.



We regard L as a maximal commutative subring of M,, (D) through ¢. The left
M,,(D)-module D™ may be regarded as a left vector space over L. Let p be its
dimension. Then [D™ : K] = [D™ : L][L : K] so that mn®> = pmn = p = n.
For any 0 € G, p(e,) € M,,(D) operates on D™ and ¢(e,)(Ax) = o(N)p(e,)(z), for
A€ L, x € D™ ie. p(e,) is o-semilinear. For a choice of basis {e;} 1 <i < n of D™
over L, {p(e,)}o € G can be represented by matrices T, € M,,(L). The condition
ese; = f(0,T) - e, translates into the condition T,0(7,) = f(o,7)T,, where the
action of G on M, (L) is entry-wise. Let h(c) = detT,,0 € G. Then h: G — L* is
a map with h(1) = 1. We have o(h(7))h(c) = f(o,7)"h(oT); i.e. nf € B*(G, L*).
In view of 3.4., [(K, G, f)]™ is trivial in Br(K). Thus exp D = exp(K, G, f) divides
n = degree D. O

§ 5. 2-torsion in the Brauer group - Quaternion algebras

We begin with the following

Lemma 5.1. Let A be a central simple algebra over K. If p is a prime which divides
index A, then p divides exp A.

Proof. Since exponent and index are Brauer class invariants, we assume that A is
a crossed product over a finite Galois extension L of K. Let G = G(L/K) be the
Galois group. Since L splits A, index A divides [L : K] by 2.1. so that p divides
[L : K] = order of G. Let H be a p-sylow subgroup of G and let L be the fixed field
of H, so that [L, : K] =[G : H] is coprime to p. We first claim that L, ®x A is not a
matrix algebra over L. For, otherwise, index A would divide [L; : K| by 2.1. so that
p|[L1 : K] leading to a contradiction. Further, L®, (Li®xA) ~ LR A = M, (L)
so that index L; ® A divides [L : L] = p*, k > 1. Let index L; ®x A =p", r > 0.
In fact » > 1 since L; ®x A is not a matrix algebra. Since exp L; ®x A divides
index L, ® A (4.5.), exp Ly ® x A = p", with r > 1. Since Br(K) — Br(L), induced
by [A] = [L ®k A] is a homomorphism, exp; (L1 @k A) divides exp A so that p
divides exp A. O

Let o Br(K) denote the 2-torsion subgroup of Br(K), i.e. the subgroup of elements
of order < 2. Let [A] € 3 Br(K). It follows from 5.1. that index A is a power of
2. An involution (of the first kind) of a central simple algebra A over K is an anti-
automorphism o : A — A such that 02 = identity and o is identity on K. An algebra
A is involutorial if it admits of an involution. If A is involutorial, then A4 = A° so
that [A] € o Br(K). The next two propositions characterise central simple algebras
over K of exponent < 2 as precisely the involutorial algebras over K.

Lemma 5.2. Let A and B be central simple algebras over K which are Brauer
equivalent. If A has an involution, then B has an involution.

Proof. 1t is enough th show that if D is a central division algebra over K, then
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D has an involution if and only if M, (D) has an involution. If D has an involution
o, z — o(z') defines an involution of M, (D), the action of ¢ on M,(D) being
entry-wise. Suppose M, (D) has an involution o. Let o(e;;) = fj;, where {e;;},
1 < i, j < r are the matrix units of M,(D). Since o is an anti-automorphism,
it follows that {f;;}, 1 < i, j < r are again matrix units of M, (D) so that they
generate a K-subalgebra of M, (D), isomorphic to M,(K). By 2.2. there exists a
unit u € M, (D) such that f;; = ue;;u™", for all i, j. We have fi; = o(eji) = ueu™
and e;; = o(uej;jut) = ou tuejutou. Thus v = u tou commutes with M, (K) so
that v belongs to the commutant of M, (K) in M,(D), namely D.

Case 1. Let uw+ ou = 0. Then v = —1 and one verifies that 0/ = Intu~' o o is an
involution of M, (D). Since o'(e;;) = ej;, o' maps M, (K) onto itself and hence maps
the commutant of M, (K), namely D onto itself and provides an involution of D.
Case 2. Let u+ou #0. Then v # —1 and 1+ v € D is a unit. Thus v’ = u+ou =
u(1 4 v) is a unit of M,(D) and ¢’ = Int (u'~") o o defines an involution of M, (D)
which restricts as in case 1 to an involution of D. O

Lemma 5.3 Let A be an algebra of exponent 2 which is a crossed product over some
L D K. Then A has an involution.

Proof. Let A= (K,G, f) with G = G(L/K), 2f € B*(G,L*). Let h: G — L* be
a map with h(1) = 1 and such that for all o, 7 € G, f(0,7)* = o(h(7))h(oT) " h(0).
It is easily verified that the assignment e, — e;'h(c), £ — ¢, { € L, 0 € G induces
an involution of (K, G, f). O

We thus have proved the following
Theorem 5.4. For a central simple algebra A over K, the following are equivalent:
1) [A] € 2 Br(K)

2) A admits of an involution over K.

Let D be a central division algebra over K of exponent 2. We have seen that
degree D is a power of 2 (5.1.) and D admits of an involution. We shall now give
examples of algebras of degree 2 over K, the so-called quaternion algebras over K,
which come equipped with a canonical involution.

An associative K-algebra generated by two elements (,n with relations (2 = ¢ +
a,n”?=0b,(n+n =nwitha, b€ K, 4a+1# 0, b # 0 is called a quaternion algebra
over K.

Lemma 5.5 Central simple algebras over K of rank 4 are precisely the quaternion
algebras over K.
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Proof. Let A be a quaternion algebra over K, with generators (,n as above.
Suppose that the polynomial 22 — x — a € K|[z] has a root A\ € K. Then the map

A0 0 1
C=lg 1-a) 17\ o

defines an isomorphism of A with My(K). If the polynomial 2? — z — a € K|[z] is
irreducible, since 4a + 1 # 0, the subring K({) C A is a quadratic extension of K
which is Galois. Let o be the nontrivial automorphism of K(() over K, defined by
o(¢) =1-C. Let f € Z*(G, K(¢)*) be the 2-cocycle f(o,0) =b, (G = G(K(¢)/K)).
Then, the map e, — n, { — ¢, £ € K(¢) induces an isomorphism of (K, G, f) onto
A. Hence A is a central simple algebra over K, which is in fact a crossed product
over K((). Let conversely A be any central simple algebra of rank 4 over K. If
A= My(K), ¢ = (50), 1= () satisfy > = ¢, ” = 1 and ¢y +n¢ = 7 and
generate My(K) so that My(K) is a quaternion algebra. Suppose A is a division
algebra over K of rank 4. Let L be a maximal commutative subfield of D, separable
over K (see 2.8.). Let L = K(¢) and let (> = M+ h, A\, h € K. If char K = 2,
since ( is separable, A # 0. If char K # 2, replacing ( by ¢ + 1 if necessary, we
assume that A # 0. We again replace ¢ by A7'¢ and assume that ¢ satisfies the
equation (? = ( +a, a € K. The condition that ¢ is separable over K implies that
4a+1 # 0. Since A contains the Galois extension L/K, A is a crossed product over
L by 5.4.. Let e, = n, where o is the Galois automorphism ¢ +— 1 — ( of L. Then
n’ =e2 = f(o,0)-1¢€ L*. Since f(0,0) is a power of e,, f(0,0) commutes with e,
and since it commutes with L, f(o,0) € K*. Let b = f(0,0). By the definition of
n, n¢n~t =1—( so that (n+n¢ =n. Thus A is a quaternion algebra over K. [

Let A be a quaternion algebra over K with generators (, n as above. Since exp A =
1 or 2, A certainly admits of an involution (see 5.4.). The assignment ( — 1—(, n +—
—n can be extended to an involution z +— Z of A. This involution has the property
that for each x € A, N(z) = 2% and T'(z) = = + T belong to K.

Any involution on A with this property coincides with the involution z +— z. We call
this, the canonical involution of A. The map N : A — K is multiplicative, called
the reduced norm and the map T : A — K is additive and is called the reduced trace.
Since any central simple algebra of rank 4 is either a matrix algebra or a division
algebra, a quaternion algebra A is isomorphic to a matrix algebra if and only if there
exists a non-zero element x €A such that Nx = 0.

Proposition 5.6. Let A be a quaternion algebra with generators C, n with (?> = (+a,
=0, (n+nC=n,4a+1#0,b#0,a,bec K. Then A is a matriz algebra if and
only if there exist X\, u € K such that b= \? + Ay — ap?.

Proof. Let x € A be written, with respect to the basis (1, ¢, n, (n) of A as a linear
combination Ay + ¢ + v + 01¢n, A1, p1, 71, 01 € K. Then

N(z) = ()‘% + A — GM%) - b(’YlZ + 7101 — aéf).
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Suppose there exist A\, p € K with b = A2+ p—ap?. Then x = A+ul+n # 0 and has
norm 0. Hence A is a matrix algebra over K. Suppose conversely, that A is a matrix
algebra over K. Let x € A, v # 0 with Nx = 0 and let x = Ay + hy ¢ + 111 + 6:(n.
If the equation A2 + A\ — ap? = 0 has a nontrivial solution \, u € K, then the
algebra K(¢) = Klz]/(2? — x — a) is isomorphic to K x K so that the norm
N, : K(¢) — K is surjective. In particular, there exists y = A + u¢ € K(() such
that N(y) = A>+ A —ap® = b. On the other hand, if the equation A+ Ap—ap?® = b
has no nontrivial solution in K, then K(C) is a quadratic extension of K. We have
Nz =0= ()\% —|—)\1M1 — au%) = b(ﬁ +’7151 — a(S%) = ’Y% —|—’)/1(51— a(S% 7é 0, 7, 01 7é 0
and b = (A2 + Ay — ap?)/ (v + 7101 — ad?) = A2 + Ap — ap® where A\ + p =
(M + pn) (m¢ + 1)~ € K(Q). O

Proposition 5.7. Let K be a field of characteristic # 2. Then quaternion algebras
over K are precisely algebras generated by ¢, n with the relations (* = a, n*> = b,
(n+nC =0, a, be K*. Such an algebra is a matriz algebra if and only if there exist
A\, i € K such that b= \? — apu?.

Proof. Let (', ' be generators of A with ¢? = (' +d, n? =V, {'n' +n/'¢’ =1,
1+4d,0 #0in K. Let ( =(' —1/2,n=1n',a=d +1/4and ¥/ =b. Then (, n
are the required generators for A. The final assertion is a consequence of 5.6.. [

Tensor products of quaternion algebras are of degree 2" and involutorial. The fol-
lowing natural question arises:

@ (1) Is every central simple algebra over a field K of degree 2", with an involution,
isomorphic to a tensor product of quaternion algebras?

This question has an affirmative answer if n = 2 (Albert). However Amitsur-Rowen-
Tignol (Israel Journal Math. 33, (1979) have constructed finite dimensional central
simple algebras over fields of characteristic # 2 of degree 2", n > 3, with involutions,
which are not isomorphic to a tensor product of quaternion algebras.

There is however a weaker question:

@ (2) Is every central simple algebra with an involution, Brauer equivalent to a
tensor product of quaternion algebras? (In other words: Is 5 Br(K) generated by
quaternion algebras?)

If char K = 2, this question has an affirmative answer, due to Albert. If char K # 2,
it was an open problem, and a consequence of the theorem of Merkurjev is that this
is indeed the case.
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Chapter II: Cohomology of groups

§ 1. Definition of cohomology groups

Let G be a group and Z[G] the integral group ring. By a G-module, we mean a
(left) Z[G]-module. Any abelian group A can be regarded as a G-module by setting
x-a =aforall x € G, a € A. Such a G-module is called a trivial G-module. In
particular, we shall regard Z as a trivial Z[G]-module. Let H be a subgroup of G
and A any H-module. We define on Homyy)(Z[G], A) a left G-module structure
through the right G-module structure of Z|[G]; i.e., for f € HomZ[H](Z[G],A), x,
y € G, we define (zf)(y) = f(yx). A G-module B is said to be co-induced from
H if there exists an H-module A and an isomorphism B = Homg)(Z[G], A) of
Z|G]-modules. A G-module A is called co-induced if it is co-induced from the trivial
subgroup (e); i.e., A is isomorphic to Homgy, (Z[G], B) = B* for some abelian group
B. Every G-module A can be embedded in a co-induced module. In fact, we have a
G-homomorphism i : A — A* = Homg (Z[G], A) given by a — f, where f,(z) = za,
x € G, which is clearly injective.

For any G-module A4, we set A® = Homyg)(Z, A) (Z being the trivial Z|G]-module).
The inclusion

HomZ[G](Z, A) — HomZ(Z, A) =A

identifies A with the set {a € A | xza = a Vx € G} which is the group of fixed
points of A for the action of G.

The cohomology groups of G with coefficients in a G-module A are a sequence of
abelian groups HY(G, A), ¢ =0,1... such that

1) HYG,A) = A“
2) For any ¢ > 0 the assignment A — H?(G, A) is (covariant) functorial.
2) For any exact sequence
0A —>A—-A"—0
of G-modules, there exist connecting homomorphisms
6, HY(G,A") — H™ (G, A"
such that the sequence
= HY(G, A — HY(G, A) — HY(G, A") 2% HI (G, A) — ...
is exact. Further, ¢ is functorial for exact sequences; i.e., given a commutative

diagram
0 > A > A sy A7 —— 0

]

0 s B s B s B" —— 0
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of exact sequences of G-modules, the diagram
HI(G, A" —2y Hot1(G, A
H"(f”)l H"“(f’)l
HY(G,B") —* H™(G, B
commutes.

4)/ For any co-induced module A, HI(G, A) =0 for ¢ > 1.

Theorem 1.1 For any group G and any G-module A, cohomology groups H1(G, A)
exist for ¢ > 0 and are unique up to functorial isomorphisms.

Proof. We first prove by induction on ¢ the uniqueness up to functorial isomor-
phisms of the groups H?(G, A). For ¢ = 0, this follows from Property 1). Let A be
a G-module and ¢ > 1. We have the following short exact sequence

0 Ay A* 5 A' 50

where i is the embedding of A in the co-induced module A* = Homgy(Z[G], A) and
A" = coker i. If (H‘I(G,A),éq), (Hq(G,A),éq) are two sequences of groups with
connecting homomorphisms satisfying 1), 2), 3) and 4) above, we have

0 —— A¢ s A N LA HYG,A) —— HYG,A*)=0
0 — AG —— 47— 4% 2y VG A) —— HY(G,A") =0.

From this diagram, it is clear that there exists a map f, : H'(G, A) — H'(G, A)
satisfying f10o(a) = do(a) for all a € A’®. Since 8y and &) are functorial in A, fi is
functorial in A. It is easily verified that f; is in fact an isomorphism. By induction,
we assume that there is a functorial isomorphism f, | : H4 (G, A) — H" (G, A).
We have the following commutative diagram which defines f,:

Gy 1

0 —— HTYG,A) HI(G,A) —— 0

lqul J/fq
0 —— HYG,A) 2% A9G,A) —— 0

Since 041, 04-1, fq—1 are all functorial in A, f, is again functorial in A.

We define H'(G, A) = Exty(Z, A), the derived functors of the functor

A — Homgg(Z, A) = A%,
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It follows from standard results of homological algebra that H?(G, A) satisfies 1),
2) and 3). The fact that H7(G, A) satisfies 4) follows (by taking H = (e)) from the
following more general lemma. O

Lemma 1.2. (Shapiro) Let H be a subgroup of a group G and A an H-module.
Then we have isomorphisms s% : HY (G, Homz[H](Z[G],A)) = HI(H,A), Vg > 0,
which are functorial in A.

Proof. Let P be a Z[G]-free resolution of Z. Since Z[G| is Z[H]-free, P is also a
Z[H|-free resolution of Z. We have an isomorphism

HomZ[H} (E, HomZ[H}(Z[G], A)) l) HomZ[H](P, A)
of complexes which is functorial in A so that we have induced isomorphisms

Extd;(Z, Homy ) (Z[G], A)) = Bxtd, (ZA,)

[G]

which are functorial in A. O

§ 2. The standard complex

By results of homological algebra, for any G-module A, the cohomology groups
H"(G, A) = Extg(Z, A) can be computed by using any Z[G]-projective resolution
of Z. In this section, we give an explicit resolution of Z as a Z[G]-module. Let P,
be the free Z-module on G**! = G x ... x G (i-times). We let G operate on P; by
setting g(go, - - -, 9i) = (990, - - -, 99:) for g € G, (go, - - -, ;) € G'L. The Z|G]-module
P; is free with basis {(1,¢1,...,9i), g; € G, 1 < j <i}. We define homomorphisms
d; : P, — P;_1, 1 > 1 by setting

di(gﬂa o 791) = Z (_1)](907 .. 7gj7' .. 7gi)7
0<j<i

which are obviously G-linear. We define € : Py — Z by ¢(g) = 1 for all ¢ € G. The
sequence
—...oP 5P 1 —...5P 570

is indeed a Z[G]-resolution for Z. The fact that d o d = 0 and that the complex is
exact are consequences of the fact that there exist Z-linear maps h; : P; — P,y (for
example, h;(go,...,9;) = (S,90,...,¢;) for a fixed s € G) such that dh; 1 + h;d =
identity.

Let A be a G-module. The cohomology groups H?(G, A) = ExtqZ[G}(Z, A) can be
computed as the homology of the complex
0;
— Homgq)(P;, A) — Homgg)(Pig1, A) — ...,

where ;(f) = fodiy1. An element of Homy (P, A) is called an i-cochain and can
be identified with a map f : G**! — A satisfying the condition

f(x«To,x«Tla---a«sz‘) :«T'f(l'(),...,l'l)

16



for all x € G. Such a map is uniquely determined by its values on the elements
of the form (1,zy,7s...7;). We define a function f : G* — A, associated to an
i-cochain f by setting

f(.fb'l, A ,l‘i) = f(l,.fb‘l,.fb'l.fb'g, N A l'l)

The map f — f identifies the group Homy,¢)(P;, A) with Map(G’, A), elements
of which are called the non-homogeneous cochains. With this identification, the
coboundary §; : Map(G?, A) — Map(G**', A) is given by

5i(g)(l'1,-..,$i+1) = xlg($2,...,xi+1.)
+Zl§]§z (_]‘)]g(l‘la---;-le‘j+1,...,.'l,'z’+1)
+(_1)Z+19($1,---,$z’)-

Let Z'(G, A) = ker 6; and B*(G, A) =imd; ;. Then
H'(G,A) = Z'(G, A)/B'(G, A).

Elements of Z'(G, A) are called non-homogeneous cocycles and those of B*(G, A)
non-homogeneous coboundaries.

For i = 1, an element of Z'(G, A) is a map f : G — A such that, for x;, 2, € G,

f(r12) = 21 f(202) + f(11).

Such an f is called a crossed homomorphism. If G acts trivially on A, then crossed
homomorphisms are precisely the usual homomorphisms. An element of B'(G, A)
is a map of the form = — za — a for some a € A. A (non-homogeneous) 2-cocycle
with coefficients in A is a map f : G x G — A satisfying.

z1f (22, 23) — (2122, 73) + f (21, 2273) — f (21, 22) = 0.
A 2-coboundary is a map dh : G x G — A given by
dh(xy,x9) = x1h(x9) — h(x129) + h(21),

where h : G — A is any map.

Let f be a 2-cocycle. The cocycle condition on f, written for the triple (z,1,1) € G®
gives zf(1,1) = f(1,1). The map f* : G* — A given by f*(z1,72) = f(71,72) —
f(1,1) is verified to be a cocycle with f*(1,1) = 0. Such a cocycle is called a normal-
ized 2-cocycle. Since f* = f —Jh where h(z) = f(1.1) for all z € G, every 2-cocycle
is cohomologous to a normalized 2-cocycle. It is easily verified that any normalized
2-cocycle satisfies f(z,1) = f(1,z) =0V x € G. The normalized 2-cocycles form
a subgroup of Z?(G, A). If f is a normalized cocycle with f = §h, then h(1) = 0.
We call a 2-coboundary normalized if it is of the form dh with h(1) = 0. Thus
H?(G, A) is isomorphic to the group of normalized cocycles modulo the subgroup of
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normalized coboundaries.

§ 3. Galois cohomology of the additive and multiplicative groups Let L/K

be a finite Galois extension with Galois group G = G(L/K). Then both L and L*
are G-modules with the action o - a = o(a), for 0 € G, a € L.

Proposition 3.1. (Hilbert Theorem 90) H'(G, L*) = (0).

Proof. Let f € Z'(G, L*) be a 1-cocycle. Since elements of G are linearly indepen-
dent over L (Dedekind’s theorem), there exist a, b € L* such that ) __.. f(7)7(b) =
a: For any = € G,

va=Y_ zf(r = f(a7) 27(b) = f(2)™" - q,

TG TG

so that f(z) =xza-a ! for all z € G; i.e., f € BY(G, L*). O

Corollary 3.2. Let L/K be a finite cyclic extension and let o be a generator of
G(L/K). Let a be an element of L*. Then Npjk(a) =1 if and only if there exists
b€ L* such that a = ob-b~".

Proof. If a = ob-b7"', then Ny/k(a) = a-o(a)...c" '(a) = 1 where n = order
G. Suppose conversely that a € L* with Ny x(a) = 1. It is easy to check that the
assignment o — a can be extended to a 1-cocycle f : G — L*. By 3.1. above, there
exists b € L* such that f(o) =cb-b"';ie. a=0ob-b L O

Proposition H"(G,L) = 0, for all n > 1, for any finite Galois extension LK
with G = G(L/K).

Proof.  There exists a normal basis for L/K, i.e., there exists a € L such that
{oa]o € G} is a basis of L over K. Any b € L can be uniquely written as b =

Y vec boo(a). The map L — Homgz(Z[G ] K) given by b — (0 = b,-1) is an
isomorphism of G-modules where HomZ( G|, K ) is the module co-induced from
K. Hence H"(G,L) =0 for all n > 1. O

§ 4. Inflation, restriction and corestriction

Let f : G — G' be a homomorphism of groups. Let A be a G-module and A’
a G'-module. Then A’ is a G-module through the homomorphism Z[G] — Z[G']
induced by f. Let ¢ : A” — A be a homomorphism of G-modules. The pair (f, ¢)
is called a compatible pair. They induce, in an obvious manner, homomorphisms
Map(G'™, A’) — Map(G™, A), n > 0, of complexes and hence homomorphisms
H"(G' A"y - H"(G, A).
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We have the following examples of compatible pairs. Let f : H < G be the inclusion
of a subgroup H in G. Let ¢ : A — A be the identity map of a G-module A. The ho-
momorphism H"(G, A) — H"(H, A) induced by this compatible pair is called the re-
striction homomorphism, denoted by res. We note that res : H*(G, A) — H°(H, A)
is the inclusion AY — A, Let H be a normal subgroup of G and n : G — G/H
the canonical map. For any G-module A, A" is a G/H-module. Let ¢ : AT — A
be the inclusion. Then (7, ¢) is a compatible pair and the induced homomorphism
H"(G/H,A™) — H"(G, A) is called the inflation denoted by inf. We note that
inf : H'(G/H, AT) — H°(G, A) is the identity: A% — A,

The restriction homomorphism is functorial and commutes with the connecting ho-
momorphisms. More precisely, if f : A — A’ is a homomorphism of G-modules,

then the diagram

(G, A) GD g, A

J{ res J{ res

mHr(H,A) D e, Ay

is commutative and if 0 - A" — A — A” — 0 is an exact sequence of G-modules,
the diagram

H™(G,A") =22y H™L(G, A

J{ res J{ res

H"(H,A") =2 H™(H, A"

commutes.

Similarly, the inflation is functorial and commutes with connecting homomorphisms.
More precisely, if f: A — A’ is a homomorphism of G-modules, then,

H(G/H, ATy EED Gy, AT
linf linf
a(G, )  TED g, A

commutes and if 0 - A" - A — A” — 0 is an exact sequence of G-modules such
that the induced sequence 0 — A" — A" — A" 5 0 is exact, then the diagram

H™(G/H, A"y 2oy Fn+l(G/H, AT

linf linf

H™(G, A" 2  H"Y(G,A)

commutes. The proofs of both these statements are by direct verification.
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Let A be a G-module and B = Homy)(Z[G], A) the G-module co-induced from
H. We have a homomorphism of G-module f : A — B given by a — f(a), a € A
where f(a)(x) = xa. We therefore have an induced homomorphism

H"(f): H"(G,A) - H"(G, B)
for all n > 0. In view of 1.2., we have isomorphisms
s H"(G,B) = H"(H, A)

so that the composite s% o H"(f) is a homomorphism H"(G, A) = H"(H, A). For
n = 0, this map is the inclusion A — A" Since both H"(f) and s" are functorial
and commute with the appropriate connecting homomorphisms s% o H"(f) is func-
torial and commutes with connecting homomorphisms. Since s% o H°(f) = res, it
follows that s o H"(f) = res. We thus have the following

Proposition 4.1. For any G-module A, the homomorphism
H"(G,A) — H"(H, A)

defined as the composite s% o H™(f) is the restriction homomorphism.

Proposition 4.2. Let H be a normal subgroup of G and A a G-module. If
Hi(H,A) =0 for 1 < i < n —1 (in particular there is no condition if n = 1)),
then the sequence

0 — H"(G/H, A"y 25 H™(G, A) == H™(H, A)

18 ezact.

Proof. The proof is by induction on n. Let n = 1 and let [f] € H'(G/H, A™), with
f € ZY(G/H, AT) as a representative, such that inf [f] = 0. The cocycle

F:G-G/H L A" 4

being a coboundary, there exists a € A such that f(x) = za —a for all z € G.
Since f | H is zero, a € A is so that f € BY(G/H, A). Thus inf : H'(G/H, A) —
H'(G, A) is injective. The map resoinf is zero since the composite H — G — G/H
is trivial. Let f € Z'(G, A) such that res[f] = 0. Let a € A be such that f(y) =
ya—a forally € H. If f, : G — A is defined by = — za — a, f' = f — f, vanishes
on H and [f'] = [f] in H(G, A). The map f’ induces a 1-cocycle " : G/H — A%
such that inf [f"] = [f'] = [f]-

Suppose n. > 1 and assume by induction that the proposition has been proved for
n — 1. We have an exact sequence of G-modules

0— A - A" — A 0, (%)

20



where i is the embedding of A in the co-induced module A* = Homg(Z[G], A). Since
H'(H, A) =0, we have an induced exact sequence

0 — H°(H,A) — H°(H,A*) — H°(H,A") — 0
ie.,
0— AT — (A7 — (AHT — 0. (s %)
We note that (k) is also an exact sequence of H-modules and

A* = Homy (Z[G], A) = Homy (D, yZ[H], A) = Homy(Z[H], [e/xA)

so that A* is co-induced as an H-module. We also note that (* %) is an exact sequence
of G/H-modules and (A*)? = Homgz(Z|G/H], A) is co-induced as a G/ H-module.
In view of the remarks made earlier in this section on res and inf commuting with
connecting homomorphisms, we have the following commutative diagram

0 — H"YG/H, AT 2Ly gY@, A =2 g Y(H,A)

l(s lg J(s
0 —— H"(G/H, A"y 2L, HYG,A) —=5 H'(H,A)

The vertical maps are all isomorphisms since n > 2, A* is co-induced both as a G-
and H-module and (A*)¥ is co-induced as a G/H-module. The top row is exact, by
induction, since H'(H, A’) = H"'(H, A) = 0 for 1 <i < n—2, A* being co-induced
as an H-module. Hence the bottom row is exact and this completes the proof of the
proposition. [

Corollary 4.3. Let L/K be a finite Galois extension with Galois group G. Let H
be a normal subgroup of G and L the fized field of H. Then, the sequence

0 — H*(G/H, (L") 25 H*(G, L") =% H*(H, L")
1S exact.
Proof. Since H is the Galois group of the extension L/Lf in view of 3.1.,

H'(H,L*) = 0 and the corollary is an immediate consequence of the above propo-
sition. n

Let G be a group and H a subgroup of finite index. Let {z;};c; be a set of right
coset representatives of H in G. We have a G-linear map
¢ : Homys)(Z[G], A) — A

given by f +— Y., x; ' f(x;). This map is independent of the choice of representa-
tives. In fact, if «; = h;x;, h; € H, then,

Z(h z;)  f(hix;) = Zx’lh f(hix;) = Zx’lh Yhif (2:) Zx

i
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f being Z[H|-linear. This homomorphism is functorial in A and induces a functorial
homomorphism

H"(y) : H”(G, HomZ[H](Z[G],A)) — H"(G, A).
Composing this with the functorial isomorphisms
(s") ': H"(H,A) — H" (G, HomZ[H}(Z[G],A))

defined in 1.2., we obtain a functorial homomorphism H"(H, A) — H"(G, A) for all
n > 0, called the corestriction, denoted by cores. It is easily seen that it commutes
with the connecting homomorphisms. For n = 0, cores : A — AY is the averaging
map m — Y, x;m, m € A",

Proposition 4.4. Let G be a group and H a subgroup of finite index in G. Let A
be a G-module. The composite coreso res : H1(G, A) — HY(G, A) is multiplication
by |G : H] for all ¢ > 0.

Proof. For g = 0, cores o res : A9 — A" — A% is the map a — Yo xia = na
where n = [G : h], {z;} denoting a set of right coset representatives of H in G. Since
both cores o res and multiplication by n are functorial and commute with connecting
homomorphisms, it follows that cores o res is multiplication by n = [G : H| for all q.

Il

Corollary 4.5. If G is a finite group of order n and A is any G-module, then
n-HIG,A) =0 for ¢ > 1. In particular if A is n-divisible, then H1(G,A) =0 for
q=>1

Proof. We apply Proposition 4.4. above for H = (1) and note that H/(H, A) =0
for ¢ > 1. O

§ 5. The Cup-product

Let G be a group and A and B two G-modules. The Z-module A®zB is made into a
G-module through the diagonal action; i.e., z(a®b) = xa®xb, x € G, a € A, b € B.
Throughout this section, unadorned tensor products are taken over Z.

Theorem 5.1. Let A, B be G-modules and AR B the G-module through the diagonal
action of G. Then, for all p, ¢ > 0, there exist unique homomorphisms

Upg s HP(G, A) ® HY(G, B) — H"(G, A® B)

satisfying the following conditions: (for a € HP(G,A), b € HI(G, B), Up,(a ® b) is
denoted by a U b)

1) U,, is functorial in A and B.

22



Uoo : A9 ® BY — (A® B)% is given by a® b — a ® b.

