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ABSTRACT. We study the arithmetic Fourier transforms of trace functions on general connected
commutative algebraic groups. To do so, we first prove a generic vanishing theorem for twists
of perverse sheaves by characters, and using this tool, we construct a tannakian category with
convolution as tensor operation. Using Deligne’s Riemann hypothesis, we show how this leads to a
general equidistribution theorem for the discrete Fourier transforms of trace functions of perverse
sheaves, generalizing the work of Katz in the case of the multiplicative group. We then give some
concrete examples of applications of these results and raise a number of questions.
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Preface

The Fourier transform, and the whole collection of its variants whose study is summarized
under the heading of “harmonic analysis”, is one of the most important tools of mathematics. In
its many forms, its applications cover the whole range not only of mathematics, but also physics,
computer science, chemistry and indeed of all sciences where quantitative tools are applied.

In 1976, P. Deligne observed in a letter to D. Kazhdan (which is reproduced in Appendix D)
that the formalism of algebraic geometry, and especially of ¢-adic cohomology and the derived
category of f-adic sheaves, provided a new “geometric” form of the Fourier transform. Instead of
the familiar integral formula

f@>=/;fukz%”%m

associating to a function f (say f: R — C in the Schwartz space) its Fourier transform f, Deligne’s
version takes as input an f-adic constructible sheaf M, or a complex of those, on the one/:dimensional
affine space over a finite field k of characteristic p, and outputs a Fourier transform M which is of
the same kind.

We note that although the most general and convenient category of input objects M, which
we will also call “coefficients”, is given by the formalism of derived categories of f-adic complexes
with ¢ prime different from p, there is a simpler definition in the case considered here, where M can
(in almost all cases) be thought of as being a continuous finite-dimensional representation

o+ Gal(k(T)**/k(T)) — GL-(Qy)
of the absolute Galois group of the field k(T) of rational functions with coefficients in k.

The crucial point for the interpretation of this construction as a Fourier transform is that to
each object M is associated classically a sequence of “trace functions”, which are functions

tm(kn): by — C~Qy

defined on the finite extensions k, of k of degree n, for all integers n > 1, and Deligne’s Fourier
transform then satisfies

tm(y; kn) = Z tai (2 kn)eZi”Trkn/Fp(xy)/P‘
z€kn

Thus, the trace functions of M coincide with the discrete Fourier transforms of those of M.

Deligne’s Fourier transform shares many features with the classical euclidean Fourier transform,
once properly interpreted in terms of the coefficients M. For instance:

— It satisfies a form of the Fourier inversion formula
f@) = | Fapemvay,
R

in the sense that applying the (similarly defined) analogue of the inverse Fourier transform
to M recovers M.



— It satisfies analogues of the Plancherel formula, which are however less obvious: one inter-
pretation is that if the representation ¢ above is irreducible, then so is the representation
associated to M.

~

— It satisfies a geometric analogue of the fundamental algebraic relation f = f g, which
relates the Fourier transform and the convolution product

(f*9)(a /f — y)dy

of functions (this property is often taken as the key feature of Fourier analysis and espe-
cially Pontryagin duality [14]). Indeed, to two coefficients M; and Ms, another geometric
construction associates a third one Mg, such that the trace function of M3 is given by

tMS ﬂf k Z tMl ya tM2( y’ kn)7
YyEkn

the discrete convolution of those of M; and Ms.

— And there is a subtle analogue, due to Laumon, of the stationary phase principle for
estimating oscillatory integrals.

There are however also special features related to the geometric nature of trace functions:

— Deligne’s Fourier transform preserves a particularly important subcategory of coefficients,
that of perverse sheaves — this extremely important fact has no obvious classical analogue.

— If a coefficient object M is a perverse sheaf, and hence also its transform 1\7[, then one
can associate to it a natural intrinsic symmetry group, also called its monodromy group,
which is an algebraic group over Q, (or over C). The definition of this group can be
seen as a wide-ranging generalization of that of the Galois group of a polynomial. (In the
one-dimensional case, where M can be identified, in most cases, with a Galois representa-
tion o: Gal(k(T)*/k(T)) — GL,(Qy) as above, this symmetry group is nothing but the
Zariski-closure of the image of p.)

Deligne’s Fourier transform has found a number of very important applications in arithmetic
and algebraic geometry, as well as number theory. In the former direction, Laumon [98] used it
to obtain a product formula for the epsilon factors of Artin-type L-functions on curves over finite
fields. In number theory, Katz used it extensively to study in depth the distribution properties
of families of exponential sums, which are obtained as discrete Fourier transforms of simple trace
functions (see, for instance, [68] and [69]); the symmetry group of the Fourier transform M plays
an essential role here. A prominent example of such sums are the Kloosterman sums

Kl (a: p) = Z (x+ax>

z€Fy

which are the values of the trace function of the Fourier transforms of a one-dimensional Galois
representation, and are omnipresent in modern analytic number theory (here and below, we use
the notation e(z) = exp(2inz), and  is the inverse of x modulo p). Results about these and similar
sums, which often rely on properties of the /-adic Fourier transform, have by now become essential
in many fundamental results of analytic number theory — some concrete examples appear in Zhang’s
famous work on bounded gaps between primes | , Lemma 12], and systematic use of the Fourier
transform begins in various papers of Fouvry, Kowalski and Michel (see, for instance, [41]).

Deligne’s transform is the geometric analogue of the classical euclidean Fourier transform on R
and can be generalized to n variables. But, in recent years, a number of applications have led
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to questions concerning similar properties of other discrete Fourier transforms, for instance those
related to the multiplicative group k,<, which are functions on the group of multiplicative charac-
ters x: k — Q. The study of the distribution, or average properties, of these sums is outside of
the realm of applications of Deligne’s Fourier transform, and these functions cannot be expressed
as trace functions of complexes of ¢-adic sheaves on an algebraic variety over k.

The fundamental motivation for this book is the search for a definition of the analogue of
Deligne’s Fourier transform on an arbitrary commutative algebraic group over a finite field, and
for the general theory and applications of this form of harmonic analysis. In particular, we believe
that these arithmetic Fourier transforms can be interpreted in the context of much more general
arithmetic or geometric avatars of harmonic and functional analysis.

The basic examples of commutative algebraic groups are the multiplicative groups (or tori),
and abelian varieties, and these can be combined (together with additive groups) in various ways.
The choice of an input object M on such a group G leads to its arithmetic Fourier transforms,
which are the functions of the form

(k) = D x(@)tal@; k),
2€G(kn)

defined for any n > 1, where the parameter y ranges over characters of the finite group G(k,).

The simplest example beyond the additive case is that of G(k,) = kS, in which case the
characters are multiplicative characters of k,, and ta is called an arithmetic Mellin transform.
N. Katz, in a striking breakthrough, succeeded a few years ago in finding an interpretation of these
functions in his book [74]. He exploited the formalism of tannakian categories, and the fact that
the convolution product extends to any commutative algebraic group: given coefficients M; and Ms
on G, there exists a geometrically-defined object M3 such that, for all n > 1 and = € G(k,), their

respective trace functions satisfy

tags (ikn) = >ty (U3 o)ty (2 Bn).
yeG(kn)

Although Katz’s interpretation of the arithmetic Mellin transforms is not fully geometric (there
is no analogue of the object M which “is” Deligne’s Fourier transform for the additive group), Katz
shows that it is enough to define a symmetry group for the arithmetic Mellin transform. In combi-
nation with another fundamental tool, Deligne’s general form of the Riemann hypothesis over finite
fields [28], this allowed Katz to prove an equidistribution theorem which controls the distributions
of arithmetic Mellin transforms. A number of significant applications followed, including the work
of Keating and Rudnick [80] and Hall, Keating and Roditty-Gershon [56].

One of the main theoretical achievements of this book is the extension of these ideas of Katz to
any connected commutative algebraic group. This is far from routine, since certain necessary tools,
such as generic cohomological vanishing, or estimates for Betti numbers, which are very elementary
in the case considered by Katz, were not known previously for groups of dimension at least 2.
Indeed, we rely in an essential way on the very recent quantitative sheaf theory due to Sawin [115]
(which was partly motivated by this work and drafted in final form jointly with the authors).

For any suitable coefficient object on the group G, our construction provides the fundamental
invariant of its arithmetic Fourier transform, its intrinsic symmetry group. Combined again with
other tools such as Deligne’s Riemann hypothesis over finite fields, this is already sufficient to
prove a very general form of equidistribution theorem, which encompasses the previously known
cases of Deligne and Katz (and in fact sharpens these in certain aspects). In turn, we can use this
equidistribution theorem for a number of first applications, including strengthening and simplifying
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the results of [56]. But there remain also many open questions and problems, both on the theoretical
side and on that of applications — we will discuss briefly some of these at the end of this book.

