SOME ASPECTS AND APPLICATIONS OF THE
RIEMANN HYPOTHESIS OVER FINITE FIELDS

E. KOWALSKI

ABSTRACT. We give a survey of some aspects of the Riemann Hypothe-
sis over finite fields, as it was proved by Deligne, and its applications to
analytic number theory. In particular, we concentrate on the formalism
leading to Deligne’s Equidistribution Theorem.

1. INTRODUCTION

The goal of this survey is to present some aspects of the Riemann Hy-
pothesis over finite fields. The context is Deligne’s celebrated work ([5], [6])
and its applications, and the text is roughly split in two parts. In the first
part, we try to introduce and motivate the framework in which the powerful
formalism of étale cohomology and the Riemann Hypothesis operate, em-
phasizing aspects leading to Deligne’s remarkable Equidistribution Theorem.
The second part (starting in Section 5) is a discussion of this theorem, which
involves naturally “families” of exponential sums and L-functions over finite
fields, and of some (mostly) recent applications of the Riemann Hypoth-
esis and Deligne’s theorem, concluding with a short list of open problems
(emphasizing general, “philosophical” issues, rather than specific questions).

This is written with a target audience of readers who are not experts in
algebraic geometry, in particular analytic number theorists. We use a few
basic examples as references, notably Gauss sums, Kloosterman sums (and
their average Sato-Tate distribution) and the very simple — but enlighten-
ing — case of finite (zero-dimensional) algebraic varieties. The emphasis is
throughout in situations which, at least at first sight, are not immediately
or obviously analogue to the classical Riemann Hypothesis for the Riemann
zeta and Dirichlet L-functions.

We try to be as accessible as possible to a large audience; however, due
to the author’s bias, much of the examples, applications and problems are
directly or indirectly related to analytic number theory. In some sense, this
survey is a follow-up to Chapter 11, Section 11 of [11], where the cohomo-
logical approach to exponential sums over finite fields was also surveyed,
but with little attention paid to situations involving families and Deligne’s
equidistribution theorem.
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Notation. As usual, |X| denotes the cardinality of a set. By f <« ¢ for
x € X, or f=0(g) for z € X, where X is an arbitrary set on which f is
defined, we mean synonymously that there exists a constant C' > 0 such that
|f(z)] < Cg(z) for all x € X. The “implied constant” refers to any value
of C' for which this holds. It may depend on the set X, which is usually
specified explicitly, or clearly determined by the context.

We write e(z) = %™ for 2 € C. For any q # 1 which is a power of a
prime, we write F for a finite field with ¢ elements, in particular ¥, = Z /pZ.
The letter p will always be used to refer to prime numbers.

2. SETTING THE STAGE

The Riemann Hypothesis was initially stated as a problem concerning the
location of the zeros of a certain meromorphic function, and was generalized
to Dirichlet L-functions in the same terms. It is possible to present the
Riemann Hypothesis over finite fields in very close analogy (and we will
recall this below, see Example 14).

However, applications often appeal to alternate statements, which may
look quite different. For instance, two early occurrences of the Riemann
Hypothesis over finite fields, historically, are the following results of Gauss:
(1) for any odd prime number p, and any integer a coprime with p, we have

0 Ye()] - v

(recall we put e(z) = €2™*); (2) for any odd prime p with p = 1 (mod 4), the
number of solutions in Z/pZ x Z/pZ of the equation

=t -1

is p — 2a, where a is the unique odd integer such that p may be written
p = a® + b with the sign of a fixed by the complex congruence a + ib =
1(mod2(1+14)) (see the introduction to Weil’s article [24] and his com-
ments [25] for more historical perspective).

In these results (the first of which is elementary, while the second remains
somewhat challenging), the clue to the Riemann Hypothesis is the exponent
1/2 hidden in /p, in plain sight for (1), and disguised in the bound

24] < 2P

which immediately follows from the recipe for a in the second example.
The best reference for purposes of comparison with the classical Riemann
Hypothesis is then seen to be the statement

‘Z X(p)‘ <22'2(logqx)?,  foraz>2,
PST
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for all primitive Dirichlet characters modulo ¢ > 1, a concrete estimate
which is known to be equivalent with the Generalized Riemann Hypothesis
for the L-functions of such characters.

The essence of this statement, for our purposes, is that it shows that the
values x(p), when p ranges over primes (in increasing order) vary extremely
randomly — recall that for randomly chosen, independent, arguments 6, €
[0,1], p < x, the mean square of the sums

Ze(Hp)

P<ZT

is precisely m(z), by a simple application of the orthogonality of additive
characters.

There are two important aspects that we want to emphasize for this sur-
vey: (1) the result — as far as the exponent of x — is best possible, because
“there are zeros on the critical line”; (2) it is completely uniform with re-
spect to the modulus. Both of these facts are important in applications of
the Riemann Hypothesis, to the distribution of primes for instance, and in
both respects, the current unconditional knowledge is quite poor. And both
of these are also already visible in the simplest example (1) we gave of the
Riemann Hypothesis over finite fields.

In the remainder of this survey, we will look at the Riemann Hypothesis
from this point of view, and will explain how it provides not only excellent,
often very explicit, estimates for certain sums

> A

zeV(Fq)

over points of algebraic varieties over finite fields, where A is typically an
oscillating factor of “algebraic” origin,! but also does so through a general
framework, and a very powerful formalism.

Before going to the general case, here are a few additional examples that
will reappear many times below as illustrations of the general theory.

Example 1 (Hasse bound). This generalizes the result of Gauss concerning
the curve y?> = x* — 1 (though a change of variable is required for this to
be obvious): for any prime p # 2,3, any integers a, b with 4a3 + 27b% not
divisible by p, we have

{(z,y) € (Z/pZ)* | y* = 2° + az + b}| — p| < 2\/p

note again the uniformity in this estimate, where a and b do not occur on
the right-hand side.

Example 2 (Hyper-Kloosterman sums). For any prime p, any n > 1, any
a not divisible by p, let

2) HE (n;a,p) = Z e(M)
1<z <p—1 p

122 Tn=a (mod p)

1 We introduce these more precisely in the next section.
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(this is called a Hyper-Kloosterman sum, and is a sum over n — 1 variables,

since x,, can be recovered uniquely from 1, ..., z,—1). Then we have the
estimate
(3) [HEK (n;a,p)| < npt"~ 1/

This bound was proved by Weil for n = 2, which is the case of the classical
Kloosterman sums which are of crucial importance in analytic number the-
ory (because they occur in Kloosterman’s refinement of the circle method,
and in the Fourier expansion of Poincaré series; see, e.g., [11, §20.3, §16]);
the general case n > 3 was proved by Deligne [5]. Note again the sharp-
ness of the statement: the square-root cancellation showing in the exponent
(n —1)/2, and the explicit constant n.

Before presenting the next example, we recall an important definition:

Definition. Let X be a locally compact metric space, and p a probability
measure? on X, so that u(X) = 1. If (X,,) is a sequence of finite sets such

that X,, C X, or more generally such that X, is given with a map X, Sn,
X, not necessarily injective, then the sets (X,,) become equidistributed with
respect to p if, for all continuous and bounded functions f : X — C, we

have
1

12 10 — [ J@iuto)

| X

The concept of equidistribution turns out to be extremely useful and
ubiquitous in number theory. The link with oscillating sums is given by the
well-known Weyl criterion:

Proposition 3. Let X be a compact space, and let p be a probability measure
on X. Let (¢j); be continuous functions on X which form an orthonormal
basis of the orthogonal complement of the constant function 1 in L*(X, ),
so that in particular

/X wj(x)dp(z) =0, for all j.

Then a sequence of finite sets X,, either X, C X or with X, S, X,
becomes equidistributed with respect to u if and only if

1 2 @) —0

Xy
for all 7.
We illustrate with two further examples:

Example 4 (“Average” Sato-Tate law). Example 2, with n = 2, and the
fact that the Hyper-Kloosterman sums with n even are all real numbers,
shows that for p prime and a € (Z/pZ)*, there is a unique angle 6,(a) € [0, 7]

such that
1

pie(m) =2y/p costp(a).

=1 p

2 For the standard o-algebra of Borel sets in X; we always assume p is finite on compact
sets.
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We are interested in the distribution of the angles (6,(a)).cpx, as p grows
(in other words, in the distribution of values of Kloosterman sums, in the
scale \/p corresponding roughly to their maximal size); there might be co-
incidences among those angles, so we let X}, = F’ and use

0, : {Xp — [0, 7]

a v Op(a)

to be in the situation of the definition. N. Katz [14] showed that this se-
quence of sets of angles becomes equidistributed as p — 400 with respect
to the so-called Sato-Tate measure

2
p = =sin®0dh on [0, 7].
T

Example 5 (Angles of Gauss sums). Here is a classical example, where
already a number of the previous examples interact: consider an odd prime
p, a non-trivial Dirichlet character x modulo p and an element a € (Z/pZ)*;
the corresponding Gauss sums are defined by

(4) ralx) = 3 x@)e(")
z€Fy

(the link with (1) is that, if x is the real non-trivial character modulo an
odd prime p, it is easy to show that

z€F,

using the fact that the number of z € F,, with 2? = y is given by 1 + x(y)
for y € Fp). Similarly to (1), one shows that |7,(x)| = /p, so (taking a = 1
for simplicity), there is a unique angle 6,(x) € [0, 1] such that

m1(x) = VP e(0p(X))-
It turns out that, as p — 400, the finite sets®
{0p(x) | x non-trivial (modp)} C [0,1]

become equidistributed to the Lebesgue measure dz. At a very high level,
the proof is as follows: one applies the Weyl criterion with the functions
given by the additive characters

(Pj(x) = e(jx)v JEZL— {0}>
and then

1 ) _ 1 7’1()() J
o 2 == 3 (R
X (mod p) X (mod p)
x#1 X#1

3 Again, we are really taking X, = {x # 1} and use 6, to map to [0,1]. However, we
will allow this abuse of notation here and elsewhere.



6 E. KOWALSKI

and if j > 1 (the case J < —1 being dealt using symmetry), we can expand
the definition of 71(x)’ and use orthogonality of characters to obtain

> on = X () Y oxn.

X (mod p) T1yeens Ty X#1
x#1

1+ F oy
S )
xl,...,ijFp p
T1T2Tj=1
in which we recognize a Hyper-Kloosterman sum in j—1 variables. Applying
Deligne’s estimate (3), we get

as p — 400, verifying the Weyl criterion. But note that although a weaker
bound than (3) would suffice, it would still need to be extremely strong:
the exponent (j — 1)/2 can not be replaced by j/2, although the latter
would already be quite good for large j (on the other hand, the leading
multiplicative constant j does not play a big role here, since we apply the
bounds for fixed j).

3. ALGEBRAIC EXPONENTIAL SUMS

We will now describe the statement of the Riemann Hypothesis for expo-
nential sums
SV, A= > A
z€V(Fq)
of a quite general type. But general does not mean arbitrary: the summation
sets and summands must have a specific algebraic structure for the theory
and formalism to be available,* and we will use the (non-standard) shorthand
“algebraic exponential sums” to indicate this.