If0—- A — A — A" — 0 is an exact sequence of G-modules and B is a
G-module such that the induced sequence

0>A®B—-A®B—->A"®B—0
1s exact, then the diagram
H?(G, A" ® HY(G,B) —% HP(G, A" @ B)
lapem l5p+q (%)
HP (G, A" @ HY(G, B) —22% Hp++1(G, A'® B)
is commutative for all p, ¢ > 0 ; i.e., fora” € HI(G,A") and b € H(G, B),

Oprq(a” UD) =d,(a")Ub.

If 0 > B - B — B" — 0 is an exact sequence of G-modules and A a
G-module such that

0 >A®B - A®B—>A®B"—0
18 exact, then, the diagram

HP(G, A) ® HI(G,B") —2% HP(G,A® B")

ll@éq l(—l)p%ﬂ

HP(G, A) ® H™(G, B') 225 Hr+ati(G, A® B)
18 commutative; i.e.
Op+q(aUD") = (=1)Pa U d,(b"),

fora € HP(G, A), " € HY(G, B"), and all p, ¢ > 0.

Proof.  We first prove the uniqueness. Let U, U be two cup-products. By 2),
Uoo = 00,0. We shall show that if U, , = Op,q for a pair of integers p, ¢ > 0, then
Upi1.q = Upy14 and Uy g1 = Upgrr. An inductive argument shows that U,, = U,
for all p, q. Suppose U, , = U, , and A, B a pair of G-modules. The exact sequence

0—s Ay A* —5 A" —5 0

of G-modules, 7 being the embedding of A in the co-induced module A*, is Z-split,
the map Homy (Z[G], A) — A given by f +— f(1) being a left inverse of i. Hence
the sequence

0 -A®B - A*"®B—-A®B—0
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is exact. By 3), the diagram
H?(G, A" ® HY(G,B) —2% Hr+(G,A'® B)

J{(ﬁp@l J{5p+q

HP (G, A) ® HY(G, B) 2% [r+a+1(G, A® B)

is commutative for U and U. For p > 0, 6, : HP(G, A') — HPTL(G, A) is surjective
since HPH(G, A*) = 0, so that d, ® 1 is surjective. The commutativity of the above
diagram for U and O shows that Upti,g = Opﬂ,q. Similarly 4) can be used to show
that Uy gi1 = Upgi1-

We next prove the existence of the cup-product. Let a € HP(G, A), b € HY(G, B)
with f € ZP(G, A), g € Z1(G, B) as representatives, respectively. We define fUg €
CP(G,A® B) by
(fUg (@, Tprg) = f(1,- -, 7) ® g(Tpr1, - Tpig)
On can verify that f U ¢ is a cocycle whose cohomology class is independent of the
representatives f, g of a and b, respectively. We define
aUb=[fUg] e H (G, A® B).
It may be verified that this map satisfies the conditions 1) to 4). O

Proposition 5.2. Let A, B be G-modules. Let H be a subgroup of G. Then, the
diagram

H?(G,A)® H(G,B) —2% H"(G,A® B)

J{ res @ res J{ res

HP(H, A) ® H*\(H, B) —22% Fr+atl(H, A ® B)
is commutative; i.e., for a € HP(G,A), b € H1(G, B), we have

res(a U b) = (resa) U (resbh).

Proof. For p = ¢ = 0, by the definition of Uy and res, the above diagram is
commutative. It suffices, by induction, to show that if the above diagram commutes
for a pair (p,q), it also commutes for the pairs (p + 1,q) and (p,q + 1). This is
shown by a “dimension shift” argument, as in the proof of the uniqueness of the
cup-product, by embedding A (resp. B) in a co-induced module. 0]

Proposition 5.3. Let A, B, G, H be as in the above proposition, with [G : H] finite.
Then the diagram

1®res

HP(H,A) ® HY(G, B) ~2% Hr(H, A)® HY(H,B) —2% H(H,A® B)

l cores ®1 lres

HP(G, A)® HY(G, B) —— HP(G,A)® HI(G,B) —2% HP++(G,A® B)
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is commutative, i.e., for a € HP(H, A), b € H(G, B),

cores(a U res b) = (cores a) U b.

Proof. For p=q = 0, the above diagram reads as
AH g BG 18 pAHg BH _Y , (Ag B)H

J{ cores ®1 J{ res

U

A® BY —— A“®@ B —— (A® B)“
and

(coresoUol ® res) (a ®b) = in(a@) b) = me@ z;b =U (cores ® 1)(a ® b)

for a € A", b € BY. The general case follows again by dimension shift argument,
embedding A (resp. B) in a co-induced module. O

Proposition 5.4. Let A, B, C' be a G-modules and a € H?(G,A), b € H'(G, B)
and c € H1(G,C). If through the canonical identifications of A® B with B® A and
(A® B) ® C with A® (B® C), we identify the groups H?T1(G, A ® B) with the
groups HPT1(G, B® A), resp. HPT1 (G, (A® B)®C') with HPT1 (G, A® (B®(C)),
then, aUb= (=1)P"(bUa) and (aUb)Uc=aU (bUc).

Proof. We prove the skew-commutativity of the cup-product, by induction on p+q.
For p = ¢ = 0, the statement is obvious. We assume the result for a pair (p,q) and
prove it for (p+1,¢) and (p, ¢+ 1). Embedding A in a co-induced module A*, with
A" = A* /A, we have a surjection 8, : HP(G, A') — HPT'(G, A). Let a € HPT'(G, A),
be HY(G,B). Let a = 6,a’ with o’ € H?(G, A"). Then, by induction, we assume
aUb=(=1)P(bUd'). We have aUb = da' Ub = §(a' Ub) = (—1)P5(bUd) =
(=1)P9(=1)9(bUda’) = (—1)P*T9hUq. Similarly, it can be shown for the pair (p, g+1)
by embedding B in a co-induced module that a Ub = (—1)P@*DpU a. O

§ 6. Profinite cohomology

A profinite group is an inverse limit of finite groups. Since any finite group is a
compact topological group for the discrete topology, and since an inverse limit is
a closed subset of the direct product, it follows that a profinite group is a com-
pact topological group. We recall the following fact from point set topology: For
a compact Hausdorff space X, the connected component of any x € X is the in-
tersection of all compact open subsets of X containing x. The direct product is
totally disconnected since the identity element is the intersection of all the open,
compact subsets containing it. The same property therefore holds for the profinite
groups, so that any profinite group is a compact totally disconnected topological
group. The next proposition shows that profinite groups are precisely the compact
totally disconnected topological groups.
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Proposition 6.1 Let G be a compact, totally disconnected topological group. Then

G is isomorphic to the inverse limit im G /U, where U runs over the family of all
H

open normal subgroups U of G. (Hence G is profinite since G /U is finite.)

Proof. Since G is compact, the open subgroups of G are precisely the closed
subgroups of finite index. Let {U, }4cs be the family of all open normal subgroups of
(. Since G is compact and totally disconnected, the compact open neighbourhood of
e form a fundamental system of neighbourhoods of e. Since in a compact group, any
compact open neighbourhood of e contains an open normal subgroup, it follows that
{Uqs}aer form a fundamental system of neighbourhoods of e. Since G is Hausdorff,
NacrUa = (€). The family {G /U, }qcs is an inverse system of finite groups, the order
on I being the inclusion U, C Up in the family {U,}. This inverse system is directed
since U, N Uy again belongs to the family. Let G = li;nG/Ua. The canonical maps

G — G /U, induce a continuous homomorphism ¢ : G — G. Since NaerUy = (e), ¢

is injective. If (a,) € limG /U, with a, € G as representatives, then Nyeja,Uy #
—

for any finite subset J of I. Since GG is compact Nycra U, #. Let © € NycranU,.

Then ¢(x) = (Gq) so that ¢ is an isomorphism. O

Corollary 6.2. Let H be a closed subgroup of a profinite group G. Then H 1is
profinite. Further, if H is normal in G, G/H is profinite.

Proof.  Since G is compact, H, being closed in G, is compact. Let {U,}aer be
the family of open normal subgroups of G. Since {H N U,}aer is cofinal in the
family of open normal (compact) subgroups of H and since N,(H NU,) = (e), H
is totally disconnected and hence profinite. Let H be a closed normal subgroup of
G. Then G/H is compact. To show that G/H is profinite, it suffices to show that
G/H is totally disconnected. Let x ¢ H. For each h € H, there exists a compact
open neighbourhood Oy, of h, not containing x, since G is totally disconnected.
Then H C Upepy Oy and H being compact, there exist hq,...,h, € H such that
HCOp U Op, ... U Oy, =S8. Since S is open, compact, containing H, but not
z, it follows that G/H is totally disconnected. O

Example 6.3. Let K be a field and L/K a Galois extension, not necessarily
finite. Let G(L/K) be the Galois group. Let {K,}aecr run through all finite Galois
extensions of K, contained in L. Then G(L/K) = lim G(K,/K) where the order in
I is the inclusion K, C Kz of fields. Thus G(L/K) is a profinite group. The open
normal subgroups of G are precisely the groups G(L/K,), a € I.

Let G be a profinite group. A G-module A is called discrete if the map G x A —
A, (z,a) — za is continuous for the discrete topology of A.

Proposition 6.4. A G-module is discrete if and only if A =U AV, U running over
open normal subgroups of G. In particular, any trivial G-module is discrete.
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Proof. Let A be a G-module. For a, b € A, let V,, = {z € G | xa = b}. Suppose A
is discrete. For any a € A, the map G — A given by x +— za is continuous, and A
being discrete, for any b € B, V,; is open. In particular, for every a € A, V, , is open
and hence contains an open normal subgroup U, and a € AY. Hence A = U, AV,
Suppose, conversely that A is a G-module satisfying A = UAY, U running over open
normal subgroups of G. For a € A, let U, denote an open normal subgroup for
which a € AY. For every z € Vap, ©-U, C Vap so that V;, is open. Hence the
map G X A — A, (z,a) — xa is continuous for the discrete topology of A so that A
is discrete. O

Let G be a profinite group and U, U’ open normal subgroups of G, with U' C U.
Let A be a discrete G-module. If ny v : G/U" — G /U is the canonical map and

¢U,U’ . AU — AU,

is the inclusion, then, the pair (ny,p7, ¢u,p) is a compatible pair, in the sense of § 4.
This pair induces a homomorphism

inf (U,U") : H(G/U, AY) — HY(G/U', A"").

The system {H(G /U, AY), inf} is a direct system of abelian groups. We define the
group HI(G, A) to be the direct limit of the system (H9(G/U, AY), inf) and call
it the profinite cohomology of G with values in the discrete G-module A. Every

finite group G is also a profinite group and any G-module A is discrete. Further,
HI(G,A) = HI(G, A) if G is finite.

Let L/K be a Galois extension, not necessarily finite. The Galois group G(L/K) =
G is a profinite group, its open normal subgroups being G(L/L') where L' runs
over finite Galois extensions of K, contained in L. Since L = U LEW/Y) =y [/,
L* = U L', I’ running over finite Galois extensions of K contained in L, L and L*
are discrete G-modules.

Proposition 6.5. Let L/K be a Galois extension. Then H!(G(L/K),L) =0 for
all g > 1 and H!(G(L/K), L*) = 0.

Proof. If L/K is a finite Galois extension, H!(G(L/K),L) = H'(G(L/K),L) =0
and H!(G(L/K),L*) = H'(G(L/K),L*) = 0, in view of 3.1. and 3.3.. The
proposition is now a consequence of the definition of profinite cohomology. O

Let G be a profinite group and H a closed subgroup of G. Let A be a discrete H-
module. Let Map (G, A) denote the abelian group of all continuous maps f : G — A
satisfying f(yz) = yf(x) for all y € H. We make this group into a G-module by
defining (2'f)(z) = f(z2'). In view of the following lemma, Mapy (G, A) is a discrete
G-module.

Lemma 6.6. Let G be a profinite group and A an abelian group with discrete
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topology. Let f : G — A be a continuous map. Then there exists an open normal
subgroup W of G such that f(xy) = f(x) for allz € G, y € W.

Proof. Since A is discrete, U, = f~!(a), a € A is an open subset of G. Since G is
compact and totally disconnected, open normal subgroups of G form a fundamental
system of neighbourhoods of G. Hence f~'(a) = f~'(a)W, for some open normal
subgroup W, of G. We have an open covering G = U,c2U, and G being compact,
there is a finite covering G = U <;j<,U,, by disjoint open sets. Then Ny<;<,W,, =W
is an open normal subgroup of G. We have U,, = U,, - W,, 2 U,,W 2 U,,, so that
Uy, = U, W, 1 <1 <n. Hence f(zy) = f(z) forallz € G,y e W, ({U,.},1 <i <
n, being a covering of G). O

Any discrete G-module isomorphic to Mapy (G, A) for some discrete H-module A is
said to be co-induced from H. In particular, if H = (e), modules co-induced from
H are called co-induced. We note that if G is a finite group, the notion of being

co-induced in the profinite sense is the same as being co-induced in the usual sense,
since Mapy; (G, A) = Homy ) (Z[G], A) as G-modules.

Proposition 6.7. Let G be a profinite group and A a discrete G-module. Then the
groups HI(G, A) satisfy the following conditions:

1) HXG,A)=UAY, U running over all the open normal subgroups of G.
2) HY(G, A) is functorial in A, for all ¢ > 0.
3) for any exact sequence
0— A a0
of discrete G-modules, there exist connecting homomorphisms
6, HY(G,A") — HT™ (G, A"
such that the sequence
v HY(G, A) "D g, 4) YW goa, Ay 0 g (G A —
is exact. Further, §, is functorial.

4)  For any closed subgroup H of G and any discrete H-module A, there ezists a
functorial isomorphism

sq: HY(G,Mapy (G, A)) = H!(H, A)
for all ¢ > 0. In particular, HI(G, A) =0 if A is co-induced and q¢ > 1.
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Proof.  All the four statements above are valid if G is finite (see 1.1). Since the
profinite cohomology of G is defined as the direct limit cohomologies of its finite
quotients, by functoriality of direct limits and the fact that direct limits commute

with exact sequences, it follows that 1) = 4) above are valid for a profinite group G.
]

Let f : G — G’ be a continuous homomorphism of profinite groups. Let A (resp. A’)
be a discrete G (resp. G') module. We regard A’ as a G-module through f. Then A’
is discrete as a G-module. Let ¢ : A" — A be a G-homomorphism. The pair (f, ¢)
is called a compatible pair, in analogy with the case of finite groups. Such a pair
gives rise to a homomorphism H"(G, A) — H"(G', A’), which may be defined as
the direct limit of the corresponding maps of the cohomology of the finite quotients,
induced by (f, ¢).

If H is a closed subgroup of G, then the inclusion H Jy G and the identity map
A — A form a compatible pair for any discrete G-module A. The induced homomor-
phism H?(G,A) — HI(H, A) is called the restriction. If H is a closed normal sub-
group of G,G/H is profinite (see Corollary6.2.) and A is a discrete G/ H-module.
The canonical map n : G — G/H and the inclusion A” < A form a compatible
pair, giving rise to a homomorphism H4(G/H, A) — HI(G, A) called the inflation.

Let H be a closed subgroup of finite index of a profinite group GG. One has, as
in the finite case, a homomorphism cores: HI(H, A) — HZ(G, A) for any discrete
G-module A.

If A, B are discrete A-modules, then A®y7 B is again discrete, for the diagonal action
of G. As in the case of finite groups, we can define the cup-product

HP(G, A) x HI(G, B) 2% HP*(G, A @y, B).

With these definitions of restriction, corestriction and cup-products, all the state-
ments and proofs of the properties of these maps, given in §4 and § 5, can be suitably
translated into statements and proofs with profinite cohomology replacing the co-
homology. From now onwards, we shall use these results for profinite cohomology.

§ 7. Brauer groups as a Galois cohomology

In this section, we prove that the Brauer group of a field is isomorphic to the profinite
cohomology group H?(G(K,/K),K}), K, denoting a separable closure of K. Let
L/K be a finite Galois extension with Galois group G(L/K) = G. In view of 4.3.
of Ch. I, we have an isomorphism

cr : H*(G,L*) = Br(L/K)

given by [f] — [(K, G, f)], (K, G, f) denoting the crossed product over L associated
to the cocycle f. Let K C L' C L be a tower of Galois extensions of K with
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H =G(L/L'), so that G(L'/K) = G/H. Since any central simple algebra over K,
split by L', is also split by L, Br(L'/K) < Br(L/K).

Proposition 7.1. The diagram

H*(G/H, L") - Br(L'/K)

s |

H*G, L") —— Br(L/K)

15 commutative.

Proof. Let f € Z*(G/H,L"™). Then, inf[f] = [f], where f € Z*(G, L*) is defined
as the composite

GxGUNG/HxG/H L5 I x L' <5 L* x L".

The commutativity of the above diagram is equivalent to [(K, G, f)] = [(K,G/H, f)]
in Br(K). Let B = (K,G/H, f) and A = M,(B) where r = [L : L']. Then A is
Brauer equivalent to B and [A: K| =[L: L'P?[L': K*=[L: K|? = [(K,G, f) : K].
We shall show that (K, G, f) is isomorphic to A. Let {¢;}, 1 <i < r be a basis of

L over L'. For 0 € G, let
O'(tz) = Z]:1h”(0)t]’

hij(o) € L', 1 <, j <r. Let ¢(0) = (hi(0)) € M,(L'). For ¢ € L, let

lt; = ijlfz‘j (0)t;

with ¢;;(¢) € L' (i.e., the regular representation of L over L'. It may be verified that
there is a homomorphism (K, G, f) — A induced by the assignment e, — (o) 'es,
¢ — (4;(0)). Since [(K,G, f) : K] = [A, K], this homomorphism is indeed an
isomorphism. 0]

Let K, be a separable closure of K. The set of finite Galois extensions of K inside
K is a directed set, for the ordering given by inclusion, since the composite of two
Galois extensions is again Galois. Since Br(K) = U, Br(L/K), L running over all
finite Galois extensions of K contained in K (see 2.9. of Ch. I), it follows that
Br(K) = lim Br(L/K). The above proposition shows that we have an isomorphism

HA(G(K,/K), K}) = lim H*(G(L/K), L") = lim Br(L/K) = Br(K)

where the limits are taken over all finite Galois extensions of K contained in K.
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Chapter III: A cohomological formulation of Merkurjev’s
theorem

§1. The K-groups of Milnor

Let K be a field and let T'(K*) denote the tensor algebra over Z, of the abelian group
K*. Let K,.(K) denote the quotient of T'(K*) by the two-sided ideal I generated by
all the elements of the form a ® (1 — a) for all @ € K*, a # 1. Since this ideal is
homogeneous, K, (K) is a graded algebra over Z. We write

Since I has homogeneous generators of degree 2, Ko(K) = Ty(K) = Z and K;(K) =
Ti(K) = K*. For n > 2, K,(K) is the abelian group generated by (K*)™ with the
relations

(ala"'aaiaai-l-l)"'?aTZ):0 if ai+ai+1:171§i§n_1

(a1, ... q;a, ... an) = (a1, ... 05 an) + (a1, ...,045 ... a,), 1 <i<n.

For ay,...,a, € K*, the image of a1 ®...®a, in K,(K) is denoted by (ay,...,a,).

Let L/K be a field extension. The inclusion K* — L* induces an algebra homo-
morphism K,(K) — K,(L). In particular, for all integers n > 0, we have ho-
momorphisms ext: K,(K) — K,(L) called the extension homomorphisms, which
are functorial. Let L/K be a finite extension. Then there exist homomorphisms
tr: K,(L) — K,(K) called the transfer homomorphisms which are functorial and
which satisfy the following

1)  “Projection formula”
tr ((z1, ... xn) - ext (Y, -y Um)) = tr (T, oy 20)) - (Y1 - oy Um)
forz; e L*,1<i<n,y; € K*,1<j<m.

2) tr: Ko(L) — Ky(K) is multiplication by [L : K] and tr : K,(L) — K;(K) is
the norm Ny /x : L* — K*. (See Appendix III for the existence of the transfer
homomorphism.)

We note that 2) implies that for any n > 0, the composite homomorphism

troext : K,,(K) — K,(K)

is multiplication by [L : K].
We shall be interested only in Ko(K). An element of K,(K) of the form (a,b), a, b €

K* is called a symbol. We list some of the properties of symbols, needed for later
use.
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Proposition 1.1

i) (a,1)=(1,a) =0

ii

111

a 1,0y = (a,b7!) = —{a,b)
a,—a) =0

(b, a)

1v

)
)
)
) {a,b) =

Proof.  (a,1) = {(a,1) + (a,1) = (a,1) = 0. Similarly (1,a) = 0. We have
-1

0= (1,b) = {aa",b) = (a,b) + (a1, b) so that
(a™',b) = —(a,b).
Similarly {a,b™') = —(a,b). To prove iii) we may assume a # 1. We have

0 = (@'l-al)=("(1-a)(-a)")
= —(a,1—a)+ (a,—a) = {(a,—a).

To prove iv), we note that

0 = (ab,—ab) = (a,—a)+ (a,b) + (b,a) + (b, —a)
= (a,b) + (b,a).

§ 2. The norm residue homomorphism

From now onwards, we assume that K is a field of characteristic # 2. For a pair of
elements a,b € K*, we denote by (%b) the quaternion algebra over K defined by the
generators &, n with relations €2 = a, n? = b, én 4 né = 0.

Proposition 2.1. The map K* x K* — ,Br(K) given by (a,b) — (%2) induces a
homomorphism ak : Ko(K) — o Br(K).

Proof. We show that in Br(K)

) = (% (%) (4

for a, b, o € K*. If \/a € K, then all the three classes above are trivial (5.7. of
Chapter I). Suppose /a ¢ K. If o is the Galois automorphism /a — —/a of
K(\/a) over K, then, for any ¢ € K*, the algebra (%) is the crossed product over
K (y/a) corresponding to the cocycle f given by f(o,0) = ¢. Then (x) follows from
3.5. of Chapter I. The additivity of the map K* x K* — , Br(K) in the first variable
can be checked in a similar manner. Since either /a € K* or 1 — @ is a norm from
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the extension K (y/a)/K, it follows from 5.7. of Chapter I that (%1=%) is a matrix
algebra. We therefore have a homomorphism ak : Ky(K) — o Br(K). O

Let ky(K) = Ko(K)/2K5(K). Then ak induces a homomorphism
QK - kQ(K) — QBI'(K)

which is called the norm residue homomorphism: Obviously, ak is functorial in K.
The object of these lectures is to prove the following

Theorem 2.2. (Merkurjev) The map ok : ko(K) — o Br(K) is an isomorphism.

The surjectivity of the map ag settles in the affirmative the classical question
whether the 2-torsion in the Brauer group of a field is generated by quaternion
algebras. The fact that ak is an isomorphism yields a presentation of 5 Br(K) in
terms of generators and relations. The injectivity of ax settles in the affirmative a
question of Pfister in the theory of quadratic forms. We shall not however discuss
this application of Merkurjev’s theorem in these lectures.

§ 3. The case of number fields and finite fields

We shall record for further use, the fact that ay is an isomorphism if K is either a
number field or a finite field. We begin with

Lemma 3.1. Ifa,b € K* are such that (%) is trivial in , Br(K), then {(a,b) €
2K, (K).

Proof. Suppose (%b) = M,(K). In view of 5.7., Chapter I, there exist A\, u € K*
with b = A\? — ap?. If p = 0, then {a,b) = (a,\?) = 2(a,\). If A\ = 0,(a,b) =
(a,—ap?®) = {(a,—a) + 2{(a,u) = 2(a,u). Suppose Ay # 0. Then 0 = (au* 72,1 —

ap®A™2) = (ap® A2 072 = (a,b) + 2(uA1, b) — 2{ap® A7) N). O
The above lemma establishes the injectivity of aj for fields K for which every
element of ky(K) can be represented by a single symbol (a,b). This is indeed the

case for number fields. The difficulty in the general case is that not every element
of ko(K') can be represented as the class of a single symbol.

Proposition 3.2. Let K be a number field. Any element of Ko(K) is congruent to
a single symbol {a,b) modulo 2K (K).

For proving this proposition, we need the following

Lemma 3.3. Let K be any field of characteristic # 2. If the quadratic form
az? + by? — abz? represents zero nontrivially, then {(a,b) € 2K,(K). If c € K* is
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represented by ax® + by* — abz?, then there erists a' € K* such that {a,b) = (d', c)
modulo 2K5(K).

Proof. 1If \/a € K*, then (a,b) € 2K,(K) and we may take, for example, a' = 1.
Let /a € K*. Let \, u, v € K, not all zero, such that a\? + bu? — abv? = 0. We
note that p? — av? # 0 since otherwise, either /a € K or A = = v = 0. We have
b= —a)*(u?—av?)~" so that (a,b) = (a, —a)+ (a, \?) — (a, p* — av?) = (a, p*> — av?)
mod 2K,(K). Since (%) is a matrix algebra, (Chapter I, 5.7.), it follows from
Lemma 3.1. that (a, u? — av?) € 2K,(K) and the first part of the lemma is proved.
Let A\, u, v € K be such that a\?>+bu? —abv? = ¢ € K*. Then b(u? —av?) = c—al?.
If u? —av? = 0, then ¢ = a)? and (a,b) = (¢,b) = (b™',c) modulo 2K,(K). Let
pu? —av? # 0. Then ¢ —aX? # 0 and b = (c — aA\?)(p? — av?)™!. We have,
{a,b) = {a,c — a\?) — (a, u® — av®) = (a,c — a)?) mod 2K,(K), by 3.1.. Further,

(a,c —a)?) = {a,c—al?) — (aX?c !, 1 —alct)

= (a,c—aX?) — (a,(c— al?)c ) + (¢, (c — aX?)c )
{a,c) — {(c —aX )™, ¢y = (ac(c — ar?) 7!, ¢).

O

Proof of Proposition 3.2. By induction, it is enough to prove that for a, b, ¢, d €
K*, {(a,b) + (¢,d) = (e, f) mod 2K,(K), for some e, f € K*. The quadratic form
q = (ax®+by*—abz?) — (cu® +dv® — cdw?) has a nontrivial zero at any real completion
of K. In fact, if in a real completion I?, b is positive (resp. d positive), we may take
t=vVby=0,z=1u=v=w=0 (resp. u=Vd, v=0,w=1,z=y=2z=0),
as a nontrivial zero of q. If b and d are both negative, z = 0,y = (v/—b)7!,
z=0=u,v=(vV—d)!, w =0 is a nontrivial zero of ¢q. Since ¢ is a form in 6 (
> 5) variables, ¢ has a nontrivial zero in every non-archimedean completion of K. By
Hasse-Minkowski Theorem, ¢ has a nontrivial zero in K. Let \, u, v, X', y/, V' € K
not all zero such that a\?+bu? —abv? = N +dp'* —cdv? = ¢g. If ¢g = 0, by Lemma
3.3., either (a,b) or (¢, d) belongs to 2K5(K) and hence (a,b) + (¢, d) reduces to a
single symbol modulo 2K,(K). If ¢y # 0, again by 3.3., (a,b) = (d/, o), (¢,d) =
(¢, o) modulo 2K,(K) so that (a,b) + (¢, d) = (a'c’, o) modulo 2K5(K) and the
proposition is proved. (]

Theorem 3.4. Let K be an algebraic number field. Then the map

ag : ka(K) — 9 Br(K)
1S an isomorphism.
Proof. 1In view of 3.2. and the remark preceding 3.2., injectivity of ax follows. Let
A be a central simple algebra over K with [A] € 5 Br(K). By a classical theorem
for number fields (see Albert, for instance), we have index A = exp A < 2 so that

A is either a matrix algebra over K or a matrix algebra over a quaternion algebra
over K, so that [A] € im ag. Thus a is surjective. O
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Theorem 3.5. Let K be a finite field. Then both Ky(K) and Br(K) are trivial so
that a 1s an isomorphism.

Proof.  The fact that Br(K) is trivial follows from the celebrated theorem of
Wedderburn that every finite division ring is commutative. We now show that
K, (K) is trivial. Let ¢ be a generator of the cyclic group K*. Then K, is generated
by (c,c). Since (¢,c) = —{c,c), it follows that 2(c,c) = 0 and hence 2K,(K) = 0.
If /e € K, then (c,c) = 2(\/c,c) € 2K5(K) = 0, so that K»(K) = 0. If \/e ¢ K,
then ¢ is a norm from K (/c)/K, in view of the following lemma, so that {c¢,c) =0
by 3.1. and Ky(K) =0. O

Lemma 3.6. Let K be a finite field and L/K a finite extension. Then, the norm
map L* — K* is surjective.

Proof. Consider the sequence
N
| — K" 0 25 00 2 e

where 1 —o : L* — L* is the map = — z(ox) !, o denoting a generator of the Galois
group G(L/K) (which is cyclic). By Hilbert Theorem 90 (see 3.2., chapter II), the

N
sequence L* —% L* I K+ s exact. If o is a generator of G(L/K), it follows that

ker (1 — o) = K*, and hence the above sequence is exact. A counting argument
shows that |Np/x(L*)| = |K*| so that Np x is surjective. O

§4. Norm residue homomorphism via Galois cohomology

Let K be a field of characteristic # 2. Let K, denote the separable closure of K.
The squaring map K:AK;‘ is surjective, with kernel py = (£1). Let G = G(K,/K).
We have an exact sequence

1—>u2—>K;“i>K;“—>1

of discrete G-modules. The above exact sequence gives rise to the following long
exact sequence of cohomology groups

I — Hg(Gv/l’Q) — HS(G, K:)i)Hg(GvK:) — Hcl(Gau2) — Hcl(GaK:)
— HYNG,K}) — H2(G, up) — H*(G,K?) — H*(G,K!) — ...

Since H} (G, K}) = 1 (Proposition 6.4., Chapter II), the above sequence breaks up
into two exact sequences.

1 — py — K*iK*gHj(G,MQ) — 1
1 — HY(G, po)— B HA(G, K25 HX(G, K).
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The map 8y induces an isomorphism K*/K* = HY(G,p3) = Hom,(G, iz) (the
group of continuous homomorphisms of G into ), which can be described as fol-
lows: For any b € K*,8o(b) = x, where x; : G — ps is given by x,(0) = o(v/b)/V/b.
(Note that Y is continuous since it is trivial on H = G(K,/K(v/b)). With the
identification of H(G,K}) with Br(K) (see the end of Chapter IT), we see that

H2(G, pz) = ker (Br(K)A Br(K)) can be identified with , Br(K).

We have an isomorphism p : jip ® ps — po given by p (1@ —1) = -1, p (1®—1) =
p(—1®1)=p (1®1) =1, which we regard as an identification of G-modules. The
cup-product induces a map

K*x K* = K*JK* x K*/K* = HNG, ji2) x H((G, p12)—
H? ~
H2 (G pp ® o) "= HA(G, i) ™ 2 Br(K)

which maps (a,b) € K* x K* to H*(p) (xa U Xb) = Xa U Xo-

Proposition 4.1. For a,b € K*, the image of (a,b) in o Br(K) under the above

map is the class of the quaternion algebra (%2).