After this preface, the book will continue with a more technical introduction, which contains
precise statements of some of the key results and a quick description of some of the crucial points
which are involved in the proofs. We then split the remainder of the book in two parts, one
containing the main theoretical results, and the other devoted to a variety of applications. These
are complemented by appendices recalling important material, and Deligne’s letter to Kazhdan. A
more precise outline of each chapter will be found at the end of the introduction.

Readers with a background in analytic number theory who are not familiar with the theory of
trace functions and the underlying geometric objects are invited to first read Appendiz E, where we
attempt to present them in a concrete and intuitive way.
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Introduction

1. Statement of results

Since Deligne’s proof of his equidistribution theorem for traces of Frobenius of ¢-adic local sys-
tems on varieties over finite fields [28], it has been known that any family of exponential sums
parameterized by an algebraic variety satisfies some form of equidistribution, and that the con-
crete expression of this equidistribution statement depends on the determination of the geometric
monodromy group of the ¢-adic sheaf that underlies the family of exponential sums.

The best known result of this kind is probably the computation by Katz [68] of these monodromy
groups in the case of Kloosterman sums in several variables over finite fields, which are defined for
some fixed non-trivial additive character ¢: Fg — C* and a € F as

1
Kl (a;q) = (D2 Z Yz + -+ ).
(iL‘l,...,Z‘m)E(F; )m
Tl Tm=a
This computation led him in particular to the proof of the average version of the Sato—Tate law
for classical Kloosterman sums, namely the equidistribution of the sets {Kla(a;q) |a € F; '} with
respect to the Sato—Tate measure on the interval [—2,2] as ¢ — +0o among prime powers. Further
deep investigations by Katz, especially in his monograph [69], provide a cornucopia of examples of
equidistribution statements.

Among other things, this framework allows for the study of exponential sums of the form

SOM,9) = Y tar(a; Fgn (),

:EGFqn

where ty1 is the trace function of a perverse sheaf M on the additive group G, over F, and
ranges over characters of Fyn. These sums are the discrete Fourier transform 1 — S(M, ) of the
function z — tyi(z,Fgn) on the finite group Fyn = G4(Fyn), and the key point is that they are
themselves the trace functions of another perverse sheaf on the dual group parameterizing additive
characters, namely Deligne’s Fourier transform of M.

In a more recent conceptual breakthrough, Katz [74] succeeded in proving equidistribution
results for families of exponential sums parameterized by multiplicative characters, despite the fact
that the set of multiplicative characters of a finite field F; does not naturally arise as the set
of F,-points of an algebraic variety. In analogy with the above, such sums are of the form

SM,x) = > tu(z; Fon)x(a),

xeF:n

except that M is now a perverse sheaf on the multiplicative group G,, over F; and x ranges
over characters of F;n. Katz’s beautiful insight was to replace points of algebraic varieties by
fiber functors of tannakian categories as parameter spaces, and produce the groups governing
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equidistribution by means of the tannakian formalism (see [43] for an accessible survey). Further
work of Katz generalized this to elliptic curves [76] and certain abelian varieties (unpublished).

The primary goal of this book is to extend these ideas to exponential sums (arith-
metic Fourier transforms) parameterized by the characters of the points of any con-
nected commutative algebraic group over a finite field.

More precisely, let k be a finite field and k an algebraic closure of k. For each n > 1, we
denote by k, the extension of k of degree n inside k. Let £ be a prime number different from the
characteristic of k and Q, an algebraic closure of the field of /-adic numbers. Let G be a connected
commutative algebraic group over k. We denote by (A}(/cn) the group of Q,-valued characters
of G(ky,,) and, for each x € é(k‘n), by .2, the f-adic lisse character sheaf of rank one associated to x
by means of the Lang torsor construction, as briefly recalled in Section 1.6. By perverse sheaves,
we always understand Q,-perverse sheaves.

In rough outline, we establish the following types of theoretical results:

— We prove generic and stratified vanishing theorems for the cohomology of twists of perverse
sheaves on G by the sheaves %) associated to characters x € G(ky).

— Using the stratified vanishing theorems, we construct a tannakian category of perverse
sheaves on G with the convolution coming from the group law as tensor product.

— We prove that the tannakian group of a semisimple object M of this category that is pure
of weight zero controls the distribution properties of the sums

S(M7X): Z tM(.CL‘;k‘n)X(Q?),
2€G(kn)

where y ranges over the set (A}(k:n) Under some assumptions on G (e.g., for tori and abelian
varieties), we prove the stronger result that the unitary conjugacy classes of which these
sums are traces become equidistributed in a maximal compact subgroup of the tannakian
group as n — 400, as is customary since Deligne’s work.

Once this is done, we provide a number of applications, both of a general nature and for concrete
groups and perverse sheaves.

The following statements are special cases of our main results, which we formulate in simplified
form in order to make it possible to present self-contained statements at this stage.

THEOREM 1. Let M be a perverse sheaf on a connected commutative algebraic group G of
dimension d over a finite field k.

(1) (Generic vanishing) The sets
X (kn) = {x € G(k») | H.(G;, M ® %) = H(GE, M ® .%,) = 0 for all i # 0
and HY(Gj, M ® %, ) is isomorphic to H(Gz, M ® %)}
are generic, in the sense that the estimate
G(kn) = 2 (kn)| < [kn|*

holds for n > 1, with an implied constant that only depends on M.
(2) (Stratified vanishing) For —d < i < d and n > 1, the estimate

(€ Glka) | HUGEM® 2) 0 0r H (G, M & 2,) # 0} < [
holds, with an tmplied constant that only depends on M.
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The most general vanishing statements that we prove appear as Theorems 2.1 and 2.3. Appli-
cations to “stratification” estimates for exponential sums are then given in Chapter 6.

REMARK 1. (1) With variations in the definition of generic set of characters, such statements
were proved by Katz—Laumon [77] for powers of the additive group, Saibi [112] for unipotent
groups, Gabber—Loeser [50] for tori, Kramer-Weissauer [93], Weissauer [127] for abelian varieties
and Kréamer [90] for semiabelian varieties (see Remark 2.2 for more precise references).

(2) In characteristic zero, and especially over the complex numbers, theorems of this type have
also been proved for abelian and semiabelian varieties by Schnell [116], Bhatt—Scholze—Schnell [9]
and Liu-Maxim—-Wang [102] (see also [101] for a survey of some applications of such results). Over
arbitrary algebraically closed fields, there has also been recent works of Esnault and Kerz [36].

(3) In contrast with the case of abelian varieties, lack of properness and wild ramification
phenomena are the reason one must formulate conditions on cohomology groups both with and
without compact support.

Using the vanishing theorems, and ideas going back to Gabber—Loeser and Katz, we can con-
struct tannakian categories with the convolution on G as tensor operation. Using these, and
Deligne’s Riemann hypothesis over finite fields, we obtain the following equidistribution theorem
for the Fourier transforms of trace functions on G, i.e., for families of exponential sums parameter-
ized by characters of G.

THEOREM 2 (Equidistribution on average for arithmetic Fourier transforms). Let G be a
connected commutative algebraic group over k. Let M be a geometrically simple ¢-adic perverse
sheaf on G that is pure of weight zero, with complez-valued trace functions ty (- kyn): G(k,) — C
forn > 1. There exists an integer r > 0 and a compact subgroup K C U,.(C) of the unitary group

such that the sums
SM,x) = Y tu(w;kn)x(@)
2€G(kn)
for complex-valued characters x of G(ky,) become equidistributed on average in C with respect to
the image by the trace of the Haar probability measure p on K. That is, for any bounded continuous
function f: C — C, the following equality holds:

. 1 1
(1) dB S 3 ey S S0 - [ #r)duta),

1<n<N

where x runs over all characters of G(ky,).

The general version of this theorem appears as Theorem 4.8. Under an additional assumption
(which holds for tori, abelian varieties and Gy, at least), we can also deduce it from Theorem 4.11,
which is a more precise equidistribution result for unitary conjugacy classes of Frobenius in the
compact group K. (The difference between these two statements is similar to that between the
Frobenius equidistribution theorem for cycle types of Frobenius classes in the Galois group of a
polynomial, viewed as a permutation group, and the more precise Chebotarev density theorem.)