First, the summation sets are of the type V(F;) where V is an algebraic
variety defined over a finite field (either F, or a subfield); the notation
indicates, concretely, the set of points on V' which have coordinates in Fy.
Quite often, very simple varieties will do: the affine space A% of dimension
d, such that A4(F,) = Fg (i-e., summing over A4(F,) is a “free summation”
over d variables each in F); the multiplicative group G,, with G,,(F,) =
F, and its powers Gd with G (F,) = (F;)d. More generally but still
very concretely, V can be any affine variety determined by the vanishing of
finitely many polynomials in finitely many variables: in such a case, there
exist (fixed, but not unique) integers m, n > 0 and polynomials

Fl(Xl,...,Xn),...,Fm(Xl,...,Xn) GFq[Xl,...,Xn]
such that, for any extension field K of F,, we have
V(K)={(z1,...,2n) € K" | Fi(z1,...,2p) =+ = Fp(x1,...,2,) = 0}.

4 We do not imply, of course, that other types of sums are not interesting; in fact, many
exponential sums not of algebraic type occur in number theory; see, e.g., [11, §8, §13].
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Often (as is the case with A? or G¢, for any d > 1), such a description
exists® with polynomials in Z[X7,...,X,], in which case we have a variety
defined over Z, and (by reducing modulo primes), we can consider its re-
duction modulo p for any primes; then V(F),) makes sense for any p, and
V(F,) for any prime power g # 1.

Example 6. (1) The Hyper-Kloosterman sums (3) were defined by a sum-
mation over (z1,...,Ty) in F}, subject to the equation z; -+ -2, = a where
a € F,; is fixed; this set is of the form Vin,a(Fp) for the variety V,, o/Z defined
by the corresponding polynomial X - -- X,, — a (choosing a € Z reducing to
a). Note that if one writes

T D S |
n—1 p
(z1,.02n—1)EGH, ~ (Fp)

then we are simply exhibiting at this concrete level an isomorphism

G?n_l — Via
(x,) — (wl,...,$n_1,al_[$;1).

(2) Now suppose we tried to look instead at a sum like the following:

y ()
z€Vn,a(Fp) p
> x; is a square

where being a square refers to being a square in F,. Despite the algebraic
appearance of the summation set, it is not of the type allowed, because the
condition that y € F; is a square does not define an algebraic variety (it is
not a stable condition under field extensions; any element y € F,, is a square
in the quadratic extension F,2).

(3) There is one class of particularly simple examples which can sometimes
be used to gain a minimal understanding of the algebraic issues involved: 0-
dimensional varieties. This corresponds to equations where the total number
of solutions in an algebraic closure of the ground field is finite. If we consider
the one-variable case, this means that V is defined by the vanishing of a
single polynomial f € Fy[X], f # 0. Thus, V(F,) contains at most deg(f)
points (because we allow multiple roots), and V (Fg ) contains exactly those
roots of f which generate a subfield of Fyv. In case f is irreducible over F,
and of degree > 2, in particular, we have V(F,) = 0.

Thus the summation sets are quite simple. The definition of the right type
of summands A(x) is more delicate. When we look at a sum over V(F)),
the first examples that come to mind are those of the type

f(x)

(5) Aggle) = x(o(@)e(= ")

where f, g are polynomial functions on V', with g not taking the value 0
and y is a multiplicative character modulo p. These are suggested by the

5 For G, one must use the trick of introducing an extra variable and seeing G, as
the variety defined by the polynomial X; X> — 1.
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examples of Gauss sums, with
azx

Aaxx (o) = x(@)e(").

and Hyper-Kloosterman sums (seen as sums over V = G ! see (6, (1))),
with

(6)

AXydet X orta/ (XX 1 () = e(

S SR S | —|—a/(m1---:cn_1))
p 9

and indeed by many applications in analytic number theory (for instance,
the circle method). Sums of this type are often called “character sums” or
“mixed character sums”; if g = 1, one speaks of “additive character sums”,
and if f = 0, of “multiplicative character sums”. Deligne’s survey [4] of
the cohomological techniques to study these sums is highly rewarding (but
requires more knowledge of algebraic geometry).

We need to enlarge this class of summands in two ways, one of which is
very easy to describe, but the other not so much.

We first define analogues of the sums with the summands (5) for V(Fy)
where ¢ is not necessarily prime. This is done by taking x to be any multi-
plicative character of F{, and replacing e(f(z)/p) by ¥(f(x)), where

¢ : Fy— C~

is any additive character of F. It is very important for the theory that this
construction also allows the formation of the “companion” sums

Su(V, Af,g;Q) = Z X(NFqV/Fqg(x)W(TTFqV/Fq f(z))
z€V (Fgv)

over Fyv, v > 1, which are an important part of the theory. Indeed, it will
often be much easier to understand the behavior of the sums S, (V,A¢ 4;q)
in the limit where v — +00, and this may give insight into more difficult
situations (e.g., when ¢ = p is prime). It is customary to refer to this limit
(fields of increasing size but fixed characteristic) as the “vertical direction”
(or limit), and to refer to the case of increasing p as a “horizontal” direction.

Example 7. If we come back to the setting of the Hasse bound, we can
see a multiplicative character sum in the background: indeed, let f(x) =
23+ ax+b, with notation as in Example 1. The question is to count |E(F,)|,
where E is the algebraic variety given by the equation Y2 — f(X). Recall
that if p is an odd prime and yx is the non-trivial real quadratic character of
F, extended to F), by x(0) = 0, the number of solutions of the equation

y? = f(x)
is equal to 1+ x(f(x)); it follows that
[B(F,)| =Y (L+x(f(2))) =p+S(A", Ayp)
yeFy

where Ay (x) = x(f(x)). Hence Hasse’s result is equivalent with the upper
bound

IS(AY, Ay p)| < 2P
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for this multiplicative character sum. This is the situation of elliptic curves,’

and if we allow f to be replaced by an arbitrary polynomial f € F,[X] with
no repeated root, we will have a similar link between counting points on
the so-called (affine) hyperelliptic curve with equation Y2 — f(X), and the
corresponding multiplicative sum.

A good theory for (estimates of) character sums is already immensely
useful in number theory. To cite just a few classical examples (before the
1960’s), they were used extensively in the circle method and in estimates for
Fourier coefficients of modular forms. Many mysteries remain about such
sums, and even when good estimates exist in principle, it is not always easy
to check that a concrete instance, encountered for some specific application,
satisfies the assumptions of those results.

However, it is also the case that character sums are not sufficient for
certain purposes, and more complicated summands are sometimes needed.

Example 8. In Example 5, we showed how Hyper-Kloosterman sums (which
are additive character sums) are sufficient to describe the equidistribution
properties of angles of Gauss sums. It may seem natural to try to do the
same for the proof of the average Sato-Tate law of Katz (Example 4). The
natural idea of computing the moments

1 (HK(Q;a,p))m_ 1
p—1 2\/p p—1

a€Fy a€Fy

(cosbpa)™,

(as was done for Gauss sums) does not correspond to the Weyl criterion, as
we defined it, because the functions 6 +— cos(6)™, for m > 0 and 6 € [0, 7],
are not orthogonal for the target Sato-Tate measure (e.g., [ (cos®)?dusy =
1/4).7

As it turns out (this will be justified in Example 25), the most natural
orthonormal basis for L?([0, 7], usr) is the sequence (Uy,)m>o of Chebychev
functions defined by

sin((m + 1)0)

sin ’ m 20,

Un(0) =
which are known to be of the form
U (0) = X (2cosb),

where X, is a polynomial in Z[X] of degree m (the Chebychev polynomials
of the second kind).

Note that Xy is the constant function 1, and thus the Weyl criterion
indicates that the theorem of Katz is equivalent with the assertion that

1 1 HEK(2;a,p)
po1 2 Unllha) = 3 3 X (55 2EE) o

a€Fy a€Fy

6 More precisely, we are looking here at the affine Weierstrass curve, with no point at
infinity.

7 Those moments can however be computed elementarily for the first few values of m;
this is already enough (with m = 2) to check that the (6p,q)q are not uniformly distributed
on [0,7] as p — +o00. See also Example 31.
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as p — +o0, for m > 1. Since a ranges over F\ = G, (F}), this suggests an
algebraic framework where the summand
HEK(2;a,p) )
VP
is permitted. This can not be a character sum, for the simple reason that

the summands are not of modulus 1 (as one can check easily numerically, if
it does not seem clear enough).

Aa) = Xm(

To motivate the “black box” that we will need to introduce next, one may
first start by reinterpreting additive character sums in a way that is gener-
alizable to situations like that of the previous example. From a high-level
arithmetic point of view, what is done is to replace analogues of Dirichlet
characters® with analogues of Galois-theoretic characters or, in other words,
it has something to do with reciprocity laws.

Many subsequent steps in the theory turn out to follow very naturally
from this change of point of view, so to motivate it, we recall one formulation
of the abelian reciprocity laws for the number field Q. Let x be a primitive
Dirichlet character modulo ¢ > 1, and let K = K(x) be the cyclotomic field
of ¢g-th roots of unity, with ring of integer Zx. Then there exists a unique
group homomorphism

X : Gal(K/Q) — C*

which corresponds to x as follows. For every prime p not dividing ¢, let
p C Zg be a prime ideal of Z g containing pZ, so that we have an extension
Z/pZ C Zk/pZk of finite fields. There is then a well-defined Frobenius
element Fr, € Gal(K/Q), “lifting” the Frobenius automorphism z +— P
acting on Zg /pZ, and we have the reciprocity

X(Frp) = x(p).

In fact, this character is easy to construct: since Gal(K/Q) ~ (Z/qZ)*,
with an isomorphism mapping Fr, to p(modgq), one can define it by the
composition

Gal(K/Q) ~ (Z/qZ)* =% C*

(it is a much deeper fact that any Galois-character x is obtained in this way
from a Dirichlet character; indeed, this is a version of the Kronecker-Weber
theorem).

Coming back to our setting of finite fields, if the base variety V/F is con-
nected,? there is a certain group associated to V, the algebraic fundamental
group of V| which is a compact topological group, denoted =1 (V). This
group was constructed by Grothendieck as a generalization of a Galois group,
and its main property for our purpose is that it contains canonical Frobenius

8 Although those were only implicit in character sums; see [11, §11.5] for a concrete
description of the Dirichlet character leading to Kloosterman sums.

9 In a suitable algebraic sense; readers not familiar with the definition can restrict
their attention to the following examples of connected algebraic varieties: (i) A or G¢,
for d > 1; (ii) the complement in A%, d > 1, of a proper subvariety V, e.g., of a finite set.
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conjugacy classes Fry o, associated with any v > 1 and « € V(Fg ), so that
for any character sum S(V, Ay 4;q) as above, there is a character

Xfg : m(V)— C*
with the property that

(7) Xf,g(FTx,q") = X(NFqu/Fqg(fE)W(TTFqV/Fq f(z))

when z € V(Fg ), and in particular, x74(Freq) = x(g(2))¥(f(2)) if 2 is in
V(F,) (see, e.g., [11, p. 302] for a sketch of the construction when g = 1,
which is related to the structure of Artin-Schreir extensions y? —y = f(x),
in analogy with the cyclotomic extensions appearing for Dirichlet characters
over Q).

This gives an alternate form of the summand for character sums, and it
is very natural from the point of view of harmonic analysis to generalize it
by considering more general homomorphisms

(V) £ GL(r, k),

where » > 1 and k is some field, and derive from them the summands of the
type
Ap(z) = Tr p(Frgq),

for z € V(F,) (taking the trace is justified by the fact that the Frobenius
elements are only defined up to conjugacy: their trace is well-defined).