Proof.  For any cohomology class [f] € H*(G, j), there exists a 2-cocycle f €
Z*(G(L/K), L") for some finite Galois extension L of K such that [f] = inf [f],
inf : H?*(G(L/K),L*) — H%*(G, K}) being the inflation homomorphism. Then the
isomorphism HZ?(G, us) = 5 Br(K) maps [f] into the class of the crossed product
(K,G(L/K), f) in Br(K). To prove the proposition, we first note that if either a or

b belongs to K*Z, both x, U x5 and (a?b) are trivial. Thus we assume that a and b
do not belong to K*’. Suppose K (y/a) = K(vb) = L. By the explicit description

of the cup-product given in 5.1. of Chapter II, the cocycle x, U x, is given by

(Xa UXp)(0,7) = Xa(0) ® X4(7), 0, T € G,

ie.,
I1®1 if o|;, = 7|1, = identity
1®(-1) if o| — L = identity, 7|;, # identity
(Xa U Xb) (07 T) = . . . . .
(-1 if 0|, # identity, 7|y, = identity

(~1)® (=1) ifol, =7, # identity.

Through the identification of jy ® s with py, the image of x, U xy in H?(G, us),
denoted again by y, U x, is in fact inf [f] where f € Z*(G(L/K),L*) is given by
f(o,0) = —1, where o is the non-trivial automorphism of L/K. On the other hand
[(42)] = [(K,G(L/K), g)] where g € Z*(G(L/K),L*) is given by g(o,0) = b. Let
h:G(L/K) — L* be the normalized 1-cochain defined by h(c) = —(v/b)~'. Then
f = g-0h so that (K,G(L/K),g) ~ (K,G(L/K), f) (3.3. of Chapter I). Thus
the class of y, U xs in o Br(K) is [(%2)]. Suppose now that y/a and v/b generate

=l
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distinct quadratic extensions of K. Then L = K(\/a, \/5) is a Galois extension of
K of degree 4 whose Galois group is the Klein’s four group (1, o4, 03, 0,04) where

0,(va) = —v/a, 0,(vVb) = Vb, oy(v/a) = /a and o,(vVb) = —V/b. For o, T € G,

1®1 if o|p =1L = identity

1®—-1 if o|, =identity, 7|, = 0y
(Xa Uxp)(0,7) = . o
—1®1 if ol =0, 7|, = identity

—1® -1 if ol =0,7|L = 0.

Under the identification of ps ® po with ps, the cohomology class of the image of
Xo U Xp in H2(G, p2) is the class inf [f] where f € Z?(G,(L/K),L*) is given by
f(0a,04) = flov,00) = flov,00) = 1, flog,00) = —1. If G = G(K(/a)/K), we
know that (%2) ~ (K,G,g) where § € Z%(G,K(y/a)*) is given by §(0,,0,) = b
(denoting by o, its restriction to K (y/a)). We claim that [f] = inf [g] where inf
stands for the inflation homomorphism H*(G, K (y/a)*) — H*(G(L/K),L*). In
fact inf [g] = [g] where g(04,00) = g(op,04) = g(op,04) = 1, g(o4,0,) = b. Let
h:G(L/K) — L* be the normalized 1-cochain defined by h(c,) = (Vb) ™!, h(o) =
1, h(oa0) = —(Vb)~'. Then f = g-6h and x, Uy, = inf [g] = [(%)] and this
completes the proof of the proposition. O

In view of the above proposition, the map S : ko(K) — H?(G, p2) defined as the
composite ky(K)%5 5 Br(K) = H2(G, i) sends (a,b) to [xa U xs). Thus, Merkur-
jev’s theorem can be reformulated as follows.

Theorem 4.2. Let K be a field of characteristic # 2. The homomorphism (g :

ko(K) — H*(G, ) given by (a,b) — [xa U Xs] is an isomorphism.

§5. A key commutative diagram

We begin with the following

Proposition 5.1. (Arason) Let G be a group (resp. a profinite group). Let
X : G — uy be a nontrivial (continuous) character so that x € H'(G, us) (resp.
X € HNG, n2)), for the trivial action of G on uy. Let H = ker x, so that H is a

normal subgroup (resp. open normal subgroup) of index 2. We then have an exact
sequence

o= H™Y(G, o) S H™(H, 1) =S H™ (G, j12) S H" N (G 1) — ...
(resp.
o HY (G, o) S H(H, 1) =S HY (G, o) “S HIY (G i) — .. ).

Proof. Let (1,2) be a set of coset representatives of H in G. Let
py = Homgm(Z[G], 12)
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(resp. Mapy (G, p2)) be the G-module co-induced from H. We then have an exact
sequence of G-modules (resp. discrete G-modules)

1—>,u24>,u§i>u2—>1

where i is the inclusion of uy in p} and 7 is defined by 7(f) = f(1) - f(z). The
map 7 is surjective since 7w(x) = —1. We have a long exact sequence of (profinite)
cohomology groups

o= HY(Gy o) — HMG, 1) — H™G, o) =2 H™Y(G, o)

res \ ZJ(SLB /‘ cores
H" (Ha /'LQ)

(resp. H, replacing H everywhere). The only thing that remains to be shown, to
complete the proof of the proposition is that 9§, is precisely xU, identifying s ® po
with po. To do this, we use the explicit description of the connecting homomor-
phism. Let s : us — pb be the Z-linear section to 7 given by s(1) = 1,s(—1) = x.
Let [f] € H"(G,us2) (resp, HI(G,uz) ) with f as a representative. We have
Su(s o F)(G™MY) C i(py), since T o d,(so f) = Sp(moso f) = 0. By the defini-
tion of connecting homomorphism, §,([f]) = [i7'0.(s o f)] € H"™(G, ) (resp.
HMY(G, py) ). Further,

On(so f)(x1, ..., xpne1) =x1(s0 f)(T2 ..y Tpi1)
. H [(S o f)(l‘l, ey Ty l‘i-l—la e ,I,L’n_l_l)](_l)i
1<i<n
(s o f) (@1, x)] 0"
=a1(s0 f) (@2, Tnp1) - (@1 f (2o, Tngn)) T

since s is Z-linear and d,f = 1, f being a cocycle. One can check that for any
r € uyand x € G, xs(r) - s(r)t =iop(x(x) @), p: s @ po — po being the

isomorphism described in §4. Let r = f(z3,...,2,11). Then 0,(so f)(x1,..., Tny1)
=iop(x(x)®r)=io(xU f)(x1,...,2ne1) so that 0,(f) =[x U f] = xU[f]. This
completes the proof of the proposition. O

From now onwards, we shall abbreviate H} (G, o) = H"(K).

Corollary 5.2. Let K be a field of characteristic # 2 and a € K*\ K*. Let
Xo € H'(K) be the character corresponding to a. If L = K(\/a), we have the
following exact sequence

oo — HM(K) 25 H™(L) <% H(K) X5 HY(K) — ...

Proof. ~ We note that y, is a nontrivial character with ker y, = G(K,/L)
G(Ls/L).

O
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Proposition 5.3. Let K be a field of characteristic # 2, a € K*\ K* and L =
K(\/a). Then, the diagram

ki(K) —= kay(K) -2 k(L) —— k(K)
JBK JﬁL lﬁk (%)

HYK) X H2(K) -5 H2(L) =% H(K)

~

where, for b € K*, p(b) = (a,b), and the isomorphism ki(K) = H'(K) being
b — xp, ts commutative.

To prove the proposition, we begin with the following

Lemma 5.4. Let L/K be an extension of degree 2. Then Ks(L) is generated by
symbols (b, ), b € K*, u € L*.

Proof. Let (A, u) € Kyo(L). If A and pu are linearly dependent over K, A = by for
some b € K*. Then (A, pu) = (bu,uy = (=b,pu) + (—p,p) = (=b, ). Suppose A
and p are linearly independent over K. Then L/K being of degree 2, 1,\, pu are
linearly dependent over K and 1 =0 A+ cp, b, ¢ € K*. Then (A, u) =

langlebA, i) — (b, p) = (1 — cp, p) — (byp) = (L — cpyep) — (1 —cp,e) — (b, p) =
(¢, 1 —cp) — (b, ). O

Lemma 5.5. Let L/K be any extension. Then the diagram

ka(K) —% ky(L)
Bk J{ﬁL
H*(K) 5 H*(L)

15 commutative.

Proof.  For a,b € K*, res (xo U Xp) = res xo Ures x; (5.2. of Chapter II).
Further, for any ¢ € K*, if ¢ denotes ¢ as an element of L, and if resy x de-
notes the restriction H(K) — H(L), then res;/x(x.) = Xc,- This is a con-
sequence of the fact that restriction commutes with connecting homomorphisms.

Thus ﬁL ext (<a7 b>) = ﬁL<aLv bL> = [XaLUxbL]ZFGSL/K[XaUXb]ZI"eSL/K 5K(<a7 b>) O

Lemma 5.6. Let L/K be a quadratic extension. Then the diagram
kao(L) —"— ko(K)
lﬁL lﬁ}(
J2E (L) cores - gr2 (K)
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18 commutative.

Proof. In view of 5.4. above, it is enough to show that for b € K*, A\ € L*,
Bk tr ((br, A)) = coresof3;({br, \)). By the projection formula,

tr ((bL, )\>) = <b, NL/K)\>

Thus B tr (br,, A\) = [xoUXn,,xA]- On the other hand, cores oL, (br,, A) = cores [x3, U
Xa] = cores [res xp U xa] = [xp U cores xa] (5.3. of Chapter II). We have cores x) =
XNy, ) Since corestriction commutes with connecting homomorphisms, i.e., the dia-
gram

K* = HYG(K,/K), K7) =" H}G(K/K), )
cores=N; /i Tcores

L* = HY(G(Ls/L), L}) —*= HXG(Ls/L), o)

is commutative. U
Proof of 5.3. By the very definition of ¢, the left hand square is commutative. The

commutativity of the middle square is proved in 5.5. and the commutativity of the
right hand square is proved in 5.6.. U

Proposition 5.7. With the notation of 5.3.,

a) the sequence

ki (K) ~5 ky(K) 25 ky(L) 55 ko(K) (5 %)

s a complew.

b) If this sequence is exact at koK) for all K and for all quadratic extensions L
of K, then Bk is injective for all K.

c) If this sequence is exact for all K and all quadratic extensions L of K, then
Bk is an isomorphism for all K.

Proof. a): (a,b);, = 2(y/a,br) = 0 in ko(L). Further, troext is multiplication by
[L: K] =2 (§1 of chapter IIT) which is zero in ky(K).

b): Let >2 i, (i, bi) € kao(K) be such that B1(32,.;c, (@i b)) = 0. To show
that >, ., (@i, b;) = 0, we proceed by induction on n. If n = 1, Bx({ai,b1)) =

a1,b

[Xa1 U Xp,] = 0 implies that (“*) is a matrix algebra (see 4.1.). This implies that
(a;,b1) = 0 by 3.1.. Let n > 1. Let B> ,cic, (@i, b)) = 0. If V/a, € K, then
{ty, b,) = 0 and we are through by induction. Let Vva, ¢ K and let L = K(\/a,).
We have 0 = res ofx (> ,{ai, bi)) = Br - ext (3 ,{ai, b)) = Br(d 0 1<icn 1 (@i bi)y),

since (an, b,)r, = 0, a, being a square in L. By induction, /3y, is injective on (n — 1)
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symbols so that ext; x> (a;,b;) = 0. By the assumption of exactness at ky(K),
there exists b € K* such that ). (a;, b;) = (an,b). Since Sx((a,,b)) = 0, it follows
that (an,b) = 0.

To prove c) we need the following

Lemma 5.8. Let K be any field and x € H?(G(K,/K), K?). Then there exists a fi-
nite Galois extension L/K such that if res; x denotes the restriction homomorphism
H}(G(K,/K),K}) — H2(G(K,/L),K}), then resy/x x = 0.

Proof. By the definition of H?(G(K,/K), K}), there exists a finite Galois extension
L/K such that x € image of inf : H*(G(L/K),L*) — H*(G(K,/K),K}). Since
res oinf =0 (4.2. of Chapter II), we have res;/x = = 0. O

Corollary 5.9. Let K be any field of characteristic # 2 and x € H*(K). Then
there exists a finite Galois extension L/K such that resy /v = 0.

Proof. 'This is immediate from 5.8. and the fact that the diagram
0 —— H(G(K,/K), p2) —— HZ(G(K,/K)K])

J{res J{I‘GS

0 — HZ(G(K,/L),p2) —— HZ(G(K,/L)K})

is commutative, with exact rows, for any finite Galois extension L/K. O

Proof of ¢) of 5.7. In view of b), it suffices to show that under the hypothesis, [ is
surjective. Let z € H*(K), v # 0. Let L/K be a finite Galois extension such that
res z =0 in H?(L) (5.9.).

Let [L : K] = 2"-m > 1 with (2,m) = 1. Let Ly be the subfield of L fixed
by a 2-sylow subgroup H of G = G(L/K). If r = 0, H = (e¢) and L = L, and
resp,/k(z) = 0 € H?(Ly) and hence resy, k(x) is in the image of fr,. Suppose
r > 0. Let () = Hy C Hi C ... C H, = H be such that H;/H; ; is of order
2,1 < i <r. Let L; be the fixed field of H,_;, 1 < i < r. We then have a tower
of fields Ly C Ly C ... C L, = L of successive quadratic extensions. We denote by
resy,/k the restriction homomorphism H?(K) — H?(L;). The diagram

ki(Li1) s ka(Li-1) s k2 (L) — ko(Li-1)
J(Z J«ﬁLi_l JfﬂLi J,ﬁLi_l
HY(L; ) —— H*(L; ) —= H*(L;) =% H*(L; 1)

is commutative with exact rows (by hypothesis and 5.3. of Chapter III). We have
that resy, k() = resp/x(xr) = 0 trivially belongs to im .. We show that if
resy,/k () is in the image of 3, then, res;, ,/x(z) belongs to the image of 3y, ,.
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This would prove that res;, x(x) belongs to im 8r,. Let res;,/.(x) = fr,(y) for
y € ky(L;). Then we have 0 = coresoresy,/,_, oresy, 1/K( x) = coresoresy, /i () =
cores f(r,(y) = Br,_, tr(y). Since fr,_, is injective (in view of b)), tr y = 0. The top
row being exact, y = ext z, for some z € ky(L;_1). Since f;,_,z and res;, ,/x x have
the same image resy,/k () in H*(L;), (1, ,(z) —resp, i (x) comes from H'(L;_ ) ~
k1(L;—1). Thus there exists Z € ka(L;_y) such that 8z, ,(2) = Br,_,(2) —resy,_, /k (%)
so that res;, ,/x (r) € ImpBg,_ . Thus res;,/x(x) = Br,(2) for some z € ky(Ly).
The diagram
koK) —2 ko(Ly) —— ko(K)
lﬁx BLg Jﬁx

H(K) —— H*(Ly) — H*(K)

is commutative. The left hand side square commutes by 5.5.. The right hand side
square commutes, in view of a theorem of Rosset-Tate (cf. Appendix IV).

Also coresy,/k oresy,,x = multiplication by [Lg : K| = identity since H*(K) is 2-
torsion and [Lg : K] is coprime to 2. Thus x = coresores; /x(x) = cores [(,(2) =
Bk tr(z) so that fx is surjective. O

Thus, to prove Merkurjev’s theorem, one needs to establish the exactness of the
sequence (xx*) of 5.7. for all fields K and all quadratic extensions L of K. The
exactness at ko(L) can be derived from the following Hilbert Theorem 90 for K.

Theorem 5.10. (Suslin-Merkurjev) Let K be a field of characteristic # 2 and
L = L(y/a) a quadratic extension of K. Let o be a generator of G(L/K). Then the
sequence

Ky(L) <53 Ka(L) 5 Ko(K)
is exact, where (1 — o)({b,c)) = (b,¢) — (ob,oc).

ext

Corollary 5.11. The sequence Ko(K)—oky(L)——sko(K) is ezact.

Proof. Let 7 € ky(L) with r € K5(L) as a representative such that tr(7) = 0. Let
trr =26, § € Ky(K). We have troextf = 26. Thus tr(r — ext #) = 0. Replacing r
by r — ext §, we may assume that trr = 0. By 3.1., 7 = (1 —0)(), # € Ky(L). In
view of 5.4. of Chapter III, § may be written as asum y ., (b;, \;), b; € K*, \; € L*.
Thus r = Z?:l{a)i’ )\z> + <bz,0')\l> — 2<bl,0')\l>} = Z?:1<bi? NL/K)\Z>mod QKZ(L), =
extr/k Z:’L:I <bi;NL/K)\i>- O

In the next two chapters, we prove Theorem 5.10. above and the exactness at ky(K)
of the sequence (x x) of 5.7.. This would complete the proof of Merkurjev’s theorem.
O
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Chapter IV: “Hilbert Theorem 90” for K,

§ 1. Function field of a conic

In this section, K denotes a field of characteristic # 2. For a,b € K*, the projective
conic C' = C, defined over K is the set of zeros of aX? +bY? — Z? in P*(K), K
denoting the algebraic closure of K. The polynomial aX? +bY? — 1 € K[X,Y] is
irreducible in K[X,Y] for any field extension K of K, so that if

R=KI[X,Y]/(aX?*+bY? - 1)
is the coordinate ring of the affine conic aX? + bY2 — 1, then
K®x R3S K[X,Y]/(aX?+bY? - 1)

is a domain.

The function field of C' is, by definition, the quotient field of R and is denoted
by K(C). Let z, y € R denote the images of X,Y respectively. Then K(C) is a
quadratic extension generated by y of the field K (x) of rational functions in z so
that K (C) is an algebraic function field in one variable over K.

Proposition 1.1.  The following conditions are equivalent:

i) K(C) is a purely transcendental extension of K.

ii) C has a K-rational point, i.e., there exist A\, p, v € K not all zero such that
al? +bu? — 12 = 0.

iii) The quaternion algebra (%2) is a matriz algebra.

Proof. The fact that i) and ii) are equivalent is a consequence of 5.7. of Chapter .
iii) =i): Let (%) be a matrix algebra. Then by 5.7., b= p? — a)?, \, p € K. Let

t = ii—% It is easily verified that K(C) = K(t).

i) = iii): Let K(C) be a rational function field in one variable over K. Since in

K(C),a = (3)*=b(%)?, it follows by 5.7. of Chapter I that (&) = (%) @x K(C)
a,b

is a matrix algebra. Then (%) is a matrix algebra by 1.7. of Chapter I. Il

We say that a conic C' = C is split over K if any one of the equivalent conditions
of the above proposition is satisfied. An extension K of K is said to split C'if C'is
split over K.

Lemma 1.2. The ring R = K|z, y] is the integral closure of Kx] in K(C).

Proof. Since y is integral over K|z], R is integral over K[z]. Let A + py € K(C),
A, p € K(z), be integral over K[z]. Then A — py is also integral over K|z], so that
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2) and (A\? — b~ 'p?)(1 — ax?®) € K(x) and are integral over K[z]. Since K|z] is
integrally closed in K (z), 2\ and (A\?> —b~'1?)(1 — az?) belong to K[x]. Thus \ and
12(1 — ax?) belong to K[z]. Since 1 — az? has distinct roots in K, it follows that
p? € Klz] and hence p € K[z]. Thus A + py € R. O

Lemma 1.3. The field K is algebraically closed in K(C).

Proof. Let a = fo(z) + fi(z)y € K(C) be algebraic over K with fy(z), fi(z) €
K(z). Then fy(z) — fi(z)y is also algebraic over K so that 2fy(z) and (fy(x))? —
(fi(z))? b=1(1 — ax?) are algebraic over K. It follows that fo(r) € K and fi(x) =0
so that o € K. O

§ 2. Discrete valuations of function fields

Let K be any field. A discrete valuation v of K is a surjective homomorphism
v : K* — Z such that for a, b, a + b € K*, v(a + b) > min(v(a),v(b)). If v is a
discrete valuation of K, the valuation ring O, of v is the set

O ={xe K*|v(xr)>0}uU{0},

which in fact is a subring of K since for a, b € O,, either a +b = 0 or v(a + b) >
min (v(a),v(b)) > 0, so that a + b € O,. The ring O, has a unique non-zero prime
ideal p, defined by p, = {x € K* | v(z) > 0} U {0}. If 7 is any element of K* with
v(m) = 1, then p, = O, - 7 so that p, is a principal ideal. Such an element 7 is
called a uniformising parameter for v. The group O, \ p, = {z € K* | v(z) = 0}
is precisely the group of invertible elements of £, called the units of v. The ring
9, is a local principal ideal domain and every nonzero element of K can be written
as ur™, u € O, \ p, and 7 a parameter for v. The field K, = O, /p, is called the
residue class field of the valuation v.

Let K be a field with a discrete valuation v. Let L be any extension of K. If w is
a discrete valuation of L such that O,, N K = ©O,, then w is called an extension of
v (denoted w/v). If w is an extension of v, then p, N K = p,. If 7, is a parameter
for v and w(w,) = e, e is called the ramification index of w over v and denoted by
e(w/v). We note that e is independent of the choice of the parameter and for any
z € K*, w(zr) = ev(z).

Proposition 2.1. Let A be a Dedekind domain and K its quotient field. If v is
a discrete valuation of K, such that A C 9O, then there exists a unique non-zero
prime ideal p of A such that A, = O,. Conversely, any nonzero prime ideal p
of A defines a discrete valuation v, of K whose valuation ring is Ay. In fact, if
r € K* and vA = [[p™@,p running over the set of all the prime ideals of A,
then, © + ny(x) = vy(x) is the required valuation. The assignment p +— v, is in
fact a bijection between the set of non-zero prime ideals of A and the set of discrete
valuations of K such that v(x) > 0 for all x € A.
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Proposition 2.2. Let A be a Dedekind domain with quotient field K. Let L/K
be a finite separable extension. If B is the integral closure of A in L, then, B is a
Dedekind domain whose quotient field is L. If p is any non-zero prime ideal of A,
then pB # B and if pB = [[B*, the valuations of L extending v, are precisely
the valuations wy corresponding to those prime ideals B of B with ey > 0. We
have e(wg/vy) = ep. If fg = [B/P : A/p], then, [L : K| = Zesp>0 ep - fp. If
L/K is Galois, then G(L/K) operates on B and operates transitively on the set
{B | ep > 0} If oPBi = By, then, wy, o0 = wy, and Dumj = 0(Ouy, ). For any
v € B, Nk(z) € A and

Neyic(@) =TT Nosmjam@®

ep>0

where bar denotes ‘reduction modulo p’ on the left hand side and ‘reduction modulo
B’ on the right hand side.

The proof of 2.1. is straightforward and the proof of 2.2. may be found in ‘Com-
mutative Algebra’ vol. I, Chapter V, by Zariski and Samuel (see also Appendix I).

Proposition 2.3. Let K(x) denote the field of rational function in one variable
over K. The only discrete valuations v of K(x) which are trivial on K (i.e. v(\) =
0Y X € K*) are the valuations v, for each prime p € K[z] and vy defined as follows:

w(f) =n, f € Kla], p"|f, p"" Jf, veo(f) = —deg f, f € Klz].

Proof. The field K(z) is the quotient field of the Dedekind domain K[z]. Let v be
any discrete valuation of K (x) trivial on K. If v(z) > 0, then O, D K|z] so that by
(2.1), v = v, defined as above for some prime p of K[z]. If v(z) < 0, then v(1/z) >0
and O, D K[1/z]. Since 1/x is a prime in K[1/z], it follows that v = v/, = v,
defined as above. O

We note that O,, = K[z]y,), by, = p- K[z]) so that K(x),, = K[z]y)/p- K[7]p) ~
K[z]/(p). Thus [K(x),, : K| = degp which is called the degree of the valuation v,
We have O, = K[1/x|n/2) and p, = 1/x- K[1/2]1/s) so that [K(z),, : K] (which
is called the degree of vy) = 1.

Let C' = C,, be a conic defined over K. Then K(C) is a quadratic extension of K (z)
and the integral closure of K[z] in K(C)is R = K[z,y] = K[X,Y]/(aX?+bY?—1).
The only discrete valuations of K (C') trivial on K are extensions of the valuations
Uy OF Uy Oof K (). In view of 2.2. above, there are at the most two valuations of
K (C) extending any valuation of K (z). For any valuation w of K(C'), we define

degw = [Dw/pw : K] = [Ow/puw : On/po] - [On/py : K]

45



(where w extends v). Thus degv | degw. We denote by Bx(C) the set of discrete
valuations of K (C') trivial on K and by Pk the set of discrete valuations of K(x)
trivial on K.

Proposition 2.4. Let K(C) be the function field of a conic C = Cy, defined over
K and L/K a quadratic extension. For any v € P (C), if w is an extension of v
to L(C), then e(w/v) = 1. The inclusions L — L(C),,, K(C), < L(C),, induce an
isomorphism L @y K(C), = 1o L(C)w- If v has two distinct extensions to L(C)
and if o € G(L/K) is the nontrivial element, then, 0 @ 1 on L ® K(C), transports
under this isomorphism into the map (z,y) — (0y,02), =, y € L(C) belonging to
the corresponding valuation rings.

Proof. Let v be a discrete valuation of K(C) trivial on K. We take R =
K[X,Y]/(aX? +bY? — 1), S = LIX,Y]/(aX? + bY? — 1) if v is an extension of
a valuation v, of K (X) where p is a prime in £[X] and

R = K[1/X,Y/X]/(a+b(Y/X)?— (1/X)?),
S = L[I/X,Y/X]/(a+bY/X)*— (1/X)2 - (1/X)?)

if v is an extension of v, of K(X). Then S is the integral closure of R in L(C'). Let
v define the prime ideal p of R, and let pS = [ [y, P¥. Then LRk R/p ~ S/pS ~
[Ty S/P®. Since L is a separable extension of K, L ® R/p has no nilpotent
elements so that ey = e(wy/v,) = 1 and we have the isomorphism L ® K(C), =
L®R/p = [lps, S/B = [y L(C)w. The effect of the transport of o ® 1 on
[1./, L(C)w can be easily computed to be that given in the proposition. O

Proposition 2.5. Let C = C, be a conic defined over K. For any f € K(C)*,
the set {v € P (C) | v(f) # 0} is finite. If f € K(C)* is such that v(f) > 0 for all
valuations v € P (C), then, f € K*.

Proof. ~ We know in view of 2.2. above that every v € PBx(C) is either an
extension of the valuation v, of K(z) or corresponds to a non-zero prime ideal
P of K[X,Y]/(aX?+bY?—1) = R. Let fR = [[B"*). Then the set of valuations
v € Pk (C) such that v(f) # 0 is contained in the set {vg | P > f}U extensions of
Uso, Which is finite. For any v € Py (C) extending v, of K(z), O, D K[z,y] and for
any v € Pk (C) extending vy of K(z), O, D K[1/x,y/x]. Since every v € Pk (C)
is given by a prime ideal of K|z, y| or a prime ideal of K[1/z,y/x] and since for any
Dedekind domain A, N A, p running over the set of all the non-zero prime ideals
of A, coincides with A, Nyeyp, () Ov = K[z, y| N K[1/2,y/2] = K. O

Proposition 2.6. Let C' = C,; be a conic defined over K. For any valuation v of
K(C), the residue field K(C'), splits C. Further, if C is non-split over K, degree v
is even, for any v € Pk (C).

Proof. 1f9, D K|x,y] and Z, § denote the images of x,y in K(C),, then az*+by* =
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1 so that (K‘(’(/I,’)v) is trivial, by 5.7. of Chapter I, and in view of 1.1. of Chapter III,
K(C), splits C. If O, D K(1/x,y/x],v is an extension of v, and if &, § are the
images of 1/z,y/x in K(C),, then # = 0 and §*> = —a/b, so that (K‘(ICI,’)U) is again
trivial.

Suppose C' is non-split over K. Then /a ¢ K and K(C), # K, in view of the
above. Since K(C), splits C, b = Ngcy,(va)/k (). (B) for some 3 € K(C),(\/a)
so that Nic), (vay/ B = Nicyw(b) = = 0" = Ni(yay x (N o), (vay ) (5)-
Thus b%8" is a norm from K(y/a). On the other hand, b? is a norm from K( /a).
If deg w were odd, this would imply that b is a norm from K (y/a) so that C is split
over K, contradicting our assumption that C' is non-split. Thus deg w is even. [

§ 3. Divisors on a conic

Let K be a field of char # 2 and C' = C,; a conic defined over K. A divisor
of K(C) is a formal linear combination }_ cq () 7w, Ny € Z being zero for all
but a finitely many v. The divisors form an abelian group Div(K(C')) which is
in fact the free abelian group on P (C). For any divisor D = > n,v, we define
the support of D, denoted by supp D, to be the set {v € Px(C) | n, # 0}. The
divisor D is said to be non-negative (notation D > 0) if n, > 0 for all v € P (C).
The degree of a divisor D, denoted deg D, is Y n, degv. The map D — deg D is
obviously a homomorphism Div(K(C)) — Z. Let Divy(K(C)) denote the kernel of
this homomorphism. For any f € K(C)*, we define the divisor of f, denoted by
div(f), as 3 eqp(cyv(f) - f- The fact that div(f) is a divisor follows from (2.5)

above. The map K(C)* dy Div(K(C)) given by f + div(f) is a homomorphism.
Proposition 3.1. The image div(K(C)*) is contained in Divo(K(C)).
To prove the proposition, we need the following

Lemma 3.2. Let C = C,y be a conic defined over K and L/K a quadratic ex-
tension. Then, the map P (C) — Div(L(C)) given by v — >, w induces a

ext

homomorphism Div(K(C)) — Div(L(C)) which satisfies deg(extD) = deg D for
all D € Div(K(C)).

w/v

Proof. Tt is obviously enough to check that for any valuation v of the field K(C),
deg(>_,, w) = degv. We have [L: K]>°, , degw =3 , [L: K][L(C)y : L] =
S LO : K1 = 0 [L(O)y : KOWIK(C), : K] = (X, f(w/v)) degv =
[L : K]degv in view of 2.2, since by 2.4. e(w/v) = 1. Thus > , degw = degwv.

O

w/v

Proof of Proposition 3.1. Let L be a quadratic extension of K which splits C'. In
view of the above lemma, we replace K (C') by L(C) and assume that K(C) = K(t)
the rational function field in one variable ¢ over K. For f,g € K(t), f,g # 0, it is
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easy to verify that > v,(f/g) = —vx(f/g), so that deg(div(f/g)) = 0. O
Let D =3 n,v be a divisor and let
L(D)={fe K(C)"| divf+D>0}u{0}.

Using the fact that v(f +g) > min(v(f),v(g)) for f, g, f+g € K(C)*, and v(\f) =
v(f) for A € K*, f € K(C)*, for any v € Pg(C), it follows that L(D) is a K-vector
space.

Lemma 3.3 Let L/K be any quadratic extension. Then for any D € Div(K(C)),
dimy, L(ext D) = dimg L(D).