REMARK 2. (1) In the classical setting of G, and the Fourier transform, the group K is a
maximal compact subgroup of the arithmetic monodromy group of the (lisse sheaf underlying
the) ¢-adic Fourier transform of M (see Proposition 3.33).

Note that this is in contrast with more usual versions of Deligne’s equidistribution theorem,
without the extra Cesaro average over n, where the focus is on the geometric monodromy group
(see, e.g., the versions of Katz [68, Ch.3] and Katz—Sarnak [78, Ch.9]). This slight change of
emphasis extends to the general situation, and means that we can avoid additional (necessary)
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assumptions such as the equality of the geometric and arithmetic monodromy groups, which occur
frequently otherwise (see, e.g., [68, §3.3]), and are not always easy to check.

The Cesaro average can of course be interpreted as a form of “smoothing” (a “summation
method” in the classical terminology). Although it is quite natural, it can be replaced by many
others (see Remark 4.7).

(3) We will also discuss a “horizontal” version, where we consider suitable families (M), of
perverse sheaves over F, for primes p — 400. However, such results depend on a more quantitative
version of the stratified vanishing theorem, which we have not established in full generality yet.

(4) As already mentioned, this equidistribution theorem is essentially Deligne’s equidistribution
theorem on average for the f-adic Fourier transform of M when G = G,. When G is the multi-
plicative group (or its non-split form), one obtains (an average version of) Katz’s equidistribution
theorem [74]. In [76], Katz proves a similar theorem for elliptic curves.

(5) The assumption that G is connected arises from the fact that the Lang torsor construction
is only applicable in this case. For the purpose of equidistribution results, however, one can easily
handle a non-connected algebraic group by considering one by one the restrictions to the neutral
component of G of the objects ([z — ¢~ 12]*M), where ¢ runs over representatives of the connected
components of G. (Note that different connected components might give rise to exponential sums
with different distributions.)

ExXAMPLE 1. A simple concrete class of examples where we obtain equidistribution statements
is the following (in the case when G is not an abelian variety): assume that k = F),, and let d be the
dimension of G; then for any non-constant function f: G — A, there exists a perverse sheaf M ¥
on G with trace functions

(—1)4 (Tprn/Fp(f(w)))

tar (23 Fpr) = pdf2 € D

for all n > 1 and # € G(Fp») (where e(z) = exp(2inz)), so that Theorem 2 shows that the

exponential sums
1 Trg,. /v, (f(2))
2 xwe(—EE)

z€G(Fpn) p
(which are intuitively sums over d variables) become equidistributed on average, with limiting
measure of a very specific kind. Specializing even more to G = GZ,, the function f is a Laurent
polynomial in x1, ..., z4 and their inverses, and these exponential sums become the sums

Tr X
pnldm S i) Xatwae( £/, (J >>)

y p
xl,...,xdEFpn

parameterized by a tuple (xi,...,Xxq) of characters of F;n.

As a further concrete application, we will see how to deduce statements like the following, which
considerably strengthens earlier work of Hall, Keating and Roddity-Gershon [56].

THEOREM 3 (Variance of the von Mangoldt function of the Legendre elliptic curve). Let k be
a finite field of characteristic > 3. Let & be the Legendre elliptic curve with affine model

v =z(z —1)(z —t)
over the field k(t). Let Mg/ be the von Mangoldt function of &, defined by the generating series

L’(é(’/k; de



over monic polynomials g € klt].

Let f € E[t] be a square-free polynomial of degree > 4 and set B = k[t]/fk[t]. Let m > 1 be an
integer. For any a € B>, consider the sum

ve(mif,a) = Y Agpp(9)
deg(g)=m
g=a (mod f)

over monic polynomials g € k[t] of degree m. Then the following equality holds:

1 1 1 2
li _— : - CF D
|k‘i>njoo k|2 |BX| ag;‘w@@(m, fra) B¥| E e (m; f, )‘

beBx
= min (m, 2deg(f) — 2+ deg ged(¢(t — 1), f)).

The meaning of the above limit is that we replace k by its extensions k, of degree n > 1,
compute the variance for the base change of & to k, (note that B depends on k, so it is also
replaced by ky[t]/fkn[t]), and let n — +o00. This theorem is proved at the end of Chapter 10.

REMARK 3. The version in [56] requires the assumptions deg(f) > 900 and ged(t(t—1), f) =t.
We have greatly relaxed the former condition and fully removed the latter, which was recognized
as being quite artificial (see [56, Rem. 11.0.2]). These improvements are due to the consideration
of the problem in its natural setting, involving characters of a torus of dimension deg(f), whereas
the authors of [56] used cosets of a one-dimensional torus together with Katz’s work on Gy,.

We also give a proof of an unpublished theorem of Katz [73] answering a question of Tsimerman
about equidistribution of Artin L-functions on curves over finite fields.

THEOREM 4 (Katz). Let C be a smooth projective geometrically connected curve of genus g > 2
over a finite field k and let D = > n;x; be a divisor of degree one on C. For each geometrically
non-trivial character o: m1(C)*® — C* of finite order satisfying || o(Fry (g 2,)" = 1, we write its
normalized Artin L-function as

L(e, T/+/|k|) = det(1 — TO¢/p, )
for a conjugacy class ©¢yy, , in the unitary group Uzy o(C).

(1) If C is non-hyperelliptic and (29 —2)D is a canonical divisor on C, then the classes Oc¢y o
lie in SUyy_o(C) and become equidistributed with respect to the image on the space of
conjugacy classes of the Haar probability measure of SUg,_o(C).

(2) If C is hyperelliptic, the hyperelliptic involution has a fized point O € C(k) and D = O,
then the classes Ocy, , lie in USpy,_o(C) and become equidistributed with respect to the
1mage on the space of conjugacy classes of the Haar probability measure on USpQQ_Q(C).

See Chapter 11 for the proof of this result, as well as some more general statements (including,
in Theorem 11.5, a result where the algebraic group G occurring may involve abelian, toric and
unipotent parts).

2. Outline

In this section, we present the plan of the book, and we sketch one of the main ideas of the
proof of Theorem 2, in order to point out the key difficulties for groups of dimension bigger than
one, which are solved using Sawin’s quantitative sheaf theory [115].

The book is organized as follows:



— In Chapter 1, we state some preliminary results; these include a survey of the formalism of
quantitative sheaf theory [115], as well as basic structural results concerning commutative
algebraic groups and character sheaves.

— In Chapter 2, we prove the generic and stratified vanishing theorems for commutative
algebraic groups over finite fields. The very rough idea is to prove a relative version of
the vanishing theorems for the various basic types of commutative groups, with a good
control of the implicit constants. These relative statements are of independent interest.
For example, in the case of tori, Gabber—Loeser [50] prove the stratified vanishing theorem
as stated above only under the assumption that resolution of singularities over & holds for
varieties of dimension up to that of the torus. We remove this assumption using alterations.
For abelian varieties, we extend Weissauer’s work [127] by proving a relative version of
the theorem, which relies on Orgogozo’s work [109] on constructibility and moderation.

— In Chapter 3, we construct a suitable tannakian category of perverse sheaves on a commu-
tative group over a finite field with convolution as tensor operation, and establish its basic
properties, as well as those of the corresponding tannakian monodromy group. We will
see that some subtleties arise when defining “Frobenius conjugacy classes” corresponding
to characters of G.

— In Chapter 4, we combine these two ingredients to establish a number of “vertical” equidis-
tribution theorems; there are some issues when we want to refine the statements at the
level of conjugacy classes (related to those of the previous sections), which we are not
currently able to solve in full generality, although we can always establish equidistribution
for the characteristic polynomials.

— The beginning of Part 2 introduces a selection of first applications of a general nature.
These include the following:

(1) the definition of the analogue of the L-function for arithmetic Fourier transforms,
which is used to study finite tannakian groups over abelian varieties (Chapter 5);

(2) a stratification result for exponential sums, similar to those of Katz, Laumon and
Fouvry, although currently often restricted to the “vertical” direction (Chapter 6);

(3) a “generic Fourier invertibility” result (Chapter 6);

(4) some preliminary results of independence of ¢ for the tannakian group when working
with perverse sheaves which are part of a compatible system (Chapter 7);

(5) various results of “Diophantine group theory”, where averages of exponential sums
are related to invariants of the tannakian group; this includes in particular Larsen’s
alternative, but also some criteria to recognize the exceptional group Eg (Chapter 8).