A minor difficulty is the choice of the coefficient field k we have introduced
surreptitiously: in general, taking k = C leads to difficulties because a
homomorphism with complex values is not continuous if the image of p is
infinite (because the topology of 71 (V') is totally disconnected). It is a fact'®
that the set of all Frobenius conjugacy classes

Fry gv, v =1, z eV (Fg),

is dense in m(V'), hence a continuous character is determined by the val-
ues taken on such classes. Therefore, the theory is developed with fields &
equipped with a topology which is more compatible with that topology of
m1(V). These fields depend on the choice of an auxiliary prime number ¢
distinct from the characteristic of Fy; and are extensions of the f-adic field
Q¢ (for instance, k could be an algebraic closure of Q). For any ¢ # p,
the characters xr, can be seen as a composition of a unique continuous
homomorphism

Xtg @ (V) BNy 3

for some finite extension k of Qg, and an embedding k% —— C* which is
the restriction of an injection k — C.

Such an injection (in fact, isomorphism) does exist for k = Qy, but it is
not unique (its construction requires the axiom of choice). However, for the
discussion in this paper, this is not a very serious problem. (The reader may
notice that the existence of + means that one could, in principle, take k = C
and just change the topology by means of ¢).

10 Which is closely related to the Chebotarev density theorem.
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Remark 9 (Geometric fundamental group). As we have hinted, the funda-
mental group can be considered as a type of Galois group (another analogy
is with the topological fundamental group of a topological space, seen as a
group of automorphisms of the universal cover).

Later on, it will also be important to use the geometric fundamental group
71(V'), which is associated in a similar way with the “geometric” variety V/,
obtained from V' by forgetting its field of definition (V' can most conveniently
here be identified with the set V(F,) of points of V with coefficients in an

algebraic closure of F). There is a natural inclusion homomorphism

m (V) — m(V),
and this makes 71 (V') into a normal subgroup of 71 (V). The quotient is well-
understood (it is abelian, and topologically generated by a single element).
The Frobenius conjugacy classes do not lie in 71 (V'), since they are related
to arithmetic properties of V/F, and its rational points, with the field of
definition taken into account.

Example 10. Let us immediately show that this generalization is, at least
formally, able to handle the Weyl sums for the average Sato-Tate law (Ex-
ample 8). We can write
(8) HK(2;a,p)
VP

which may suggest a 2-dimensional representation. Note that the left-hand
side makes sense in any field of characteristic zero containing ,/p and the
p-th roots of unity (after identifying the exponential e(1/p) with a primitive
p-th root in the definition of HK (2;a,p)).

Moreover, there is a well-known interpretation of the Chebychev polyno-
mials in similar terms:

9) Xm(2cosb) = emil 4 em=2i0 4 g (m=2)i0 y —mab
a sum of m+1 terms); this is the trace of the corresponding diagonal matrix,
g diag

of course, but more pointedly, this matrix is the image of the 2-dimensional
matrix

6.
. . ez p,a O
= 2cos80,, = e 4 7o = Ty < 0 ewm> 5

under the homomorphism
SL(2,k) ™ SL((m +1), k)

called the m-th symmetric power. This makes sense for k& any algebraically
closed field of characteristic zero. Concretely, one can think of this as follows:
consider the (m + 1)-dimensional k-vector space H,, of homogeneous forms
of degree m in two variables, say X and Y. This space is spanned by the
basis
(X", Xy, XYy Tl Y™,

b
d
this basis, of the linear map

P(X,Y) — P(aX +bY,cX +dY)

and for g = (CCL € SL(2,k), one can define Sym™(g) as the matrix, in
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(e.g., for g = g(h), we get XFY"—F s gth0Filk=n)0 xkyn—=k g6 that the trace
of Sym™(g) is indeed given by (9)).
Hence, if we can write

HE(2
(10) 3 (\f’a’p )oY TeHK(Fry)
p a€Gnm (Fp)

aEF;f

for some 2-dimensional representation w1 (Gy,) HK, GL(2,k), we get for free

that
Z Xm(HKEQf;)a’p)> = Z Tr(Sym™ oHK) (Frap)
a€Gnm (Fp)

acFy
for any m > 1.
For later purposes, one remark is important: these sums (once they are
known to actually exist) are one-parameter sums, over a very simple alge-
braic variety. Hence, their complexity resides almost entirely in the sum-
mand involved.

A last condition is needed before we can introduce formally a pretty good
category of possible summands. It has to do with the necessity to ensure
that, even if we need to apply an injection ¢ to pass from k to C, the values
A,(x) remain controlled. This is achieved by restricting them to numbers
which are algebraic over Q (as the values H K (2;a,p)/,/p are, for instance),
and indeed of a special type.

Definition (Weil number). Let k be a field of characteristic zero, ¢ # 1 a
power of a prime number p and m € Z an integer. An element o € k is a
q- Weil number of weight m if and only if, « is algebraic over Q and for any
embedding ¢ : Q(a) — k — C, we have

()] = g™,

Concretely, if k is itself a subfield of C, this means that « satisfies an
irreducible polynomial equation P(«) = 0 with P € Q[X] and that all the
roots 3 of P(X) = 0 have the same modulus ¢"/2.

Example 11. (1) The simplest example is given by a = 1, a ¢-Weil number
of weight 0 for any g; more generally, any root of unity £ is a g-Weil number
of weight 0 since all its conjugates are also roots of unity and hence lie on the
unit circle when embedded in C. Also, for any ¢, £¢™/? is a ¢-Weil number
of weight m.

(2) Let x be a non-trivial Dirichlet character modulo p and a € (Z/pZ)*.
The Gauss sums 7,(x) € C (see (4)) are then p-Weil numbers of weight 1.
Indeed, we recalled already that

[7a(X) = VP,
and from the definition we note that 7,(x) is an algebraic integer (a sum of
p — 1 roots of unity), and in fact 7(x) € Q(e(1/p),e(1/(p — 1))), since the
values of x are roots of unity of order dividing p — 1. The Galois conjugates
of 7(x) are therefore obtained by applying all the automorphisms of this
cyclotomic field; each of these (say, o) acts on e(1/p) by

a(e(1/p)) = e(b/p)
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for some b € (Z/pZ)*, and has the property that

X(@) = o(x(x))
is itself a non-trivial Dirichlet character modulo p. So we have

- abzx .
o(m(0) = D X@e(" %) =T (D)
z€Fy
which is of modulus ,/p again.
(3) For p prime and a € F)’, we have

HK(2;a,p) = 2¢/pcosOpa = /p- v + \/p- e ra

and each of \/p?eiwi”ﬂa is a p-Weil numbers of weight 1, while e*r.a is a p-
Weil number of weight 0 (which is not a root of unity). This can be checked
by a Galois conjugation argument similar to (2).

Finally, we can define:

Definition (Lisse sheaves; summands for algebraic sums). Let ¢ # 1 be a
power of a prime p and let V/F, be a connected algebraic variety. Let £ # p
be a prime number and k an f-adic field, for instance an algebraic closure

of Qg.
(1) A lisse sheaf p, pointwise of weight m € Z, on V/F, is a continuous
homomorphism

m(V) - GL(r, k)
for some r > 1, with the property that for any v > 1, and any x € V(Fy ),
all eigenvalues! of p(Fr, ) € GL(r,k) are all ¢"~-Weil numbers of weight

m.
(2) An algebraic exponential sum S(V, A; q) over Fy is a sum of the type

Y. Al)
zeV (Fq)

where V/F, is an algebraic variety, and A(z) = Trp(Fr;,) is the trace
function associated to a lisse sheaf on V', of some weight m € Z. We also
denote

SV(V7 A; q) = Z Tr IO<Fr33,qV)
JEGV(Fqu)

forv > 1.

Although we have S(V,A;q) € k, note that the sum
> A)
z€V (Fq)

is an algebraic number, and we usually tacitly see it as a complex number
using any embedding of the field it generates to C.

L Those are well-defined, although the Frobenius is only well-defined as a conjugacy
class.
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Example 12. (1) Mixed character sums are all of this type, with weight 0,
since the only eigenvalue of the characters x4 of 7 (V) at x € V(Fyv) is
the value

Xfg(Fra ) = x(Ne 7, 9(2)0(Trp . 7, f(2))

itself, which is a root of unity.
A special case, which is historically and practically quite important, is
when the character sum is trivial, i.e., A(z) = 1. Then the sum reduces to

Y L=|V(F)

zeV (Fq)

and the properties of these numbers of rational points on varieties over finite
fields were the subject of Weil’s original conjectures. The case (Example 1)
of the Hasse bound is one of the simplest non-trivial cases.

(2) Part of the proof of the average Sato-Tate conjecture is the fact, due
to Deligne, that — as was hypothesized in Example 10 — for any p, there
exists a lisse sheaf HK; on G, /F, of weight 1 and rank r = 2, such that

(11) Tr HIC (Frap) = HK(2;a,p)
for any a € F, and in fact
Trg , T +a/x
Te HK (Frgpy = e( F, /Fp; / ))

J;EF;,,

for v > 1 and a € G(F,v). (Properly speaking, such sheaves exist for every
choice of the auxiliary prime ¢ used to define the coefficient field k£, which
must contain the p-th roots of unity; moreover, the value in k of the sum is
obtained by fixing the meaning of e(1/p) to be one of these primitive p-th
roots of unity).

(3) As the rest of Example 10 suggests, one can create new algebraic
exponential sums out of old ones using composites

(V) 25 GL(r, k) = GL(s, k)

where 7 is an algebraic homomorphism (i.e., all entries of 7(g), for g €
GL(r, k), are polynomial functions of the coordinates of g). It is a fact that
if p is a lisse sheaf pointwise of weight m, the composite mop is also pointwise
of some weight (see [18, Proof of Th. 9.2.6]).

Remark 13. More general settings exist for algebraic exponential sums (see,
e.g., the first chapter of [12]). The restriction to the setting above is made
for simplicity, and is also due partly to the author’s restricted knowledge.
If V/F, is not connected, the fundamental group is not sufficient to capture
“independent” sums on the connected components, but of course these can
be treated separately in most applications. More significantly, N. Katz (un-
published) has found a way to treat some sums where the summation sets
are, for instance, the sets of multiplicative characters of Fy (which are not
of the type V(Fgv) for an algebraic variety V/F, which is independent of
v, as one can see by comparing the number of elements ¢(¢” — 1) with the
asymptotic for |V (F,)| that follow from the Riemann Hypothesis...)
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The next section will describe the fundamental results of Grothendieck
and Deligne concerning the structural properties and bounds for algebraic
exponential sums.

4. THE COHOMOLOGICAL FORMALISM

The apparent complexity of the definition of algebraic exponential sums is
richly rewarded by the powerful formalism that becomes available to handle
such sums.

The first tool is the Lefschetz-Grothendieck trace formula, which, after
application of the Riemann Hypothesis, reinterprets the sums S(V, A;q) as
combinations of suitable Weil numbers (of higher weight than that of the
summand A(z) = Tr p(Fr; ,)) which can be thought of, intuitively, as isolat-
ing not only a “main term”, but also lower frequencies (in a certain sense).

More precisely, given V/F, (connected) and a lisse sheaf p : m(V) —
GL(r, k), pointwise of weight m, Grothendieck and his collaborators first
constructed a sequence of finite-dimensional k-vector spaces

H(V,p), i>0,

called the i-th cohomology “group” of the geometric variety'? V with com-
pact support and coefficients in p. The fact that V is defined with equations
with coefficients in F, can be recovered by keeping track of the Frobenius
automorphism ¢ : z + 29 which acts on V (as well as its inverse F, which
is called the “geometric” Frobenius). In fact, for v > 1, we have

V(Eg) =z eV | F'(x) =a}[ = V",

i.e., V(F,) is the subset of V consisting of the fixed points of F.