Proof. Since for any f € K(C') and valuations v € Pg (C), w € PL(C), w extending
v, w(f) = v(f) (cf. 2.4. above), the inclusion K(C') — L(C') induces a K-linear
map L£(D) — L(ext D). Since L and K (C') are linearly disjoint over K, any set of
elements of £(D) linearly independent over K is linearly independent over L so that
dimy, £ (ext D) > dimg £(D). We shall show that £(D) generates L(ext D) as a
vector space over L and this will complete the proof of the lemma. Let {e;} 1 < j <2
be a K-basis for L and let f € L(ext D). We write f = fie; + faes, f1, fo € K(C).
Then, if g; = try/k(fe;) = >, fitrr/k(eiej), we can write f; = > bijg;, bjj € K
since the matrix (tr(e;e;)) is invertible (L/K being separable). We have v(f;) >
min; v(g;) > min;,,/, w(g;) > min,, w(f) (since g; = fe; + of - oe;, o denoting
the nontrivial element of G(L/K)), miny,, w(f) > —n, where D = > n,v. Thus

Lemma 3.4. For any divisor D of K(C), L(D) is a finite dimensional vector space
over K.

Proof. ~ We first show that the dimension of £(0) is 1. Let f € K(C)* with
div f > 0, i.e. v(f) > 0 for every v € Px(C). By 2.5. f € K*, so that L(0) = K.
To prove the lemma, it is sufficient to show that £(D) is finite dimensional if and
only if £(D + w) is finite dimensional for w € Px(C). We have a homomorphism
L(D +w) — K(C), given by sending f € L(D + w) to the class of f - 7™ *! in
K(C)y, where D =Y n,v. Let E denote the image of this map. Then E is finite
dimensional and the kernel of this map is £(D) so that we have an exact sequence
of K-vector spaces

0—L(D)— LD+w)—E—D0.

This shows that £(D) is finite dimensional if and only if £(D + w) is finite dimen-
sional. O

Lemma 3.5. Let D, D' be two divisors of K (t) which are “linearly equivalent” (i.e.
D — D' =divg for some g € K(t)*). Then L(D) = L(D").
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Proof. Let D = D'+ divg, g € K(t)*. Then the map K(C) — K(C) given by
f + fg induces an isomorphism £(D) = L£(D'). O

Lemma 3.6 Let D be a divisor of degree 0 of the rational function field K(t). Then
D =div f for some f € K(t)*.

Proof. Let D = Zp NpUp +Noo Voo, Up, Uso € P defined as in 2.3.. Since deg D = 0,
> nydegp +no = 0. Let f = [[?. By definition v,(f) = n, and ve(f) =
— > n,degp = ne. Thus D = div(f). O

Proposition 3.7. Let D be a divisor of the rational function field K(t) of degree
> 0. Then dim £(D) =1+ deg D.

Proof. Let deg D =n > 0. Then D — nv, has degree 0 and hence is the divisor of
a function (see 3.6.). Thus £(D) = L(nv;), by 3.5. above. We need only to show
that dim £(nv;) = 1 + n. Every element of L£(nwv;) is of the form f/t, 0 < i < n,
with deg f <. This K-subspace of K (t) has dimension 1 + n. O

Theorem 3.8. Let C' = Cyy be a conic defined over K. Then, for any divisor D
of C, we have dim L(D) =1+ deg D if deg D > 0 and dim L(D) =0 if deg D < 0.

Proof.  Let L/K be a quadratic extension of K which splits C. By 3.2. and
3.3. above, we may replace K by L and assume that K(C) = K(t), the field of
rational functions in one variable. The first claim follows from 3.6. above. Let
D = S n,v be a divisor with deg D < 0. If f € L(D), f # 0, v(f) > —n, so that
degdiv(f) = Y v(f) -degv > —> n,degv = —deg D > 0, a contradiction. Thus
L(D) = 0. O

Corollary 3.9. Let C' = C,y be a conic defined over K. Then any divisor of degree
zero is the divisor div g for some g € K(C)*.

Proof. If D is a divisor with deg D = 0, then dim£L(D) = 1. Let f € L(D)

with f # 0. Then divf + D > 0. Since deg(div f) = deg D = 0, it follows that
divf+ D =01ie D=—div(f)=div(l/f). O

§ 4. Proof of Hilbert Theorem 90 for K,

Proposition 4.1. Let K be any field of characteristic # 2 and L/K any quadratic
extension. The sequence Ko(L) =% Ky(L) 55 Ky(K) is a complex.

Proof. Since K5(L) is generated by elements of the form (b, \),b € K*, X\ € L* (see
5.4. of Chapter III), it is enough to prove that tro(l — o)({b,A\)) = 0. We have
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tro(l — o) ((b,A)) = tr(b, A(oA)™") = (b, N\ (@A)™)) = (b, 1) = 1. O

Proposition 4.2. The sequence Ko(L) =% K>(L) L5 Ky(K) is ezact if the map
Npx o L — K* is surjective.

Proof. By 4.1. above, we have an induced homomorphism
tr: Ky(L)/(1 — 0)Ky(L) — Ky(K)

induced by transfer. Let Ny g : L* — K* be surjective. We construct an inverse to
tr. We define o : K* x K* — Ky(L)/(1—0)K(L) by (b, ¢) — (), ¢) where A € L* is
such that Ny x(A) = b. We note that ¢ is well-defined. In fact Ny (A) = Np/x(N)
implies that Ny /x(AN'~') = 1 so that by the classical Hilbert Theorem 90 (3.2. of
Chapter II), there exists € L* such that AN ™" = p(op)~'. Then (A, ¢) — (X, ¢) =
N e) = (u(op) ' e) = (1 — o), c) € (1 —0)Ky(L). Obviously ¢ is biadditive
so that we have an induced homomorphism

0: K" Q7 K" — Ky(L)/(1 —0)Ks(L).

(L
We claim that for any b € K*, b # 1, p(b® (1 — b)) = 0; i.e. the symbol (A, 1 —
by € (1 —0)Ky(L) if A € L* is such that Ny x()\) = b. Let Vb € K*. Then
M1 =0 = (N1 +VD) + (A1 = VD) = (A =vb, 14+ VD) + (\/Vb,1 — /D). Since
Npg(A/ £Vb) = 1, \/—vVb = plop)™, A\/vVb = v(ov)™'. Thus (\,1 —b) =
(1= 0){u, 1+ vb) + (1= o) {u,1 = Vb) € (1 —0)K>(L).
Suppose Vb € L* v/b & K*. Then (\,1 —b) = (\,14+ VD) + (N, 1 —Vb) = (\, 1+
VDY = (oM, 1= VB + (oA, 1= Vb) + (N, 1 =vb) = (1 =)\, 1+VD) + (Ao X, 1 — /D)
= (1—0)(\, 14+VD)+2(V/b, 1—Vb) = (1—0){\, 1+Vb) € (1—0)K,(L). Suppose Vb ¢
L*. Then L = K(y/a) and K(v/b) are both Galois over L and are linearly disjoint
over K. Let L = K(y/a,vb). Then L/K is Galois and the Galois group is generated
by the automorphisms o,, o, where o,(v/a) = —v/a, 0,(vVb) = Vb, op(Va) = /a,
op(v/b) = —v/bso that 04|r = 0. By Hilbert Theorem 90 for the extension L/K(/b),
we have A\/—v/b = 04(A)A ! for some A € L*. By the projection formula for transfer
(§1 of Chapter IIT), we have (\,1 —b) = (A, Npr(1+ Vb)) = try (A, 1+ vb) =
7,1 (0a(N), 1+ VD) = trg, (A 1+ VB) = try,; 0oa (X, 1+ V) — trg (A, 1+ Vb) =
ootrg,p (A, 14+ Vb)) — trz/L&, 1+Vb) € (1 —0)Ky(L), the last equality being valid
since for p € L*, i € L*,

)™

\_//_\

tI'Z/L 0%(/% /7> = trE/L <O-:U’7 O-aﬁ>
<O'/L, NZ/LO'aﬁ>
(o, Oafl - Ob0a L)
(Op, Oafl - TaOpHL)
(o1, 0aNg ) (1))
ootry, (1, 1)

This completes the proof of Proposition 4.2. 0
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For any field K of characteristic # 2 and a quadratic extension L/K, we define
V(K) =kertr /im(1 — o),

where tr : Ky(L) — Ky(K) and (1 —0) : Ky(L) — Ky(L) are as defined earlier. Let
E/K be any extension such that L ¢ E so that EL/FE is a quadratic extension of E.
We denote by o the automorphism of EL/E induced by the nontrivial automorphism
of o of L/K. We obtain a complex

K>(EL) =% Ky(EL) %5 K,(E)
and the following diagram is commutative.

Ky(EL) =25 Ky(EL) —2 Ky(E)

T ext T ext T ext

Ky(L) —5 Ky(L) — Ky(K).

We therefore have an induced homomorphism V(K) — V(E). The strategy for
proving Hilbert Theorem 90 for K is to construct an extension E/K such that
L ¢ E and such that

1) V(K) — V(E) is injective,
2) Ngpe: (EL)* — E* is surjective.

Then, by 4.2. above, V(E) = 0 so that V(K) = 0.

To construct such a field F, we begin with the following

Theorem 5.4. Let K be a field of characteristic # 2 and L a quadratic extension
of K. Let C'= Cyy be a conic defined over K, split by L. Then L is not contained
in K(C) and the map V(K) — V(K(C)) is injective.

We postpone the proof of this theorem to §5 and §6 and complete the proof of
Hilbert Theorem 90 for Ky. We begin with the following

Lemma 4.4. Let C = C, be a conic defined over K and K any extension of K.
Then K @ K(C) is an integral domain whose quotient field is isomorphic to K(C').

Proof. Since aX%+bY2—1 is irreducible over any extension of K, K[X,Y]/(aX%+
bY? — 1) is an integral domain with quotient field K (C'). We have homomorphisms
K[X,Y]/(aX?4+bY2—1) = K@ K[X,Y]/ (aX2+bY2—1) - K@ K(C) = K(C),
the composite being the inclusion of K[X,Y]/aX? + bY2 — 1) in its quotient field.
Thus all the maps above are injections so that K @ K (C') is a domain with quotient
field K(C). 0
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Proof of Theorem 5.10. Let K (y/a). For any finite subset I = {b1,bs,...,b,} of K*,
we have, by iterated applications of 4.10. above, that ®i<;j<,/(Cyp,) is an integral
domain whose quotient field is denoted by K;. (We note that if I' = {by,...,b,_1},
then, K7 is the function field of the conic C,y, over Kp). The set J of finite
subsets of K* is directed with inclusion of subsets as ordering. We note that if
I, C I, K;, C Ky,. Let Ky = @IEJKI. We have an inclusion K; C K. Since
L splits Cyp,, the map V(K) — V(K (C,y,)) is injective, by 4.3. above. Since L
is not contained in K(C,p,), L ¢ K;. Thus the map V(K) — V(K;) is defined
and is injective since K is a direct limit of successive function fields. Further, any
b € K* is a norm in the extension LK (Cy)/K(Cyp) since L splits Cyp, so that
K* is contained in Nyg, /k, (K7) and V(K) — V(K,) is injective. Replacing K by
K, we construct a field Ky such that L ¢ K,, V(K;) — V(K3) is injective and
K} C Nik,/k,(K3). Iterating this procedure, we get a sequence of fields K = K, C
Ky C.... Let E = lim K,. Then L ¢ E and V(K) — V(E) is injective since
V(K) — V(K,) is injective for all n. Further, if A € E, then A € K,, for some n.
By the very construction of K1, A € Nik, .\ /kn1 (LEKyt1) C Npg/p(LE). Thus
N : (LE)* — E* is surjective and V(E) = 0 by 4.3.. Hence V(K) = 0 and this
completes the proof of the theorem. O

§5. An analogue of an exact sequence of Bass-Tate for conics

Let K be a field with a discrete valuation v. We have a map ¢ : K* x K* — K
(K, denoting the residue field 9,/p, of v) given by (a,b) s (—1)2@?®)(gv(®))pv(a))
where bar denotes reduction modulo the maximal ideal p, of ©. We note that
{(=1)v@v®) g=v®)pr(@} = 0 so that the map is indeed defined. It is easily verified
that ¢ is biadditive and that ¢(a,1 —a) =1 for a € K*, a # 1. Thus we have an
induced homomorphism T, : Ky(K) — K;(K,) = K} called the tame symbol. We
record the following two properties of the tame symbol.

5.1. If 7 is a parameter for v, u, v’ units of v, then
a) T,(<mu>)=1
b) T,(< u,u' >) = 1.

Let C' = C,p be a conic defined over K. We shall assume, from now on that
Char K # 2. For each v € Pg(C), we have a homomorphism T, : Ky(K(C)) —
K,(K(C),). These homomorphisms give rise to a homomorphism

T = (T,) : K>(K(C) = [ [ Ki(K(O)).

The image of T is, in view of 2.5., contained in [[ K;(K(C),).

If C is a split conic, so that K(C) = K(t) is the rational function field in one
variable, we have the following
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Theorem 5.2.  The sequence

0= Ky(K) = Ky(K(t)) — [ K& (1)) = Ki(K) — 0
veEPK

18 split exact, where N = (NK(C),,/K)-

See Appendix II for a proof of this theorem. The aim of this section is to prove
a partial analogue of the above exact sequence for any conic, not necessarily split.
More precisely we prove the following

Theorem 5.3. Let C' = C,, be a conic defined over K. The sequence

Ko(K(C)) — [ Ki(K(C)s) = Ki(K) (%)
vEPB K (C)

1S exact.
Proposition 5.4 The sequence (x) is a complex.
To prove this proposition, we need the following

Lemma 5.5. Let {/k be a quadratic extension with 2 invertible in k. If v is any
discrete valuation of k, the following diagram is commutative.

Tw
K0 5 11, 6

[ | (Vewgin) =

Ky(k) — Ok

Proof.

Case 1. Suppose there is only one extension w of v to ¢ with e(w/v) = 2. Then
k, = £, by 2.2.. Let B be the integral closure of £, in . Then there exists a
parameter T, of w in B, since O,, = B. Let 72 +am,+b = 0 be the integral equation
satisfied by 7, over O,. If a = 0, then 72 = —b € k and —b = m, is a parameter for
v. If a # 0, it may be checked that 7, +a/2 € O, is a parameter for w whose square
—b + a?/4 belongs to k and is a parameter for v. Thus we assume, without loss of
generality, that 7, is a parameter for w with 72 = 7, € k a parameter for v. Since
K, (?) is generated by (a,b), a € [, b € k, it is sufficient to check the commutativity
of the above diagram for elements of the form (u, vy, (u,m,), {7y, u'), {7y, ) where
v is a unit of w and u' € k is a unit of v.
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No Ty({u,u)) = 0

T,o tr((u,u)) = T,((Nyru,u')) (projection formula)
= 0 since Nyjpu is a unit for v.
No Ty((u,m)) = N, (@?) =12
T, o0 tr((u,my)) = T,((Newu,m)) = Nyju—1
= Ny, (@) 2=u"? (in view of 2.2.)
No Ty({mw,u)) = Ne,m,([u') =10’
T, o tr((my,u')) = Ty((NejpTw, u'))
= T,({(-m,u'))
= u.

We have (7, Ty) = (Tw, (=Tw)?) = 2(my, —Tw) = 0.

Case 2. Suppose there is only one extension w of v to ¢ with e(w/v) = 1. Then
[0y : ky] = 2 and if 7w is a parameter for v in k , 7 is also a parameter for w. If
suffices to check the commutativity of the above diagram for elements (7, u) where
u € (* is a unit for w.

NO Tw( 7T,U/>) = New/kv(ﬂ)
T, o0 tr((m,u)) = T,({m, Nyu))
= Ng/ku = wa/ku (ﬂ) (see 2.2.).

Case 3. Let wy,wy be distinct extensions of v to . Then e(w;/v) = 1 and [, :
k,) = 1. Let 0 € G({/k) be a generator so that we = w; o o (see 2.2). Let m be a
parameter for v in k. Then 7 is a parameter for both w; and w,. It suffices to check
the commutativity of the diagram for elements of K5(¢) of the form (u,b), (7,b)
where u € k* is a unit for v and b € ¢* any element.

N o T,({(u,b)) = N(mw® g—w)
= (um® g w0 (g-w2b) g (®) (see 2.4.)
= g ®rwa®) g
— E*’UNI).

T,o tr({u,b)) = T,({(u, Nb)) =u="N°.

N o Ty({m, b))

N((_l)wl(b)ﬂ-*wl(b)b), (_1)w2(b)7r*w2(b)b)
(—1)vNbg—vNb N (see 2.4.)

T, ((m, Nb))

(—1)"Nbr—oNbNTp,

T, o tr((r,b)

O

Proof of 5.4. Let t € K(C') be such that K(C') is a quadratic extension of K (). For
any v € Pk, there are at the most two valuations w in Px(C) extending v. We
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claim that the following diagram is commutative:

(Tw)

Ko(K(C)) =5 [L Ki(K(C)y) —— Ky(K

L [ H

Fy(K(t) — Ky(K(t),) —— Ki(K)

The right hand side diagram commutes since norm is transitive. The commutativity
of the left hand square is a consequence of 5.5. above. The bottom row is exact by

5.2.. Hence the top row is a complex. Hence the sequence (x) of 5.3. is a complex.
O

Proof of Theorem 5.3. If C' is a conic split over K, then exactness of (x) follows
from 5.2.. We therefore assume that C' is non-split. Let 7 = (1y)vep.(c), be an
element of [[,c g, (o) K1 (K(C)y) with [T, Nx(c),/x () = 1. We need to show that

n€im7. Let
- 1 K

vEPK (C

We say that for n, o’ € A(K(C)), n ~ n' if and only if ny’~! € imT. For any
n € A(K(C)), we define

suppn = {v € Px(C) | n, # 1},

so that if n =1, suppn = 0. We define rkn = (d, k) where d = max,esuppy{degv},
and k is the number of v in supp n with degree v = d. If n = 1, we set rkn = (0, 0).
We introduce the lexicographic ordering on the set of pairs (d, k), i.e., (d, ,k) <
(d' k) ifd < d orifd=d, k <k'. The proof of 5.3. is immediate if we prove the
following:

Step 1. If n € A(K(C)) with tkn < (2, 2), then [], Nk(c),/x(n) = 1 implies that
n~ 1.

Step 2. For any n € A(K(C)), there exists ' € A(K(C)) such that n ~ n' and
rkn' < (2, 2).

To prove Step 1, we need the following lemma which is of independent interest.

Lemma 5.6. Let K, K5 be quadratic extensions of a field K. If 3; € K; are such
that Nk, ik (01) = Nk, i (B2), then, there exists v € (K; ®x Ky)* and i € K* such
that NK1®K2/K1 ('7) = uph, NK1®K2/K2('7) = pfs.

Proof. Suppose K; ®k K, is a field. Then K; ®x K, is a Galois extension of K
which is the composite of K; and K5 whose Galois group is generated by oy ® 1 and
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1 ® 0y where 0; € G(K;/K) are the generators, i = 1,2. Let K be the fixed field of
o1 ® 9. We have

Nioroyic(Br® B3 1) = (61© 8y ) (0161 ® 0265 1) = Nigy e (B1) ® Ny (B ) = 1,

by hypothesis. By Hilbert Theorem 90 for K; ®K2/[? (3.2., Chapter III) there exists
0 € (K ® Ky)* with ;@ 8," =6-(01®02)(67"). Let y = (A ®1) - (01 ® 02)(9) =
(1® (2)8 and = Ng,em,/x, (7)(B7 " ®1). Then (1® 03)(1) = p. Since K and Ko
are respectively the fixed fields of K; ® Ky under 0y ® 1 and 1 ® 09, we get, using
the expressions for v that:

(01 ®09)(0))- (/i®1) (€ Ki®1)

woo= NK1®K2/K1 (6
(1o 022501 ®02)(6) - (B ®1)
)

= (01 ®02)(0
(01®U2)( (L@ 1)(or ®1)(6)

= (1®52) or®1)(6
(1® 5, ") - Nijero/k,(7) (€ ®Ky)-

Thus pe K1 ®1N1® Ky = K. We have

/\\_/\_/’ ~

Nroro/ki () = (Bi@1)p
NK1®K2/K1(7) = (1®52)U-

This proves the lemma if K; ® ¢ K5 is a field. If K1 ® ¢ K5 is not a field, K1 @ Ky ~
K, x K; (K, being isomorphic to K, over K) and the automorphism o : (x,y) —
(y,z) of Ki x K has for its fixed field K, = {(z,z) | z € K} C K, x K, which is
isomorphic to K. It is trivially checked that any element of K; x K; which is of
norm 1 over K, is of the form p(op)~" for some p € (K; x K;)*. The proof of the
lemma in this case is on the same lines as before. O

Proof of Step 2. Let vy,vy € Px(C') be such that vy # v, degv; = 2 and suppn C
{v1,v9}. (Note that K being infinite, there are infinitely many valuations of K (x)
of degree 1 and C' being nonsplit over K, every extension to K (C') of a valuation of
degree one of K(z) of degree 2). Let K; = K(C),,, Ko = K(C),,. Then K; splits C'
(2.6.) and we have the following diagram which is commutative in view of Lemma
5.5. above.

Fo(K1(C) —— Toego) (K1 @ K(C),)* —— K,

¢ L [

o(K(C)) —— K

(We note that K1 ®x K(C)y = 1]/, Ki(C)y in view of 2.4. and A(K:(C)) is thus
indexed by Bk (C).)

Since n € A(K(C)) is such that N(n) =1, Nk, /k(n,.") = Nk, /x(1,). By the above
lemma 5.6. on norms, there exist u € K*, v € K1 ® K such that Ny gx,/k, () =
11 Nisks i, (V) = [y, We define 7 € (K, (C)) as follows: the component of
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nin KiK(C),, ~ Ki®K, is (u=',n,, ), the component of 77 in K; @ K (C),, ~ K X
K, is v and every other component of 77is 1. Then N(7) = p~'ny, N ok, /x, (V) = 1.
Since the top row is exact by 5.2., C' being split by K, there exists § € Ky(K,(C))
such that T'(§) = . We have T o tr(0) = N o T(§) = N(n) € A(K(C)) where
N)w, = ™" Noys N()wy, = pt 70, and N(77), = 1 if v # vy, vo. On the other hand,
since v; — vy € Div(K(C)) has degree zero, in view of 3.9., there exists a function
g € K(C)* such that divg = v; — vy. Then T((g, 1)) has component x4 in K, and
p~tin Ky, Thus T(tr(6) — (g.u)) = n and this proves Step 2. O

To prove Step 1, we begin with the following

Lemma 5.7.  Let C be a conic defined over K and v € P (C), D € Div(K(C))
are such that deg D = degv and v € Supp D. Then, the map L(D) — K(C), given

by f — f, the class of f modulo p,, is a surjective homomorphism whose kernel is
L(D —wv).

Proof. Since v & Supp D, for any f € L(D), v(f) > 0 so that there is a well-defined
map ¢ : L(D) — K(C,) which is obviously a homomorphism of K-vector spaces.
We have ker p = {f € L(D) |v(f) > 1} U{0} = L(D — v). By 3.8., dimg L(D) =
1+deg D (since deg D = degv > 1) and dimg L(D —v) = 1,deg(D — v) being zero.
Hence dim(im ¢) = deg D = degv = [K(C), : K]. Thus ¢ is surjective. O

Lemma 5.8. Letn € A(K(C)) be such that rank n = (2n, k), n > 1. Then there
exists g € K(C)x such that vi(g) = 0 and the image of g in K(C),, is 1y, and such
that Supp(div g) consists of valuations of degrees < 2n — 1.

Proof.  We have already remarked that there are an infinity of v € Pg(C') with
degv = 2. Choose wy, ws € Py (C) with wy; # wy and degw; = 2, 1 = 1, 2. We
have v; # w; since n > 1 and degnw; = degwv; = 2n. Since vy & Supp(nw,), the
map ¢ : L(nwy) - K(C),, defined as in 5.7. above is surjective. Since v; # wy,
for any h € L(wy) h # 0wy (h) > 0 and the map ¢ : L(w;) — K(C),, defined by
h + n,h is a well-defined homomorphism of k-vector spaces. We claim that 1 is
injective. In fact, if h € L(wy) , h # 0, n,,h = 0 implies that h = 0, i.e., v;(h) > 1.
Thus ker ¢ = L(wy —vy). Since deg(w; —vy) =2—2n < 0, by 3.8., ker¢) = 0. Thus
dimg (Y(L(wy))) = dimg(L(wy)) = 1 + degw; = 3. Since g is surjective, we have
dimg o ((L(wy))) > 3. We have two subspaces ¢ '9(L(w;)) and L(nw; — wy) of
I(nwy) which is of dimension 1 + 2n over K such that dimg ¢~ '¢(L(w)) > 3 and
dimg L(nw; —ws) = 2n — 1. These two subspaces necessarily intersect nontrivially.
Let g # 0 be in this intersection. We claim that ¢(g) # 0. Indeed, if p(g) = 0, then
g € L(nw; — vs) and since g € L(nw; — ws) by choice, wideg € L(nw; — wy — vy).
Since deg(nw; —we —v1) = —2 < 0, it follows by 3.8. that g = 0, a contradiction.
Thus 0 # ¢g) = nvﬁ for some h € L(wy), h#0 Letg=g-h'le K(C). Then
ny, =g € K(C),, and Supp(div g) = Supp(divg—div E) C Supp(divgu Supp(dileL.
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Since g € L(nw; —wz) , we have w;(g)-degw; > —2n. Since by 3.1., deg(div g) = 0,
it follows that Supp(div g) contains no valuation of degree > 2n. Since h € L(w;)
with deg w; = 2, and by 3.1., deg(div h) — 0, Supp & contains at the most one other
valuation of degree 2. It follows that Supp(d1v g) contains valuations of degree at
the most 2n — 2. This proves the lemma. 0]

Proposition 5.9. Let C' be any conic, non split, over K, and let n = (n,) €
A(K(C)) be such that tkn = (d, k) with d > 2. Then there exists ' € A(K(C))
such that n' ~n and rkn’ < rkn.

Proof.  Let vy € Pi(C) with degv; = d = 2n(n > 1) and v; € Suppn. Let
ve € P (C) be such that degv, = 2. Since deg(v; — nvg) = 0, there exists by (3.9)
f € K(C)* such that v; — nvy = div f. Let g € K(C)* be chosen as in (5.8) above
with respect to v1. Since operatornameSuppT ({f,g)) C Supp(div ¢g) U Supp(div g),
it follows that Supp T'({f, g)) consists of valuations of degree at the most d — 2.
We have vi(f) = 1 and v1(g9) = 0 with § = n,,, so that T, ((f,9)) = m,. Let
n'=n-T((f,g)). Then rkn’ < rkn and n" ~ n. This proves the proposition. O

Proposition 5.10 Let C' be a non-split conic over K. Let n € A(K(C)) be such
that rkn = (2, k) with k > 3. Then there exists n' € A(K(C)) with n ~ 1’ and such
that tk " < rk n.

Proof. ~ We choose vy, va, w € Pg(C) contained in Suppn such that degwv; =
deg vy = degw = 2 and vy, vy, w distinct. Since deg(v; —w) =0,4i =1, 2, by 3.9.,
it follows that v; — w = div f; for f; € K(C)*. Thus f; € L(w), i =1, 2. By 5.7.
above, the map f + f of L(w) — K(C),, is surjective for i = 1, 2. Thus there exist
gi € L(w;), g; # 0 such that g; = n,,, i =1, 2 in K(C),,. We note that f; and ¢,
(resp. f> and g¢5) are linearly independent over K. In fact, if ufi+vg; =0, u, v € K,
then vy (f1) = 0 so that v - g1(v) = vn,, =0, i.e.,, v = 0. (For any v € Px(C) and
f €O, c K(O)*, f(v)denotes f, the image of f in K(C),). Since fi(vy) # 0, and
p fi(ve) =0, p=0.

Since by (3.8) dimg L(w) = 1 + degw = 3, the 2-dimensional subspaces generated
by fi, g1 and f3, g intersect nontrivially. Let h # 0 be in this intersection. Let
h = pi fi +vigr = pafo + vago, i, v; € K.

Case 1. v1 = 0. Then vy # 0 since otherwise div f; = div f;, a contradiction. Since
vo(f1) =0, v2(f2) = 1, we have

Tv2(<f2,M1/V2'f1>) = Ml/V2'f1(U2) = (U )/V2
= p2/va- fa(va) + ga(v2)

92(v2)

= Ty

Further, Supp T'({ f2, p1/v2- f1)) C (Supp(div f1) USupp(div f2) = {v1, v, w}. Thus
n'=n-T((f2 /2 - f1))" has the property n ~n" and rk 1" <k 7.
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Case 2. v, = 0. The argument is similar to Case 1.

Case 3. vy # 0. We first note that Supp(div f;) = {w, v;}. Since f;(v;) = 0 and
gi(v;) = gi = ny,, h(v;) is defined and equals p; f;(v;) + v;9;(v;) = vimy, # 0, so that
vi(h) = 0,7 =1, 2. Thus v; ¢ Supp(divh). Since h € L(w), divh +w = D > 0,
i.e., divh = D — w so that D is a positive divisor with deg D = degw = 2. Thus
D =w' € Pk (C) with degw’ = 2. (Note that w’ may be equal to w.) Thus Supp h =
{w,w'}. Consider (f;/h,h/v;) € Ko(K(C)), i =1, 2. Then SuppT({fi/h,h/v;)) C
Supp(div fi/h) U Supp(div h) C {vi, v, w, w'} and Ty, (fi/h, h/vi) = h(vi)/vi = 0y,
fi/h being a parameter for v;, since v;(h) = 0 and div f; = v; — w. Let n =
n - T((f1/h,h/r1) + (f2/h,h/v2))"". Then Suppn’ C (Suppn \ {vi, v2}) U {w'}.
Since deg w' = 2, we get rkn’ < rkn and the proposition is proved. 0

Proof of Step 1. Immediate from 5.9. and 5.10. above. O

§ 6. Injectivity of the map V(K) — V(K(Cap))

Let C' = C,; be a conic defined over K and L/K a quadratic extension which
splits C'. Since by 1.3., K is algebraically closed in K(C), L is not contained
in K(C) and L(C) is a quadratic extension of K(C). Let ¢ € G(L/K) be a
generator. Then o also generates G(L(C)/K(C)). Since L splits C', L(C) is
isomorphic to L(t), the field of rational functions in one variable ¢.

Proposition 6.1. The diagram

K) == Ky (K(C))

is commutative where T is the tame symbol (T,,), (identifying L @ K(C), with
1.y L(C)w as in the proof of Step 2 of (5.3) of this chapter). Further, the rows
are exact, the first two columns are complexes and the last two columns are exact.