— Chapters 9, 10 and 11 contain applications to concrete cases. The algebraic groups involved
are, respectively, the product G, x G, higher-dimensional tori, and jacobians of curves, as
well as the intermediate jacobian of a smooth cubic threefold (where the relevant tannakian
group is Eg, as first shown in the complex setting by Kramer).

— In Chapter 12, we list some open questions and problems. The title “Much remains to be
done” paraphrases Katz ([74, p. 18]).

— Finally, we include appendices to survey the basic theory of perverse sheaves (Appendix A),
as well as to recall the most important results of Katz concerning the arithmetic Mellin
transform on G,,, (Appendix B) and the product formula of Laumon for the epsilon factor
of L-functions over finite fields (Appendix C). In Appendix D, we reproduce, with Deligne’s
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permission, the letter to Kazhdan in which the ¢-adic Fourier transform was first discussed.
To conclude, we attempt to sketch the intuitive nature of the theory of general trace
functions, to provide some intuition for analytic number theorists in Appendix E.

We now survey the key analytic step in the proof of Theorem 2 (see Proposition 4.12).

By fixing an isomorphism ¢: Q, — C, we can work with trace functions and characters with
values in Q. The first step, following from the generic vanishing theorem, will be to prove that

there exist subsets % (k,) C G(ky) of characters and conjugacy classes Ok, (x) in some unitary
group U, (C) such that Tr(Onk, (X)) = S(M, x) holds for all x € # (k) and

|2 (kn)| ~ |G (k)]
as n — +00. The second step (an application of the theory of tannakian categories) will be an

intrinsic a priori definition of the compact group K for which equidistribution should hold.

By (essentially) the Weyl criterion for equidistribution, Theorem 2 will follow from the proof
that, for every non-trivial irreducible representation g of the unitary group U,(C), the limit

. 1 1
Jim 2 Y i X @)

1<n<N "L NEeW (kn)

exists and is equal to the multiplicity of the trivial representation in the restriction of ¢ to K. Now,
the tannakian formalism associates to each g a perverse sheaf o(M) on G such that the equality

TTQ(@M,kn(X)): Z X(CC)tQ(M)(fE;kn)

z€G(kn)
holds for n > 1 and x € # (k,). The Grothendieck—Lefschetz trace formula yields then the equality
(2) Y X@)tgan(@ika) = Y (=1) Tr (Fry,, | HL(G, o(M) ® 2))
z€G(kn) l7l<d

for n > 1 and any character x of G(ky,), where Fry, is the geometric Frobenius automorphism.

The definition of the set #(k,) implies the property that for y € #(k,), the only possibly
non-zero term in the right-hand side of (2) is the one with j = 0. Thus we have

> TroOme, ()= >, Tr(Fry, |H(GE, oM) & .Z,)).
XEY (kn) XEY (kn)
If we add to the right-hand side of this last expression the two sums
> Tr(Fry, | HAGy, o(M) ® £)),
x¢Y (kn)

= 3 3 (1T (Fry, | HA(GR o(M) © 2)),

1<ljl<d x ¢ (kn)

then the resulting quantity is

S (1 Te (Fr, |H(Gr oM @.24)) = > > x(@)tpom (@ kn)

l71<d xeG(kn) x€G(ky) €G(kn)
= Z tow) (73 k) Z x(z)
x€G(kn) x€G(kn)

= |G(En)| oo (1; kn)
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by the trace formula again, followed by an exchange of the sums and an application of the orthog-
onality of characters of finite abelian groups. This is a single value of the trace function, and it is
relatively straightforward to show that it gives the desired multiplicity as limit. So the key difficulty
is to control the two auziliary sums S1 and Ss.

This can be done if:

(1) We have some bound on the size of the individual traces Tr ( Fry,, | HZ(G,;, o(M) ® Z,));

(2) We have some bound on the number of characters x such that H’(Gj, o(M) @ Z,) can be
non-zero in a given degree j.

The second bound is given by the stratified vanishing theorem for o(M). For the first, Deligne’s
Riemann hypothesis (see Theorem A.19) implies the inequality

| Tr (Fry,, | HL(Gg, oM) ® Z))| < [kal 9=/ dim H(Gy, o(M) @ 2),

and we see that we require a bound on the dimension of the cohomology spaces, which should be
independent of x. We obtain such bounds as special cases of Sawin’s quantitative sheaf theory [115],
which is a quantitative form of the finiteness theorems for the six operations on the derived category
of f-adic sheaves on quasi-projective algebraic varieties.

REMARK 4. If G is one-dimensional, then the Euler—Poincaré characteristic formula (see The-
orem C.2) easily implies precise bounds on the dimension of the cohomology spaces that arise, and
hence this critical issue does not arise for the additive or multiplicative groups, or for elliptic curves
(for such groups, Theorem 1 is also straightforward). It also does not arise if the set of “good”
characters % (k,,) is the whole group G(ky), which is the case in some instances considered by Katz
for higher-dimensional abelian varieties.

3. Conventions and notation

We summarize the notation that we use, as well as some typographical conventions that we
follow consistently unless otherwise specified.

Given complex-valued functions f and ¢ defined on a set S, we write f < g if there exists a
real number C > 0 (called an “implicit constant”) such that the inequality |f(s)| < Cg(s) holds for
all s € S. We write f < g if f < gand g < f. If f and g are defined on a topological space X,
and § is a filter on X, then we say that f ~ g along § if limg f(x)/g(x) = 1.

For any complex number z, we write e(z) = exp(2inz); the value e(a/q) is well-defined for ¢ > 1
and a € Z/qZ.

By a wvariety over a field k, we mean a reduced separated k-scheme of finite type. In particular,
an algebraic group, as opposed to a group scheme, is always supposed to be reduced, and hence
smooth if the field k is perfect.

Let S be a scheme. We say that a pair (X, u) is a quasi-projective scheme over S if X is a
scheme over S and u is a locally-closed immersion u: X — Pg for some integer n > 0. We call n the
embedding dimension of (X, u), or simply of u, and we say that u is a quasi-projective embedding
of X. When S is the spectrum of a field £ and X is a variety over k, we will speak of quasi-projective
varieties over k. In some cases, we omit the mention of u, when it is clear from the context which
locally-closed immersion is used. By a morphism f: (X,u) — (Y,v) of quasi-projective schemes
over S, we mean an S-morphism of the underlying schemes.

An algebraic group G over an algebraically closed field of characteristic zero is called reductive
if all its finite-dimensional representations are completely reducible (that is, we do not require G
to be connected).

12



Let X be a scheme and ¢ a prime number invertible on X.

By a Q,-sheaf on X, we always mean a constructible étale Q,-sheaf. Perverse sheaves (when X
is an algebraic variety defined over a field k) are always considered with respect to the middle
perversity. We include a short survey of the most important properties of perverse sheaves in
Appendix A, but recall here some of the definitions. An f-adic complex is said to be semiperverse
if the inequality

dim supp 7 (M) < —i

holds for any integer 4. This is equivalent to asking that the perverse cohomology sheaves P.#(M)
are zero for ¢ > 1 (see [8, Prop.1.3.7]).

We say that a complex M in D2(X, Q) has perverse amplitude [a, b] if its perverse cohomology
sheaves P.22'(M) are zero for i ¢ [a, b].

A stratification 2 of X is a finite set-theoretic partition of the associated reduced scheme X4
into non-empty reduced locally-closed subschemes of X, called the strata of Z .

Let 2" be a stratification of X, and let .% be an f-adic sheaf on X. The sheaf .% is said to be
tame and constructible along 2" if it is tamely ramified, as in [ , §1.3.1], and if its restriction to
any strat of 2" is a lisse sheaf. More generally, a complex M € DP(X, Q,) is said to be tame and
constructible along 2" if all its cohomology sheaves are tame and constructible along 2.

Let f: X — Y be a morphism of schemes. For an object M of D2(X, Q,), we write RiM = Rf.M
to indicate that the canonical “forget supports” morphism RfiM — R f.M is an isomorphism (and
similarly for equality of cohomology groups with and without compact support).

Let ¢ > 1 and w € Z be integers. A complex number « is called a g- Weil number of weight w
if o is algebraic over Q and all its Galois conjugates have modulus ¢*/2. If k is a finite field, then
a k-Weil number is a |k|-Weil number.

Throughout, for any prime £, we consider a fized isomorphism 1y: Q, — C. Trace functions
of L-adic perverse sheaves are thus always identified with complex-valued functions through tg, and
similarly ¢-adic characters are identified with complex characters. On the other hand, purity of
perverse sheaves (or lisse sheaves or {-adic complexes) refers to purity in the sense of Deligne, i.e.,
pointwise purity means that the eigenvalues of Frobenius are Weil numbers of some weight; see the
survey in Section A.3.

