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1. Introduction

The following question is somewhat implicit in parts of [K1]: let Y be a non-empty finite
set, let ν : Y →]0, 1] be a probability density on Y , i.e., a map such that∑

y∈Y

ν(y) = 1,

and let L2(Y, ν) denote the finite-dimensional Hilbert space of complex-valued functions on
Y with the inner product

〈f, g〉 =
∑
y∈Y

ν(y)f(y)g(y).

Then, how small can we make the L∞ norms

‖ϕ‖∞ = max
y∈Y
|ϕ(y)|

of the elements of a given orthonormal basis of L2(Y, ν)?
More formally, we are attempting to compute the quantity

M∞(Y, ν) = min
B

max
ϕ∈B
‖ϕ‖∞,

where B runs over all orthonormal basis of L2(Y, ν). Note that this is indeed a minimum,
since the set of all B’s is compact (being an orbit of the unitary group of the inner product).
Denoting

ν− = min
y∈Y

ν(y),

we will show in Section 2 that

M∞(Y, ν) =
1√
|Y |ν−

.

Once the question is phrased, it is also natural to consider infinite-dimensional Hilbert
spaces, such as L2([0, 1], ν), where ν is a positive integrable function with total mass 1, and
the inner product is

〈f, g〉 =

∫ 1

0

f(t)g(t)ν(t)dt.

Of course in this context, not all orthonormal basis consist of bounded functions, but some
are, and finding the “most” efficient is again a fairly natural questions. We show in Section 4
that the situation is very different then and that, in most reasonable cases, a space of the
type L2([0, 1], νdt) has an orthonormal basis where all elements are of (constant) modulus 1.
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2. Best bounds for finite-dimensional spaces

In this section, we assume that Y 6= ∅ is finite, and ν is as in the introduction, and we
will compute the value of M∞(Y, ν) in terms of ν.

For this, we start with a lower bound which is “local” in the sense of using only the
normalization condition of the norm, not the global feature of an orthonormal basis.

Lemma 1. For any Y and ν, we have ‖f‖∞ > 1 for any function f with L2-norm equal to
1. In particular, we have M∞(Y, ν) > 1.

Proof. This is simply because, for any element f ∈ L2(Y, ν) with norm ‖f‖ = 1, we have

1 =
∑
y∈Y

ν(y)|f(y)|2 6 ‖f‖2∞
∑
y

ν(y) = ‖f‖2∞.

In other words: the norm of the identity mapping L∞(Y )→ L2(Y, ν) is at most 1 (in fact,
as is well known, it is equal to 1), hence

‖f‖ 6 ‖f‖∞
for any function f on Y . �

Here is on the other hand an upper bound for M∞(Y, ν) coming from an explicit choice of
basis.

Proposition 2. For any non-empty Y and ν, we have

M∞(Y, ν) 6
1√
|Y |ν−

,

where
ν− = min

y∈Y
ν(y).

In fact, for any fixed y0 ∈ Y , there exists an orthonormal basis B of L2(Y, ν) such that for
all ϕ ∈ B we have

|ϕ(y)| = 1√
|Y |ν(y)

6
1√
|Y |ν−

, for all y ∈ Y,(1)

ϕ(y0) =
1√

|Y |ν(y0)
.(2)

Proof. Start with the uniform density case ν = νu, given by

νu(y) = 1/|Y |
for all y ∈ Y . Using an arbitrary bijection

σ : Y → Z/|Y |Z,
such that y0 7→ 0, we derive an isometry between L2(Y, νu) and the Hilbert space of functions
on the finite abelian group Z/|Y |Z with the normalized counting measure (or pedantically the
probability Haar measure). This allows us to transport to L2(Y, νu) the basis of characters

ψa :

{
Z/|Y |Z→ C

x 7→ e(ax/|Y |)
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for a ∈ Z/|Y |Z (as is traditional, we write e(z) = exp(2iπz) for z ∈ C). All those functions
have L∞ norm equal to 1, and in fact, are of constant modulus, and are equal to 1 at the
origin 0, so the basis functions ϕa(y) = ψa(σ(y)), satisfy

|ϕa(y)| = 1, ϕa(y0) = 1,

for all a and y ∈ Y .
Now to treat the general case to the uniform density, we simply consider the obvious

isometry {
L2(Y, ν)→ L2(Y, νu)

f 7→ f
√
|Y |ν

If we take an orthonormal basis B of L2(Y, νu) with each element of constant absolute
value 1, and evaluating to 1 at y0, as given above, we find that