Proof. The exactness of the top row is a consequence of 5.3. and the exactness
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of the second and the third rows follows from 5.2. since L(C) = L(t). The first
column on the left is a complex, in view of 4.1. To show the exactness of the third
column from the left, we note that if L ® K(C), is a field, then o ® 1 is the Galois
automorphism of L ® K(C), over K(C), so that the fixed field for 0 ® 1 is K(C),.
If L ® K(C), is not a field, then K(C), — L ® K(C), ~ K(C), x K(C),, the
inclusion being © — (z,2) and c ® 1 on L ® K(C), acts as (z,y) — (y,x) on this
product so that the fixed set for 0 ® 1 is again K (C'),. This shows that the third
column is exact: the exactness of the right most column is trivial.

Commutativity of (1) is clear. To check the commutativity of (2) we need only
to observe that Ky(L) is generated by (a,b),a € L*,b € K* and Ny /k(a) =
Niey/kc)(a). The square (3) is commutative since L(C')/K(C) is such that e(w/v)
=1 for w/v (see 2.4.). The commutativity of (5) is a consequence of the fact that
the norm commutes with base change. Finally, we check that the square (4) is
commutative. Suppose v € P (C) has a unique extension w in P (C). It is enough
to check that the diagram

K> (L(C)) — L(O);

& &
Ky(L(C)) — L(C);,

commutes. Let m be a parameter for w. Then or is again a parameter for w. We
use that Ky(L(C)) is generated by (m,u), (u',u) where u,u’ are units for w. We
have

oo Ty({m,u)) =o(u),

Ty o o((m,u)) = T,((om,ou)) =50 = ou,
o o Ty((u',u))) = 0 =Ty(({ov',ou))) = Ty o o((u'u)).

Suppose wy, we € P (C) are two distinct extensions of v € P(C'). We need to check
that the diagram

Ko(L(C)) = 1(C)s, @ L),

l(r J/0'®1
(Twi) * *
K5(L(C)) —= L(O)y, ® L(O)y,
commutes, where o ® 1 is the isomorphism (Z,y) — (6y,77%) (see (2.4)). Let 7 €
K(C) be a parameter for v. Then 7 is a parameter for w; and wy. We have

Ky(K(C)) generated by (m,a) and (u,a) where a € L(C)* and v € K(C) is a unit
for v. We have

(6®1) o (Tu)((m,) = (0 ® 1)(—D)" @7 "@-q, (~D)w=0-7 720-q)

= ((—1)w2(0).r=w2(a).gq  (—1)wr(a).r—wi(a).qq)
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(T;) o o({m,a)) = (Tu;)(m, 00)

— ((_1)11110(1,71-710100,,0-0/ , (_1)11120(1,71-710200,_0-0/),

= (0 ©1):(Tw,) (7, a)) ,

since wy © 0 = Wy, Wy © 0 = Wjy.

(0®1) o (Tw,)((u,a)) = (0 @ 1) (w1, u=w2(e))

= (u—uu(a) , u—wl(a)) .

(To;) © (0 @ 1)((u, @) = (Tw,)({u, 0a))

— (ufwlaa, ufwgaa)

— (ufwzaa, ufwlaa) .

This shows that the square (4) is commutative and completes the proof of the
proposition. [

Proof of Theorem /.3. As we remarked earlier, K being algebraically closed in
K(C),L ¢ K(C) so that the map V(K) — V(K(C)) is defined. The method of
proof involves diagram-—chasing in the diagram 6.1.. Let 7, € V(K ) = ker tr / im(1—
o) with z; € Ky(L) as a representative, i.e. trxz; = 0. Suppose the image of 7 in
V(K(C)) is zero, i.e. extz; = xo € Ko(L(C)) belongs to (1 — o)-Ko(L(C)). We
need to show that z; € (1 — 0)-K3(L), in order to check the injectivity of the map
V(K) = V(K(C)). Let 3 € Ky(L(C)) be such that (1—0)z3 = x9. Let x4 = T'(z3).
Then (1 —o0)zy = (1 —0)T(x3) = To(l —o)(x3) = T(xg) =T o extx; = 0. The
third column being exact, there exists x5 € [[, K(C); such that extz; = 4. We
have Nxy = N

circl’'ry = 0. Thus ext o Nos = Noext x5 = Nxy = 0. Thus Nzs = 0. The top row
being exact, there exists x5 € Ko(K(C)) such that Txzg = x5. Let ext x5 = z7. Then
Tx; =T o extxg = ext o Txg = ext x5 = x4 and hence T (x3 — x7) = 0. Thus there
exists xg € Ky(L) such that ext xg = 3 —x7. We have (1—0)z7; = (1—0)extazg =0
and hence (1 — o)extzg = (1 — 0)(r3) = wo. Thus ext(l — o)(zs) = extx;. Since
ext : Ko(L) — K(L(C)) is injective, (1 —0)(xg) = x; so that Ty = 0in V(K). This
completes the proof of the theorem. O
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Chapter V: Kernel of ext : ky(K) — ka(K(1/a))

§ 1. An analogue of the tame symbol for cohomology

The aim of this section is to prove the following

Proposition 1.1. Let K be a field with a discrete valuation v. Suppose K and K,
are of characteristic # 2. Then there exists a homomorphism 0, : H*(K) — H'(K,)
(see § 5 of Ch. III for notation) satisfying the following properties:

(1) aU(Xﬂ' U Xu) = Xu
(2) av(Xu U XU’) =0

for any uniformising parameter m for v and units u,u’ for v, w denoting the residue
class of u modulo p,,.

Remark. The existence of 0, would have been immediate if Merkurjev’s theorem
had been granted. In fact, then, 0, is the transport of the tame symbol 7T, under
the isomorphism fBg : ko(K) = H?*(K). We prove 1.1. directly, since we need it
in the proof of Merkurjev’s theorem.

For the proof of 1.1., we need some generalities on complete discrete valuated fields.

Let K be a field with a discrete valuation v. The map K — R* given by z —
(1/2)*@) 2 # 0 and 0 + 0 defines a norm on K and hence a metric. We say that
K is complete with respect to v if K is complete with respect to this norm. Given
a field K with a discrete valuation v, there exists an exteAnsion field K of K with a
discrete valuation ¥ such that v is an extension of v and K is complete with respect
to 9 and such that K is dense in K. The pair (K,7) is called the completion of
(K,v). We shall abbreviate (K,%) by K. We recall that if K is the completion of
K for the discrete valuation v, 9, < Og, P, — ps, PO = ps (and hence a parame-
ter of v is a parameter for v). The canonical map O,/p, — Oz/ps is an isomorphism.

Let K be a field which is complete with respect to a discrete valuation v and L/K a
finite extension. Then it is well-known (Zariski-Samuel, Commutative Algebra Vol.
IT) that there is a unique extension w of v to L. We say that L/K is unramified
if e(w/v) =1 and L, /K, is separable. We need the following two theorems whose
proofs can be found in the Appendix 1.

Theorem 1.2. Let K be a field, complete with respect to a discrete valuation v and
K, a separable closure of K. Then there exists a subfield K,, of Ky containing K
(called the mazimal unramified extension of K ) such that any finite extension L/ K,
contained in Ky and unramified over K is contained in Ky.. If L/K is a finite
Galois unramified extension and w the extension of v to L then L, /K, is Galois
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and the natural map G(L/K) — G(L,/K,) is an isomorphism. Thus we have an
isomorphism G(K,,/K) — G((K,)s/K,) of profinite groups.

Theorem 1.3. Let K be a field, complete with respect to a discrete valuation v
and D a central division algebra over K, with [D : K| = n? (n,char K,) = 1.
Then D contains a maximal commutative subfield L unramified over K. In par-
ticular, if char K, # 2, and if we identify Br(K) with H>(G(K,/K),K?) and
H?(G(K,./K),K},) as a subgroup of H?(G(K,/K), K*), under inflation, then
oBr(K) is contained in H?(G(Kn/K), K},).

Proof of 1.1. We first assume that K is complete with respect to v. The valuation
v : K* — Z extends to a surjective homomorphism v : K — 7Z, induced by the
unique valuations L* — 7, L/K being a finite extension contained in K, which
are extensions of v. This homomorphism v is a continuous G(K,, /K )-morphism, Z
being regarded as a trivial G(K,,/K)-module. From now on, we write G(K,,/K) =
G- We have a homomorphism v : H?(G,,, K},) — H*(Gy, Z) induced by v. The
exact sequence
0-7Z—-Q—-Q/Z—0

of trivial G,,—modules gives rise to the exact sequence
HY(Gr, Q) — H Gy, Q/Z) -5 H? (G, Z) —> H?(Gor, Q/Z) .

In view of 4.5. of Ch. II extended to profinite cohomology, H!(G,,,Q) = 0 =
H2(G,, Q), so that 4 is an isomorphism. We define

Oy =0"" o v: H(Gp, K,) — HY Gy, Q/7Z).

Since char K # 2, ,Br(K) — H?*(K) — H?(G(K,/K),K}) and since, further,
char K, # 2, HX(K) < H?(Gpny, K*.) (1.3. above). We restrict 8, to 8, : H*(K) —
HY(G,,Q/Z). The isomorphism ¢ : G, — G((K,)s/K,) of 1.3. yields an
isomorphism ¢ : H'(Gp,, Q/Z) = HMNG(K,/K),Q/Z). The image of ¢ o 0, is
contained in the 2-torsion of H}(G((K,)s/K,), Q/Z). We have an exact sequence

1 — py — Q/Z-25Q/Z — 0, -1+ [1/2]

of trivial G((K,)s/K,)-modules with Q/Z divisible. Hence H'(K,) can be identified
with the 2—torsion subgroup of H!(G((K,)s/K,), Q/7Z). Through this identification,
we have a map ¢ o 0, : H*(K) — H'(K,) which we call 8,. We verify that 0, satisfies
(1) and (2).

Let 7 be a uniformizer for v and u a unit of v. We first show that the extension
K(y/u)/K is unramified. Since char K, # 2 and K is complete, by Hensel’s lemma,
roots of the polynomial 22 — % in K, can be lifted to 9,. Let 22 —u be irreducible in
Klz]. Then z?—1 is irreducible in K,[z]. The integral closure of 9, in the quadratic
extensionK (y/u) of K is O[y/u] and is the valuation ring of the extension of v to
K(y/u). The corresponding residue field is O[\/u]/p,O[u] — K,(va@) which is
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a separable quadratic extension of K, 2 being invertible in K,. Thus K(y/u)/K is
unramified.

The quaternion algebra (%*) corresponding to the element x. U x, in H*(K) has
K(y/u)/K as an unramified splitting field and its cohomology class in H*(G,,, K},)
is (see proof of 5.5., Ch. I) inf[f], where f € Z*(G(K(\/u)/K), K(y/u)*) is the

cocycle f(o,0) =7, 0 € G(K(y/u)/K) being the generator. The diagram

H*(G,., K7,) — H*(Gyy, 7)

H*(G(K(Vu)/K), K(Vu)*) —— H*(G(K(Vu)/K),Z)

is commutative since inf is functorial. Thus v o inf[f] = inf ov[f] = inf [f], f €
Z2(G(K (y/u)/K,Z) being the cocycle f(o,0) = v(r) =1. If

g€ ZYG(K(Vu)/K),Q/Z) is given by g(c) = [1/2] € Q/Z, it is easily verified that
§inf[g] = inf[f] = v o inf[f]. Under the isomorphism ¢ : Gp, = G((K,)s/K,), o
corresponds to the nontrivial automorphism & of K,(y/u) over K, and ¢(inf [g]) =
inf([n]) € H'(K,) where h € Z'(G((K,)s/K,), u2) is the cocycle h(c) = —1, i.e.,
inf([h]) = xz Thus 0,(xx U xu) = 0,(inf[f]) = xa, which proves (1). One similarly
verifies (2).

If K is not complete with respect to v, let K denote the completion of K with

~

respect to v. The inclusion K — K induces a homomorphism s : Br(K) — Br(K)

~

which, in turn, induces a homomorphism s : H?(K) — H?(K). Since s(“?b) = (%’),

~ A~

we have, s(x,UXs) = xaUxs € H*(K). With the canonical identification K, = K,,

~

we define 9, : H*(K) — H'(K,) as the composite d; o s. Since a parameter (resp.
unit) for v remains a parameter (resp. unit) for v, it follows that 0, satisfies (1) and
(2). O

§ 2. A weak form of a theorem of Bloch

Proposition 2.1. Let K be a field of characteristic # 2. If B : ko(K) — H?*(K)
is injective, and if K(Xy,...,X,) the rational function field in n variables, then,
BK(x1,..,X,) 18 injective.

Proof. By induction on n, it is enough to show that if fx is injective, then [ x)
is injective, K (X) denoting the rational function field in one variable over K. By
5.2. of Ch. IV, we have a split exact sequence

0 — Ky(K) =5 Ky(K(X)) — [ Ki(K(X),) = Ky(K) — 0.
veEP K

Since tensor product commutes with split exact sequences, tensoring the above se-
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quence with 7Z/27, we get an exact sequence

0 — kp(K) — kp(K(X)) = [ k(K (X)o) = ki (K) — 0.
vEPK
In the diagram
0 — ka(K) —=% k(K(X)) —— [ k(K(X),)
veEPK

ﬁKl lﬁK(X) la:(ev)

0 — HY(K) 2% HAK(X)) Z0% 11 B(K(X),)

vEPK

ext

the map H?(K) — H*(K (X)) is defined by the commutativity of the diagram

HY(K) 5 H(K(X))

| |
,Br(K) —=% ,Br(K (X))

where the map on the last line is induced by [A] — [K(X) ® A] and 6 is induced
by the isomorphisms 6, : k(K (X),) — HY(K(X),), 0,(T) = xz. The right hand
side square is commutative in view of 1.1.. The left hand side square is clearly
commutative. The map ext : H*(K) — H?(K(X)) is injective, in view of 1.7.
of Chapter I. Let x € ky(K (X)) be such that Bx(x)(x) = 0. Then § o T(x) =
0 o Prx)(x) = 0. Since @ is injective, T'(x) = 0. Since the top row is exact, there
exists y € ko(K) such that exty = 2. We have ext o Bk (y) = Br(x) o ext(y) = 0.
Since ext is injective, Ok (y) = 0 and [k being injective, y = 0. Thus z = exty = 0.
0

Remark 2.2. The above proposition is only a part of theorem of Bloch which asserts
that the kernel and cokernel of 3k map isomorphically onto the kernel and cokernel

of 5K(X)-

§ 3. A criterion for the vanishing of a sum of symbols

Proposition 3.1. Let K be a field of characteristic # 2. Let {by,...,b,} C K*
be such that {by,...,by} C K*/K*? are linearly independent over Z/2Z. Let ¢; €
K*, 1 <1 <mn. Then the following conditions are equivalent.

1) > (b, ) =01in ko(K), bar denoting modulo 2K,(K).

1<1<n
2) There exists an integer m > n and elements by i1, ..., by in K* such that

a) {b1,...,bn} are linearly independent over 7./27.
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b) Setting ¢y = -+ = ¢ = 1 and bg = [[;.4 bi, for each non-empty subset
S of {1,...,m}, there exists a vs € K* which is a norm from K(v/bs)
and such that

Ci:Hl/5, 1<:<m.
icS

3) Same statement as 2) with the last condition replaced by
a=]]7s, 1<i<m,
ics

bar denoting modulo K*2.

Proof.  Trivially 2) = 3). We show that 3) = 2). Let ¢; = [[;eqvs'iZ, i €
K* 1<i<m. Wesetz/’szugif|5|22,1{’{2.}:14/1?,1§z’§n. Then ¢; = [] vg

ics
and v/ is obviously a norm from K (y/bs).

2) = 1). Since ¢ 41 = -+ = ¢, = 1, we have
Zl<z<n (bi, ci) = Z (bi, ¢3)
1<i<m

Zlgigm zies (bi, vs)
ZS <b5v V5>
=0,

since vg is a norm from K (v/bs) (see 3.1. of Ch. III).
].) = 3) Let Zlgign <bl, Ci> = 0. Then

Z ®Cl_Z“J (1 -7)

1<i<n 1<j<r

for some » > 1 and p; € K*, p; # 1 and p; non squares in K*. We extend
{by,...,b,} to the set {by,...,b,}, m > n, of linearly independent elements in
K*/K*2 over 7/27. generating a subspace containing {7, ..., 7, }. We define S; as
the set of the indices 7, 2 < m, such that b; occurs in the expression for 7; in terms of
the basis {b1,...,b,}. Then ;= 55]., ie. u; = bsj'VJz, v; € K*. For any nonempty
subset S C {1,...,m}, we define vg =1 if S # S; for every j, 1 < j <r and

Vs = H (1 —w),

ke{l,...,r}
Sk:Sj

if S = S for some j, 1 < j < 7. Then vs € Nyc( i)/ (K (Vbs)*). We set ¢; =1 for
n+1<i <m. We verify that ¢; = [[,.¢7s, 1 <4 < m. To do this, it is enough to

check that
Z (Ei@)ﬁi) = Z (EZ ®HZ/S)

1<i<m 1<i<m i€S
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(with the convention that the product over an empty set is 1), since {b;} are linearly
independent over Z/27Z. However

Z (Bi ® Ei) = Z1§j§r & (1 - ﬁj)
1<i<m _
= Z1§j§r ij ® (1 o ﬁj)
= Y glbs ® Hje{l ..... r}(]' —Ti)
S
= Y 4(bs @ 7s)

=S
= Z1§i§m Ez ® (HieS ES) .

J

OJ

Remark 3.2. We note that any element T € ko(K) has a representative x € Ky(K)
with © = >, .. (b, ¢;) where {b;}1<icm in K*/K*? are linearly independent over
Z/27. Thus the above proposition is indeed a criterion for the vanishing of an
element of Ky(K).

§ 4. Construction of a universal field

Theorem 4.1. Let K be a field of characteristic # 2. Let L = K(y/a) be a
quadratic extension of K. Let {b;,¢;}, 1 < i < n be elements of K* such that the
images of {by,...,b,} in K*/K*? and L*/L*? are linearly independent over Z/27.
Let ext ) ;e (biyci) = 0 in ko(L). Then there exists a field E obtained from
the prime field of K by successive purely transcendental and quadratic extensions,
an element A € E with VA ¢ E, elements {B;,C;}, 1 < i < n in E such that
ext S (B;,C;) = 0 in ky(E(VA)), homomorphisms o; : ki(F) — ki(K), i = 1,2

such that p1(A) =@, p2(>_ (Bi, Ci)) =Y. (b;, ¢;) and such that the diagram

ki(E) —— ko(E) B+ (A, B)

[ |

ki (K) —— ky(K), ,b)

ol
—~
S

18 commutative.

Before proving the theorem, we record some facts on the theory of places.

A place of a field K into a field F' is a ring homomorphism ¢ : © — F where Ois a
subring of K such that for z € K, either x € O or z7' € © and p(z™") = 0. We
introduce a symbol oo and write p(z) = co if z € K, z ¢ O and denote a place
by ¢ : K — F Uoc. The ring O is a local ring whose unique maximal ideal p is
ker . We call O the wvaluation ring of the place. The homomorphism ¢ induces
an isomorphism of O/p onto a subfield of F. The group K*/U, where U is the
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group of invertible elements of £, is an ordered abelian group and the canonical
map K* — K*/U is in fact a valuation (not necessarily discrete). Conversely, any
valuation of a field into an ordered abelian group gives rise to a place, so that the
notions of places and valuations are equivalent. We shall not go into details of this
correspondence. We record, however, the following facts which will be needed in the
sequel.

The valuation ring O of a place p : K — F U oo has K as its quotient field and is
integrally closed in K. If v is a discrete valuation of a field K, the canonical map
9, — K, defines a place on K. Let ¢ : K — FUoo be a placeand K' D K, F' D F.
A place ¢' : K' — F'U oo is called an eztension of ¢ if ¢'|x = ¢.

Lemma 4.2.' Let ¢; : K — K, Uoo, ¢y : K; — K, U oo be two places. Then
there exists a place ¢ : K — Ky Uoo satisfying o(x) = @o(p1(x)) whenever the right
hand side is defined. The place ¢ s called the composition of 1 and s, denoted

by @2 0 1.

Proof.  Let 9 be the valuation ring ¢; and 95 the valuation ring of ¢,. Let
0 H(D2) = O. Then O C O is a subring which contains p = ¢, *(p2) D ¢, 1(0) = p;
where p; are the maximal ideals of ;. We show that the homomorphism ¢ : O — K,
defined by ¢(z) = pa(pi(x)) is a place of K. Let x € K,z ¢ O. If x ¢ Oy, then
'€ O and p1(z') =0, s0 that 271 € py € O and p(z71) = pa(p1(z1)) = 0.
Ifz € O,z ¢ py, since py C O. Thus z7' € Oy and ¢i(z7) = p1(z)"'. Since
T &9, pi(z) ¢ Oy s0 that ¢y (z)™" € Oy and (@i (xz)™") = 0. Thus z7' € O and
¢(z™') = 0. Thus ¢ is indeed a place with ker ¢ = p. Further, if z € K is such that
©2(p1(x)) is defined, then 2 € O, so that ¢ has properties required by the lemma.
0

Proposition 4.3. Let ¢ : K — F'Uoo be a place and \y,...,\, € F'. Then there
exists a place ¢’ : K(Xy,...,X,) = FUoo (where K(X1,...,X,) is the rational
function field) extending ¢ such that o(X;) = A;.

Proof. We suppose, by induction on n, that there is a place
o1 K(Xq,..., X, 1) = FUoo
extending ¢ such that ¢1(X;) = A;, 1 <i <n— 1. We define the place
02t K(X1,..., X1)(Xy) — K(Xq, ..., X)) Uoo
to be the place associated to the discrete valuation v(x,-»,) of the function field

K(Xq,...,Xn1)(Xy) over K(Xy,...,X,_1), i.e., ¢ is given by the map
K(Xl, R 7Xn—1)[Xn](Xn7/\n) — K(Xl, R ;Xn—l); X, — )\n and 1dent1ty on

!'We thank Prof. A. Rosenberg for drawing our attention to this lemma.
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K(X1,...,Xn 1). Let ¢' = ¢ o g as in 4.2. above. Then ¢’ : K(Xy,...,X,) —
F U oo has the required properties. O

Lemma 4.4. Let ¢ : K — F Uoo be a place. Let char F' # 2 and A € K* an
element with o(A) = a € F*. Suppose VA ¢ K. If \Ja denotes a square root of
a in F,, then, there exists a place ¢' : K(VA) — F(y/a) U oo extending ¢ with

P'(VA) = Va.

Proof. The integral closure of O in K(v/A) contains O[V/A]. In fact, it is equal to
O[V/A] since 2 is a unit of O and © is integrally closed in K. For, if A + puv/A €
K(VA) is integral over O, with A\, x € K, then 2\ and A\*> — ;2A belong to O and
hence A, 1 € O. Let p = ker ¢ and O = O/p. Then ¢ can be viewed as the canonical
map O — O composed with an inclusion ¢, : © — F. Since O[V/A] is free over O
with (1,/A) as a basis, we have an isomorphism

a: OVA]/pOVA] = O/p @ OVA] = O[X]/(X? —a)

If\/a ¢ O, X%—ais irreducible in O[X] and the map X + \/a yields an isomorphism
0 : O[X]/(x* — a) = O(y/a) which is a quadratic extension of O. Thus pO[v/A] is
a maximal ideal of O[v/A] and the composite map

¢ OVA] L VA /pOVA] 228 D(va) 2 F(Va)

(n being the canonical map), can be verified to be a place extending ¢ which maps
_ B _

VA to \/a. If\_/a € F, then 53[_X]/_(X2 :a) = O x99, Let (8o a)HD,0) =

p1, (Boa)1(0,9) = py. Let 1; : OxO — O be two projections. Then {p;},i = 1,2,

are maximal ideals of O[v/A] containing p-O[v/A] and the maps

OWVA] & O[VA]po[VA] "5V D A R

yield places of K (\/Z) extending ¢, mapping v'A to Va, respectively. 0]

Proposition 4.5. Let ¢ : K — F'Uoo be a place. Then there exist homomorphisms

pi  ki(K) = ki(F), i = 1,2 satisfying p1(b) = ¢(b), @2({b1,b2)) = (p(b1), ¢(b2)),
whenever b, by, by € O\ p, O being the valuation ring of ¢ and p = ker(y,).

Proof. Let {m;};c; be a family of elements of K* whose images in

(K*/U)/(K*/U)? form a Z/27Z-basis. Clearly, every element b € K* can be written
as a product b = u-mj-... mj,-¢* where u € U = O\ p and ¢ € K*. In this
expression, u is uniquely determined modulo U?, and the subset {ji, ..., jx} C J is
unique (uniqueness of v modulo U? is a consequence of the fact that O is integrally

closed in K). We define ¢ : ki (K) — ki(F) by ¢1(b) = ¢(u), bar denoting modulo
squares. We note that if b € U, then ¢, (b) = p(b). Ify =band b/ = u'm,-. .. Ty, ¢,
then u = v/d?, d € U so that p(u) = o(u')p(d)? = p(u'). Thus ¢, is well-defined
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and is clearly a homomorphism. We define a map ¢y : ko(K) — ky(F) as follows:
Let b= umj-... w3 b =u'm, ... m,-<°. The map r: K* x K* — ky(F) given

by (b,0') — (p(u), p(u')) is well-defined and biadditive. We show that r(b,1—b) =0
ifhe K* b1,

Case 1. Let b € O so that p(b) € F. If p(b) =0, then 1 —b € U and p(1 —b) =
Then r(b,1 —b) = {(p(u), p(1 —=b)) = (p(u),1) = 0. If p(b) = 1, then b € U
and 7(b,1 — b) = (p(b), p(u')) = (1,p(u)) = 0 where 1 —b = v'-7j- ... m - If
@(b) #0, 1, then ¢(1 —b) # 0, 1 and b, 1 — b both belong to U so that r(b 1—-b) =
(0(b), 1= (b)) = 0.

Case 2. Let b € K\ O. Then b™' € © and ¢(b™') = 0. Thus 1 —b~' € U. If
b=uwmj-...m,c* then 1 —b=—u(1—b"")m-....m, ¢ withu-(1 —b"") € U.
Thus 7(b, 1 = b) = (p(u), p(=u(l = b71))) = (p(u), —p(u)) + (p(u), p(1 = b71))) =
0+ (p(u),1) = 0.

Thus we have a homomorphism Ky(K) — ko(F) which vanishes on 2ky(K) and
induces a homomorphism @y : ky(K) — ko(F). O

Proof of 4.1. By 3.1., there exist elements byy1,...,b, € L* such that {b;,...,by,}
in L*/L*? are linearly independent over Z/27Z and for each subset S C {1,...,m},
an element,

vs = (zs+ Vays)® — bs(zs + Vaws)?,

Ts, Ys, 25, wg € K and such that

¢ = [[vs. 1<i<m,
ics

where bg = [[;cgbi and ¢; = 1, n+1 < i < m. Let by = u; + Vav;, n+1 <
1 < m, u;,v; € K. Let Ky be the prime field of K. Let K; be the rational
function field obtained from K, by adjoining the variables A, {B;,C;}, 1 < i <
n, {U,Vi}, n+1<i<m,{Xgs, Ys, Zg, Ws}, S running over non-empty subsets
of {1,...,m}. By 4.3., the inclusion K; — K can be extended to a place ¢; : K; —
K U oo with ¢1(A) = a, P1(B;) = b;, 1(C;) = ¢, 1 <1 <y i (Us) = g, i (Vi) =
vi,n + 1 < i < m, v(Xg) = xg, ¥1(Ys) = ys, ¥1(Zs) = zg, 1i(Ws) = wg, S
running over non—empty subset of {1,...,m}. By 4.4., v can be extended to a
place 9, : K1 (VA) = LU oo with 1(v/A) = \/a. (We note that since /a ¢ L, we
may choose 1,(vVA) = \/a.)

In K;(VA), we define B; = U; + VAV, n+1 < i < m, Bg = [[;csBi, Ns =
(Xs+VAYs)?—Bs(Zs+VAWs)?, for S C {1,...,m}, S # 0. We shall construct
an extension F of K, such that VA ¢ E and such that Y ,_.. (B;,Ci) = 0 in
ky(E(v/A)). In view of 3.1., it is sufficient to construct an extension E of K with
VA ¢ F such that {Bi,...,B,} C E(VA)*/E(v/A)* are linearly independent
over Z/27 and such that C; = [].. Ng-D? for some D € E(v/A)*, 1 <i < m. The

i€S
construction of such an F is as follows.
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We write [[,co Ns = R; + VAT, with R;, T, € K. Since R;,T; are polynomials
in Xg,Ys,Zg,Ws,U; and Vj, ¢1(RZ), ’(,Z}l(T;) € K. Since ’QZJQ(BZ) =b,1 <1<
m, o(Bs) = bs and ¢»(Ng) = vg for every S C {1,...,m}, S # (). We have
€ = Hieg Vs = %(Hieg Ns) = to(R; + \/ZTz) =1 () + Vayi (T;). Since ¢; € K
and /a ¢ K, it follows that ¢y (R;) = ¢, ¥ (T;) = 0. Let M; = R? — AT?.
We denote by FE, the field obtained from K, by adjoining V/My,...,v/M,, and

\/ 2 J2r01 o/ Rm;c‘ﬁ Since 1y (M;) = 1o RZ — AT?) = ¢7, we can extend in view
of (4.4) wQ to a place ¢3 : Ki(VMy,..., \/Mm) — K U oo such that ¢3(vM;) = ¢;.

Then )3 (R’;%/i_ ) = 3; = 1 and once again 3 can be extended in view of 4.4. to

a place ¥4 : F — K Uoo. We claim that VA ¢ E. Otherwise, VA would belong
to the valuation ring of v, and hence v4(v/A) € K would be a square root of a,
contradicting the assumption \/a ¢ K. The place ¢4 can be extended in view of
(4.4) to a place ¢ : E(VA) — L Uoo. Since ¢5(B;) = b; and {b;}, 1 <i < m
are linearly independent in L*/L*? over Z/27Z, it follows that {B,...,B,,} are

linearly independent over Z/27 in E(v/A)*/E(v/A)*. Further, if oy = 4/ RﬁTm,
then (ESNS)/CZ = (RZ + \/ZT;)/CZ = (Oéi + 2{5&)2 so that a = H NS in
E(VA) /BE(VA)?. Thus 3., (Bi,Ci) = 0 in ky(E(V/A)). The place v, :
E — K U oo which maps A to a gives rise, in view of 4.5., to a homomorphism

i+ ki(E) — k;(K) such that ¢(A4) = a, %02(21<z<n <BZ,C’>) Zl<z<n< i» ¢i) and
obviously the diagram in 4.1. This completes the proof of 4.1.. U

1€S

§ 5. Proof of the exactness of k;(K) — ko(K) — ko(K(1/a))
We have the following commutative diagram
E(K) —2— ky(K) =% k(L) —2 ky(K)
zla lﬁK lﬁL J{ﬁK
HY(K) X2 H2(K) -5 H(L) <% H(K)
with the bottom row exact (5.3. of Ch. III), where L = K(y/a).