The following notation is used consistently in all the book, although frequently with reminders
(some objects, such as character sheaves, will be defined later).

— X =Y. difference set (elements of X that are not in Y); also used in scheme-theoretic
settings.

— M|X or Mx: restriction of an object M (or a section of a sheaf) to a subset or subscheme X.
— |X]|: cardinality of a set X.

— 7(x,%): (unnormalized) Gauss sum attached to a multiplicative character y: k% — Q,”
and an additive character ¢: k — QZX for a finite field k, i.e.

(3) (66 = Y x(@)(@).

ek

~ DB(X) = DB(X,Q,): category of bounded constructible complexes of Q,-sheaves on a
scheme X such that the prime £ is invertible in X.

13



K(X) = K(X, Q,): the Grothendieck group (or ring) of D2(X); it has a basis consisting of
classes of simple perverse sheaves (see [98, §0.8]).

ad¢e; for k a finite field and o an f-adic unit, the f-adic sheaf of rank 1 on Spec(k) on which
the geometric Frobenius acts by multiplication by «; more generally, for f: X — Spec(k)
a scheme over k, the pullback of ad°8 to X.

M ® N: derived tensor product of objects of D2(X).

MXN: for M an object of D2(X) and N an object of D2(Y), the object piM®p3N on X XY,
where p; and py are the two projections.

Perv(X) = Perv(X, Q,): the category of f-adic perverse sheaves on X. A simple perverse
sheaf will also sometimes be called an irreducible perverse sheaf.

D(M): the Verdier dual of a complex M.

H(M): for M € D2(X), the i-th cohomology sheaf of M.

P (M): for M € DP(X), the i-th perverse cohomology sheaf of M.
HY (M) = H(X, M): the étale cohomology groups of the pull-back of M to X x k.
Hi(M) =

hY(Xz, M) = dim H(Xz, M).

he(Xg, M) = dim H} (X, M).

H* (X}, M) or H7 (X, M): the graded vector space which is the direct sum of all cohomology
spaces H"(Xz, M) or H.(Xz, M).

X (X7, M) or x.(Xz, M): Euler—Poincaré characteristic for cohomology or cohomology with
compact support.

tzm(; ky): Frobenius trace function of an object M of D2(X) for x € X(k,). For z € X(k),
we usually abbreviate it by ty(x) = ty(z; k).

Hi(X,;, M): the étale cohomology groups with compact support of M.

(M): tannakian category generated by M.

G2 (resp. G§°): arithmetic (resp. geometric) tannakian group associated with a perverse
sheaf M.

(A}(kn): group of Q,-characters of the finite group G(ky).

G: disjoint union of the sets G(ky) for n > 1.

[I(G): for a semiabelian variety G, the Q,-scheme of ¢-adic characters of G.
y: character sheaf on Gy, associated to a character x € é(kn)
() for f: X' — Gand x € @(kn), the sheaf f*.Z, on X.

M,: for an object M of D2(G) and a character , the object M ® %, .

Moreover, the following notational conventions will be used (often with reminders).

k: a finite field of characteristic p.

£: a prime different from p.

— k: an algebraic closure of k.

ky: the extension of degree n of k inside k.
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— G: a connected commutative algebraic group (in particular of finite type) defined over k.
— T: a torus;

— U: a unipotent group;

— A: an abelian variety.

— F: a Q-sheaf;

~ & a Q-lisse sheaf of rank one.

— M, N: objects of D?(X) or Perv(X).
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Part 1

Theoretical foundations






CHAPTER 1
Preliminaries

In this chapter, we summarize some tools we use throughout the book, especially the properties
of Sawin’s quantitative sheaf theory [115] with an emphasis on commutative algebraic groups.

1.1. Specializations of perverse sheaves

We will frequently use the following result concerning specializations of perverse sheaves.

PROPOSITION 1.1. Let k be a field, f: Y — X a surjective affine morphism of varieties over k,
and M a perverse sheaf on Y. For all closed points x outside of a closed strict subvariety of X, the
object M| p-1(,)[—1] is perverse on f~!(x).

This follows directly from [82, Ch.III, Lemma6.3].

1.2. Review of quantitative sheaf theory

Let k be a field, k an algebraic closure of k, and £ a prime different from the characteristic of k.

DEFINITION 1.2 (Complexity). Let M, 41,11 be the variety of (n + 1) x (m + 1) matrices of
maximal rank, viewed as an affine scheme over k. For each 0 < m < n, consider a geometric generic
point a,, of M, 14,41 defined over an algebraically closed extension K of k, and let [,,, : P — P%
denote the associated linear map.

(a) The complezity of an object M of D2(P}) is defined as
c(M) = max » A (PE,M®I,,.Q) = max » h(PY,l; M),

os<m<n o<m<n
i€Z 1€Z
where the last equality follows from the projection formula.
(b) Let (X,u) be a quasi-projective variety over k. For any object M of DP(X), the complexity
of M with respect to w is defined as ¢, (M) = c(wM).

The invariance of étale cohomology under base change between algebraically closed fields implies
that the complexity is well-defined (i.e., it does not depend on the choice of fields of definition of
the generic points a,y,).

LEMMA 1.3. Let (X,u) be a quasi-projective variety over k and let M be an object of D2(X).
The following inequality holds:

(1.1) thc(XfwM) < cu(M).
1€Z

PROOF. This follows from the equality h%(Xj, M) = hi(Pg,uyM) and the invariance of étale
cohomology under extension of scalars between algebraically closed fields, combined with the fact
that [,, : P — P} is an isomorphism. O
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DEFINITION 1.4. Let f: (X,u) — (Y,v) be a morphism of quasi-projective varieties over k with
embedding dimensions nx and ny respectively. For all integers 0 < mx < nx and 0 < my < ny,
consider geometric generic points a;y of Muy41,my+1 and by, of My, 11 my+1 defined over an
algebraically closed extension K of k, and let l,,, : P* — PpX and §,, : P> — PLY denote the
associated linear maps. The complexity of f is defined as

Cup(f) = max max Zh (XK, u*la,,, Q@ ffv lbmx*QZ)

0<mx<nx 0<my <

The main result of [115] establishes, among other things, the “continuity” of the six operations
on the derived category with respect to the complexity. In this result and the remainder of this
section, the implicit constants only depend on the embedding dimensions of the quasi-projective
varieties, unless otherwise specified.

THEOREM 1.5 ([115, Th. 6.8, Prop. 6.14, Prop. 6.12]). Let f: (X,u) — (Y,v) be a morphism of
quasi-projective varieties over k. Let M,N, P be objects of D2(X) and let Q be an object of D2(Y).
The following inequalities hold:

(1) cu( M N) < cy(M) + ¢, (N).

(2) ca(M & N) < ca(M)es(N).

(3) If M — N — P is a distinguished triangle, then c,(N) < ¢y, (M) + ¢, (P).
(4) cu(MIE]) = cu(M) for any & € Z.

(5) cu(RHom(M,N)) < cyid(u)cu(M)cy(N).

(6) Cv(Rf' ) < ¢y v(f)cu( ) and Cv(Rf* ) L ey 1d( )Cv,id(v)cu,v(f)cu(M)'
(7) Cu (f Q) L ¢y v(f)cv(Q) and Cu(f Q) < Cu,ld( )Cv,ld(v)cu,v(f)cv(Q)¢

(8) CuIXv(M X Q) < CuRw u(pl)cuﬁv v(pQ)Cu(M)cv(Q)’

In the last of these inequalities, uX v is the composition of u x v with the Segre embedding and
p1, p2 are the projections X X Y — X and X X Y — Y, respectively.

REMARK 1.6. Although the notion of complexity on a quasi-projective scheme (X, u) depends
on the quasi-projective immersion u, note that if v is another quasi-projective immersion of X, then
applying the property (7) to the identity morphism between (X, u) and (X, v), we get

cu(M) < ¢, (M)

for all objects M of D2(X), where the implied constants are essentially ¢, ,(Id) and ¢, ,(Id), up to
constants depending on the embedding dimensions of u and v. Thus, as long as we only consider
on X an absolutely bounded number of different quasi-projective immersions, we can think of the
complexity as being essentially independent of them. (This is reminiscent of similar properties of
height functions in diophantine geometry.)

The complexity can also be used to control the degree of the locus where a complex of sheaves
is lisse, and of the locus where the generic base change theorem holds.