The cohomology groups turn out to encode the algebraic sums in a rather
remarkable way. First, it is a general principle that any natural construction
performed on V will lead to an object where the action of F' remains visible
in some “induced” way. For the cohomology group H:(V,p), which is a
k-vector space, this means that there exists a k-linear map

F: H(V,p) — H(V,p)
“naturally induced” by F'. Then, the trace formula states that
(12) S(V,Asq) =) (Z)"Tx(F | HIV,p)),
i>0

where this seemingly infinite sum contains in fact only finitely many terms
because H.(V, p) is zero for all i large enough — in fact, it is zero for i > 2d,
where d is the dimension of V. More generally, we get

Su(ViAsq) =D (=1 Te(F¥ | H(V,p))
i>0

(when passing from F to Fyv, V doesn’t change, but the Frobenius becomes
x 2 with inverse FV).

12 Recall (Remark 9) that V can be interpreted as the set of all points of V with
coordinates in an algebraic closure of F,.
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Example 14 (Counting points). In the particular case where A(z) = 1

(i.e., p is the trivial representation), we get a formula for the number of

F,-rational points on V:

(13)  |V(Fg)| =) (1) Te(F | H(V)),  HAV)=HYV,trivial).
i>0

The existence of such a formula was already conjectured by Weil, based
on various examples (in particular, curves, see Example 16). However, Weil
did not know how to define the spaces H:(V) in general.

Weil showed how such a formula implied the rationality of the relevant
zeta function. Indeed, coming back to the general case, let [V] denote the
set of orbits of F' acting on V (if V = Al this can be identified with the set
of irreducible monic polynomials in Fy[T7], each polynomial 7 corresponding
to the set of its roots, which is a single orbit because of irreducibility). For
[z] € [V], let deg(z) be the number of elements in this orbit and |z| = gd°&(*),
Then, define

[T det(a — 7@ p(Fr,, )~
[=]€[V]

which is a type of Euler product, seen here as a formal power series in k[[T1]
(or indeed in QI[T1]], if p=1).
Now, a familiar computation leads to the alternate expression

L(V,p) = exp (Z W)
v>1

(which can also be taken as the definition of the L-function of p). From this,
we see that (as formal power series) we have

= Z SZ/(V7 A; Q)T
v>1
and an application of the trace formula (for each v) gives

, 2d
TEV.p) = 30 (1) ST | Y, )T
=0

v>1
= —Z T—logdet(l—TF | HY(V, p)),

and hence implies the rat1onahty
Pi(T) - Py (T)
Po(T) - -+ Paa(T)

L(V,p) =

where
(14) Pi(T) =det(1 —TF | H(V,p)).

Note also that, for each factor P;(T') of the L-function, we have a spectral
interpretation of its zeros, as related to the eigenvalues of the Frobenius
acting on H'(V, p). At this point one must however still be careful that P
is, a priori, in k[T, and its eigenvalues may be arbitrary elements of &k (in



18 E. KOWALSKI

particular, they could be non-algebraic, and the algebraicity of S(V,A;q)
might arise by cancellation of transcendental terms).

Example 15 (0-dimensional case). Only one example of the Lefschetz trace
formula can be presented completely elementarily, namely the case where V'
is 0-dimensional and p = 1 (although V is not connected then in general,
the situation is simple enough to analyze). If V/F, is defined as the zero set
of a non-zero polynomial f € Fy[X], the set V is just the collection of all
zeros in an algebraic closure (note that multiplicity is allowed), permuted
by the Frobenius F. We therefore get

V(Fq)l = [{z € Fy | f(z) =0} = Te(F | H](zeros of f))

and this is interpreted as follows: the space H? is here d-dimensional, where
d = |V is the number of distinct zeros of f in an algebraic closure; moreover,
one can find a natural basis (e;),cp of HY in such a way that the induced
action of Frobenius is determined by

F(ez) = ep()-

In other words, F' is a permutation matrix in the basis (e;), associated
to the permutation of the roots induced by the Frobenius. Then the trace
formula becomes the well-known fact that the trace of a permutation matrix
is the number of fixed points of the permutation.

The zeta function identity

1
(15 L= [[ (-7 :
[r]l;[[w det(1—TF | HO(V))

is also clear, since the product on the left-hand side is finite: it represents
the factorization of the characteristic polynomial of a permutation matrix
as a product of cyclotomic factors (1 — 7%) where a runs over the lengths
of the cycles occurring in a representation of a permutation as a product of
disjoint cycles.

Example 16 (Algebraic curves). For a smooth projective geometrically
connected curve C/F, (e.g., a curve y*> = f(x), with f squarefree of odd
degree, with the addition of a point at infinity), we get

o [C(Fg)|T"\ _ Pu(T)
p(; v ) Po(T)Po(T)’

where deg(Py) = 2¢g, g > 0 being an important invariant called the genus
of the curve. One can show easily that Py(T) =1—T and P(T) =1 —¢T
(the latter is related to (17)). The polynomial
(16)  P(T) =det(1—TF | H'(C,trivial)) = [ (1-«a,T),
1<7i<2yg
which is often called the L-function of C, satisfies the functional equation
1
Pi(T) = ¢#T¥P (7)
1(T) = q 7))
which amounts to saying that one can order the roots «; in pairs so that
ajongri—j = q for 1 < j < 2g.
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The Riemann Hypothesis, in this case, is the statement that |o;| = (/g
for all j, but notice that, although we have a spectral interpretation via
the Frobenius automorphism acting on cohomology, this is not sufficient to
obtain this!

This case of the Riemann Hypothesis was first proved by Weil, who used
constructions related to the Jacobian variety of the curve and torsion points
to — in effect — construct the dual of the necessary cohomology groups.

Remark 17. The definition and construction of the étale cohomology groups
H(V,p) is a deep and subtle achievement which is unfortunately hard to
explain in a few words, even to an audience familiar with classical algebraic
topology. The proof of the trace formula, even given this construction, is
also difficult. The simplest case (after the O-dimensional one) is that of
counting points on elliptic curves, in which case the elementary theory of
isogenies and of the Weil pairing can lead to a relatively elementary proof
(see [23, §V.2]).

Here is a very simple observation that can at least give a first impression
of what is happening:

e Localizing close to a point z in the Zariski topology amounts to
allowing “new” functions 1/f, where f is regular at z, but may
vanish elsewhere;

e “Localizing” close to z in the étale topology allows new functions
g(x) which satisfy (separable) algebraic equations, e.g., g(x) = /x
on G,,, “defined” via the second projection

R={(z,y) | =9} — Gn.

It may be noticed that the second case is very close to the idea of Riemann
for defining Riemann surfaces of algebraic functions.

From the point of view of finding estimates for S(V,A;q), nothing is
achieved purely from applying the trace formula to get (12), despite its
fundamental nature, because the right-hand side is not yet under control:
each individual term in the alternating sum might be extremely large (not
to mention the fact that, in principle, these terms are in the field &, and not
in C, and might not be algebraic). However, it was part of Weil’s conjecture
that the situation should in fact be much better than this: under appropriate
circumstances, for A = 1, Weil conjectured that the Frobenius acting on each
cohomology group H: should have eigenvalues which are g-Weil numbers of
weight exactly .

This conjecture was proved by Deligne [5], who then succeeded in [6] in
finding a much more general statement which encompasses all the algebraic
sums we have considered — well beyond the original Weil conjectures:

Theorem 18 (Deligne). Let g be a power of a prime p, m € Z, and consider
an algebraic exponential sum over Fy,

SV, Ag)= > A)
zeV(Fq)

where V/Fy is a connected algebraic variety of dimension d, and A(x) =
Tr p(Fry q) is the trace function associated to a lisse sheaf of weight m on V.
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Then, for every i, 0 < i < 2d, every eigenvalue of F acting on HL(V | p)
is a q-Weil number — in fact, also an algebraic integer — of some weight,
which is < m +1.

Under nice circumstances (related to smoothness and compactness and
usually involving some form of Poincaré duality to transform upper bounds
into lower bounds, or in analytic terms, related to the existence of a good
functional equation for the L-functions), this can be refined to an equality:
the eigenvalues « for H! are then g-Weil numbers exactly of weight m + i.
This was the case of the original Weil conjectures, but is not true in general.

Example 19. (1) Consider counting points on G,,/F,. Of course, the
answer is known: |G,,(Fy)| = ¢ — 1. In the cohomological interpretation,
we have H?(G,,) of dimension 1 with F acting by multiplication by g,
H}(G,,) of dimension 1, with F' acting by multiplication by 1, and H?(G,,)
of dimension 0.

More generally, if V' is of dimension d, the formula (13) and Theorem 18
lead to

’V(Fqu)’ = Tr(FV ’ chd(f/,trivial)) +O(qu(d—1/2))

for v > 1, where the implied constant depends on V. Intuitively, we expect
this number of points to be of order of magnitude ¢“? (by comparison with
affine space of dimension d), and this can be confirmed using one of the few
general formulas for computing cohomology: for V/F, smooth,'® and for
any lisse sheaf p : 7 (V) — GL(r, k) on V, we have

(17) H2(V,p) ~ pry(v)

where the right-hand side, the coinvariant space of p under the action of
the geometric fundamental group (see Remark 9), is defined as the quotient
k-vector space

kr/<p(g)’l) -V, VE kr? g€ 7-‘—1(‘/»
(the largest quotient of k™ on which (V) acts trivially).

For the trivial sheaf, r = 1 and p(g)v = v for all v and g, so we find that
HZ?4(V trivial) is of dimension 1. The action of F on this space can also be
computed to be multiplication by ¢¢, if V is geometrically irreducible, and
it follows that we have

(18) V(Fe)| = g+ O(¢" 712

for v > 1 (the implied constant depending on V/F;). In fact, this asymp-
totic formula was first proved by Lang and Weil (by reducing to the case of
curves), and it is equivalent with the assumption of geometric irreducibil-
ity. 1

(2) One can easily illustrate on simple examples what happens if V/F is
not geometrically irreducible. Take for instance the curve with equation

V2t 4+y%=0.

13 In terms of equations (F;) for V, this means that there is no point on V' where all
the partial derivatives 9, F; vanish.

14 For some analytic applications, this means it can sometimes be used to check the
latter, instead of using more algebraic results.
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If —1is not a square in Fy, let € € F 2 such that —1 = e2. Over F 2, the
equation of the variety splits as

(z +ey)(z —ey) =0,

and so V is the union of two lines in the plane, but those two lines are not
defined over F, only over F,(¢) = F 2 (and the Frobenius of F, exchanges
them since F'(g) = —¢). We get

V(Fge)| =2¢* -1, V(Fg2vr)| =1,

q

for v > 1.

Thus if some components of V/F, are only defined over finite extensions
of Fy, one may obtain different leading terms for V(F, ) depending on the
value of v. This is also clear when V is of dimension 0, defined by the single
equation F(z) = 0 in one variable: if there are n; distinct irreducible factors
of F' of degree i, we have

V(Fp) =D ni.

i|v

(3) In terms of L-functions, we can factor each polynomial P; given by (14)

as
Ty = [ (—auT)
1< <dim H}

with «a;; running over the eigenvalues of F' on Hi(V,p). For the complex
function P;(¢~*), s € C, Deligne’s Theorem translates to the following ana-
logue of the classical Riemann Hypothesis: the zeros of P;(¢~*) lie on a
union of finitely many lines of the type Re(s) = j/2, where j is an integer
such that j < m + 1.