Lemma 5.1. If B is injective, then 3y is injective for any quadratic extension L

of K.

Proof. Let xy € Ky(L) be such that §y(z;) = 0. Then Bk o tr(z;) =

cores o 3(x1) = 0. Since [k is injective, tr(xz;) = 0. By 5.11. of Ch. III, there
exists Ty € ko(K') such that ext xo = x;. We have res o g (22) = [ o ext(xs) =
Br(r1) = 0. Since the bottom row is exact, there exists x3 € H'(K) such that
Xo U3 = Br(x2). Let Oy = x3. Then Bi(xe — pxy) = 0. Since ff is injective,
o = ¢(x4) and z1 = ext 1 = ext pxy = 0. Thus f;, is injective. O

Lemma 5.2. If B is injective, then, for any quadratic extension L of K, the top
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row of the diagram above is exact.

Proof. Since exactness at ky(L) is already proved in 5.11. of Ch. III, it is enough to
check the exactness at ko(K). Let z1 € koK) with ext 2y = 0. Then res o Sk (x1) =
B, o ext 1 = 0. Since the bottom row is exact, there exists r, € H'(K) such that
Br (1) = Xa U xo. Let O(x3) = x9. Then g (z1 — p(x3)) = 0. Since Sk is injective,
1 = p(x3). O

Theorem 5.3. Let K be a field of characteristic # 2 and L = K (\/a) any quadratic
extension. Then the sequence ki(K) -2 ko(K) =% ko(L) is exact.

Proof. Let x € ko(K) with ext(z) = 0. Let Y, .., (bi,ci) € K3(K) be a represen-
tative of . We may assume that {b;....,b,} C K*/K*? are linearly independent
over Z/2Z. In fact, if by, = p2-b3t- ... bk ... b, p € K* ;=0 or 1, g, = 0, then

Dorcicn 0is€i) = D cicn izp (bisciici). We may also assume that {b,...,b,} C
L*/L** are linearly independent over Z/27Z. If, for example,

by = (1 + v/a)?b- .. ben,

g =0or 1land p, v € K, then pv = 0. If v = 0, by = p?b3>- ... -b;» contradicting
the linear independence of {by,...,b,} C K*/K*? over Z/2Z. Thus y =0, and b; =
a-vb52- ... -bir and D i<icn (bisci) = (a,e1) + 32 cicp (biy &57-ci). Since ext (a, ¢1) =

0, ext D oeicy, (bi, ¢ic;) =0and Y .., (b, ci"-¢;) is of the form (a, b) if and only if

> 1<icn (bis ci) is of the form (a, b').

Thus we assume, without loss of generality that z =), .., (b, ¢;) with the images
of {by,-++n} in K*/K*? and in L*/L*? linearly independent over Z/2Z. Let E be
an extension of the prime field Ky of K constructed by successive quadratic and
purely transcendental extensions as in 4.1. with respect to Y (b;,¢;) € Ky(K) and
the quadratic extension L/K. Since (g, is injective (3.4. or 3.5. of Ch. IV) fg is
injective, in view of 5.1. and 2.1.. Hence by 5.2., the sequence

k1(E) 5 ka(B) =5 ky(E(VA)

is exact. Let y € ki (E) be such that ¢(y) = >, .,., (Bi, C;). Since the diagram

ki(E) —— ko(E)

o |
is commutative, p2 o @(y) = V2(301cicp (Bis Ci)) = Xicicn (bisci) = v o pi(y) =
(a,z) where Z = ¢;(y) and the theorem is proved. O
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Appendix I: Existence of unramified splitting fields

§ 1. Some generalities on integral extensions

Let A C B be commutative rings. An element b € B is said to be integral over A
if b satisfies a monic polynomial " + a;b" ' +---+a, = 0, a; € A. The extension
B/A is said to be an integral extension if every element of B is integral over A. If
B/A is any extension, the set of all elements of B integral over A is a subring of B
called the integral closure of Ain B. If A C B C C with B an integral extension
of A and C' an integral extension of B, then C' is an integral extension of A (see
Zariski-Samuel, Commutative Algebra Vol. 1). An integral domain A is said to be
integrally closed if its integral closure in its quotient field coincides with A. (For
example, a unique factorization domain is integrally closed.)

A discrete valuation ring is an integrally closed Noetherian domain which has a
unique non—zero prime ideal. We record the following (see Zariski-Samuel, Com-
mutative Algebra Vol. 1).

Proposition 1.1. For a Noetherian domain A, the following conditions are equiv-
alent.

1. A is a discrete valuation ring.
2. A is a local ring with its maximal ideal principal.

2. A is a local principal ideal domain.

Let A be a discrete valuation ring and 7 a generator of its maximal ideal. Then
every element of A can be written uniquely as un™ where u a unit of A. If K is the
quotient field of A, the map v : K* — 7Z given by v(a) = n where a = u-7", u a
unit of A, is a discrete valuation of K whose valuation ring is A. Conversely, the
valuation ring of any discrete valuation of a field is a discrete valuation ring, whose
maximal ideal is generated by any parameter of the valuation. We note that if A is
a discrete valuation ring with quotient field K, A is a maximal subring of K i.e.
A C B CK, B aring implies that A= B or K = B.

A Dedekind domain is a Noetherian integrally closed domain in which every non—

zero prime ideal is maximal. We have the following equivalent characterizations of
a Dedekind domain.

Proposition 1.2. For a noetherian domain A, the following are equivalent:

1) A is a Dedekind domain.

2) For any non—zero prime ideal p of A, A, is a discrete valuation ring.
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3) The non-zero fractionary ideals of A (i.e. finitely generated A-submodules of
the quotient field of A) form a group under multiplication.

Corollary. If A is a Dedekind domain, any non—zero ideal of A can be uniquely
written as a finite product [] p;* of prime ideals of A.

For proofs of 1.2., see, for instance, Zariski-Samuel, Commutative Algebra Vol. 1.

Proposition 1.3. Let A be a Dedekind domain with quotient field K. For any non—
zero prime ideal p of A let v denote the discrete valuation of K whose valuation ring
is Ay. The map p — v, is a bijection between the set of non—zero prime ideals of A
and the set of discrete valuations of K which are non—negative on A.

Proof.  The assignment p — v, is clearly injective. Let v be a discrete valuation
of K, non-negative on A. Let p = {x € A | v(xz) > 0}. Then p = p, N A, where
p, is the maximal ideal of the valuation ring ,. Since v is non—trivial, p # 0 and
A, C O, so that A, = 9O, O

Lemma 1.4. Let A be a Dedekind domain with quotient field K. Let L/K be a
finite extension and let B be the integral closure of A in L. Then L is the quotient
field of B. If B is of finite type over A, then B is a Dedekind domain.

Proof. Let b€ L and let b" + A\ 0" ™' +---+ )\, = 0 with \; € K, )\, # 0. Clearing
the denominators of \;, we see that there exists a v € A, v # 0 such that vb is
integral over A so that vb € B. Thus L is the quotient field of B. If B’ is the
integral closure of B in L, B’ is integral over B and B integral over A so that B’
is integral over A which implies that B’ = B. Thus B is integrally closed. Suppose
B is of finite type over A. If %, C A, C --- C A, C ... is a chain of ideals in B,
since B is noetherian as an A—module and 2(; are A—submodules of B, the chain
terminates at a finite stage. Thus B is noetherian. Finally we show that every
non—zero prime ideal of B is maximal. This is a consequence of the following three
lemmas and the fact that every non—zero prime ideal of A is maximal. 0

Lemma 1.5. Let A C B be commutative rings with B integral over A. If m is any
mazimal ideal of B, then mN A is a mazimal ideal of A.

Proof. We have an inclusion A/mN A < B/m and B/m is integral over A/mnN A.
Replacing A by A/m N A and B by B/m, it is enough to prove that if B is a field
integral over a subring A, then A is a field. Let a € A, a # 0. The element a~! € B
satisfies a monic polynomial

(a " +a(a )" P+ +a,=0
with a; € A, so that ™! = —(a,a" ' +---+ay) € A. Thus A is a field. O
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Lemma 1.6. Let A — B be integral domains with B integral over A. Then the
intersection of every non—zero prime ideal of B with A is non—zero.

Proof. Let B be a non—zero prime ideal of B. Let b € B, b # 0. Let 0" +a,_10" 1 +
-+ +a, = 0 be the monic polynomial satisfied by b over A. Since B is a domain,
we may assume that a, # 0. Then a, = —(b" + a, 0" ' + - +a, 1) € BN A O

Lemma 1.7. Let A — B be an integral extension. Let p ; q be prime ideals of
B.Then p N A and qN A are prime ideals of A with pN A ; qn A.

Proof. For any prime ideal of B, its intersection with A is clearly a prime ideal
of A. Replacing A by A/pN A and B by B/p, it is sufficient to prove that for any
non-zero prime ideal q of B, g A is non-—zero. This is a consequence of 1.6.. [

Proposition 1.8. Let A be a Dedekind domain with quotient field K. Let L/K be
a separable extension and B the integral closure of A in L. Then B is a module of
finite type over A and hence a Dedekind domain.

Proof. In view of 1.4., L is the quotient field of B. Let {b,...,b,} C B be a
K-basis of L. For any A € B, the conjugates of A in an algebraic closure of L
are integral over A so that trp x A is integral over A (tr denoting the trace) and
hence belongs to A, A being integrally closed. Let b € B with b=, \ib;, A; € K.
Then tI"L/K bb] = Zz )‘z tI'L/K bzb] The elements tI'L/K bibj, tI'L/K bb] belong to A.
Let 0 = det(tr x b;b;). Since L/K is separable, § # 0 and \; € 1/§-A, for all i.
Thus B is contained in ), Ab;/d. Since A is noetherian, B is finitely generated as
an A-module. OJ

Proposition 1.9. Let A be a Dedekind domain with quotient field K. Let L/K
be a finite extension and B the integral closure of A in L. Suppose B is a finitely
generated A—module. Then B is a Dedekind domain. If p is a non—zero prime ideal
of A, pB # B and the valuations of L extending v, are precisely given by {vy}
where P runs over the prime ideals of B containing p. Let pB = qup Bex. Then
ep = e(vp/vy) and if fp is the degree field extension, then [L: K] =3 5 eqfp.

Proof. 1In view of 1.4., B is a Dedekind domain. To prove the proposition, we may
localize A at p, replace B by S™1B where S = A\ p and assume that A is a discrete
valuation ring. Since A is an A—module of finite type, by Nakayama lemma pB # B.
If B is any non—zero prime ideal of B, BN A is a maximal ideal of A (1.5.) and hence
is equal to p. Thus By D A and vy is an extension of the valuation v, of K. If w is
any extension of v, to L, ©,, D A and since 9,, is integrally closed in L, O,, D B.
Thus w is a valuation of L, non-negative on B so that by 1.3., w = vg for some
prime ideal P of B. Since pBy = P* By, we have e(vy/v,) = e,. The residue class
field of v, is By /BBy ~ B/P. Since A is a (local) principal ideal domain and B
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a torsion free A—module of finite type, B is free as an A-module and its rank is
[L: K]. Thus [L: K| = [B: Al = [B/pB : A/p] = > _q[B/PB® : A/p], since, by
chinese reminder theorem, B/pB =~ [[y_, B/PB®, as A/p-vector spaces. We have
a composition series B/PBe® D P/ P* D --- D Per~!/Pe* S 0 whose successive
quotients B¢ /P! are isomorphic to B/R, (since P C A € P! = A = P or
2l = P+1). Thus

[B/P : A/p] = eq[B/P : A/p] = eqfy and [L: K] = epfy .
P70

Corollary 1.10. With the notations of 1.9., for x € B, Ny /k(x) € A and

Npi(@) = 1] Nosmap@™
RUBIY

bar denoting reduction modulo p on the left hand side and reduction modulo B on
the right hand side.

Proof. We may assume as before that A is a discrete valuation ring so that B is
free over A of rank [L : K]. Since any A-basis of B is a K-basis for L, for any
r € B,

Nipjx(x) = Npja(x) = Npppap@) = Tpzo Vo jas(T)
= Tlgz0 No/p/am(@)®

since the factors of the composition series

B/BPOP/P*D---D0

are invariant under multiplication by . O

Proposition 1.11. Let A be a Dedekind domain with quotient field K and L/K
a finite Galois extension. Let B be the integral closure of A in L. The group
G(L/K) operates on B and acts transitively on the set of prime ideals B of B
containing a given non—zero prime ideal p of A. If B, P’ are prime ideals containing

p,ep = ey, fy = fy, and [L : K] = e, fygy where e, = ey, fp = fo for any P O p
and g, = number of prime ideals of B containing p.

Proof. If x € B and 0 € G(L/K), oz is integral over A and hence belongs
to B. Thus G(L/K) operates on B and hence on the set of prime ideals of B
containing p. Let B, P’ be prime ideals of B containing p. Suppose P ¢ oP' for
every 0 € G(L/K). Then B & Usea(n/iy 0P’ (any ideal contained in the union of
prime ideals is contained in one of them). Let z € P such that ox ¢ B’ for every
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o € G(L/K). Then Npjxx = [[,cquxo(®) € BNA=p C P so that ox € P’
for some o, leading to a contradiction. Thus P = o’ for some o € G(L/K). The
rest of the assertions is clear, in view of 1.9.. O

§ 2. Complete valuated fields

Let K be a field, complete with respect to a discrete valuation v. As remarked
in Ch. V, this means that K is complete with respect to the norm defined by
|z|| = (1/2)*®), x # 0 and ||0|| = 0. Clearly, the valuation ring 9, is closed in K
and hence is complete.

Let L/K be a finite extension. The map v’ : L* — Z given by v'(z) = v(Ny/k(z)) is
a homomorphism. If z € K*, v'(z) = n-v(x) where n = [L : K], so that v'(L*) D nZ.
Let d be a positive generator of v'(L*). Then d|n and the map w : L* — Z defined
by w(z) = 1/d-v(Nr/k(z)) is a surjective homomorphism. We shall in fact show
that w is the unique discrete valuation of L which extends v and d = [L : K], bar
denoting the corresponding residue fields.

Lemma 2.1. Let L/K be a finite extension. Then there exists a unique discrete
valuation w of L which extends v and L is complete with respect to w.

Proof. Let K C Ly C L be such that Ly/K is separable and L/Ly purely in-
separable. In view of 1.9., there exists a discrete valuation vy of Ly extending v.
Let [L : Ly] = p" = q where char K = p. Then for any z € K, 29 € Ly and
the map vy : L* — Z given by v () = vo(2?) is a homomorphism which satisfies
vi(z+y) > min(vy(z),v1(y)). If v1(L*) = dZ, then d # 0 and w = \T-Il\'vl is a discrete
valuation of L extending vy and hence v. The uniqueness of w is a consequence of
the following lemma, noting that K is complete and that any two discrete valuations
wy, we of L (extending v) giving rise to equivalent norms are equal. 0

Lemma 2.2. Let K be a field complete for a discrete valuation v. Let v be a
finite dimensional vector space over K. If || ||1, || || are two norms on V' such that
IAz|l; = |IA| |z|lis i =1, 2, forz € V, A€ K, then || |1 and || ||2 are equivalent, || ||
denoting the norm on K induced by the valuation v.

Lemma 2.3. Let K be a field complete for a discrete valuation v. Let L/K be a
finite extension and let w be the unique extension of v to L. Then £, is the integral
closure of O, in L. Further O, is a free O,~module of rank equal to [L : K] and
[L : K| = ef where e = e(w/v) and f = [L : K| bar denoting the corresponding
residue fields.

Proof. Let B be the integral closure of A in L. Let 7 be a uniformizing parameter
for v and let {b;}icr by elements of B whose images in B/m B form a basis of B/mB
over 9,/(r) = K. We shall show that {b;};,c; form a basis of B over ©,. Let
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Y. aibi =0, a; € O,. Multiplying this equation by a suitable power of 7, we may
assume that @; # 0 for some i (bar denotes “modulo 7”). Reducing modulo 7, there
is a relation of linear dependence of {b;} over K, leading to a contradiction. Thus
{b;}icr are linearly independent over O, and hence over K so that |I| < [L : K| = n.
We write [ = {1,2,...,r}. Let By be the ©,~submodule of B generated by {b;}. Let
be B. Then b =Y ab;, @ € K. Then b— " a;b; = 7b"), bV € B, a; denoting lifts
in O, of @;. Repeating the same argument, replacing b by b"), and using induction,
we have
b= > A+ 7"

1<i<r

where b € B and {Agm)} is a Cauchy sequence in £,. Since 9, is complete, there
exists a; € O, with a; = lim Agm). Then b = Y a;b, € By so that B = By. Thus
B is finitely generated over O, and hence by 1.4., B is a Dedekind domain. Every
prime ideal p of B gives rise to a discrete valuation v, of B (see 1.3.) with valuation
ring B, D O, and v, lies over v. Since there is a unique extension of v to L, B is
local and hence by (1.2., 2)), B is a discrete valuation ring, so that B = O,,. The
rest of the assertions of Lemma 2.3. follows from 1.9.. O

Proposition 2.4. Let K be a field, complete with respect to a discrete valuation
v and L/K a finite extension. If w denotes the unique extension of v to L, then,
w = (1/f)v(Np/x(x)) where f = [L : K], bar denoting the corresponding residue
fields.

Proof. We first assume that L/K is normal. If o is any K—automorphism
of L, w = woo since wo o is again an extension of v. Thus, for any z €
L, w(zr) = gqw(Nyke) = e[%f%)v(NL/K(fﬂ)) = (1/f)v(Ni/k(x)) where f =L :

K], since e(w/v)f = [L : K], by 2.3.. Suppose L/K is not necessarily normal
and let L'/K be the normal closure of L/K. Let w' be the extension of v to L'
For any finite extension M'/M of complete discrete valuated fields, let e(M'/M)
denote the ramification and f(M'/M) the degree of the residue field extension.
Then e(L'/K) = e(L'/L)-e(L/K) and f(L'/K) = f(L'/L)-f(L/K). Further, by
the previous case, w'(z) = (1/f(L'/K))v(Npk(x)) for x € L'. For z € L,

we have e(L'/Lyu(e) = w'(o) = 7oV (o) = 7o (Ve H) =
AV (Niyic(r)) = SR 0 (N e (). Tt follows that w(z) =
(1/f(L/K))w(Np/k(x)) and this proves the proposition. O

§ 3. Existence of maximal unramified extensions of complete fields

Let K be a field, complete for a discrete valuation v and L/K a finite extension.
We say that L/K is unramified if e(w/v) =1 and [L : K| separable, L/K denoting
the corresponding residue fields.

We shall show that any finite extension ¢ of K corresponds to an unramified exten-
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sion L/K, unique up to K-isomorphisms, such that L is K-isomorphic to £. We
begin with the following

Lemma 3.1. (Hensel) Let K be a field complete with respect to a discrete valuation
v and let K denote the residue field 9,/(w). Let f € O,[z] such that f € K[z] has
a simple root X\ € K. Then there exists a unique v € O, such that f(x) = 0 and
T =\

Proof. We first prove the uniqueness. Let x, 2’ € O, be such that T =7 = A and
f(x) = f(2') = 0. Let f(X) = (X —x)g9(X), g(X) € D,[X] and g(\) # 0. Then
f(@) = (z' — 2)g(z") = 0. Since g(z') = G(T) = G(\) # 0, g(2') is a unit of O, so
that x — 2’ = 0. We now prove the existence of a root of f whose reduction modulo
mis A\. Let z; € O, be any lift of A so that f(x;) € 7-9,. Suppose, by induction,
that z,, is chosen in O, so that 7,, = A and f(z,) € 7™-9,,. We shall show that z,4
can be chosen in 9, so that Z,1 = A and f(z,41) € 7 7'9O,. Let f'(z) denote the
derivative of f. Since X is a simple root of f, f’(\) # 0 so that f’(x,) is a unit of O,,.
Let h = —f(x,)-(f'(x,)) . Then h € 79O, and f(x, +h) = f(x,) +hf' (z,) +h*v
where v € ©O,. Since f(z,) + hf'(x,) =0, f(x, +h) = h*v € 7"O,. We take
Tpt1 = Tp + h. The sequence {z,} is a Cauchy sequence in 9, for the metric
induced by v and hence converges to an element z in 9, £, being closed in K.
Then f(z) = lim, f(z,) =0 and T =z — z,, + T,, = A. This proves the lemma. [

Lemma 3.2. Let O be a discrete valuation ring with mazimal ideal p and residue
class field O = O/p. If f € O[X] is monic and such that f € O[X] is irreducible,
then O[X]/(f) is a discrete valuation ring.

Proof. Let K be the quotient field of ©. Since f is irreducible , f, being monic,
is irreducible in O[X]. Since O is a principal ideal domain, O[X] is a u.f.d. so that
[ is a prime and O[X]/(f) is a domain. Since O[X]/(f) is integral over O, if m is
any maximal ideal of O[X]/(f), by 1.5., mN O is a maximal ideal of O and hence

—~—

mN O = p. Thus the image (p, f) of (p, f) in O[X]/(f) is contained in m. We have

—~—

O[X]/(p, f) ~ O[X]((f) which is a field and hence (p, f) is maximal in O[X]/(f).

—~—

Thus m = (p, f) is generated by 7, a generator of p in O. Thus O[X]/(f) is a local
noetherian domain whose maximal ideal is principal and hence by 1.1. is a discrete
valuation ring. O

Proposition 3.3. Let K be a complete discrete valuated field with residue field
K. Let k'/K be a finite separable extension. Then there exists a finite unramified

extension K'/K such that K is K ~isomorphic to k'.

Proof. Let k' = K(x) and let f € O[X] be a monic lift of the minimal polynomial
of x over K, O being the valuation ring of K. Let K’ be the quotient field of
O[X]/(f). By 3.2., O[X]/(f) is a discrete valuation ring such that its maximal
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ideal is generated by a parameter in K. Since O[X]/(f) is of finite type over O
and is integrally closed in K', O[X]/(f) is the integral closure of O in K'. Since
every valuation of K’ extending the valuation of K is given by the prime ideals
of O[X]/(f) containing p, the maximal ideal of O, (1.9.), it follows that there is
a unique extension of the valuation of K to K’ whose valuation ring is O[X]/(f).
Since a parameter of K generates the maximal ideal of O[X]/(f), e(K'/K) = 1.

Further, O[X]/(f)/(m, f) = O/m[X]/(f) = K[X]/(f) = k' which is separable over
K so that K'/K is unramified, whose residue field is K—-isomorphic to &'. 0

Lemma 3.4. Let K'/K be a finite unramified extension with residue field k' /K,
constructed in 3.3.. If K"/K is any finite extension with k" as the residue field, the
set of K—~isomorphisms of K' into K" is in bijection with the set of K ~isomorphisms

of k" into k".

Proof.  Let A be the valuation ring of K, A" = A[X]/(f) the valuation ring of
K’ and A” the valuation ring of K”. Since K is complete, by 2.3., A" and A"
are, respectively, the integral closures of A in K’ and K" and Homg_, (K, K") =
Homa_ne(A’, A”). If p is the maximal ideal of A and m’, m” the maximal ideals of
A" and A", respectively, since f(pA") C pA”, f(m') C m” and we have a canonical
homomorphism 0 : Hom 4 a4(A’, A”) — Homz_,, (K, k"). Every A-algebra homo-
morphism A’ — A” determines, and is determined by an element y € A" with
f(y) = 0. Since k' = k[X]/(f), every K-isomorphism of &’ into k" determines and
is determined by an 7 € k" with f() = 0. Since f is separable, by 3.2., K" being
complete, every root of f can be lifted to a root of f in A”. Thus # is a bijection.
0]

Corollary 3.5. Let K be a complete discrete valuated field with residue field K.
Let k' /K be a finite separable extension. Then there exists an unramified extension
K'/K, unique up to K —isomorphism, with residue field K -isomorphic to k'. In fact,
K'/K is Galois if and only if k' /K is Galois and in this case G(K'/K) = G(k'/K)

canonically.
Proof. Immediate from 3.3. and 3.4.. O

Let K be a complete discrete valuated field. Let K, denote a separable closure of
K. If L, I', contained in K are finite unramified extensions of K, the composite
LL' in K, is unramified over K. In fact, if L, T’ are the residue fields of L and L,
respectively, LT is separable over K. If L”/K is the unramified extension whose
residue field is ff’, the K-injections L < LL and T — LT yield K—injections
L — L' and L' — L" and hence LL' — L". Since L"/K is unramified, e(L"/K) =
e(L"/LL')-e(LL'/K) = 1 and hence ¢(LL'/K) = 1. Further LL' ¢ L' = LT is
separable over K. Thus LL' is unramified over K. Let K,, denote the union of
all finite unramified extensions of K contained in K. The canonical isomorphisms
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G(L(K) = G(L/K) where L/K is a finite Galois unramified extension of K yield
an isomorphism G(K,,./K) ~ G(K;/K) of profinite groups. We thus have the
following

Theorem 3.6. Let K be a field, complete with respect to a discrete valuation v and
K, a separable closure of K. Then there exists a subfield K,, of Ky containing K
(called the mazimal unramified extension of K ) such that every finite unramified
extension L/K contained in Ky is contained in K,.. Further if L/K is a finite
Galois unramified extension of K contained in K, there is a canonical isomorphism
G(L/K) — G(L/K), bar denoting the residue fields. We thus have an isomorphism
G(Kn/K) = G(K,/K) of profinite groups.

§ 4. Unramified splitting fields for division algebras

Let K be a field and A a central simple algebra over K. We define a map Nrd :
A — K, called the reduced norm, as follows. Let L be a splitting field of A and
let ¢ : LgA = M,(L), an isomorphism of L-algebras. For x € A, we define
Nrd z = det p(1® ). If ¢ : L& A = M,(L) is another isomorphism, ¢’ o p~!
is an automorphism of M, (L) which is inner (Ch. I, 2.2.) and if ¢’ o ! =
Int o, @ € GL,(L), det p(1 ® x) = det(a '¢'(1 @ 2)a) = det ¢'(1 ® z), so that
Nrd z is independent of the isomorphism ¢. Since the determinant map is invariant
under base change, it is easy to verify that Nrd x is independent of the splitting field
L chosen. Let L/ K be a Galois splitting field for A and let ¢ : L®x A ~ M, (L) be an
isomorphism of L-algebras. Then, for any 0 € G(L(K), p o (c®1)op ' oo™ isan
L—algebra automorphism of M, (L) and hence po (c®1)op oo™t =1Int a,, a, €
GL,(L). Then o(det p(1®z)) = det op(1®z) = det a,p(1@z)a, ! = det p(1®7),
so that det (1 ® x) € K. Thus we have a well-defined map Nrd : A — K which is
multiplicative; i.e., Nrd(zy) = Nrd z-Nrd y. We may verify the following properties
of the reduced norm.

(1) Ifae M,(K), Nrd a = det a.

(2) Ifx € D, D a central division algebra over K, Nrd # = (Ng(4)/x (2))* where
¢ = n/[K(z) : K], where n?> = [D : K|. In particular, if L is a maximal
commutative subfield of D containing z, Nrd x = Ng /gx.

(3) Nrd(Az) = A"Nrd z, A € K, z € D where [D: K] = n?.

Let K be a field complete for a discrete valuation v. Let D be a central division
algebra of dimension n? over K. We define a map v' : D* — Z by v/(z) = v(Nrd z).
Clearly, v' is a homomorphism and for z € K*, v'(x) = n-v(z) so that v'(K*) C nZ.
Let v'(D*) = dZ with d positive. Then the map w : D* — Z defined by w(z) =
(1/d)v(Nrd x) is a surjective homomorphism. For x € K*, w(x) = (n/d)v(z).

Lemma 4.1. For z,y € D* with x +y € D*, w(x +y) > min(w(x), w(y)).
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Proof.  For any z € D, Nrd x = Np,/xkx where L is a maximal commutative
subfield of D containing x. If w" denotes the unique extension of v to L, w'(x) =
(1/f)v(Nyk(x)) = (1/f)v(Nrd z) = (d/f)w(x), f = [L: K]|. For z,y € D, let
L be a maximal commutative subfield of D containing 2~ 'y. Then w(1 + z71y) =
(f/d)yw'(1+2~"y) > min((f/d)w'(1), (f/d)w'(z7"y)) = min(w(1),w(z™'y)) so that
w(z+y) =wx) +wl+r7'y) > w)+ min(w(l),w(z"'y)) > min(w(z), w(y)).

0

Lemma 4.2. Let Op = {x € D | w(x) > 0}U{0}. Then Op is a subring of D. Let
m € Op be such that w(r) = 1. Then 719Op = Op7m and every left— or right—ideal
of Op is a two-sided ideal generated by a power of w. Every element of Op not in
7O p s a unit of Op.

Proof. Let © € D* and let w’ be the extension of v to K(z). Then w(z) =
n'-w'(z) for some n' € Z, n' > 0. Thus Op N K(x =) = O,. Since O, is the
integral closure of O, in K(z), (see 2.3.) it follows that O consists of precisely
the elements of D integral over ©,. The fact that Op is a subring of D follows from
the formal properties of valuations, satisfied by w. For A € Op, 7\ = (rAr )7
with w(mA7™!) = w()\) > 0 so that 7Op = Op7. The rest of the assertions of the
lemma is trivial. O

We call w the extension of V to D. We define amap || || : D — R, by  ~ (1/2)*®)
if  # 0 and 0 — 0. It is easily checked that || || is a norm. Since K is complete, the
topology on Ddefined by this norm is in fact the product topology on K™, where
[D: K] =n? If K C L C D where L is a commutative subfield, then L is closed in
D and the restriction of the norm || || to L is equivalent to the norm on L induced
by the unique extension of v to a valuation of L.

Lemma 4.3. Let K be a complete discrete valuated field with residue field K and
let char K = p. Let D be a finite dimensional central division algebra over K such
that [D : K] = n? with n > 1 and (n,p) = 1 (no condition on n if char K = 0).
Then D contains a subfield L 2 K, unramified over K.