THEOREM 1.7 ([115, Th.6.23]). Let (X,u) be an irreducible quasi-projective variety over k.
Let M be an object of DL’(X). Let 7 be the complement of the mazimal open subset where X is
smooth and M is lisse. Then the estimate

deg(u(Z)) < (3 + s)c(u)cu(M)

holds, where the degrees are computed in the projective space target of u, and s is the degree of the
codimension 1 part of the singular locus of X.
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THEOREM 1.8 ([115, Th.6.27]). Let (X,u), (Y,v) and (S,w) be quasi-projective algebraic va-
rieties over k. Let f: X =Y and g: Y — S be morphisms.

For any object M of D2(X), there ewists an integer C > 0, depending only on c,(M) and the
morphisms (f, g,u,v,w), and a dense open set U C S such that:

(i) The image of the complement of U has degree < C.
(ii) The object fM is of formation compatible with any base change S' — U C S.
PropPOSITION 1.9 ([115, Th.6.15]). Let (X,u) be a quasi-projective variety over k. Let M be

an object of D2(X). For each integer i, let M1, . . ., M; ,, denote the Jordan—Hélder factors of the
perverse cohomology sheaf P2 (M). Then the following estimate holds:

Z Z Cu(MiJ) <<Cu,id(u)cu(M)'

i€Z 1<j<n;

We also recall the quantitative statement of the Riemann hypothesis over finite fields when
interpreted as a quasi-orthogonality statement.

THEOREM 1.10 ([115, Th.7.13(2)]). Let k be a finite field and ¢ a prime different from the
characteristic of k. Let (X, u) be a geometrically irreducible quasi-projective algebraic variety over k.
Let M and N be geometrically simple £-adic perverse sheaves on X that are pure of weight zero,
with complex trace functions tyr and tn respectively. Then the estimate

> ta(@)in(z) < c(u)eu(M)ey(N)|k| 72
zeX(k)
holds if M and N are not geometrically isomorphic, whereas
> (@) = 1+ Olcuwe, (M) [k 772).
zeX(k)

In both estimates, the implied constants only depend on the embedding dimension and are effective.

Finally, we have pointwise bounds for the trace functions.

ProOPOSITION 1.11 ([115, Prop.7.11(2)]). Let k be a finite field and ¢ a prime different from
the characteristic of k. Let (X, u) be a quasi-projective algebraic variety over k, and let M be a non-
punctual simple perverse sheaf on X which is pure of weight zero. For any n > 1 and x € X(k,,),
the following estimate holds:

tM(IL‘; k‘n) < W

1.3. Existence of rational points

The following lemma is standard.

LEMMA 1.12. Let (X,u) be a non-empty quasi-projective variety over a finite field k with
embedding dimension n. There exists a finite extension k' of k with degree bounded in terms
of (dim(X), deg(u(X)),n) such that X(k') is non-empty.

PROOF. Write the variety u(X) as Z—Y for some closed subvarieties Z and Y. Then the degrees
of Z and Y NZ are bounded in terms of ¢,(X) by [115, Lemma6.26], and the result then follows
from the Lang—Weil bound (see [94, Th. 1]) applied to Z and to Y N Z. O
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1.4. Structure of commutative algebraic groups

Let k be a field and let G be a commutative algebraic group over k. The algebraic variety G
is quasi-projective (see, e.g., [22, Prop.A.3.5] or [122, Lemma 0BF7]. We will always assume
that a quasi-projective immersion u of G is given, and the complexity of /-adic complexes will be
understood with respect to u (so that we sometimes write just ¢(M) instead of ¢,(M)). If G is
either a power of G, or of G,,,, we assume that u is simply the obvious embedding in the projective
space of the same dimension. We will on occasion use auxiliary quasi-projective immersions and
rely on Remark 1.6 to compare complexities.

Smooth connected commutative algebraic groups can be built as successive extensions of abelian
varieties, tori, unipotent' and finite commutative group schemes. The most convenient formula-
tion of this fact for us is the following statement, which follows from results of Barsotti-Chevalley
and Rosenlicht (see for instance the account in the book of Brion, Samuel and Umae, combin-
ing [17, Cor.5.5.2] with the structure theorem for connected affine commutative algebraic groups
over perfect fields as a product of a unipotent group and a torus; see, e.g., [16, Th.5.3.1(2)]).

PRroOPOSITION 1.13. Let k be a finite field and let G be a connected commutative algebraic group
over k. There exist an abelian variety A, a torus T, a unipotent group U and a finite commutative
subgroup scheme N of A x U x T, all defined over k, such that G is isomorphic to (A x U x T)/N.

We further recall that a finite commutative group scheme N over a perfect field has a unique
direct product decomposition N = N,. x N; where N, is reduced and N; is local (i.e., equal to its
connected component of the identity; see, e.g., [16, Prop. 2.5.4]).

1.5. Convolution

Let G be a commutative algebraic group over a field k. We denote by
m:GxG—=G, inv:G—G, ecG(k)
the group law, the inversion morphism, and the neutral element respectively.

DEFINITION 1.14 (Convolution). The convolution product and the convolution product with
compact support on G are the functors from DP(G) x D2(G) to D2(G) defined as

M, N = Rm,(M X N), M N = Rmy(M X N)
for objects M and N of D2(G).
If G is projective, then so is the morphism m, and hence the two convolutions agree. In general,
there is a canonical “forget supports” morphism
M % N — M %, N.

We will write M %) N = M %, N when this morphism is an isomorphism.

If u is a quasi-projective immersion of G, then we deduce from Theorem 1.5 (8) that for any
objects M and N, the following estimates hold:

cu(M#, N) < cy(M)eu(N), cu(M# N) < ey (M)eu(N),
where the implied constant depends on G, and is uniform in families (see [115, §6.5]).
For an object M of D?(G), we define
MY = inv* D(M),

n this book, “unipotent” only applies to commutative groups
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where D(M) is the Verdier dual. Since inv* = inv' commutes with D, the functor M — MY is an
involution, in the sense that the functor M — (MY)V is canonically isomorphic to the identity.

We denote by 1 the skyscraper sheaf supported at the neutral element e of G.
The basic formal properties of the convolution products are given by the following lemma;:

LEMMA 1.15. Let M and N be objects of Perv(G). There exist canonical isomorphisms

(1.2) Hom(1,M" %, N) ~ Hom(M, N) ~ Hom(M NV, 1),
(1.3) DM #, N) ¥ D(M) % D(N), D(M # N) ~ D(M) x, D(N),
(1.4 H2 (G, M) g, H2(Gp,N) 2= HE(Gy, My N),

(1.5) H* (G, M) ®q, H*(Gg, N) = H*(Gg, M, N).

In the first isomorphisms, the Hom spaces are taken in the category D2(G).

PRrOOF. All these are consequences of the formal properties of the six operations on D2(G).
More precisely, all can be found in [69, 8.1.8,8.1.9], except for the first statement. This is proved
for tori in [50, p.533]; however, the argument applies verbatim to any G, since it only uses formal
properties of the six operations on D2(G). O

From the adjunctions in (1.2) of Lemma 1.15, we see that for all M € Perv(G), the identity
morphism idy: M — M defines evaluation and coevaluation morphisms

ev: Msxy MY — 1 and coev:1 — MY %, M.

As a consequence of these properties, we note that DE(G) is a symmetric monoidal Q,-linear
category with respect to either the convolution (A,B) — A % B or (A,B) — A %, B,

1.6. Character groups

In this section, we denote by k a finite field, by k an algebraic closure of k, and by k, the
extension of degree n of k in k. Let £ be a prime number distinct from the characteristic of k.

Let G be a connected commutative algebraic group defined over k. For each n > 1, the norm
map is the group homomorphism Ny, /.: G(k,) — G(k) defined as

n—1
N, e(@) = [] Fri, (@)-
=0

For any n > 1, let a(kn) be the group of characters x: G(k,) — Q,. We denote by G the
disjoint union
G=1||G(kn)
n=1

(note that this is not a group; we also omit the dependency on ¢ from this notation).

Given any set S C G, we also define S(kn) =SnN @(kn), so that S is the disjoint union of the
subsets S(ky,).