B∗ = {ϕ/
√
|Y |ν}ϕ∈B

is an orthonormal basis of L2(Y, ν) such that (1) and (2) hold. �

Note that this upper bound already shows that

M∞(Y, νu) 6 1,

and therefore there is equality by the first lemma. However, it is not immediate that the
basis above is optimal for a general non-uniform choice of ν: the isometry we used only
implies a priori that

M∞(Y, νu) >
1√
|Y |ν+

where ν+ = max ν(y). Note that (by positivity) the relation

1 = ‖1‖2 =
∑
y∈Y

ν(y)

also implies that

ν− 6
1

|Y |
6 ν+

with equality for one of these if and only if there is equality for both, and if and only if
ν = νu. So if ν is not the standard uniform density, the upper bound of the Proposition is
strictly larger than the trivial local lower bound.

It turns out however that the upper bound is the right one.

Proposition 3. Let Y and ν be as above. We have

M∞(Y, ν) =
1√
|Y |ν−

,

Here is an amusing corollary:

Corollary 4. Let Y and ν be as above. If there exists an orthonormal basis B such that
|ϕ(y)| is constant for all ϕ ∈ B, then ν = νu.
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Indeed, the constant modulus must necessarily be one, hence

1 = M∞(Y, ν) =
1√
|Y |ν−

so we have ν− = |Y |−1, which shows that density must be the uniform density.

Proof. We consider the linear identity isomorphism

L2(Y, ν)
i−→ L∞(Y )

and proceed to compute its norm in two different ways. First of all, geometrically, the norm
of i is simply the radius of the smallest ball (centered at 0) in the L∞-norm containing the
unit ball in L2(Y, ν). Since the latter, seen in R2|Y |, is an ellipsoid with semiaxis lengths

given by 1/
√
ν(y), y ∈ Y (each repeated twice for real and imaginary parts of evaluation at

y), we have

(3) ‖i‖ =
1
√
ν−

(if this is not obvious, we will recover it more analytically later).
Now we try to compute ‖i‖ using expressions of elements of L2(Y, ν) in terms of an

arbitrary orthonormal basis B. For any function f on Y , we write

f =
∑
ϕ∈B

cϕϕ, where cϕ = 〈f, ϕ〉,

hence by Cauchy’s inequality we obtain

‖f‖∞ 6
∑
ϕ∈B

|cϕ|‖ϕ‖∞ 6
(∑
ϕ∈B

‖ϕ‖2∞
)1/2(∑

ϕ

|cϕ|2
)1/2

=
(∑
ϕ∈B

‖ϕ‖2∞
)1/2

‖f‖,

and it follows that

(4) ‖i‖ 6
(∑
ϕ∈B

‖ϕ‖2∞
)1/2

.

This means that

(5)
∑
ϕ∈B

‖ϕ‖2∞ >
1

ν−

and hence there exists some ϕ ∈ B such that

‖ϕ‖∞ >
1√
|B|

1
√
ν−

=
1√
|Y |ν−

.

Thus we have M∞(Y, ν) > (|Y |ν−)−1/2, and with Proposition 2, this concludes the proof.
�

Remark 5. For certain orthonormal basis, there is equality in (5). Namely, assume B∗ is an
orthonormal basis for which there exists y ∈ Y and α ∈ R such that

(6) ϕ∗(y) = ‖ϕ∗‖∞e(α)
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for all ϕ∗ ∈ B∗ (i.e., evaluation at a single point computes all L∞-norms, up to a phase which
does not depend on ϕ∗; we say that such a basis is “peaked”). Then defining f by means of
the expansion

f =
∑
ϕ∗∈B∗

‖ϕ∗‖∞ϕ∗,

we have for all x ∈ Y the upper bound

|f(x)| 6 |f(y)| = e(−α)f(y) =
∑
ϕ∗∈B∗

‖ϕ∗‖2∞,

i.e., there is equality in the previous computation. This means that

‖i‖ =
( ∑
ϕ∗∈B∗

‖ϕ∗‖2∞
)1/2

for any peaked orthonormal basis. In particular, the right-hand side is independent of the
choice of such a basis B∗.