Proof. Suppose such a field L does not exist. Then for every commutative subfield
K C L C D, the residue field L of L for the unique extension of the valuation of K
coincides with K. For, if L 2 K, since [L : K] divides [L : K] (see 2.3.) which is
coprime with char K, L/K is separable and can be lifted (see 3.3.) to an unramified
extension Lg/K contained in L, with [Ly : K] = [L : K]. Let w be an extension of
v to D and let # € D be such that w(r) = 1. LethDDandL K(b). If w' is
the extension of v to K(b), since v(Ny k() = v(Nrd z), e = \/[D: K / L : K],
it follows, in view of 2.4., that w'(b) > 0. Since the re81due field of K (b) coincides
with K, there exists a € O, such that w'(b — a) > 0. Hence w(b — a) > 0 so that
there exists b; € Op such that b —a = 7b;. Repeating the argument, replacing b by
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by, for each integer N, one has
b= a -+ may +7T2Cl2 + - —|—7TN71'CLN,1 —|—7TN'bN

with a; € 9,, by € Op. Since the subfield K(7) of D is complete and w"(7w) > 0
where w" is the extension of v to K (), the Cauchy sequence {Ay}, where Ay =
a+ ma; + -+ -+ 7ay, converges to an element of K(m) so that b € K (). Thus
Op C K(r) and D C K(7) contradicting the hypothesis that n > 1. O

Proposition 4.4. With the same hypothesis as in (4.3), D contains a mazimal
commutative subfield, unramified over K.

Proof. By 4.3., there exists K ; K' C D such that K'/K is unramified. Let D' =
commutant of K’ in D. Then [D : K] = [D’: K][K': K] (Ch. I, 2.1.) and hence D’
is a central division algebra over K’ of dimension [D : K|/[K’ : K]?>. By induction
on [D : K], D' contains a maximal commutative subfield L' unramified over K'. We
have [I' : K|? = [L' : K'’[K' : K]* = [D' : K'|[K' : KJ*> = [D : K] so that L' is a
maximal commutative subfield of D. Further L'/K is unramified since L'/K’ and
K'/K are unramified. O
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Appendix II: A theorem of Bass—Tate

Let K be a field. The Milnor ring K.(K) is, by definition, the quotient T'(K*)/I
where I is the two—sided ideal of the tensor algebra T(K*) of the Z-module K*
generated by all elements of the form a ® (1 — a), for all @ € K*, a # 1. Since
T(K*) is graded and [ is homogeneous, K,(K) is graded. Let K,(K) denote the
image of T,,(K*) in K, (K). Then K,(K) = Ky(K)®K,(K)®.... We have K,(K) ~
Z,K,(K) ~ K* and Ky(K) is the group defined in Chapter III. We denote the image
of (a1 ®-+-®ay,) in K,(K) by (a1, ...,a,). The multiplication in K,(K) is induced
by the maps K,(K) X K;,(K) = Kyim(K) given by ({a1,...,a,), (bi,... b)) —
{ai,...,an,b1,...,by). We note that for a, b € K*, (a)+ (b) = {a-b), —{a) = (a ')
and (a)-(b) = (a,b). The ring K,(K) is generated by all elements of of the form
{(ay,...,a,). We have (a;,...,a,) = 0 whenever a; + a;4; = 1, for some i, since
(ai, ai+1> = (ai, 1-— CLZ'> =0 and <CL1, Ceey an> = <CL1, Ceey ai_1>(az~, ai+1>(az~+2, ey CLn>.

Lemma 1. 1) For{ € K,,(K), n € K,,,(K), &n = (—=1)""n¢; i.e. K.(F) is a graded
commutative algebra.

2) {a,...,an) =0 whenever ay +az + -+ a, =0 or 1.

Proof. 1) is a consequence of the fact that (a,b) = —(b,a) in Ky(K) (1.1. of
Ch. III). The claim 2) is true for n < 2 since (1) = 0, (a,—a) = 0 for a € K*
and (a,1 —a) = 0 for a € K*, a # 1. We prove 2) by induction on n, n >
3. Ifay +ay =0, {ay,...,a,) = (ar,as)-(as,...,a,) = 0. If a1 + ay # 0, then
ai(a; + as) ' + as(a; + az) ! = 1 and hence {(ai(a; + as) ', az(a; + az)"t) = 0,
i.e. <C61, Cl2> + <C61 + ag, a1 + Cl2> — <C61, a; + Cl2> — <C61 + ao, a2> =0. Multiplying this

equation by (as,...,a,), and noting that (a; + as,as,...,a,) = 0, by induction,
we have (a1,...,a,) = —(a1 + az)-(a1 + as, a3, ..., a,) + {a1)-{a1 + as,as,...,a,) —
(as)-(ay + ag,as, ..., a,) = 0. O

Lemma 2. Let K be a field with a discrete valuation v. Let m be a parameter for v.
Then K, (K) is generated by elements of the form (m,ug, ..., u,) and (uy,...,uy,)
where u;, 1 < i < n are units for the valuation.

Proof. FEvery element of K* can be written as un™ where u is a unit for the valuation
and n € Z. We have the switching rule (a,b) = —(b,a) in Ky(K). Further, (r,7) =
(m,—m) + (m,—1) = (m,—1). Since (ay,...,a,) is additive in each component, the
lemma is immediate. ]

Theorem 3. (Existence of the “tame symbol”) Let K be a field with a discrete
valuation v. There exists a unique homomorphism T, : K,(K) — K,,_,(K,),
n > 1 satisfying

Tom, tgy. .. ty) = (Ugy...,Up),

where 7 is a parameter for v and u;, 2 <1t <n are units of v. Further,
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Ty(uy,...,u,) =0 if u; are units of v for 1 <i < n.

Proof.  We first prove the uniqueness of T,. Let m be a parameter of v and

Uy, Us, . .., Uy units of v. Then 7w, is again a parameter of v so that
To{muy, ug, ..., uy) = (Us, ..., Up). Since (Tuy, Ug, ..., Up) =
(T Uy ooy Uy + (Ury ooy ), Tp(mug, us, .oy tuy) = (o, ..o, Upn) + Tptq, ..., uy,) SO

that T, (uy,...,u,) = 0. Since (m,us,...,u,) and (uy,...,u,) generate K,(F), the
uniqueness of T, follows.

To show the existence of T, it is enough to define a Z-multilinear map
p: K" x---x K" =5 K, 1(K,),

such that ¢(ay,...,a,) = 0 whenever a; + a;1; = 1 for some i, 1 <i < n—1 and
o(m,ug, ... uy) = (Us, ..., Up), whenever 7 is a parameter for v and us, . . ., u, units
of v. Let K,(K,)(X) denote the graded polynomial ring over K, (K,) in the variable
X;ie, X¢E=(-1)"¢X, € € Kp(K,) and X™-X™ = X™"_ To any element

(T ug, .o uy,) € KXo X KX

we associate the element [, ;. (Xr; + (@) € K. (K,)(X). Let

[T (ri+ (@) = X0 + X" o1+ + g

1<i<n
where ¢; € K;(K,). Thus each ¢; is a map K* x --- x K* — K;(K,). We claim
that ; is additive in each component. We show, for instance, that ; is additive in
the first component. Let [[,c,c,, (X7 4+ (@)) = X" hg+ X" 2y + -+ -+ b1, i €
K;(K,). We have <pi(7r“+r'1u1u’1, Uy, . .., u,) = coefficient of X" in the polynomial
(X(ri+r) + (un)) (X" o+ b 1) = :
(ri+r) i+ (=1)" " wuy )i = (righir+(=1)" @0 :) + (i + (= 1) (@) )i)

= (T g, ug, .. un) + gpi(ﬂ’"’lu’l, Ug, ..., Uy). Let
[] &ri+ @) =X3+ ¢
1<i<n

where ¢ = X"ty + -+ + ¢, ;. We define o(7"uy,...,7™u,) = ¢(( — 1)) =
(— 1)”_1-<p0 +(— 1>n_2g01 +---+,_1. Since each ¢; is additive in each component,

¢ is additive in each component. We have ¢;(m, us,...,u,) = 0 for i # n —1
and @, 1 (T, ug, ..., uy) = (Us,...,Up) SO that o(m, ug, ..., uy) = (U, ..., up). It
remains to show that o(7™wuy,...,7™u,) = 0 whenever 7"iu; + 7" tu; 1 = 1 for

some 7, 1 < i < n—1. We check this when 7"'u; +7"us = 1. Then min(ry,re) < 0.

a) Let ry =ry =0. Then u; +uy =1 and

[T v+ () = @) - I (Xri+ (@) =0,

1<i<n 3<i<r

since (Uy, Ug) = (U1, —uy) = 0.
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b) r =0, ry >0. Then u; + 7"uy =0, 43 = 1 and

1<i<n 2<i<n
¢) r1 >0, ry =0 similar to b)

d) 7 < 0. In this case 1, =1 =7 < 0 and u; + uy = 7" so that u; + Uy = 0.
Thus [T, ¢;c, (X 4+ (@) = (X714 @) (Xro + (= 01)) [Ta0i0 (X7 + (W) =
{X%2 + Xr(( =) — (@) + (T, =)} H3§i§n(Xri + (@) =
X(X7r? + (= Dr)g(X) where g(X) = [[30;<,, (X7 + (W) and 3(( - 1)) =
(=) +Yg(( = T)) = (1)-g(( = 1)) = 0. Finally, if 7' is any other param-
eter for v with 7/ = 7™y, u; a unit of v and wus,...,u,, units of v, then
o' ug, o uy) = @(T, Uy« ooy ty) + (g, gy .oy y) = (Uay oo Ty

O

Lemma 4. Let K be a field with a discrete valuation v and ™ a parameter for v.
The homomorphism K* — K given by m™-u — u, u a unit of v, induces a ring
homomorphism v, : K. (K) — K.(K,).

Proof.  The map m"u — u clearly defines a ring homomorphism T(K*)AT(K;).
If 77wy +72ug = 1, )y (7" ug @ T us) = Uy ® Uy whose image in K*(K,) is (uy, us)

which can be verified to be zero, as in the proof of Theorem 3. Thus ¢, induces a
ring homomorphism v, : K,(K) — K.(K,).

Let K(X) denote the field of rational functions in one variable over K. If, for any
prime p € K[X], v, denotes the discrete valuation of K (X) corresponding to p and
Vs the discrete valuation of K(X) corresponding to 1/X, we have the following
sequence of abelian groups

0 — Kn(K) =5 Ku(K(X)) 5 T Koot (KIX]/ () — 0.

The map T is in fact into the direct sum [[, K, 1(K[X]/(p)) since for any element
f € K(X)* fisa unit for all but a finite number of v, (2.5. of Ch. IV). We shall
show that this is a split exact sequence. Since 1,, o ext = identity, we see that
ext is a direct injection. Thus the sequence is split exact, provided it is exact. For
A € K*, vp(X) = 0 for every prime p of K[X] so that T}, (\,...,A,) =0 for

A € K*,1 <i<mn. Thus T o ext = 0 showing that the above is a complex. We
have an induced homomorphism

T: Ko (K(X))/ ext Ko(K) = [ Koot (K[X]/ ()

We shall show that T is an isomorphism, thereby showing the exactness of the
sequence. In what follows, we shall identify K, (K) as a subgroup of K,(K (X))
through ext.
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Let G4 be the subgroup of K, (K (X)) generated by all elements of the form
(fi, -, fu), [i € K[X], degree f; < d. Then {Gy}4ez+ is a filtration of K, (K (X));
ie. Gy CGy C--C Gy C ... and U; G; = K, (K(X)). Further Gy = K, (F). O

Lemma 5. For all d > 0, Gy is generated by (fi,..., fn), with d > deg f; >
deg fo > --- > deg f,, =0 =deg fy1... for somem, 1 < m < n and f; monic
irreducible for 1 < i <m — 1.

Proof. Using the additivity of (...) in each component and the anticommutativity
of K., we see that every element of G, is a linear combination of elements of the
form (fy,..., fn) where d > deg f; > --- > deg f,; where f; are monic irreducible
or constants. The lemma now follows from the following 0J

Lemma 6. Let g1, g9, € K[X] with deg g1 = deg g» = s. Then (g1, g2) is a sum of
symbols (f, g) with deg f, deg g < s and at the most one of f and g has degree s.

Proof. 1If go = Ag1, with A € K*, then (g1,¢92) = (g1, —A). If go # Ag; for any
A € K*, replacing ¢g; and g, by scalar multiples, we may assume ¢g; and g, are monic
and g — g2 = g # 0. Then deg g < s and ¢1/g — g2/g = 1. Thus (g1/9, —g2/g) = 0;
i.e. (g1, 92) = (9,92) + (g1, —9) — (9, —g) with deg g <'s. O

If p is any irreducible polynomial of degree d, any polynomial of degree < d is
coprime with p so that the map T, : G4 — K,_;(K[X]/(p)) vanishes on Gj, i < d;
and we have an induced homomorphism 7} : G4/Gi — Kn—1(K[X]/(p)). We denote
by T,, the map lei_l.

Ty
Lemma 7. The map Gq/G -1 Tn) [Taeg p=a Kn—1(K[X]/(p)) is an isomorphism.

Proof. We construct an inverse to (7)) as follows: For any monic irreducible p €
K[X], we define a map (K[X]/(p))* x---x (K[X]/(p))* = G4/G4-1 (n—1 copies of
(K[X]/(p))*) by (h1y... hn 1) = (D, h1,. .., hy 1) mod Gy, where h; € K[X] are
the unique polynomials of degree < d whose classes modulo p are h;, 1 <i <n—1.
If hi + hiy1 = 1, then h; + hjy1 = 1 since deg h; < d so that (p, hy,..., hy_i) = 0.
Let h;h = Ap + h with deg h < d, then deg A < d and (p,h1,...,h,...,hp_1) =
(pyhay e hiye e ha )+ 0y B B y) (DR, 1 — %,...,hn,ﬁ.

Since 1 = Ap/h;h; + h/h;h}, we have

0= <)\p/hzh;, hi, Ceey 1-— )\p/hlh;, ce ey hn,1>
= (D, hiyoo 1= i o)+ (MRl by B R By )
= (p,hl,...,l—ﬁ,...,hn_ﬁmod Gd—l-
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Thus
<p,h1,...,h,...,hn,1>
= <p,h1,...,hi,...,hn_1>—|—<p,h1,..., ,...,h;,...,hn_1>m0dlllOGd_1.

Thus ¢, induces a homomorphism ¢, : K,,_1(K[X]/(p) = G4/G4—1. Obviously ¢,
satisfies the condition T, o ¢, = identity and T, o ¢, = 0 if p # p’. Thus the map
© = () * [aeg pea Kn1(F[X]/(p)) = Ga/Ga-1 is injective. To prove the lemma,
it is enough to check that ¢ is surjective. Let (f1,..., f,) be an element of G4 such
that f; is a monic irreducible polynomial of degree d and deg f; < d, for 2 > 2. Then

Py, (for-- s fu) = {fi,..., fn) modulo G4_;. Since by Lemma 5, such (fi,..., f,)
generate Gy, Lemma 7 follows. OJ

We claim the map

T, :Ga/Go [] Kuni(KIX]/(0))

deg p<d

is an isomorphism. We have the following commutative diagram

Ty

Gi/Git " Tlaog poa Ko (KIX)/(0)

l L

0

GafGo —2 gen yea K 1(K[X]/ ()

For T € G4/G,, there exists © € G;, a representative of T with x # G so that
T, (%) =i o (T,,)(T) # 0. Further any element of K, ;(K[X]/(p)) with deg p = 1
has a preimage 7 € G;/G;_ and is hence in the image of 7;). Thus T, is an
isomorphism. Taking the direct limit over d, we get: T : kn(K[X])/Kn(K) =
K,—1(K[X]/(p)) is an isomorphism. We thus have proved the following

Theorem 8. The sequence

T:(Tvp)

0 — K, (K) =2 K,(K(X)) LI, Kna([X1/(p)) —— 0

s a split exact sequence.

Corollary 9. Let ¢ € K[X] be a monic irreducible polynomial of degree d. Then
K, 1([X]/(q)) (n > 2) is generated by elements of the form (gG,...g,_,), where
d>deg g > --->deg g, =0=deg,, ., =---=deg g,, for some 0 <m <n and
g; monic irreducible in K[X] for 1 <i<m —1.

Proof.  The map T;) : Ga/Go — [lyeq pea Kn—1(K[X]/(p)) is an isomorphism so
that we have a surjective homomorphism G4 — K, _1(K[X]/(¢q)). By Lemma 5, we
have a set of generators of G4 of the form (f1,..., f,) where d > deg f; > deg fo >
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->deg f, =0= = deg f,, with f; monic 1rredu(:1ble for1<i<m-—1. We

note that if fl %qa <f17" fn> =0. If fl = q, <f17" fn> = <f 77n>
This proves the corollary O

We denote by P the set of all discrete valuations of K(X) over K. Let v €
B. The inclusions K — K(X) and K — K(X), induce ring homomorphisms
ext : K,(K) — K,(K(X)) and K,(K) — K.(K(X),). We regard K,(K (X)) and
K.(K(X),) as right K,(K)-modules through these homomorphisms. The tame
symbol T, : K, (K (X)) - K,(K(X),) is K.(K)-linear. In fact, if v = v,, for units
u; € K(X)* forvy,, 2<i<nanda € K*,1<i<n,

T’Up(<p7 U2y - - 'Jun>'<a1; s 'Jam>) = Tvp<p7 U2y« vy Up, A1,y - - 'Jam>
= (ﬂg,...,ﬂn,al,...,am>
=T, (P, u2,s .., Un)-(C1, . - -, C).

A similar argument holds for v = v,,. For v = v, we have K ~ K[1/X]/(1/X) ~
K(X),,, so that ext : K,(K) — K,(K(X),,) is an isomorphism. In view of Theo-
rem 8, we have the following diagram

Kot (K (X)) fext K1 (K) —— TLeqomn. Kn(K(X),)

[ [

Kn(K (X)) e Ky (X)

where for each n > 0, v # v, the group homomorphism N, : K,(K(X),) —
K,(K) is defined by N = (N,) = —(ext)™" o T, o T~'. Thus N, is a uniquely
determined homomorphism for every v # v,. We define N, : K,(K(X),,) —
K,(K) to be (ext)™". We thus have, for each valuation v € B, a homomorphism
N, : K. (K(X),) = K.(K) of graded groups.

Proposition 10. 1) (Projection formula) For any valuation v € B, the map N, :
K. (K(X),) = K.K) is K.(K)-linear; i.e.N,(én) = N,(§)n forn € K.(K) & €
K (K(X)0).

2) Forn € K,(K(X)) (n>1), >, cp NoTu(n) =0.

3) For each v € B, let f, : Ky(K(X),) = K,(K) be homomorphisms such that
fo = identity (identifying K(X),., with K) and Y, q fo o T,(8) = 0 for every
B € Kn1(K(X)). Then f, = Ny, for all v.

Proof. 1) follows from the fact that T, T,. and ext : K,(K) — K,(K(X),.) are
K,(K)-linear. Since NoT(n) = —=N,_oT,_ (n),Vn € K,1(K(X)),
> vep NoTo,(n) = 0 and 2) follows. 3) is a consequence of the fact that f = (f,)uz0.

has the property foT = —N,_oT,_ oT ! = N. O
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Theorem 11. The sequence

0 — K, (K) =% Kn(K(X)) 5 [] Kot (K(X),) S Kuoi(K) =0

15 split exact, for all n > 1.

Proof. We have already seen that ext is a direct injection and the sequence is
exact at K,,(K (X)), using Theorem 8. By Proposition 10, it follows that NoT = 0.
Let © € [[,cq Kn—1(K (X)) with N(x) = 0. Since

(T)opvn = Kn(K(X)) = [ Kno1(K(X),)

is surjective, we may assume that x € K,,_1(K(X),.). Then N,_(x) = 0 implies
that * = 0 since N, = ext~! is an isomorphism. Further N,_ is an isomorphism
implies that NV is surjective, and the exactness of the sequence is proved. That the
sequence is split follows from the fact that the sequence of Theorem 8 is split exact
and N, : K,,_1(K(X),,) = K, 1(K) is an identification. O

Proposition 12. For any v € B, the map N, : Ko(K(X),) — Ko(K) = Z is
multiplication by deg v = [K(X), : K].

Proof.  The map T, : K;(K (X)) = K(X)* - K¢(K(X),) = Z is the valuation
map v : K(X)* — Z. We have N, = identity since [K(X),, @ K] = 1 and
> pepdeg puy(f) = deg f = —vs(f) = — deg v voo(f) so that by 3) of Proposi-
tion 10, N, is the multiplication by deg v. O

Proposition 13. The map N, : K (K(X),) = K,(K), v € ‘B is the norm
NK ()o1K

Proof. We have Nk (x),/x = identity. In view of 3) of Proposition 11, it is enough
to check that for f, g € K[X], f, g monic irreducible, Huem Nixyo kTo(f,9) =1

If g is a constant, then T,(f,g) = ¢°) € K* so that Huem X/ kT (f,9) =
g2 desvolf) — gdeg(div(f)=1 (3,1, of Ch. IV). If f, g are both non constant and
f =0, (o f) = (F,—1) 0 that [Loep NeconwTolds f) = 1. Let £, g be monic

irreducible with f # ¢g. Then T,(f,g) =1 for v # vy, Uy OF Uso. We have T}, (f, g) =
g € [K[X]/(f))* and T, (f,g) = (—1)%& /989 ¢ K* In fact, if

f=X"4+ap_ X"+ 4 ayg=X"u,

u=(1+ “’”X‘l + -+ )y Uso(f) = m with @ = 1. Similarly, if deg ¢ = m’ and
g = X", then, vy (g) = m' with @ = 1. We have

’

voo <fa > - voo<Xm7Xm’>'Tvoo<Xmaul>Tvoo<uaXm’>'Tv<uaul> = (_1)mm € K"
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Let K[X]/(f) = K(«a), K[X]/(9) = K(§), «, 3 denoting the images of X. Let

f(X) = ngzgm(X - ai)a o = @, g(X) = HISJSm’(l‘ - ﬁ])a ﬁl = ﬁa a;, ﬁ] € Fa
the algebraic closure of K. Since f and g are distinct irreducible polynomials. f
and g have no common roots. We have

Ni(a)/x(9) = Ni@y/r [Li{a = 8;) = TI;;(ci = B;).
Nk (f) = N@yx [L(B =) = T8 — i) =
= (=1 eI ], (o — ).

We therefore have Hveq3 Nnxy,/kTo(f,9) = 1. O
Corollary 14. (Bass-Tate) The sequence

0 — Kn(K) 2% IG(K(X) -5 [ Ki(K(X),) 25 Ki(K) — 0
veP

is split exact, where N = (N,), N, : K(X) — K* being the norm.
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Appendix III: Transfer on K—groups

§ 1. Statement of the theorem

The aim of this Appendix is to prove the following theorem.

Theorem 1.1. Let K/L be a finite extension of fields. Then there exists a homo-
morphism Ny k @ K. (K) of degree 0, called the norm or transfer homomorphism,
satisfying the following conditions.

1) (Projection formula) For v € K.(K), y € K.(L),
NL/K(eth'y) = $'NL/K?Ja

where ext is the extension homomorphism K.(K) — K.(L), i.e., Ny is
K. (K)-linear if we regard K.(L) as K.(K)-module through extension.

2) (Functoriality) Nk /x = Identity and for finite extensions E O L D K,
NL/K © NE/L = NE/K-

3) (Reciprocity) Y Nk (x),/x © To(x) = 0 for all z € K,(K(X)), v running over
all the discrete valuations v of K(X) trivial on K.

By the uniqueness of the N, proved in (App. II, (10)), since Nk (x), /k = Ni/x =
identity, it follows from 3) that Ng(x),/x = N, and this suggests, in fact, a method
of defining Nk in general. Let L = K(a) be a finite simple extension of K and
7 the minimal (monic) polynomial of o over K. We then have an isomorphism
Yo @ K(a) = K[X]/(r) = K(X),,, sending «a to the class of X modulo 7. We
define Ny = Ny, 0 K.(pa) : K (K(a)) = K, (K(X),,) = K,(K). Since N, and
K. () are K, (K)-linear, No/x is K.(K)-linear; i.e., No/x satisfies the projection
formula.

Let L/K be a finite extension and («q,...,a,) a set of generators of L over K. We
define Nqa,,...an)/k to be

Nan/anl
A

No No
K, (L) K. (Knp 1) — ... 25K (K) 25K, (K)
where K; denotes K (o, ...,q;), 1 <i <n—1. Obviously N, . a,)/k satisfies the
projection formula, since each Ny, /k,_, is K,(K)-linear. For a € K, clearly N,/ =
identity, since N, _,, = identity. The crucial point in order to define a functorial
transfer is the following

Proposition 1.2. The map N, ... o)k 18 independent of the chosen ordered set
(o, ...,qp) of generators of L over K.
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Granting Proposition 1.2., we may write Nz /g = N(a,, .. a,)/x- Then, by our earlier
remark, Ng/x = identity and 1.2. implies that Ng/x = Np/k o Ngjp for E D
L D K, E, L finite extensions of K. Further, taking for o the image of X in
K[X]/(r) = K(X)y,, we have Ng(x),/k = Na/k = Ny, so that reciprocity follows
from (App. II, (10)). Thus Theorem 1.1. would be proved, provided, we prove 1.2..
In Sections 3 and 4, we give a proof, due to Kato of 1.2. (K. Kato, ‘A generalization
of local class field theory using K—groups’, Ch. 11, §1.7, J. Fac. Sci, Univ. Tokyo,
1A 27 1980). Section 2 contains some preliminary results, taken from Bass—Tate,
“The Milnor ring of a global field”, Springer Notes 342.

§ 2. Some preliminary results

Lemma 2.1. For any discrete valuation v of K(X) over K, the composite
K. (K) 25K, (K(X),) 2K, (K) is multiplication by deg v = [K(X), : K].

Proof. For x € K,(K), Ny(ext ) = Ny(ext x-1) = 2-N, (1) = z-deg v by (App. II,
(12)). O

Corollary 2.2. Let L/K be an algebraic extension. Then, the kernel of the map
extr i : K.(L) is torsion. If L/ K is finite, ker exty k is [L : K|-torsion. If L/ K is
an algebraic extension such that every finite subextension Lo/ K has degree coprime
to a prime p, then exty,x is injective on the p—torsion of K,(K).

Proof.  For a simple extension K(«)/K, Najk 0 extg(a)x is multiplication by
[K(«) : K], by 2.1.. For any finite extension L = K(ay, ..., ), we have

Nia,...an)/k © €xtr/k is multiplication by [L : K] so that kerexty g is [L : K]~
torsion. If L/K is any algebraic extension, and 7 € kerext; /x, 7 € ker exty for
some finite extension L of K, contained in L so that 7 is torsion. If each finite
subextension L/K of L/K has degree coprime to p, n € ker exty,, has m torsion
where (m,p) = 1 so that exty x is injective on the p-torsion of K, (K). O

Lemma 2.3. Let K be a discrete valuated field with valuation v. Let L/K be an
algebraic extension and w an extension of v to L with e = e(w/v) the ramification
index. Then the diagram

K, (K) -5 K,(L)

Tvl lTw
Kn_1(Ky) =% K, y(Ly)

15 commutative.

Proof. In view of (2) of Appendix II, K, (K) is generated by (7, us, ..., u,) and
(ug,...,u,), where v(r) = 1 and v(u;) = 0. Let m, be a parameter of w and
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m = up-mg, with w(ug) = 0. Then, T, o ext (m,uz, ..., up) = Tp(m, ug, ..., Uy); =
e(Us, ..., Up) = € ext oTy(m, us, ..., u,) and, Ty, o ext (U1, ..., u,) =0 =
e ext oTy(uy, ..., Upy). O

Lemma 2.4. Let K be a field such that every finite extension of K has degree equal
to a power of a fized prime p. Let L/K be an extension of degree p. Then K,(L) is
generated by elements of the form (A as,...,a,), N\€ L*, a; € K*;, 2<i<n, n>
1.

Proof. We have L = K(«) = K[X]/(7) where 7 is the monic irreducible polynomial
of a over K. By (App. I1, (9)), K,(K[X]/(7)) is generated by elements of the form
(91,---,0,) where g; € K[X], p>deg g1 > --- > deg g, =0 =deg g1 = =
deg ¢, and g; are monic irreducible over K for 1 <7 < m — 1. By hypothesis, since
deg g1 < p, ¢ is either linear or constant and ¢;, ¢ > 2 are constants in K*. Thus
K, (K(a)) is generated by (o — ay, as,...,a,), a; € K*. O

Lemma 2.5. Let K be a field and p a prime. There exists an algebraic extension
PK of K such that every finite extension of PK has degree equal to a power of p and
every finite subextension K'/K, contained in P K has degree coprime to p.

Proof.  1If char K = p, let PK be the fixed field of a p-Sylow subgroup of the
profinite group G(K;/K) and if char K # p, let PK be the fixed field of a p-Sylow
subgroup of the profinite group G(K/K), where K, and K denote, respectively, the

separable and algebraic closures of K. The field PK is the required extension of K.
O

Let L/ K be an algebraic extension. Let (L) and P(K) denote the set of valuations
of L(X) and K(X), trivial on L and K, respectively. We denote by w a typical
element of P(L) and by v a typical element of P(K): Let m be an irreducible
polynomial in K[X] and let 7 =[], ;" be a factorization of w over L, m; irreducible
in L[X]. Let v, w,, be elements of P(K) and P(L), respectively, corresponding
to m and m;. Then w,, are precisely the valuations of L(X) extending v, with

ramifications e; and wy, is the unique extension of v, with ramification 1. We have
embeddings K(X),, = K[X]/(7) = L[X]/(m) = L(X),,, for each i.
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Proposition 2.6. The following diagram is commutative

0= KoL) == KJ(L(X) =25 11, T LW 22 Ko (L) - 0

Text Text T(e(w/v)ext) ext

0= K.(K) -2 K(K(X) —2%  [LEX), % g(K)—o0

where in the third vertical arrow from the left ext = extrx), /K (x)., -
Proof. The commutativity of the square on the left follows from the functoriality
of K,. The commutativity of the middle square is a consequence of 2.3.. Since the
top and the bottom rows are exact (Corollary (14) of App. IT), there exists a unique
homomorphism h : K,(K) — K,(L) which makes the square on the right hand side
commutative. In particular, the diagram

Nuweo

K.(L) = Ko (L(X)w.,) — K.(L)

[m Th
K.(K) = K(K(X),.) —= K.(K)

is commutative. Since N, = identity, N, = identity, h = exty x and the propo-

sition is proved. O

Corollary 2.7. Let K'/K be an algebraic extension and w an irreducible (monic)
polynomial over K which splits as [[, ©;* over K, m; irreducible over K'. Let L =
K[X]/(n), L; = K'[X]/(m), o and «; denoting the images of X in L and L;,
respectively. If L < L; is the inclusion induced by K — K', X + X, the following
diagram is commutative.

(eiextr, /1

KoL) S R (L)

lNa/K J/(Na/K’)

K(K) — KK

Proof. The corollary is a consequence of the commutativity of the right hand square
of 2.6. if we identify L with K(X),., L; with K’(X)wn and No/x and Ny, gk with
Ny, and N,,_, respectively. 0]

Let L/K be a finite extension and K'/K any extension. Then K'®gkL is artinian
and if {m;} 1 < i <r are the distinct maximal ideals of K'®x L, (K'®kL)/Nm; ~
[Ticic, (K'®x L) /m; = [T, <;<, Li where L = (K'®x L) /m;.