(4) In cohomological terms, Deligne’s proof of the bound (3) for Hyper-
Kloosterman sums was obtained by showing that for the relevant additive
character sum on V = G ! (see (6)), we have

H{(V,As xita/T1x:) =0
if i 2 n — 1, while
dim H] " (V, As> x, 1o/ 1 ) = 7

Since, for character sums, the summand has weight 0, we get the upper
bound (3). In fact, in that case, Deligne also showed that the eigenvalues
on H" ! are all of weight n — 1.

(5) In [5], Deligne also proved the following remarkable estimate for ad-
ditive character sums (which Weil had proved for n = 1): consider

Ap(z) = €<F;x)),

where F' € Fy[Xy,...,X,] is a polynomial of degree d, with (d,p) =1, in
n variables such that the homogeneous part of degree d, say Fy, defines a
smooth projective hypersurface (for instance, Fy = X ji +---+ Xg; the com-
ponents of smaller degree can then be chosen arbitrarily). Then, considering
the sums over V = A" /F, Deligne proved that

HY(V,Ap) =0if i #n, dim H*(V,Ar) = (d — 1)".
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Hence we get the uniform upper bound

i | T (D)<

p

Z1,..,2n€Fp

for such polynomials. Here also, Deligne proved that the eigenvalues in H
are all of weight exactly n.

As these examples suggest, Deligne’s Theorem 18 becomes very power-
ful when combined with computations of the dimension of the cohomology
groups, in particular with results of vanishing of cohomology groups. In-
deed, a rough general bound that can be obtained is

(20) S A< ogm
zeV(Fq)

where

(1) k=max{i | H(V,p) £0},  C=3 dimH(V,p).
(2
The trivial bound, in view of the point counting formula (18), is k = 2d,
where d is the dimension; if one can show that k < 2d, a non-trivial estimate
immediately follows for the sums S, (V| A; q¢) as v — 400 (i.e., for the vertical
direction; in horizontal direction, one needs to control C', which depends on
p). This basic goal is often easy to derive from the coinvariant formula (17).

Example 20 (Ubiquity of non-trivial bounds). Consider a character sum
associated with the summand (5). In this case, the underlying lisse sheaf
is the character x4 : m1(V) — k™ such that (7) holds, so the rank is 1.
Consequently, the coinvariant space, which is chd(V, Xf,g) can only be of
dimension 0 (in which case we get that & < 2d) or 1, and the second case
is only possible if x4 is trivial on 71(V). This does not mean, however,
that x4 is entirely trivial — as we mentioned in Remark 9, the Frobenius
conjugacy classes do not belong to 71(V). But it shows that x4(y) only
depends on the image of 7 in the quotient group (V') /71 (V). This group
is known, by Grothendieck’s theory, to be isomorphic to Z, and because we
have Fry 4 — —v in this isomorphism, this means concretely that in this
situation, xf4(Fryq ) depends only on v. In particular, this implies that
Ag () is constant for every x € V(Fy).

We can summarize this roughly as follows: for a character sum, either
the summand is constant (and no cancellation can be expected!), or there is
some non-trivial (vertical) estimate. Observe also how the underlying group
structure was used to derive this conclusion.

Obtaining a non-trivial bound is, however, sometimes not sufficient. One
often requires the best possible situation, in which we have & = d (the dimen-
sion of V', as we saw in Example 5 for equidistribution of angles of Gauss
sums), together with an explicit formula or upper bound for C. Hyper-
Kloosterman sums and Deligne polynomials are of this particularly nice
type, and it remains an active area of research to give convenient criteria
to compute k£ and C for “concrete” exponential sums, and in particular to
bound C uniformly with respect to various parameters that may occur.
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Example 21 (Uniformity). We illustrate this last point in the case of char-
acter sums. Here, the most important dependency in analytic applications is
that with respect to p. The basic problem is that even if the parameter vari-
ety V is defined uniformly (by reduction modulo primes of equations which
are independent of p, the basic examples being affine spaces and G,,), and
even if the summands are defined (say) by (5) with g = 1 and a fixed polyno-
mial f with integral coefficients (which can again be reduced modulo every
primes to construct the corresponding sums over V(F))), it remains a fact
that the sheaves which encode those summands are, a priori, constructed
for each p separately, hence the corresponding C' depends on p.

Examples like Deligne polynomials suggest that C' should be indepen-
dent of p, or at least bounded independently of p. This was confirmed by
Bombieri, using p-adic techniques to complement the ¢-adic formalism, then
extended by Adolphson and Sperber for all character sums, and the most
general version is due to Katz [16].

Applied in the way we have sketched in this section, the formalism of
the trace formula and the Riemann Hypothesis can be seen as a way of re-
expressing exponential sums (in a highly non-trivial, indeed, non-combina-~
torial way) as another sum, where a usually non-trivial estimation is possible
by using that bluntest of tools, the triangle inequality.

D. FAMILIES, MONODROMY AND DELIGNE’S EQUIDISTRIBUTION THEOREM

The last remark of the previous section strongly suggests that, although
estimates like (19) might be best possible in vertical respect, some improve-
ments should hold in cases where the cohomology groups involved have high
dimension.

For instance, a character sum over F}) with a Deligne polynomial in n > 2
variables and of degree d is expressed as a sum of (d — 1) Weil numbers,
each with modulus p"/2, say

pn/262m9p,j(F), 1<j<(d-1)",

where the phases 6, ;(F') € [0,1] might be expected to be themselves quite
random. Summing those Weil numbers could therefore be expected to lead
to smaller values of the sums

(d—1)"

3 e(@) _ 2 Z) o200, 5 (F)
p =

T1,...,2n€Fp

at least for most polynomials F', with respect to the factor (d—1)" (resulting
from the triangle inequality), not the exponent n/2.

It is indeed possible to analyze this situation, and the technique used is
very similar to the one leading to the proof of the average Sato-Tate law
(Example 4), exploiting to the full the formalism of general algebraic sums.
The first — and crucial — point is that, if we fix d and n and a prime p t d, the
set of relevant Deligne polynomials with coefficients in any extension field
F,/F, is itself the set of Fy-points of some algebraic variety D(d,n)/F,.
Indeed, Deligne polynomials of degree d in Fy[X1, ..., X,] are in one-to-one
correspondence with the tuples of coefficients (aps)ps where M runs over
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the set of monomials M = X{"'--- X" in n variables which are of degree
< d, and those are subject only to the condition that the sum

Z apy M

deg(M)=d
defines a smooth projective hypersurface, which is a condition which can

be expressed using finitely many polynomial conditions (vanishing or non-
vanishing) among the coefficients a; with deg(M) = d.

Example 22 (Quadratic Deligne polynomials). Consider n = d = 2; then
D(2,2) ~ U(2,2) x A3 where U(2,2) C A? with coordinates A, B, C is
defined by the discriminant equation

AC — B? #£0,

which can be represented as a subset of A% with coordinates A, B, C, D
defined by
D(AC — B?) =1.

Coming back to general Deligne-type sums, this particular structure of
the family of Deligne polynomials can be used to prove that the assignments

A{Mm@@@—i k
F —  S(A™ Ap;q)

(where k is a suitable extension of Qy, for ¢ # p, containing the p-th roots
of unity) are suitable summands for algebraic sums over D(d, e)(F), or in
other words, there exists a lisse sheaf

pnd : m(D(n,d)) - GL((d—1)",k)
such that

Tr (d—1)

Ffl FP F(a’:) n s .

Trpn,d(Fl"F,q) = E e(#) =gq /2 2 : 20045 (F)
7j=1

xlv"-v‘z’ﬂqu

for any g and F' € D(n,d)(F,).

This is quite a general feature, and N. Katz has exploited such construc-
tions in a virtuosic way in many works (see, e.g., [14], [17], [12], or his book
with P. Sarnak [18]) to study distribution properties of families of algebraic
sums and their associated L-functions. These constructions are again quite
difficult, and depend on the general framework of algebraic geometry in a
rather sophisticated way.

Example 23 (Kloosterman sheaf). Consider (once more) Hyper-Klooster-
man sums

HK(n,a;q) = Z e(ﬁFq/Fp(iﬁlp-i--'-—l—xn)).

21, ,2n €EGm (Fq)
T1Tn—a

Here, Deligne (and Katz) showed that, for every prime p, there exists a
lisse sheaf (now called a Kloosterman sheaf) on G,,/F,, which we denote
HIK(n;p), with the property that
HEK(n,a;q)

(22) Tr(Fra,q | HK(n;p)) = q(nfl)/Q
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for all ¢ = p” and a € G, (F;). For n = 2, this means that the wild
surmise (10) in Example 10 is indeed correct.

We now consider an arbitrary algebraic sum, and we look at the distribu-
tion of the conjugacy classes p(Fr, ), for x € V(F,). Those lie in GL(r, k),
but since their eigenvalues are algebraic numbers (being ¢g-Weil numbers),
there exists matrices in GL(r, C) with the same eigenvalues, which we denote
p(Fry 4)C temporarily. If p is of weight m, the conjugacy class

(23) @(Frx,q) = qim/ZP(Fr%q)Cu

can now be interpreted as a conjugacy class in the unitary group U(r, C)
(indeed, all its eigenvalues are of modulus 1). In the example above, this is
just the conjugacy class with eigenvalues e2™a.i ().

Deligne’s Equidistribution Theorem does two things: first, it shows that
these conjugacy classes always satisfy some form of equidistribution state-
ment similar to the average Sato-Tate law (in the vertical direction for
x € V(Fg ) where v — +o00, at least, and quite often also for “horizon-
tal” limits); second, it gives an interpretation of the precise shape of this
law. This description is in terms of the algebraic data, and is another illus-
tration of the “expressiveness” of the group-theoretic framework (compare
with the discussion in Example 20).

This second step is important, because it leads in fact to a much quicker
proof, by suggesting the right set of test functions for an application of the
Weyl Criterion for equidistribution. In principle, it is also very simple: intu-
itively, the statement is that the limiting measure is the natural probability
measure on the set of conjugacy classes of the smallest compact group for
which such a statement is possible.

To give a precise formulation requires some care because of technical is-
sues, related partly to the problem of apparent incompatibility of the topol-
ogy on m1 (V') (in which Frobenius classes lie) and the unitary groups U(r, C)
(in which we aim to get some equidistribution), and partly to the fact that
the unitary conjugacy class ©(Fr; ,) might be “too big”: it might not reflect
fully the Frobenius conjugacy class within 71 (V).

This explains the slightly awkward statement of the following preliminary
(imperfect) version of Deligne’s theorem:

Theorem 24 (Deligne). Let V/Fy be a smooth, connected, geometrically
irreducible, algebraic variety, and let p be a lisse sheaf on V of weight m.
Forv>1,x€V(Fy), let O(Fr, o) =g V"™?p(Fry )€ be as before.

Then there ezists a compact subgroup K of U(r,C) such that, for every
v=1andaz e V(Fg), the unitary conjugacy class ©(Fry o) intersects K,
and the conjugacy class of ©(Fry o) in K is uniquely defined, and such that,
moreover, as v — 400, the finite sets given by

V(Fey) — K*
{ x —  O(Fry o)

become equidistributed in K* with respect to the natural probability measure,
where K* is the space of conjugacy classes of K.