Since G is geometrically irreducible (see, e.g. , [106, Cor. 1.35]), the estimate
G (k)| = G (kn)| = [k 29 4 O[] /2 ()
holds for n > 1 by the Lang—Weil estimates. If G is an abelian variety, we have more precisely
(K2 = 120D < (G| < (K[/2 o 120 @
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and if G is a torus, then
(k] = 1)@ < |G| < (K] + 1)@,

These can be derived from the computation of the étale cohomology of abelian varieties combined

with the trace formula, or from Steinberg’s formula for tori; see, for instance, [ , Th.15.1,
Th. 19.1] for the case of abelian varieties and [19, Prop. 3.3.5] for the case of tori.
We now recall from [27, Sommes trig., 1.4] the Lang torsor construction and the basic properties

of the associated character sheaves. There is an exact sequence of commutative algebraic groups’

1—Gk) — G -5G— 1,

where £ is the Lang isogeny = + Fry(x)-2~!. The Lang isogeny is a Galois étale covering with Galois
group G(k), and hence induces a surjective map 7¢*(G,e) — G(k). Given a character y € G(k),
we denote by %, the (-adic lisse sheaf of rank one on G obtained by composing this map with y~*
and we say that .2, is the character sheaf on G associated to x.

For € G(k), the geometric Frobenius automorphism at x acts on the stalk of .2, at x by
multiplication by x(z). In particular, the lisse sheaf .Z, is pure of weight zero.

If x is the trivial character, then .7 is the constant sheaf QZ( .

The dual D(Z,) of a character sheaf is isomorphic to £, -1, and for any two characters xi
and 2 there are canonical isomorphisms

L @ Lyy = Lyixa-
If n > 1 and x € G(k,) is non-trivial, then for all i € Z, the cohomology space Hi(Gy, %)
vanishes (see [27, Sommes trig., Th. 2.7%]). More generally, we have the following relative version.

LEMMA 1.16. Let f: G — H be a surjective morphism of commutative algebraic groups over k.
Let x € G(k). The complex Rfi.Z, vanishes unless £, | ker(f)° is the constant sheaf, i.e., unless x
is trivial on ker(f)°.

ProOOF. Let M = Rfi.%,. Let y € H and let z € G be such that f(z) = y. By the proper base
change theorem, the stalk of M at y is given by

My = Hy(f ' ()5 %) = Hi((zker(£)g, Z) = Hi(ker(f)g, [o > z2]" 2| ker(f)).

We write ker(f) as the disjoint union of cosets u ker(f)° where u runs over a set of representatives
of the group of connected components of ker(f). Thus,

H (ker(f)7, [2 = 22" L | ker(f)) = @ HE (kex(f)f, [z = zuz]* L | ker(f)°).

Since %) is a character sheaf, the sheaf [z — zuz]*.%, is geometrically isomorphic to %, so
that we have an isomorphism

My = D H (ker ()}, | ker(f)°),
and the result now follows from [27, Sommes trig., Th. 2.7*] as recalled above. O

2 Note that it is here that the assumption that G is connected plays a role, since in general the image of the
morphism £ is equal to the connected component of the neutral element.
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Letn > 1and x € (A}(k) The base change of .2 to Gy, is the character sheaf on Gy, associated
to the character x o Ny, /i of G(ky). In particular, the trace function of £y on k, is given by

to (w5 kn) = x(Ng, /().
When there is no risk of confusion, we will still denote by .2 the pullback of the character
sheaf associated to x to k. The previous remark shows that x and x o Ny /. give rise to the same
base change to k.

Let f: G — H be a homomorphism of commutative algebraic groups defined over k. For any
integer n > 1, let us denote by f, the induced morphism G(k,) — H(k,); then we have dual
homomorphisms jA}l: ﬁ(kn) — é(kn) defined by x — x o f,. The combination of all these maps
gives a map J?: H— @, which we will often denote simply by x — x o f. We will sometimes say
that a character x € G arises from H if X belongs to the image of f

For x € H(ky), there is a canonical isomorphism jf(x) ~ f* 2.
For any object M of D?(G) and any character x of G(k), we denote by
M, = M® %,
the “twist” of M by the character sheaf .7, .
For all x € G, and all objects M and N of DE(G) (or D2(Gy)), there are canonical isomorphisms

(1.6) D(My) ~ D(M),-1,
(1.7) (My)" =~ (M),
(1.8) (M s, N)y o (M, %, Ny), (M N), =~ (M, * N,).

The first two properties follow from duality from D(%y) = £, -1, and the third from the
projection formula combined with the canonical isomorphism m*.%, ~ .2, X .%,, where p; and p
are the projections G x G — G (see [69, 8.1.10 (4)]).

More generally, for any algebraic variety X over k, any morphism f: X — G, and any object M
of D2(X), we set

M, =M® f*%4,,

and we use the same notation for objects in D2(Gy) and DP(Xy), or in DP(Gy,) and D2 (X, ).

We will extensively (and often without comment) use the following standard lemma.

LEMMA 1.17. Let f: X — G be a morphism from an algebraic variety X to a connected commu-
tative algebraic group G, both defined over k. Let x € G be a character. Then the functor M +— M,
on D2(X) or D2(X}) is t-exact for the standard and perverse t-structures. In particular, if M is
perverse (resp. semiperverse) then so is M.

PRroor. Let i € Z. Since .2, is a lisse sheaf on G, the pullback f*.Z, is lisse on X, and hence
tensoring with f*.%, is exact for the standard t-structure on D2(X) or D2(X}) (i.e., the t-structure
whose heart is the category of constructible sheaves concentrated in degree 0). There are thus
canonical isomorphisms (M ® f*%,) ~ (M) @ f*.%, for all i. Hence, looking at the support,
we see that the functor M — M, is right t-exact for the perverse t-structure. It is also left t-exact
since D(M,) is isomorphic to D(M), -1, hence the result. O

1.7. Complexity estimates for character sheaves

We keep the notation of the previous section. The first essential new ingredient for our work is
the fact that the complexity of character sheaves on G is uniformly bounded.
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PRrROPOSITION 1.18. Let G be a connected commutative algebraic group over k together with a
quasi-projective immersion w. There exists a real number C > 0 such that, for every n > 1 and for
every character x € G(ky,), the inequality c,(%,) < C holds.

PrRoOOF. We will proceed in several steps, first noting that we may assume that n = 1.

(1) If the result is true for the groups G; and Gg, then it is true for their product G = G; x Ga.
Indeed, let p;: G — G; denote the two projections. Since any character y of G(k) takes the
form (z1,22) — x1(z1)x2(x2) for some characters x; of G;(k), the corresponding character sheaf is
the external product .Z, = .2, X.Z,,, which has complexity bounded in terms of the complexity
of .Z,, and that of .Z,,, and hence bounded uniformly by assumption.

(More precisely, this is one case where we use Remark 1.6, since we most easily bound the com-
plexity of .2, X.Z,, with respect to the composition v of the given quasi-projective immersions w1
and ug of G1 and Go and the Segre embedding using Theorem 1.5, as in [115, Prop.6.12].)

(2) If the result holds for a group G, then for any finite subgroup scheme H (defined over k),
the results holds for the quotient G/H (if this quotient is an algebraic group). To see this, we can
further decompose H = H,. x H; where H,. is reduced and H; is local, so that we may assume that H
is either reduced or local. Let v be a quasi-projective embedding of G/H and let 7: G — G/H be
the quotient morphism.

If H is reduced, then 7 is a finite étale covering, so for any lisse sheaf . on G/H, the sheaf .&
is a direct factor of m,m*.%, and we deduce

(L) < ep(mrm* L) K ey (7 L).

This implies the result since 7*.Z is a character sheaf on G if .Z is a character sheaf on G/H.

If H is local, then the quotient morphism 7 is finite and radicial, and hence the adjunction map
L - mat?d = mn*% is an isomorphism (see, e.g. , [47, Cor.5.3.10]). By Theorem 1.5 (6), the
complexity ¢,(Z) = ¢,(mn*.Z) is hence < ¢, (7*.Z), and the result again follows.

(3) The result is valid for tori and unipotent groups. For the former, since complexity is a
geometric invariant, we may assume that we have a split torus, and the result then follows from (1)
and the case of G = Gy, which is established in [115, Prop. 7.5].

Assume then that G is a unipotent group. Let GY be its Serre dual (or more precisely, an
algebraic group model of it; see Section 2.2 for details). There exists a lisse ¢-adic sheaf .Z of rank
one on GY x G such that the character sheaves associated to characters of G(k) are in bijection with
the points a € GY (k) by mapping a € GY (k) to the restriction of the sheaf . to {a} x G. Hence,
by Theorem 1.5, the complexity of any character sheaf of G is bounded in terms of the complexity
of the single sheaf .Z.

(4) The result holds for abelian varieties by [115, Prop. 7.9], since abelian varieties are projective
and any character sheaf is lisse on G.