The second part of Proposition 2 exactly states that there exists a peaked orthonormal
basis B∗ where

‖ϕ∗‖∞ =
1√
|Y |ν−

,

for ϕ ∈ B∗, the peak point being any y ∈ Y such that ν(y) = ν− (and α being 0). We
therefore derive again (3) by computing:

‖i‖2 =
∑
ϕ∈B∗
‖ϕ∗‖2∞ = |Y | × 1

|Y |ν−
=

1

ν−
.

In fact, we can remark that a peaked orthonormal basis B is characterized by the formula

1

ν−
= ‖i‖2 =

∑
ϕ∈B

‖ϕ‖2∞

which seems quite a bit “softer” than the definition.
Indeed, if (4) is sharp coming from B, there must (in particular) exist some f 6= 0 and

some y ∈ Y such that

‖f‖∞ = |f(y)| =
∣∣∣∑
ϕ

cϕϕ(y)
∣∣∣ =

∑
ϕ

|cϕ||ϕ(y)| =
∑
ϕ

|cϕ|‖ϕ‖∞.

Moreover, cϕ 6= 0 for all ϕ, since otherwise Cauchy’s inequality leads to a better estimate for
‖f‖∞ than the one desired, so the last equality requires that

|ϕ(y)| = ‖ϕ‖∞
for each element of the orthonormal basis, and the last but one requires that the phase of
ϕ(y)/|ϕ‖∞ is independent of ϕ.

Remark 6. Is is natural to enquire further about how small ‖ϕ‖∞ may be for elements of
an orthonormal basis of a subspace of L2(Y, ν). This is obviously more delicate because the
lower bound ‖ϕ‖∞ > 1 may be the best possible even for a subspace of dimension > 1. For
instance, it is easy to check that, for any density ν : Y = {1, 2, 3} →]0, 1], one may always
find a function f on Y such that the system (1, f) is orthonormal.
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3. Examples and various types of orthonormal basis

In this section, we consider interesting examples of Y and ν, and, motivated by the previous
section, we introduce different conditions on orthonormal basis of L2(Y, ν), and discuss their
relations.

Let B be an orthonormal basis. We say that B is:
– optimal if it satisfies

(7) max
ϕ∈B
‖ϕ‖∞ = M∞(Y, ν) =

1√
|Y |ν−

;

– pointed if there exists some y ∈ Y such that

(8)
1

ν−
= ‖i‖2 =

∑
ϕ∈B

|ϕ(y)|2,

(we consider this because many examples will appear below);
– peaked if (as already defined) it “computes” ‖i‖ as in the proof of Proposition 3, i.e., we

have

(9)
1

ν−
= ‖i‖2 =

∑
ϕ∈B

‖ϕ‖2∞,

or equivalently, if there exists some y ∈ Y such that |ϕ(y)| = ‖ϕ‖∞ for all ϕ ∈ B, and
ϕ(y)/|ϕ‖∞ = e(α) with α independent of ϕ.

Now we note that if B is optimal, then it must also be peaked: indeed, (7) implies∑
ϕ∈B

‖ϕ‖2∞ 6
1

ν−
,

which combined with the reverse inequality (4) leads to (9). Moreover, since there would be
strict inequality, contradicting (4), unless ‖ϕ‖∞ = M∞(Y, ν) for all ϕ, it follows that a basis
is optimal if and only if the L∞ norm of all its elements is equal to M∞(Y, ν):

Proposition 7. For any non-empty Y and ν, any orthonormal basis B satisfies

max
ϕ∈B
‖ϕ‖∞ >

1√
|Y |ν−

,

and if there is equality, there exists y ∈ Y such that we have

‖ϕ‖∞ = |ϕ(y)| = 1√
|Y |ν−

for all ϕ ∈ B.

An interesting family of examples of non-uniform density arises by taking Y = G], the set
of conjugacy classes of a finite group G, with

ν(y) =
|y|
|G|

for any conjugacy class y ⊂ G. This is not uniform if (and only if) G is not an abelian group.
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The best known orthonormal basis of L2(Y, ν) in this setting is the basis of characters

y 7→ Tr ρ(g)

where ρ runs over isomorphism classes of irreducible linear representations of G and g is any
element of the conjugacy class y.