Before giving some clarifying remarks and stating another (better) version
of this theorem, we recall the definition of the limiting measure: for any
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compact group K, there exists a unique Borel measure px (the probability
Haar measure) on K which is normalized by ux(K) = 1 and is translation

uvariant:
/fxy dpr (z /fyrv dpr (z /f )dpx (z

for any f € L'(K). Then, the set K* of conjugacy classes in K inherits a
probability measure ,uﬁK through the quotient map K — K*; concretely,

we have
/K O = /K £ () dpc ()

if f : K — C is invariant under conjugation (e.g., if f is a symmetric
function of the r eigenvalues, for K = U(r, C)).

Example 25 (Group-theoretic interpretation of the Sato-Tate law). In the
case of the average Sato-Tate law, the relevant group is SU(2, C), the special
unitary group of size 2. The conjugacy classes in this group are all given by

e? 0
0 671’9

with § € R, and if we restrict to 6 € [0,x], then each conjugacy class
is represented uniquely (because the matrices corresponding to 6 and —0
are conjugate in SU(2,C)). Note that the conjugacy classes in U(2,C)
associated to Kloosterman sums are indeed of this type (see (8)).

Since twice the cosine function is a bijection [0, 7] 2co8 [—2, 2], we can also
represent the set of conjugacy classes by the closed interval [—2,2]. It turns

out that,'® in terms of the coordinate , the measure uﬁSU( %) is given by

/SU(z)ﬁ f(@)duSU(2 / £(0)(sin? §)d

This is the group-theoretic explanation of the Sato-Tate measure. In
particular, if we compare with the normalized Lebesgue measure, the factor
sin? @ reflects the non-commutativity of the group SU(2).

As stated, Theorem 24 is still unsatisfactory, mainly because it does not
provide an a priori description of the group K starting merely from the
algebraic data involved (the algebraic variety V' and the lisse sheaf p), and
especially does not give any hint of the way this group might be computed
for a particular case (e.g., for the proof of average Sato-Tate conjecture).

We will now explain how this is remedied. Although the reformulation
is more abstract, the outcome well repays the effort that may be involved.
The basic observation is that since p is a homomorphism

p: (V) — GL(r k),
the most obvious group to look in for equidistribution of Frobenius classes
(which we know are dense in 71 (V) is the image group p(m1(V)) C GL(r, k).
However, this group of matrices with entries in & is on the other side of the

mirror from the unitary group U(r,C), and we can not even hope to map
to C in a reasonable way using a chosen embedding ¢ : k — C (since ¢

15 This is a special case of the so-called Weyl Integration formula.
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is not continuous, the image ¢(p(71(V))) will not be closed or compact or
anything).

However, we can observe that ¢ (being a field homomorphism) does allow
algebraic relations to transfer. So we can consider the collection I, of all
polynomial relations (with coefficients in k) valid on p(71(V)) — the variables
being the entries of the matrices, and the inverse of the determinant —; then
t(I,) is a set of polynomials with coefficients in C, and we can define a
group, called the arithmetic monodromy group*® of the lisse sheaf p, as the
set of g € GL(r,C) for which all relations in ¢(I,) are valid. We denote this
group G (p). Similarly, the geometric monodromy group of p, denoted
G#&°M(p), is the subgroup of G®*™(p) of matrices satisfying all relations
in ¢(I5°°™), where I5°°™ is the set of polynomial relations satisfied by the
subgroup p(m (V)  p(m1 (V).

Example 26. (1) Suppose det(p(g)) = 1 for all g € m(V). This is an
algebraic relation, and hence (since ¢(1) = 1) we have G*th(p) c SL(r, C).
Similarly, if we have det(p(g))" = 1 for all g € m1(V), for some fixed h > 1,
we have

G¥M(p) C {g € GL(r,C) | det(g)" = 1}.

(2) Suppose r = 2g is even and there is a non-degenerate alternating form
(-,-) on k29 such that the image of p lies in the group

Sp((-,-), k) = {g € GL(r,k) | (g9(v),g(w)) = (v,w) for all v,w € k29}

of symplectic automorphisms of k29 with respect to this pairing. Then, since
these conditions can be phrased polynomially, one can transfer the pairing by
¢ to a non-degenerate alternating form on C?9 such that the arithmetic (and
geometric) monodromy group is a subgroup of Sp(2g,C) with respect to
this pairing. Similarly for a symmetric pairing. And because all alternating
(resp. symmetric) bilinear forms on C are equivalent, up to to a linear
change of variable, it is usual in this situation to omit specific mention of
the bilinear form.

The operation just performed!” is summarized in the language of algebraic
geometry by saying that G2 (p) (resp. G8*°™(p)) is the image under ¢ of
the Zariski closure'® of p(m (V) (resp. p(m1(V))); topologically, one exploits
the fact that ¢ is continuous for the (rather weak) Zariski topology.

16 Properly speaking, relative to ¢; in fact, most texts define it as the subgroup of
GL(r, k) where all relations hold, and only map later to C.

17 1ts relevance was essentially realized by Grothendieck, and it was of course exploited
masterfully by Deligne, though the thought process involved was certainly different (his-
torians will notice that [6, 1.1.15] defines the monodromy group to be p(m1(V)), and does
not give a name to the Zariski closure, though it is used extensively from [6, 1.3.7] onward.)

18 The Zariski closure DZ%" of any subset D C k™, where k is algebraically closed, is
the set of points in k™ which satisfy the same polynomial equations as the points of D:

D" = [ {yek" | F(y) =0},
Fel(D)

where
I(D) ={F € k[X1,...,Xn] | F(z) =0 for all z € D}.
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This abstract definition turns out to be remarkably useful. If it looks
unfamiliar, it is important to realize that the step of taking the Zariski
closure is immensely simplifying: because G&°™(p), by definition, is defined
by polynomial equations as a subgroup of GL(r, C), it is a much more rigid
object than an arbitrary subgroup. This translates into the fact that there
are fewer possibilities, and hence that it is often possible to classify the
possible choices of G&°™(p) and compute it.

We will now present a better version of Deligne’s Equidistribution The-
orem. This will introduce the further restrictions on p that it be of weight
m = 0, and that ¢(p(m1(V))) C G&°™(p): these amount to a suitable nor-
malization of the Frobenius conjugacy classes (in other words, they can be
achieved by a proper algebraic analogue of the division by ¢"™/2 in the def-
inition of the naive unitary classes (23); for Kloosterman sums, this is the
step that passes from the sheaf H/C; of weight 1 — see (11) —, to the actual
Kloosterman sheaf H/C, which is of weight 0).

Under these conditions, the subgroup K can be identified as a mazimal
compact subgroup'® of G&°™(p); the apparent ambiguity is resolved by the
fact that, for the groups that occur, all such maximal compact subgroups are
conjugate in G&°™(p), hence have “identical” spaces of conjugacy classes,
which is where the Frobenius conjugacy classes lie.

Example 27 (“Big” symmetry groups). In practice, the following three
groups are the most important: in many contexts, the group G8°°™(p) turns
out to be either one of them, or to contain one of them as a subgroup with
finite index. In Example 33 below, we will give concrete instances of families
leading to these groups.

(1) The group SL(r), for some r > 1, has (in its incarnation over C)
maximal compact subgroup SU(r,C). It is, essentially, the largest
possible subgroup of U(r,C) that can occur as G&°™(p) for p of
rank . This is because there are general structural properties (due
to Grothendieck and Deligne), which imply that the connected com-
ponent of the identity GO in G&°™(p) is semisimple, under fairly
general conditions ([6, Cor. 1.3.9]) — this means that it does not
contain any connected abelian non-trivial normal subgroup, in par-
ticular the center is finite. It follows that if G&*°™(p) contains SL(r),
it is of the form

{g € GL(r) | det(g)" =1}

for some integer h > 1, with maximal compact subgroup Up(r, C)
consisting of unitary matrices with determinant an h-th root of unity.
(2) The group Sp(2r, C), defined as the group of elements in GL(2r, C)
preserving a given non-degenerate alternating bilinear form (-,-),
has maximal compact subgroup USp(2r, C) = U(2r,C) N Sp(2r, C).
Concretely, a conjugacy class in USp(2r,C) is determined by its
reversed characteristic polynomial det(1 — T'g) € C[T], which is a
polynomial with 27 roots which can be put into r pairs of inverses
(e, e=5), with 6; € [0,7], 1 < j < 7. This group occurs typically
for families of L-functions of algebraic curves over finite fields (see

19 Maximal with respect to inclusion.
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Example 16); as we saw, the pairing of roots can be seen as a re-
flection of the functional equation of the L-function. Geometrically,
it is known that there exists a non-degenerate alternating bilinear
form on H!(C'), which is preserved by the unitarized Frobenius.

(3) The group O(r, C), or its subgroup SO(r, C) of index 2, is defined
as the elements in GL(r, C) (resp. SL(r,C)) which preserve a non-
degenerate symmetric bilinear form. Its maximal compact subgroup
is O(r,R) (resp. SO(r,R)), the corresponding real groups. Note
that for r even, the eigenvalues come again in r pairs of inverses, so
a conjugacy class in SO(2r, R) looks exactly like one in U Sp(2r, C);
however, the measures on SO(2r, R)f and USp(2r, C)! are distinct
(see, e.g., [18, 5.0.4, 5.0.6] for the Weyl formula which shows this).
The underlying orthogonal or symplectic symmetry of a sheaf is
therefore not immediately visible by looking simply at the Frobe-
nius conjugacy classes.

Orthogonal (and special orthogonal) symmetry is found, for in-
stance, in families of elliptic curves over function fields.

A basic guideline is that, unless and until one has reason to think other-
wise, one should expect that G8°™(p) will be of one of those three types.
In Example 31, we will explain some recent ideas of Larsen and Katz that
give quite simple criteria to (essentially) check if this holds, in very concrete
(in fact, numerically testable) arithmetic ways.

With all this done, we can now state Deligne’s equidistribution theorem:

Theorem 28 (Deligne). Suppose V/F, is smooth and geometrically con-
nected,? and assume p is a lisse sheaf of weight 0 on V with the property
that, for the fizred v : k — C as above, we have t(p(m1(V))) C G&°™(p). Let
K be a mazimal compact subgroup of G&°™(p). Forv >1 and x € V(Fy),
write

(24) L(Frw,q”> = Oz, Uy,

where O 4 is diagonalizable, Uy 4v is unipotent,?t and they commute.

Then, as v tends to infinity, the finite sets given by
{V(Fqu) — K!

x = ex7qu

become equidistributed in the space K* of conjugacy classes of K, with respect
to its natural probability measure.

This is a slightly simplified variant of [18, Th. 9.2.6]; it is not difficult to
recover the preliminary statement of Theorem 24 from it, but it is probably
best to simply forget that earlier version.

Remark 29 (Diagonalizability). It is conjectured that (in most cases at least)
p(Fry ov) is always diagonalizable (or semisimple, as the proper terminology
has it), so that the diagonalization step (24) is not necessary. This is the

20 These are just for simplicity.
21 This is the Jordan decomposition; it is known that Og,qv and Uy qv are in G&°™(p),
and that ©, o~ is conjugate to an element of K.
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case for curves (due to Weil), and also holds (for a given x) whenever the
eigenvalues of p(Fr, ov) are all distinct.

This theorem is a powerful confirmation that the viewpoint on algebraic
sums associated with representations of the group m (V') is correct: it pro-
vides a clear explanation of the fact (which is not at all obvious and was
partly discovered empirically) that whenever there is some equidistribution
i a family of exponential sums, the limiting measure is associated to some
group K. Note that such a direct explanation is not yet available for other
conjectured equidistribution results (see the last section for examples).