If e; is the index of nilpotence of m; in (K'®xL)m;, we call e; the ramification of
K'®@kL in L;. With this notation, the above corollary may be reformulated as
follows.
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Corollary ’2.7. Let K'/K be an algebraic extension and L/K a finite simple
extension. Let (K'®L)/rad = [[ L; and e; the ramification of K'®yL in L;. If
L = K(«a) and o; € L; are the images of « under the canonical injection L <
K'@xL — (K'®xL)/rad = [, Li-2>L;, the following diagram is commutative:

—— [ K (L)

Na/KJ( J,(NQ/K,)

ext -/
SRR

elextL /L

Corollary 2.8. Let L = L(«y,...,ay) be a finite extension of K and K'/K any

algebraic extension. Let (K’®KL)/rad = Tlicic, Li and let (af,...,ak) denote
the images of (ay,...,a,) under the embedding L — L; and e; the ramifications of
K'®gL in L;. Then the following diagram is commutative
(eiextr, /L
K.(L) —— I K.(Li)
J{N(a—l ..... an)/K J{H(Nal ..... al)/K'
ext s
K. (K) —% K, (K')

Proof. The corollary follows from Corollary ’2.7. by an easy induction on n. [

§ 3. A crucial lemma

Lemma 3.1. Let E/K be a normal extension of degree p. Then 1.2. is true for
the extension F/K.

Proof. ;We prove the lemma in two steps.

Step 1. The lemma is true if K =PK for some prime p and PK is as in 2.5..

Step 2. It is enough to prove the lemma when K =?K for some prime p.

Proof of Step 1. In view of 2.4., K, (F) is generated by (z,yi,...,yn 1) where
v e F, ye K 1<i<n—1. 1Itisenough to verify No/x(x,y1,...,Yn-1) =

Nyjg(x,y1,. .., yn—1) for two generators a, b of £ over K. By the projection formula,
we have Ny (z,y1,-. -, Yn-1) = (Ng/kZT, Y1, -, Yn-1) =
Nb/K<xay17"'7ynfl>- O

Proof of Step 2. Since [F : K| = p, PK and F are linearly disjoint over K, so that
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E®gPK ~ EPK, the composite of £ and PK. Let a, b be two generators of E over
K. By Corollary ’2.7., the following diagrams are commutative:

K.(E) —=% K,(EPK)

Na/KJ{J(Nb/K Na/PKJ{J{Nb/pK

K.(K) 2% K,(’K)

Since the lemma is true for PK’, we have Ny »x = Nyjp. Thus ext o(Nojp — Noyi) =
0. By 2.2., for © € K,(E), there exists an integer m coprime with p such that
m-(Na/x — Nojic)(2) = 0. Since E/K is normal of degree p, (EQgE)/rad = []. E;
with F; = FE and e; the ramification of F ® E in E;. (In fact, if 7 is the irreducible
polynomial of any generator of F over K, m splits completely over E.) If a;, b;
denote the images of a, b in Ej;, then the following diagrams are commutative.

K,(E) =% [L(E)

Na/Klle/K (Nai/EJ/J/NbZ—/E)

K.(K) =% K.(E)
Since E = E; for each i, N, /p = N, /p = identity so that

extE/K (Na/K — Nb/K)(ZL‘) =0.

Thus by 2.2. p(Nejx — Noyi)(x) = 0. Since (p,m) = 1, Ny/k(x) = Ny (). This
is true for every x € K,(FE) so that Nyx = Ny/k. O

OJ

Definition Let E/K be a normal extension of degree p, a prime. We denote by
Ng/k + K. (E) = K.(K), the homomorphism Noji for any generator a of E over
K, which is independent of the choice of a.

Lemma 3.2. Let K be a field, complete with respect to a discrete valuation v and L
a normal extension of K of degree p. Let H be the subgroup of K, 1(L) generated by
(x,y1,.. . yn),x € LYy, € K51 < i < n. Then, for every
v € H, TyoNpg(x) = Np,/k, © Tw(x) where w is the estension of v to L (noting
that Ny, Kk, makes sense since [Ly, : Ky] is 1 orp (App. I (2.3))).

Proof.  Since H is generated by (z,91,...,yn), © € L*, y; € K*, 1 < i <mn

and since K,(K) is generated by (m, us, ..., u,) and (uy, us,...,u,) where v(r) =
1, v(u;) = 0, using the additivity of (,...,) in each component, it is enough
to check that T, o Njyx = Np,/k, © T, on elements of K, (L) of the form
(U, Ty Uy oy Up Yy (Ugy Uty v oy Uy (s Up, Uy ooy Up )y (T, Ty, Us, - . ., Up) Where

u;, 0 <1 < n are units of v in K, and 7,, 7, some parameters for v and w, respec-
tively. If e = e(w/v) = 1, we take some parameter m, for v and set 7, = m,. If
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e = p, we take some parameter m,, for w. Since 9,, is integral over O, (App. I, 2.3.),
T, satisfies a monic polynomial 72 + a; 727" + -+ + a, = 0 with a; € O,,. It is easy

to verify that a; € p, and a, € p, — p2. We take m, = a,. Then Ny xm,

and 7, = —7P.u where w(u) = 0 and @ = 1 modulo p,,. Let f = [L, : K,].

Tv o} NL/K<U0.7TU,’LL2, e

NLw/KU © Tw(“O, Ty, U2y - v«

Tv @) NL/K<U(),’LL1, ce

Tv e] NL/K<7rw;u1; e

NLw/KU o Tw<7rwa Uty -

, Un)

, Un)

= (=1)Pm,
= Ty(Np/kuo, Ty, Uz, . . ., Up)
= —(Np/kUo, Uz, ..., Un)
= Ni,/k, oTw(uo,—uﬁ,(w),UQ,...,un>
Ni,/k,{—e(w)(To, Uy, ..., Un)}
= —e(w){Nr,/Kx,Uo, Us, - - -, Un)
= —(Np/kUo, Uz, ..., TUn) (App. [, 1.10.)
= Ni,/k, © Tw(uo, ..., up) =0
= Ty(Np/kTw, Uty - - - Up)
= ONpgm(ln, ..., Ty)
= f(uy,..., ) (App. [, 2.4.)
= Npy/k, (U1, .., Tp)
= f(uy,...,Uy) since w; € K,.

Suppose e(w/v) =1 and 7, = 7, f = p.

T,o NL/K(M;M;“% e

NLw/KU ° Tw<7rv; Tyy U2y - - -

Suppose e(w/v) =p, f=1and 7,
Tv o NL/K<7Tw; Ty U2y - - -

NLw/KU © Tw<7rw;7ru;u27 ce

7UTL>

aun>

7un>

7un>

Tv{p<7rv; Ty U2y - -

= p<_1aﬂ27"'7un>

- NMKU<_17ﬂ27"'7ﬂTL>_

= f<_17ﬂ277ﬂn>:p< 17ﬂ27 7ﬂn>

—urh with @ =1 and Ny /gxm, = (—1)Pm,.
Tv<(_1)p7r’ua7r’uau27"'aun>
—p+l _ _

= <(_1) ) u?a"-aun>
NLw/Kv OTw<7Tw, —Uﬂ'g),U,Q, e ,U,n>

NLw/KU< — U, Uy, . .. 7ﬂn>
+&w/KU{p<_1aa27 s 7ﬂn>}
<(_1)p+laﬂ27 s 7ﬂn>

O

Proposition 3.3 Let K be complete, w.r.t a discrete valuation v and L a normal
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extension of K of degree a prime p. Then the following diagram is commutative:

Np/x

Koi(L) Kpir (K)
g B
Kn(Ly) 2% [, (K,)

where w is the extension of v to L.

Proof. Let u € K,;1(L). By 2.4., extirg/u € Ky (LPK) is a sum of elements
of the form (z,yy,...,y,) with x € (LPK)*, y; € PK*, 1 < i < n. Clearly, there is a
finite subextension K'/K of PK/K such that extpg/p(u) =Y (x,p1,...,yn), T €
(LK"Y, y; € K*1 < i < n. Since K < K' C PK,
[K' : K| = m is coprime with p. Since L and K’ have coprime degree over
K, L ® K' ~ LK' and the following diagram

Kpi (L) -2 K, (LK)

lNL/K lNLK//KI

Ko (K) == K,u(K)

is commutative. Denoting by bar, the corresponding residue fields, since [L : K]
divides [L : K] and [K : K] divides [K' : K], L® K is a field and LK ~ LK
(noting that f(LK'/K) = f(LK'/L)f(L/K) = f'(K'/K)f(L/K), and LK —
ﬁ,). We have the following commutative diagram
K,(I) = K, (LK)
le/f lNﬁ/F
Kn-l-l(F) e—Xt> Kn-l-l(ﬁ)

Since [K' : K] = [LK : L], e(LK'/L) = e. By Lemma 2.3., the following diagrams
are commutative

Knpi(L) = Kppi (LK) K1 (K) =" Kupi(K7)

I I J I

K,(L) =% K, (LK) K,(K) =% K, (K

(T denotes the corresponding tame symbols.)

Thus, in the following cube (in projection), all “vertical” faces (= outer squares) are
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commutative.

N
Kn-l-l(L) L—/I; Kn-l-l(K)

Ny et 5t
K (LK) V54 R (1)

N- T /70T -
K,(IK") 5% K,(K)
/‘ e-ext '\ e-ext
_ N+ = _
K,(T) R K,(K)

By 3.2., T o Nygr/grextpgr(u) = NW,/Z o T exty ks (u). Thus, it follows that
exty (1o Ny — Ngjg o T)(u) = 0. By 2.2., m+(T o Nyg — Ng g o T)(u) =0
where m = [K' : K. We next show that p*(T o Nijk — NggoT)(u) =0.

Case 1. Suppose L/K is unramified: Since L/K is normal, L/K is Galois and
G(L/K) = G(L/K) (3.6. of App. T). Thus L®xL = [],<;c, Li, each L; ~ L
and L&z L = [],<;<, Li; Li = L, the ramifications of L®x L, (L®zL) in L;, (L;)
being 1. We have the following cube with all the vertical faces commutative.

N
K (L) -5 Ky (K)
\ (ext)

[icicn Kns1(Li)
lT lav lT lT
Lo, Kn(Li) == EKu(L)

/‘ (ext) ’\ ext
K, (L) RZLY K, (K)

Since L; = L and L; = L, Ny, = identity, Nz, = identity. Thus the top of the

cube (= central square) is commutative. Hence extz 7 (1o Npjx — Nz zoT)(u) = 0.
Hence by 2.2. p(T'o N/ — Ng g0 T)(u) = 0.
Case 2. Suppose L/K is totally ramified; e(L/K) =p, f(L/K) = 1.

a) Let L/K be separable. Then LexL — [li<ic, Lis Li 5 L,1<i<p. In the
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following diagram, all the vertical faces are commutative.

Ky (L) — K1 (K)
\ (ext) / ext
(Nr, /1)
ngign Kon(Li) — Knpn(L)

L v (LR

H1§z‘§p K, (L) — K,(L)
/‘ (ext) ’\ pext
K, (L) — Kn(K)

Since L, ~ L, L; ~ L, Ni,jr = identity, N 7 = identity, so that the top of the
cube (in projection) is commutative. Thus p-ext(T o Ny jx — Ng5 o T)(u) = 0.
Hence p*(T o Np/x — Ng 0 T)(u) = 0.

b) Let L/K be purely inseparable. We have L& L/rad >~ L with p as the ramifi-
cation of L® L in L, and L = K. We have the following cube with all vertical faces
commutative.

Foia(L) L Ko i1 (K)
\[ peext - / ext
Kn-l-l(L) — Kn+1(L)
Jr [ |z |7
KoL) —  Ku(L)
/‘ p-ext ’\ p-ext
K. (L) g Ko ()

Since the top square is clearly commutative, p ext(T' o Npjx — Ngz o T)(u) = 0.
Thus p*(T o Njx — N o T)(u) = 0. We also have m(T o Ny, jx — Nz g oT)(u) =0
so that, since (p,m) =1, (T'o Ny/x — Nz 0T)(u) = 0. Since this is true for any
u € K,.1(L), the proposition is proved.

O

Corollary 3.4. Let E/K be a normal extension of degree p where p is a prime.
Then for each valuation v of K(X) over K, the following diagram is commutative

Ko (B(X)) %5 11, Ka(E(X),)

NE(X)/K(X)l (NE(X)w/K (X))

Ty

Kn1(K(X)) ——  Kp(K(X),)

——

Proof. Let E(X), and K(X), denote the completions of E(X) and K(X) at w and
v, respectively. Let 7 be the irreducible polynomial of a generator o of E over K. We
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claim that 7 remains irreducible over K (X), if E/K is purely inseparable. Suppose
7 splits over K(X),. Then 7 would become a power of a linear polynomial over

— — —

K(X), and E(X)®xxK(X),/rad = K(X),. Since E(X)®xx)K(X),/rad ~

o —

[1.,, E(X),, it follows that there is a unique extension w of v to E(X) whose

completion is isomorphic to I?(?)U. We have e(w/v) = e(E/(?)w/[?(-)?)v) =1 and
since E(X),, = residue field of E(X), = residue field of K (X), = K(X),, f(w/v) =
1. Since w is the unique extension of v to F(X), we have p = e(w/v)-f(w/v) = 1,

a contradiction. Thus 7 is irreducible over K (X),. On the other hand, if F/K is

separable, then F/K is Galois and E(X)®K(X)I?(?)U = w/w E/()?)U where either
there is a unique extension w of v to E(X) in which case 7 is irreducible over I?(?)v
or there are p distinct extensions w of v to F(X) in which case 7 splits into distinct

—

irreducible factors over K(X),. We therefore have the commutativity of the left
hand square of the following diagram.

Ky (B(X)) —2% 11, Ko (B(Y),) -T2% 11, Ka(E(X).)

NE(X)/K(X)l J{NE/‘(?)w/I?(_)?)U J((NE(X)w/K(X)v))

Kin(K(X) -2 Kea(K(X),) 2 L, Ka(K(X),)

The commutativity of the right hand square follows from 3.4.. We note that T, o
ext =T, : K1 (E(X)) = K, (FE(X),), since a parameter or a unit of w remains a

parameter or a unit of w, respectively, in the completion mw. Similarly, T, o ext
is the tame symbol T, : K, 11 (K (X)) — K,(K(X),) and the lemma is proved. [

(Crucial) Lemma 3.5. Let K be a field and E a normal extension of degree p
over K. Let K' = K(a) be a simple extension. Let E' = E(a) be the composite of
E and K" over K. Then, the following diagram is commutative.

K (B') 25 K, (E)
J{NEI/KI J{NE/K
K (K') 5 K, (K)

Proof.  Let m, x and 7, p denote the minimal polynomials of a over K and FE,
respectively. Let v, x and w, g denote the valuations of K(X) and E(X) corre-
sponding to 7, x and 7, g, respectively. We identify £’ with K(X),, , and K’ with
K(X),, ;- Since the sequence

Koa(B(0) T2 T Ka(B(X)0) & Ku(B) — 0

v ow/v

102



is exact (Theorem 11 of App. II), there exists y € K, 11 (F(X)) such that

T if w = w,p
Tw(y) = § —Nyer if w = wy
0 otherwise,

noting that N o (7},)(y) = 0. By 3.4., we have

T, o Npcoyxeo () = D Necou/xo, © Tu(y),

w/v
so that we have
Nk (x) if v = vk
T o Nux)/kx)(y) = § —Ng/k © Noyp(z) if v=10y
0 otherwise.

Since Ky (K(X)) 23 11, Ka(K(X)o) 22 K, (K) is a complex,

N o T(Newx)/xen(y) =0

i.e. No Z NE(x) /K(X), © Tw(y) =0,
w/v
i.e. Na/KONEl/KI(l')—NE/KONG/E(ZU) =0.
This proves the lemma. 0

§4. Proof of Proposition 1.2

Proposition 4.1. Let p be a prime and K a field such that K =PK. Let E/K be
a finite extension of degree p™. Then there exists a tower of fields K = Ky C K; C
-+ C K, = E such that [K; : K; 1] = p for each i, and K;/K; 1 is normal. Further
the composite

Nk, /K, 1 Nk, /K,

K.(E) = K.(K,) Ko(Knt) = ... 280K (Ky) = K, (K)

is independent of the family {K;} chosen.

Proof. We claim that for any field L with L = PL, every finite extension L'/L of
degree p is normal. If L'/ L is purely inseparable, it is normal. If L'/L is separable,
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if ' denotes the Galois closure of L'/L, G(L'/L) is a p-group and G(L'/L') is a
subgroup of index p in G(L'/L) so that it is normal. Hence L'/L is normal. Further,
for any field L with L =PL, and any finite extension L' of L, PL' = L'. thus if such
atower K = K C Ky C --- C K, = K exists with [K; : K; 1] = p, then each
K;/K;_; is normal since K =?K.

Let [E : K| =p™. If E/K is purely inseparable, the existence of a tower is clear. Let
K C K, C E be such that K is the separable closure of K in E. Replacing E by K
we may assume E/K separable. Let E/K be the Galois closure of E/Kwith Galois
group G(E/K). Let H be a maximal subgroup of G(E/K containing G(E/E).
Since G(E/FE) is a p—group such an H exists. Let K| be the fixed field of H. Then
K C K, C E with [K; : K] = p. Since [F : K] = p"~', inductively, one gets a
tower K C Ko C--- C K, = E with [K;: K;_1]=p, 1 <i<n.

We now show that Nk, ko Nk, Kk, 0---0 Nk, /k,_, is independent of the family { K}
The proof is by induction on n. For n = 1, this is precisely 3.1.. Suppose that the
result is true forn =2. Let K C Ky C--CK,=E, KCK{C---CK] =FE
be two such towers. If K; = K7, by induction, Ng,/k, o+ o Ngk,_, = Nkj/k, ©
-0 Ng/gr | and hence Nk, /g o-+ 0o Ng/g, , = Ngijw o+ o Ngr . Suppose
K, # Kj. We have the following towers

KCK,CcKyc---CK,=FE...
KCK CKIKiCK)KiC---CK,Ki=F...
KCKICK\KiCK\KjCc---CK\K,=F...
KCKiCcK,Cc---CK|=E...

CECECHG

Since the first extension in Dand @)is the same, Mand @)yield the same composite
of norms. Similarly, @and @yield the same composite of norms. Since we have
assumed the result for n = 2, Ng, /g o Nk, xyyxk = Niyyx © Nk, /x;/x and by
induction it follows that @and @)yield the same composite of norms.

Let n=2and K C K; C E, K C K| C E be two distinct towers. Let K| = K(a).
By the Crucial Lemma 3.5., N,/ © No/k, = Najx © Ng/k1. Since [K(a) : K] =
p, [Kl(a) . Kl] =P, Na/K1 = NE/K1 and Na/[{ = NK{/K SO that NKl/K @] NE‘/K1 =
Nii/x o Npjk, = Nijyx © Nijki- O

Definition. Let E and K be as in Proposition 4.1. We denote by Ng i the com-
posite homomorphism given in Proposition 4.1.

Proof of of Proposition 1.2. To prove 1.2., we show first that we may assume
K ="K for some prime p. For each prime ¢, let EQx?K/rad = [[, E; with e; the
ramifications of EQy?K in E;. Let {ay,...,a,} and {3i,..., B} be two sets of
generators of E over K and let {o},...,al} and {f,..., 3.} denote their images
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in F; under the map

E — E®k'K — E®x'K/rad — [ [ E;i-25E;.

We have, in view of 2.8., the following commutative diagrams

(Ngi ... gy /i)

Kn(pK) Hz Kn(Et) Kn(pK)

T(ei-ext) Text T(erext) Text
N,

N P
Kn(K) Kn(L) ( (51 ----- Bm)/ K) Kn(K)

It we assume 1.2. true for PK, then Ny .iypx = Ngi . giypx. Thus

..........

extr ik (Nan,...an)/k — Nigr,...pm)/k) = 0. Thus for each u € K, (L), there exists
an integer m, coprime with p such that

Myp(Niay,.an)/ K =~ N1 ,osm) k) (1) = 0.

Hence Nq,,...an)/k = Ngy,....8m)/Kx- Suppose then that K =PK for a prime p. It is
enough to show that if F' = K(«) a finite simple extension, No/x = Ng/k, Ng/k as
in the definition after Proposition 4.1. In fact,
Nal,...,an)/K: Nal/KoNaz/Kl *0r 0 an/Kn_1 where KZ :K(O{h...,ai)

= NKl/K o NKQ/Kl ©---0 NKn/Kn—l

= NFl/K 0] NFQ/Fl O-+++0 NFm/Fm—l where -Fz = K(ﬁl, Ce ,ﬁi), by 4.1.
= Ng/k ©Ngyyr 00 Ng/p, s = Nay g /K-
Let E=K(a). Let K=Ky CK,C---CK,=FEwith[K; : K; 1] =p.  E = K;,

by 3.1, Ny, /k = Ng/k. Suppose n > 2. By induction on n, Ny/k, = Ng/k,. By the
“Crucial Lemma”,

Na/Kl
K, (E) — K,(K))
J— J/NKI/K
Na/K
K. (E) K)n(K)
Commutes, i.e. NKl/K o Na/K1 = Na/[(. Thus NKl/K o NE/K1 = Na/K; i.e. NE'/K =
Ny and 1.2. is proved. U
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Appendix IV: A theorem of Rosset—Tate

Let k£ be a field and let C’ denote the category of finite field extensions of k. A
Milnor functor M C’]€ —> Ab is a covariant functor together with maps ¢g

K*x K* - M(K),YK € Obj C, which are biadditive and for each k-injection
K — L, K,L € Obj Cy, a homomorphism , try/x : M(L) = M(K), called the
transfer, satisfying the following properties.

1) The maps ¢ are functorial; i.e., given an injection i : K — L in gk, the
diagram
K*x K* 55 M(K)

ile lM(i)
L*x L* 5 M(L)
is commutative.
2) pr(a,1—a)=0ifa,1—ae K*.
3) If K — L — N are injections in C,. then,

tI'N/K = trL/K ®) tI"N/L .

4) If K — L is an injection in gk and if x € K* | y € L*, we have the “projection
formula”
tI'L/KQOL(-fU, y) = SOK(xa NL/Ky) )

Np/k : L — K denoting the norm in the extension L/K.

Example 1. For any field K, let K5(K) denote the Milnor K5 defined in Chapter I11.
The functor K, is a Milnor functor with ¢ = pg : K* x K* — K3(K) being the
map ¢(a,b) = (a,b) and for any finite extension L/K, trp/x : Ky(L) = Ky(K)
being the transfer defined in Appendix II. The functor K, is in fact a Universal
Milnor functor in the sense that given any Milnor functor M, there is a natural
transformation 7" : Ky — M such that the diagram

K*x K* 2 Ky(K)

is commutative.

Example 2. Let K be any field of characteristic # 2. The functor K — H*(K) =
H?(G(K,/K), p2) is a Milnor functor with try x = coresp/x and px : K* x K* —
H?(K) being given by (a,b) — X4 U Xx3. The norm residue homomorphism Sy :
Ky(K) — H?*(K) is a natural transformation which commutes with ¢.
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If M is a Milnor functor, M can be extended to the category Q of finite dimensional
semisimple (commutative) k-algebras by defining M (][, ,o, K;) = [[1<;<, M (K).
We have o o

eri k= (o) - (J[ Koy < (] K0 = M| 53) = ][ M(K3).

Further, if [ K; — A is an injection of semi-simple k—algebras, tr4,7 &, is defined
to be (trs,/k,) where A =[] A;, A; semisimple K;-algebras and if A; = [] K;;, Kj;
finite field extensions of K, tra,/x; = [] trx,;/x,. The map ¢x satisfies p(a,1 —
a) =0 fora, 1 —a € A* (A* denoting the group of units of A) and px(a, —a) =0 if
a € A*. The transitivity tre/q = trpja o tre/p for A— B — C, A, B,C in Obj Qk
and the projection formula

trg/app(®,y) = walr,Npay) for x € A", ye B*,

N : B — A being the norm of the finite dimensional A—algebra B are easily verified.

Let k£ be a fixed base field and M a Milnor functor. For any K € Obj Qk and
x,y € E*, we shall abbreviate ¢p(x,y) = (x,y) g, or simply (z,y) if E is clear from
the context. Let K/k be a finite field extension. Let f,g € K[T] be relatively prime
(non-zero) polynomials. We define a symbol (f/g) with values in M (K) by the
following requirements.

(1) (f/g192) = (f/91) + (f/g2)
(2) If g is a constant or T', (f/g) = 0.

(3) If ¢ is a monic irreducible polynomial, not a constant or T, and = a root of
g(T) in an algebraic closure, then,

(f/9) = trr@y/k (@, f(2)) k@) -

The symbol (f/g) is ‘additive’ in both f and g and depends only on the residue of
f modulo (g). As a function of g, it depends only on the ideal generated by ¢ in
KI[T,T7']. For p(T) € K[T], p(T) = a, T" + an_1T" ' + -+ + a,, 7™, ap-ay, # 0,
we define

p(T) = (anT™)™'p(T)

We note that for p, p' € K[T], (pp')* = p*-p'" and c(pp') = c(p)-c(p').

Theorem 1. (Reciprocity Law) For relatively prime polynomials, f,g € K[T],
we have

(f/9) = (g°/F) — (elg"), e(f))- (*)
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Proof. Suppose g =a € K* or g =T. Then g* = 1, and ¢(g*) = 1. We have, if
=11 f, fi irreducible over K,

(g°/f) = X e(l/fi)
= Z eltrK/xl)/K(xl, ]')K(l'z)7 Z; being a root of fi,
= X €i(Nr@y/x(®:), 1)K
= 0.

(We note that (x,1)x = (x,1)x + (z,1)k so that (z,1)x = 0.) Thus both sides of
(%) are zero. Since both sides of (k) are ‘additive’ in f and g, we assume that f and
g are monic, irreducible and ¢ is not a constant or 7. Suppose f =a € K*. Let x
be a root of ¢(T'). Then,

(a/9) = trx@)x (2, a) k@)
= (Nk(@)/x(T),a)K
= (c(g") " a)k
= —(clg"),c(f))k;
and (¢*/a) =0. If f =T,

(T/g9) = tre@)x(®, ) k@)
= trg)/k (T, —1)k@) (since (x,—2)k(@) =0)
= (e(g") !, -V

= —(c(g7), e(f)),

and (¢*/T) = 0. We assume that both f and g are monic irreducible and different
from T. Let x be aroot of g and y aroot of f. We write f = [[,..., f{", fiirreducible
over K(x). The integers ¢ and {e;}, 1 < i < £, can be described as follows. The
integer ¢ is the number of distinct maximal ideals {m;} of K(2)®xK(y) = A and
e; = index of nilpotence of m; in A,,. Thus, g also decomposes over K(y) as
g = [li<;<, 9", ¢i being irreducible over K(y). Let A/rad A = [] L;. Then
L; ~ K(x)[Y]/(f;) ~ K(y)[X]/(g:)- Let T, ¥ € L; denote the images of z ® 1 and
1®yin A. Since f;(y) = 0 and ¢;(Z) = 0, f; a divisor of f, g; a divisor of g and
f, g distinct irreducible polynomials over K, T # 7. We have T # 0, § # 0 since f
and ¢ are distinct from 7". Further,

@7-9 = @10+ @)
= (y-f,?_‘ﬁ@,_n
- G+ @-n+E1-d
- 30+ @ - (4)




0 = (6;), 0 = (0), n = (m), ¥ = (1)) be elements of A = [[ L; where
(T —7)%, 0; = (_1)i9i, n; = 7%, ni = (=1)%n;. Then

Nag@(@) = 1l Neyre (@ —79)°
= I fila) = f(z) .
NZ/K(y)(gl) = g(y)
Najk@wy®) = T Noyr@ (@)
= gdeg f
Nikoy (') = 1L Neyre (-7)°
= I 9(0)" = g(0).
We have the identity
@, 0)x=@.0/0)x+ -1z
in M(A), in view of (xx). Computing tr, (7, 0)7 in two different ways, we have,
trz (T 0)7 = k@)K © /K (T 0)7
= tre@)/x(, NZ/K(z)g)K(w)
= trx()/k (T, (7)) k()

= (f/9) .

k(@ 0/0)x = trew)yx © 0k (011
= trr)/x Y, N7k (y) /1) k@)
= trrgy/x (¥, 9%)/9(0) k)
= trr)/x (Y 9 (V) k)
= (g°/1)

tra/ (M =)z = trr@/x(NVa/kw ), 1)k

=
|

= trr@)r (@, —1) ke



We thus obtain the formula

(f/9) = (g7/1) = (c(g"), e(f))x -

O

Let E — F be a finite extension of fields, finite over k. Let z,y € F*. Let
Nr/p@)(y) = f(x) with f € E[T] and deg f < [E(x) : E]. Then

tre/e(T,Y)r = tre@)/e © tre/Ew) (2, Y)rF
= tru@)/e(@ Ne/pe(Y)) Be)

= trE(I)/E(»T, f(m))E(r)

= (f/9) .

Proposition 2. Let {go,g1,-..,9m} be the sequence of polynomials in E[T] de-
fined by go = g, 91 = [, giv1 = remainder of division of g7, by gi, 1 > 1 and
Im £ 0, gmy1 = 0. Then m < deg g and

trr/p(T,y)r = — Z (c(g7), c(f))E -

1<i<m

Proof.  Since deg g;; < deg g;11 < deg g;, it follows that m < deg g. Further,
since g1 =0, g, divides go = g and g; = f which are relatively prime so that g,,
is a constant. Thus (g%, ;/gm) = 0. Using reciprocity, we have

(f/9) = (91/90) = —Xicicm(clgiz1), c(9i) + (9rm—1/9m)
= _Zlgigm(c(g;‘il)ac(gi)) :

This proves the proposition. O

The sequence {g;}, 0 < i < m of polynomial depends only on E, F, z and y and not
on the Milnor functor M. Thus trg,p(x,y)r can be expressed as a sum of ‘symbols’
independent of M. Thus, if T : My — M, is a morphism of Milnor functors such
that the diagram

A" x A+ 24 M (A)

AN lTA
M(A)

commutes, then 7' must commute with transfer. In particular, fx : Ky(K) —
H?(K) is such a morphism so that we have the following
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Corollary 3. Let F/E be a finite extension. Then the following diagram is com-

mutative
Ky(F) 22 H2(F)

ltr lCOI'eSF/E

K,(E) -2 H*(B)

Remark.  The contents of this section are taken from the paper “A reciprocity
law for Ky—traces” (Comment. Math. Helvetici 58 (1983)) by Rosset-Tate, with
obvious modifications to avoid the use of the transfer from Quillen’s theory. We only
use transfer for K, of fields (and their finite products) whose existence is proved in
Appendix II.
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