Since we have

|Tr ρ(g)| 6 dim ρ = Tr ρ(1)

for any y ∈ Y (ρ(g) is always unitary with respect to some inner product on the space of ρ,
hence its eigenvalues are roots of unity, and moreover ρ(1) is the identity), we see that this
orthonormal basis is a peaked basis, and indeed it is well-known that∑

ρ

dim(ρ)2 = |G| = 1

ν−

(the conjugacy class of the identity gives the minimal value ν− = 1/|G|).
IfG is not abelian, there are distinct character degrees, and therefore the basis of characters

is not optimal (showing in particular that a peaked basis is not necessarily optimal). However,
it is a fact that it is fairly close to being optimal in some important cases (see Chapter 5
of [K1]).

Here is the next general family of examples. They are related to the infinite-dimensional
setting of the next section. Let ν : [0, 1]→ [0,+∞[ be a measurable function such that∫ 1

0

ν(t)dt = 1,

and consider the Hilbert space L2([0, 1], νdt). A particular orthonormal basis of this space is
given by the orthogonal polynomials (pn)n>0 associated to ν, which are determined uniquely
by the properties that (pn) is an orthonormal basis, pn is a polynomial of degree n, it has real
coefficients, and positive leading term. Those polynomials are obtained by Gram-Schmidt
orthonormalisation from the (algebraic) basis (xn) of the dense subspace of polynomials (see
for instance [Sz] for the general theory, noting that the basic interval there is [−1, 1] instead
of [0, 1]). Fix n > 1. One of the properties of pn is that it has n distinct real zeros in ]0, 1[,
say

x1 < x2 < . . . < xn,

and that there exist unique numbers λi > 0, 1 6 i 6 n, such that∫ 1

0

p(t)ν(t)dt =
n∑
i=1

λip(xi)

for arbitrary polynomials p ∈ C[X] of degree deg(p) 6 2n− 1. It follows in particular that
if Y = {x1, . . . , xn}, then

B = (p0, . . . , pn−1)

(restricted to Y ) is an orthonormal basis of the finite-dimensional space L2(Y, λ). It turns
out, moreover, that λi may be expressed as follows (see, e.g., [Sz, (3.4.8)]):

1

λj
=

n−1∑
i=0

pi(xj)
2.
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In particular, it follows that 1/λ− can be written

1

λ−
=
∑
ϕ∈B

|ϕ(y)|2

for some y ∈ Y , in other words, the basis B of L2(Y, λ) is pointed. However, simple examples
show that it is not peaked in general (e.g., for ν = 1, where the pn are L2-normalized
Legendre polynomials).

4. Infinite-dimensional examples

In this section we consider the space L2(ν) = L2([0, 1], νdt) where ν is a non-negative
measurable function on [0, 1] with total mass 1, and we wish to investigate how small the
L∞-norms of elements of an orthonormal basis may be. Thus we denote

N∞(ν) = min
B

max
ϕ∈B
‖ϕ‖∞

where B runs over all orthonormal basis of L2(ν), with obvious conventions when ϕ is not
(essentially) bounded.

The proof of the previous section used the finite-dimensionality in two ways: to argue
that ν− > 0, and in the proof of Proposition 3, to compute the norm of the identity map
L2(Y, ν)→ L∞(Y ), which is not a continuous operator in the present case.

On the other hand, notice that Lemma 1 remains valid, in the sense that ‖ϕ‖∞ > 1 for
any L2-normalized ϕ ∈ L2(ν); in fact, it remains true that the embedding L∞ → L2(ν) is
continuous, with norm 1. So N∞(ν) > 1.

It turns out that this lower bound can not be improved in this setting!

Proposition 8. Let ν be of the form ν(t) = φ′(t) for a strictly increasing homeomorphism
φ : [0, 1]→ [0, 1]. Then we have N∞(ν) = 1.

The assumption is of course valid for all but the weirdest functions ν, since one can take

φ(t) =

∫ t

0

ν(u)du

for 0 6 t 6 1, whenever the fundamental theorem of the calculus holds.

Proof. First consider ν = 1, which corresponds to the uniform measure on [0, 1] (i.e.,
Lebesgue measure). Then Fourier series give the well-known orthonormal basis of addi-
tive characters x 7→ e(nx) where n ∈ Z, and those (in perfect analogy with the uniform
measure on finite sets) are uniformly bounded by 1. In particular, we have N∞(1) = 1.