Moreover, the proof is quite straightforwardly based on the Riemann Hy-
pothesis and the general formalism of algebraic sums. Because of this it
is highly effective and uniform, and this allows other variants of Deligne’s
Theorem to be proved. We sketch the argument, because its underlying
simplicity is the best justification for the preparatory definitions (and it
illuminates the necessity of the specific normalizing assumption on p).

Sketch of the proof. We use the Weyl Criterion and consider, as basis of
functions on K with mean zero, the functions

g+— Trr(g)

where 7 : K — GL(n, C) runs over the non-trivial continuous, irreducible
representations of K (this means that 7 is a continuous homomorphism, not
= 1, and that we have [, | Tr7(g)[*dux = 1).

The main fact one needs to know is that such a representation 7 corre-
sponds uniquely to an algebraic?? (non-trivial) irreducible representation

GE™(p) — GL(nx, C),
and the latter (via t=1) to an algebraic irreducible representation
IGE(p) T GL(ng F),
in such a way that
Tr7(:(g)) = Trn(g), if g € K C G®°™(p)

(this correspondence is due essentially to H. Weyl, and is often called the
unitary trick; it has to do with the fact that, for 7 as above, the trace is a
symmetric, polynomial function, of the eigenvalues of g € K: see (9) for an
illustration).

This relation applies in particular to the conjugacy classes O, 4 (because
of the assumption ¢(p(71(V))) C G&°™(p)), and therefore we find the basic
formula

Z Trrn(Ogq) = Z Tr(7 o p)(Fry g ).

IEV(FqV) $EV(Fqu)

One then shows that 7 o p is itself a lisse sheaf on V of weight 0; con-
sequently, we can apply to the right-hand side the trace formula and then

22 Where algebraic means that the coefficients of the matrices representing these ho-
momorphisms are polynomials.
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Deligne’s Riemann Hypothesis to get the estimate

Z TI"]T(@x’qu) = Tr(FV | Hfd(f/,fr o p)) + O(qu(d—l/Z))
IEV(FqV)

for v > 1 (the implied constant is the sum of dimensions of the lower-index
cohomology groups; compare with (20)). The idea for not looking beyond
the topmost index is that we know that

V(Fp)) = ¢ + 0" 1/?)
(because V' is geometrically connected, as explained in (18)) and thus we

obtain

1 Tr(FY | H*4(V
- TTW(@(FI‘xqu)) — ( | cd(VﬂrOP)) +0(1)
VEA 0
X qu

as v — +o00. To go further, we use the formula (17):
dlmk sz(v,’ﬁ' 9} p) = dlmk(’ﬁ' 9} p)ﬂ'l(v) = (ﬁ-)P(Wl(V))

Now we use the following remark: since 7 is given by polynomial formulas,
the coinvariant quotient of k"~ for the action of p(w1(V)) is the same as the
coinvariants for the action of its Zariski closure (or “the same” as those for
G#&°™(p) on C"~). But since 7 is irreducible and non-trivial, this coinvariant
space is 0. So the cohomology group H24(V,# o p) is in fact 0 (compare
Example 20) and we deduce

1
lim ———— Tr7(O(Fry »)) =0,
v oo |V(Fqu)’x€V(Zqu) (OFrae)

as desired. O

Example 30. (1) Analytic number theorists should compare the proof with
that of Dirichlet’s Theorem on primes in arithmetic progressions: the basic
strategy is identical, including the important point that one needs to use
the “right harmonics” for the job.

(2) One goes from Deligne’s Theorem to the average Sato-Tate law in two
steps. One is fairly easy: from the identification of the Haar measure on
SU(2)! as the Sato-Tate measure, we see that to prove the “vertical direc-
tion” (with a € Fpv with v — 400), it is sufficient to show that K = SU(2)
for the Kloosterman sheaf HC(2;p) of Example 10. In turn, this means
that we must show that G = G8°™(HK(2;p)) is equal to SL(2). Now, this
monodromy group is given a priori as an algebraic subgroup of GL(2), since
HIC(2; p) is of rank 2, and as stated in Example 27, its connected component
of the identity is semisimple. One can show that these conditions only leave
the possibilities G D SL(2), or G finite. One can show that the second al-
ternative does not hold,?® and moreover check that the determinant of this
Kloosterman sheaf is trivial (because the product of the two eigenvalues is
1), so that G = SL(2), as desired.

23 This is not obvious, of course, but roughly it would imply that the Kloosterman
sums are “much simpler than expected”, and satisfy unrealistic properties — which can
indeed be disproved.
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Dealing with the horizontal direction of the average Sato-Tate law (as we
stated it originally in Example 4) requires a more careful proof of Deligne’s
Theorem, leading to a uniform version over varying primes. The point
is that, once we have computed that the geometric monodromy group of
HIC(2;p) is SL(2) for all (odd) primes p, we can reproduce the argument in
the proof while keeping track of the dependency on p: for any m > 1, one
gets

1 . /P
p_]-‘az‘:x TI'(Sym OH]C)(Frwp) < p— 1 X (ho(p) + hl (p))

where
h'(p) = dim H.(G,,, Sym™ oHK(2;p))

(the main term is dealt with, uniformly, because the monodromy group
turned out to be independent of p). The main point is the dependency
on p, which is a non-trivial issue because the sheaves involved depend on
p. We refer to [14, Ch. 11, 13] for statements bounding the dimensions**
of these cohomology spaces (valid in the greater generality of families of
Hyper-Kloosterman sums).

6. SOME RECENT APPLICATIONS

We present here a few fairly recent works involving Deligne’s Equidistri-
bution theorem and the Riemann Hypothesis.

Example 31 (The Larsen alternative). The main step in applying suc-
cessfully Deligne’s Equidistribution Theorem is often the computation (if
possible!) of the geometric monodromy group. Thanks to fairly recent de-
velopments, there are now very concrete criteria to do this in some cases.

Consider a lisse sheaf p of rank r satisfying the assumptions of Theo-
rem 28, and let G = G8°°™(p). For integers k > 1, define

1

My(p,v) = o | Tr p(Fry )",
‘V(FQV)‘ CEE‘/'(ZF(IV) 7
My(p) = lim My(p,v).

By Deligne’s Theorem and the definition of equidistribution, we know
that the limit exists and is given by the average

Mi(p) = /K | Te(6) [Fdyure (6),

in other words, it contains some basic information on the geometric mon-
odromy group, through the subgroup K.
Larsen’s Alternative is the following remarkable statement:

Theorem 32 (The Larsen Alternative). Suppose one knows that G =
G&°™(p) is infinite. Then the following holds:
(1) If My(p) =2, then SL(r) C G, and SU(r,C) C K.

24 Dimensions of cohomology spaces are commonly called Betti numbers.
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(2) If r = 2g is even, r > 3, and there exists a non-degenerate alternating
pairing with respect to which G C Sp(2g), and if My(p) = 3, then G =
Sp(2g) and K = USp(2¢g,C).

(3) If r = 3 and there exists a non-degenerate symmetric pairing with
respect to which G C O(r), and if My(p) = 3, then SO(r) C G and
SO(r,C) C K.

In other words, if G&*°™(p) is not finite, one can check that it is one of
the three “big” monodromy groups of Example 27 by “simply” computing
My(p). The point of this is that, if p was defined so that the summands
Tr(p(Fry g )) are themselves concrete exponential sums, it is sometimes pos-
sible to use this expression to perform this computation by the standard
analytic tool of expanding the fourth power, and exchanging the order of
summation.

It is equally remarkable that the proof of Theorem 32 is, in fact, not
very difficult (see [13], and see [12] for very general contexts in which the
computation of My is possible).

Consider, as an example, the average Sato-Tate conjecture again. For
p =HK(2;p), we find that by definition (using the fact that the Kloosterman
sums are real) that

M4('O’V):pul_1p;l/ S <Z G(W>>4

p
aEF:,, mEF:,,

and it is a classical computation (due, in fact, to Kloosterman, see, e.g., [10,
§4.4]) that

3v 2v

—3p —p¥ -1
p31/ —pv
confirming that G is either finite, or contains SL(2, C).

Furthermore, part of the beauty of the Larsen alternative is that it is
quite amenable to numerical check: in many cases, one can compute an
“empirical” fourth moment My (p, ) for a given family of (say) exponential
sums and v small; if this is found to be close to the expected value (2 or 3),
there is strong reasons to believe that this identifies the relevant monodromy
group (up to the finite indeterminacy noticed above). Of course, proving

that this is so might be more difficult...

2
My(p,v) = 2

— 2= M4(p)a

Example 33 (Symmetry examples). We give examples of families with
each of the three “big” symmetry types (Example 27). These (and similar)
examples are related to the conjectures relating L-functions and Random
Matrix Theory, as explained in detail in [18]. In each case, we look for
concreteness and simplicity, and select examples of 1-parameter families:
there are many more (and more general) examples known!

— [Unitary symmetry] Examples of unitary monodromy are given by some
of the Kloosterman sheaves HK(n;p) of rank n (Example 23). Indeed,
Katz [14, 11.1] proved that the corresponding geometric monodromy group
is SL(n) if n and p are both odd. Concretely, by general facts about equidis-
tribution, this means in particular (after the horizontality is taken care of,
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as Katz does) that
{H K(n;a,p)

p(n—1)/2 | a€ F;}

becomes equidistributed on [—n,n] with respect to the image by the trace
Tr : SU(n,C) — [—n,n] of the Haar measure of SU(n, C).

— [Symplectic symmetry] Symplectic monodromy occurs in families of al-
gebraic curves. For example, let ¢ be odd and let g > 1 be given. Fix a
polynomial f € F,[X] which is monic, squarefree, and of degree 2g. Then
consider the algebraic curves with equation

Cr:y’ = f(z)(z—1t)

where ¢ is a parameter which is not a zero of f. This condition defines
an algebraic variety U/F, (the complement of the zeros of f; it is smooth,
connected, geometrically irreducible). For each v > 1 and t € U(Fy), we
obtain a smooth projective algebraic curve C; J/F g of genus g (by adding
a point at infinity to Cy), with an L-function as in Example 16. From the
general machinery, Katz and Sarnak [18, §10.1] show that there exists a lisse
sheaf pf ;1 of weight 1 on U/F, such that

det(1 - Tps1(Frig,,)) = L(Cy, T) = det(1 — TF | H'(Cy, trivial)).

The functional equation of the L-functions reflects the fact that there
exists a non-degenerate alternating pairing on the cohomology group for
which F' acts as a symplectic similitude; after renormalizing, they obtain a
sheaf py of weight 0 such that

det(1 — Tps(Fryp,,)) = L(Cy,q "/*T),

and then they show that p¢(m1(U)) C Sp(2g), and indeed they prove that

(25) GE"(py) = Sp(29).
As a corollary, for instance, one gets
1
T det(1 = ps(Frop, )" — / det(1 — g)*du(g)
[U(Fgv )] teU (Fyv) USp(29,C)
q

G
(20 =

as v — 400, for any fixed integer k£ > 1 (the last formula being a result of
Keating and Snaith; recall that (2j — 1)!!=1-3--- (2§ —3)- (25 — 1)).
— [Orthogonal symmetry] The simplest examples of orthogonal symmetry
are given by twists of elliptic curves over functions fields. The basic theory,
which we illustrate here, is again due to Katz [17] (there is also a short
survey in [20]).

For any odd prime power ¢ > 3, any integer d > 1, consider the elliptic
curves over the field Fy(t) which are given by the Weierstrass equation

E,:9?=@1—dt —1—2)x(z+ 1)(z +1)
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where z € F is a parameter such that z is not a critical value of td—dt—1,
i.e., not a value of this polynomial at a root of the derivative; again this
condition defines a parameter algebraic variety U/F, (which depends on d).

Katz shows that there exists a lisse sheaf pg1 on U/Fy, of rank 2d and
weight 2, such that the associated L-function (which is defined by the “stan-
dard” Euler product over prime ideals in F[t], with suitable ramified factors,
as for L-functions of elliptic curves over Q) is of the form

L(E,,T) =det(1 —Tpg1(Fr.r,))-

After normalization, one obtains as before a sheaf py of weight 0, and
the theory provides a non-degenerate symmetric pairing for which py takes
value in O(2d). Then, for d > 146 at least and provided (p — 1,d —1) =1
and p1d(d—1)(d+ 1), Katz proves that G&°°™(p,) = O(2d).

As a cautionary tale, here is an example with finite monodromy (see [12,
Remark 3.8.3] for a few more). Consider p = 5 and exponential sums of the
type

S = 3 e(TH(f()/5)
z€F,
where ¢ = 5 and f € Fy[X] is monic of degree 3. There is an algebraic
variety D3 /F5 parametrizing the polynomials f, and a sheaf p3 of weight 0
and degree 2 such that

Tr(p3(Frys)) = iifz)

for v > 1 and f € D3(F5v). Katz shows that the corresponding G&*°™ (p3)
is a finite group (but has My(p3) = 2).

Example 34 (Sieve and families of L-functions). A variant of Deligne’s
Equidistribution Theorem is a very general version of the Chebotarev density
theorem. This corresponds to the study of the distribution of p(Frs ) for
a homomorphism p of the type

p:m(V)— G,

where G is a now an abstract finite group (not necessarily seen as a subgroup
of a matrix group). In that situation, there is no problem of continuity or
difficulty with comparison of ¢-adic and complex fields (all data involved
involves only algebraic numbers). Because of the uniformity and control
afforded by the Riemann Hypothesis, which is applied to sums of the type

Z Trrp(Fryq),
IEGV(Fqu)

one can prove very explicit and uniform results (in terms of the group G
and even of V/F, see, e.g., [20]).

This type of equidistribution results, in turn, can be combined with
ideas of sieve theory to study certain arithmetic properties of families of
L-functions over finite fields given by

det(1 — Tp(Fryq))

for some lisse sheaf p over V/F,. Those, in many cases (families of curves,
for instance) are integral polynomials, and (following a question of Katz that
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was first solved qualitatively by N. Chavdarov), one may ask, for instance,
whether they are irreducible? Another arithmetic question which has at-
tracted some interest is whether the order of the group of F-rational points
of the Jacobian is sometimes a prime number (or an almost prime)?

The basic tool is the existence (in some circumstances) of homomorphisms

pe : m(V) — GL(r,Fy)
for every prime ¢ # p, such that
det(1 — Tpy(Fry gv)) = det(l — Tp(Frzq)) (mod £),

for every x € V(Fy ). Controlling the distribution of the Frobenius under
pe, with sufficient uniformity with respect to ¢, and applying various sieve
techniques leads to many interesting applications.

We illustrate this with one particular result which is especially concrete;
it is found (together with further discussion and applications) in [19, §§],
and uses the families of curves in the symplectic symmetry example above.

Theorem 35. Let ¢ # 1 be a power of an odd prime. Let f € Fq[X] be
squarefree of degree 2g for some integer g > 1. Consider the family of curves
of genus g given by Cy : y?> = f(x)(z —t), and its L-functions

L(Cy) = Pi(Cy) = H (1 —ay ;T), where oy j| = /q.
1529

Then
|{t € F, | Pi(Cy) has “small” Galois group}| < g*q' =
for some vy =~ 1/4¢2, and some absolute implied constant.

The meaning of “small” is the following: the existence of g pairs of roots
aj, ap with aja, = g implies that the splitting field of L(C}) must have
Galois group G isomorphic to a subgroup of the group Wa, of signed per-
mutation matrices of size g (i.e., matrices in GL(g, Z) where there is a single
non-zero element in each row and column, and this element is either 1 or
—1). To say that L(C}) has small Galois group means that G; is a proper
subgroup of Wa,.

A crucial input to this result is a deep fact, due to J-K. Yu (and recently
reproved in greater generality by C. Hall [8]): for the relevant py, the group
pe(m1(V)) is (isomorphic to) the group Sp(2g, Fy) for all £ # 2, p. The sym-
plectic nature of the polynomials shows this is as large as it can be. Although
this is a finite-level analogue to the computation of geometric monodromy
groups (25), this is in fact significantly more difficult: for instance, for every
m > 1, the group

{A € 5p(29,Z;) | A=1(mod (™)}

has Zariski closure Sp(2g), but of course is trivial modulo ¢. So the theorem
of Yu must manage to eliminate this type of possibilities.

Example 36 (A problem of harmonic analysis). Here is a very recent exam-
ple due to Bombieri and Bourgain [1], involving “classical” character sums.
We select it (among many applications of the Riemann Hypothesis) to il-
lustrate once more how it sometimes can be applied for problems which
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seem apparently very remote — maybe this will help readers feel some of the
same surprise which must have surrounded the discovery of the link between
exponential sums and algebraic geometry...

In 1980, Kahane had proved the existence of trigometric polynomials P,
of degree n with coefficients of modulus 1, i.e.,

Py(6) = ) Pu(m)e(mb),  |Py(m)| =1,
m=0

such that
1P, (0)] = v+ O(n?>7 7 flogn), forall § € R,

thereby confirming a conjecture of Littlewood (and disproving one of Erdds).
His methods were probabilistic and did not allow the explicit construction
of P,.

In [1], Bombieri and Bourgain give an explicit construction of P,, having
the required property (with the exponent 1/2—1/17 replaced by 1/2—1/9+-¢
for all € > 0). One of their tools [1, §21] (by no means the only one!) is an
estimate (with optimal cancellation) for the character sums [1, p. 689]

S(ao,asm) = > xow)e("7) 1 (o)) (LA,

(y,2)EFp X Fg Jj=1 p

where a; € Z, g and the f; are integral polynomials with simple roots (and
g is non-constant, deg(f;) < 2). In fact, Bombieri and Bourgain [1, Lemma
33] prove that

S(a;p) < pIt+9/2,

the implied constant depending only on d and deg(g). Interestingly, their
proof is an “elementary” argument based on the cohomological formalism
and the Riemann Hypothesis,?” which (in view of the fact that the number
of variables is arbitrarily large) is a striking illustration of its power, and
its versatility when combined with other tools (and certainly with clever
ideas)...

7. PROBLEMS AND SPECULATIONS

To conclude this survey, we list — rather briefly — some problems and con-
jectures surrounding the Riemann Hypothesis over finite fields, emphasizing
those closely connected to practical problems in analytic number theory.

— What happens when we consider character sums with “large degree”,
where the (known) degree of the L-function overwhelms the saving from
the Riemann Hypothesis? For instance, consider a character sum

> A5

1<osp P

25 They also note that Katz has given a faster argument when deg(g) > 1 + d, using
more algebraic geometry.
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where f € Z[X] is such that deg(f) > p'/2. The Riemann Hypothesis gives
only (via (20)) the bound

Y (M) < e v

1<z<p

which is worse than triviall There have been quite a few investigations of
such problems, in particular due to Bourgain, Konyagin, Heath-Brown, and
these have shown that this type of questions is closely related to additive
combinatorics and the sum-product phenomenon, for instance. However,
no precise link between these results and the (still existing!) cohomological
representation seems to be known. (See, e.g., [2]).

— What are general, uniform bounds, for the sums of Betti numbers C
(see (21)) occurring in the rough bound (20)? In particular, how does this
vary with p for sheaves of rank > 1, and is there a good theory of algebraic
sums over the integers that explains the various uniformity statements which
are known empirically (such as the bounds for Deligne-type character sums)?
See the survey of Katz [15] for some speculations on this problem.

— Related to the previous item is the general question of understanding
families of L-functions over finite fields when the base field (i.e., ¢) is fixed,
but one has a sequence of sheaves with growing rank. The basic example
here is that of families of curves with increasing genus, and in particular one
can ask about the limiting behavior of the central value of the L-function of
hyperelliptic curves given by equations

Cr:y® = f(x)

where f runs over the set Hy(F,) of monic squarefree polynomials in F,[X]
of degree 2g + 1, the limit considered being g — 400 (see the introduction
of [18] for some discussion). There are conjectures about this problem,
which are related to conjectures concerning moments of the Riemann zeta
function (due to Keating-Snaith), but despite the availability of the Riemann
Hypothesis, not much more is known, e.g., about the asymptotic behavior
as g — +oo of

1
§ L —1/2\k
‘Hg(Fq” ‘ (Cf7q )’ I
feHy(Fq)

for k > 1. (Compare with the vertical limit (26)).

However, there is one special case that is much easier: in the 0-dimensional
case (Example 15), it is possible to understand for instance the order of the
pole at T' =1 of the zeta function of a 0-dimensional variety defined by the
equation f(z) =0, f € Fy[X], with ¢ fixed and deg(f) — 400 (see (15)),
which (for f squarefree) is just the number of irreducible factors of f. We
refer to [21] for a study of this question, where random permutations and
probabilistic models of divisibility by fixed irreducible polynomials combine;
the structure of the asymptotic formulas obtained closely parallels the con-
jectures for L-functions.

— Many conjectures about the distribution of Frobenius conjugacy classes in
an “horizontal” direction remain very mysterious, the prototypical example
being the horizontal Sato-Tate conjecture: in the notation of Example 4,
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are the angles

{Op1 €[0,7] | p<a}
equidistributed with respect to the Sato-Tate measure as © — 4007 (Here
we fix the parameter a as p varies, instead of averaging over it). This is
an example where we do not have, a priori, a fixed “source group” II; with
Frobenius classes Fr,, and homomorphism

p I} — GL(2,k)

with Tr(p(Frp)) = HK(2;1,p). So there is not even a good reason to expect
equidistribution with respect to a measure with group-theoretic origin.?%

The strongest result in this direction is a theorem of Duke, Friedlander
and Iwaniec (see [11, Cor. 21.9]), who (using spectral theory of automorphic
forms for GL(2) and sophisticated sieve methods) have solved the analogue
conjecture for the Salié sums defined by

Z (g)e<a} + j)7 (%) the Legendre symbol.

:JcEF;f b b

However, Salié sums are much simpler than Kloosterman sums from the
cohomological point of view — this translates into the equidistribution mea-
sure being the Lebesgue measure, instead of the Sato-Tate measure —, so this
does not give much hint about the way to proceed for Kloosterman sums.
— Finally, a vexing philosophical question: can one make the theory “easier
to apply”? This is not merely a reflection on the mathematical complexity
(or sophistication) of the cohomological framework, which in some ways is
probably, in fact, as simple as it can be; rather, it has more to do with the
lack of any direct link between a result like the wonderful upper bound

L(1/2, xa) < |d|/5F¢, for all € > 0,

where Y is a real primitive character modulo d (which is due to Conrey and
Iwaniec [3]), and the — crucial — estimation of the character sums

> Ayl + D+ D)e(=)

z,yeF,

(where x # 1 is a multiplicative character modulo p) which enters in the
proof.
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