Now the assumption on ν gives the general proof away: the map{
L2([0, 1])→ L2([0, 1], ν)

f 7→ f ◦ φ

is an isometry by the change of variable formula u = φ(t), u′ = φ′(t)dt = ν(t)dt:∫ 1

0

f(u)g(u)du =

∫ 1

0

f(φ(t))g(φ(t))ν(t)dt,
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and moreover it obviously satisfies ‖f ◦ φ‖∞ = ‖f‖∞, so we can transfer the additive char-
acters to obtain an orthonormal basis ϕn(t) = e(nφ(t)) of L2(ν), where all elements have
constant modulus 1. �

Here are some standard examples of orthonormal basis, which shows that such optimal
behavior does not necessarily occur naturally.

Example 9. The Haar system (Hn) is an orthonormal basis of L2([0, 1]) constructed as
follows: let H1 = 1 and for n > 1, write (uniquely) n = 2k + j for some k > 0 and
1 6 j 6 2k, and then let

Hn =


2k/2, if 2j − 2 < 2k+1t < 2j − 1,

−2k/2, if 2l − 1 < 2k+1t < 2j,

0, otherwise

One has ‖Hn‖∞ = 2k/2 ≈
√
n for n = 2k + j.

Example 10. We come back to orthogonal polynomials, as described in the previous section.
Let (pn) be the sequence of orthogonal polynomials associated to L2([0, 1], νdt). In [Sz, Ch. 8]
are found a number of upper bounds for |pn(t)|, hence for ‖pn‖∞ (taking care to renormalize
the interval from [−1, 1] of [Sz] to [0, 1]).

If we take for instance ν = 1, the orthogonal polynomials are, up to constants, the classical
Legendre polynomials (Pn)n>0; more specifically, we have

pn(t) = 2

√
n+

1

2
Pn(2t− 1)

where

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n

is the Legendre polynomial as usually defined (orthogonal on [−1, 1] for Lebesgue measure).
Since |Pn| is maximal and equal to 1 at ±1, we obtain

‖pn‖∞ = 2

√
n+

1

2

for n > 0. This gives another example of orthonormal basis with unbounded L∞-norms,
while N∞ = 1.

Example 11. Examples of distinguished orthonormal basis in infinite-dimensional cases are
given by considering a compact connected Riemannian manifold M of dimension n > 1,
with normalized volume 1, and choosing (ϕj)j>0 which are eigenfunctions of the associated
Laplace operator ∆M , ordered so that

∆Mϕj = λjϕj

with increasing eigenvalues
0 = λ0 < λ1 6 λ2 6 · · ·

(where λ0 = 0 because constant functions are square-integrable in the compact case, and
λ1 > 0 because M is connected). Note that if there are only strict inequalities (i.e., no
multiple eigenvalue), such a basis is unique up to multiplying each ϕj by a complex number
with modulus 1.
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There is considerable interest in understanding the L∞ norms of such eigenfunctions; see
Sarnak’s letter to Morawetz [Sa] for a survey of some basic questions. If M is a torus,
then there is usually high multiplicity (linked to numbers of representations of integers by
quadratic forms), but one can use additive characters to obtain a basis which is of con-
stant modulus one. On the other hand, for spheres (with constant curvature metric), the
eigenfunctions are also fairly explicit, and their L∞ norms are known to increase with the
eigenvalue. The most interesting (remaining) case concerns hyperbolic surfaces; it is then
expected that

‖ϕj‖∞ � λεj
for j > 1 and any fixed ε > 0 (the implied constant depending on ε and M), but the best
currently known is due to Iwaniec and Sarnak and gives

‖ϕj‖∞ � λ
1/4−1/12
j

(the bound 1/4 is “generic”, valid for any M in dimension 2). In the direction of lower
bounds, Milicevic proved (using the “méthode d’écrémage” of Soundararajan) that

‖ϕj‖∞ � exp
( log λj

log log λj

)
for infinitely many j.

It is also interesting to note (in the general case) that although “pointed” and “peaked”
basis do not make sense here, if we fix x ∈ M , a theorem going back to Carleman in the
simplest case states that ∑

j6N

|ϕj(x)|2 ∼ N

as N → +∞ (recall the normalization is that the volume of M is 1; this is known as the
“local Weyl law”). This can be thought as being an analogue of (8).
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