(5) The general case now follows using the previous results and the dévissage of Proposition 1.13.
This completes the proof of the proposition. O

REMARK 1.19. A potential alternative (more conceptual) approach to this result would be the
following. For a character sheaf . on G, there is an isomorphism

m*' Y ~pi L QpyL
(recall that m is the multiplication map G x G — G). If one could prove directly the estimate

(1.9) (L) < c(pi L @ psL),
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then we would deduce from Theorem 1.5 that
(L) < e(m*Z) < e( L),

and hence ¢(.%) < 1. Note that Proposition 1.18 shows that (1.9) is indeed true, and it is maybe
not out of the question that one could provide a direct proof.

1.8. Arithmetic Fourier transforms

We continue with the notation of the previous section. Given an f-adic complex M in D2(G), we
can consider for any fixed n > 1 the discrete Fourier transform of the trace function = — ty(z; ky,)
on G(ky), which we normalize to be the function from G(k,) to Q,, or C, defined by

X SOMLX) = > x(@)tm(w; kn).

This Fourier transform satisfies the usual formalism of commutative harmonic analysis (see,

e.g., [14]). For instance the Fourier inversion formula
1 .
(1.10) tm(z; kn) = Gl Z S(M, x)x(=)
" XeBkn)

holds for any = € G(ky,), and there is also a Plancherel formula

> Ikl = Gy 2 SO

2€G(kn) x€G(kn)

Putting together the data of these discrete Fourier transforms on G(ky,) for all n > 1, we obtain
what we call the arithmetic Fourier transform of the complex M, an element of the product set

where, for any set X and ring A, we denote by %' (X, A) the A-module of functions f: X — A.

Combining the Fourier inversion formula (1.10) with the known injectivity theorem for trace
functions (see Proposition A.22), we deduce a corresponding injectivity property of the discrete
Fourier transform of complexes:

PROPOSITION 1.20. Let My and My be complexes in D2(G) such that for all n > 1 and all
characters x € G(ky), the equality

D x@twy (k) = Y x(@)ta (w5 k)

2€G(kn) 2€G (kn)
holds. Then the classes of My and My in the Grothendieck group K(G) = K(G, Q) are equal.

REMARK 1.21. In Chapter 6, we will establish a more refined statement where the equality of
discrete Fourier transforms is only assumed to hold for characters in a “generic” set, as described
in the next section.
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1.9. Generic sets of characters

For an arbitrary connected commutative algebraic group, there is no obvious topology (or

measure) on the set G of characters which would lead to a natural notion of sets containing “almost
all” characters. We will use instead the following definition of a generic set of characters.

DEFINITION 1.22. Let k be a finite field and let G be a connected commutative algebraic group
of dimension d over k. Let S be a subset of G.

Let ¢ > 0 be an integer. We say that S has character codimension at least ¢, which we denote
sometimes by ccodim(S) > i, if the estimate

(L.11) IS(kn)| < K[
holds for all integers n > 1.

We say that S is generic if G —S has character codimension at least 1, i.e., if the estimate
(1.12) G (kn)=S (k)| < [k["*~Y
holds for all integers n > 1.

We now discuss the relation between the definition of generic sets and other notions that appear
in the literature, in the case of unipotent and semiabelian varieties.

If G is unipotent, then the set of characters can be identified with the k-points of a k-scheme GV
see again Section 2.2. If S C G is algebraic (i.e., the disjoint union of the sets S(k: ) for some
subvariety S of G), then the condition ccodim(S) > i implies that the codimension of S in G is at
least i. Conversely, if S is a closed subvariety of GV over k, then ccodim(S(k)) > codimgv (S).

Let G be a semiabelian variety over k. Let ¢ be a prime different from the characteristic
of k. The set of f-adic characters of G can be naturally identified with the set of Q,-points of
a Qg-scheme, as we now recall. Let mf(Gj) be the geometric tame étale fundamental group of G
(see, for instance, the paper [81] of Kerz and Schmidt for various equivalent definitions; note that it
is well-known that semiabelian varieties have good compactifications), and let I1(G, Q) be the group
of continuous characters x: 7t (Gz) — Q, . For any n > 1 and x € G(kn), the character sheaf 2
is tamely ramified (indeed, only the case of tori requires proof; since the question is geometric, we
may assume that G = GY, for some integer d > 0, and the result follows by induction from the
well-known case of G, and the multiplicativity of the tame fundamental group [108, Th. 5.1]), and
hence corresponds to a point in II(G, Q,). For each n > 1, this leads to a natural injective map

G(kn) = 11(G, Q).
and we will identify G(ky,) this way with a subset of II(G, Q,).
There is a decomposition
(G, Q) = (G, Q) x II(G, Qy)e,
where TI(G, Q,)y is the group of torsion characters of order prime to ¢ and II(G, Q,), is the group
of characters that factor through the maximal pro-¢ quotient 7} (Gg)e of 74 (Gg). Since 74 (Gg)s is a

free Zs-module of finite rank, by a result of Brion and Szamuely [18], we can identify II(G, Q)¢ with
the Q-points of a scheme II(G)y, following the arguments of Gabber and Loeser [50, Section 3.3].

Letting II(G) be the disjoint union of the schemes II1(G), indexed by x € II(G, Q,)¢, we get
H(Gaaé) = H(G)(Qf)a
and as above we will identify G with a subset of II(G)(Q,).
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Let G’ be a semiabelian variety over k and f: G — G’ a homomorphism. There is a dual
morphism IT(G’) — TI(G), denoted by x + xof; if f is an inclusion, we also write simply xof = |-
The restriction of this map to the subset G’ is the map f: G -G previously defined.

DEFINITION 1.23. Let G be a semiabelian variety over a finite field k, and let ¢ be a prime
different from the characteristic of k.

(1) A subset S C II(G)(Qy) is a translate of an algebraic cotorus (abbreviated tac) if there
exists a surjective morphism 7: Gz — G’ of semiabelian varieties over k, with non-trivial
connected kernel, and a character yo € II(G)(Q,) such that

S={xo-(x'om) eIG)(Q,) | X' € T(G")(Q)}-

We then say that S is defined by the quotient G — G’ and the character xo, and that S
has dimension dim(G%). The kernel of 7 is also called the kernel of the tac. If G and 7
are defined over a finite extension k&’ of k, then we say that S is a tac of Gy.

(2) We say that a subset S C II(G)(Q,) contains most characters if the complement of S is
contained in a finite union of tacs.

(3) We say that a subset S C II(G)(Qy) is weakly generic if it is a generic set in the sense of
the Zariski topology in II(G), i.e it contains a dense open subset of II(G).

By extension, we shall say that a subset S C G contains most characters, or is weakly generic,
if its image in II(G)(Q,) satisfies this property.

REMARK 1.24. (1) The terminology “most” is used by Kramer and Weissauer [93]; Esnault and
Kerz [36] speak of “quasi-linear” subsets. What we call “weakly generic” is usually called “generic”
(see, for example, the papers [93], [90] and [50]).

(2) Let S C TI(G)(Q,) be a subset that contains most characters. The Lang—Weil estimates

imply that SN G is generic in the sense of (1.12). Also, if S C G is a generic set and II(G)(Q,) —S
is not Zariski-dense, then S is weakly generic.

(3) The tac defined by m and x( can also be interpreted as the set of characters y such that the
restriction of x to ker(w) is equal to that of xo.

(4) If a tac S of G has dimension i, then SN G has character codimension > dim(G) — i since
(SN G)(kn)| < |G (Kn)| < |K[™
if S is defined by the quotient G — G’ and the character .

LEMMA 1.25. Let G be a semiabelian variety over a finite field k. Let £ be a prime different
from the characteristic of k. Let1 be a non-empty finite set and let (S;)ie1 be a family of tacs in G,
defined by quotient morphisms m;: Gy — G, i and characters x; € II(G)(Q).

Let K be the subgroup of Gy, generated by the subgroups ker(m;). The intersection S = (\S; is
non-empty if and only if the restriction of x; to K is independent of i.

If this is the case, then S is a tac, which is defined by the quotient morphism w: G; — Gz/K
and any of the characters x;.

ProOF. We write K; = ker(m;) for ¢ € I. Since each K; is connected by definition, the sub-
group K generated by the K; is also connected.

A character y € TI(G)(Qy) belongs to S; if and only if x|k, = xi|k;- If X € S, then the restriction
of x; to K must coincide with the restriction of x to K, and is therefore independent of i.
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Conversely, if this condition is satisfied, then pick any ip € I. The tac defined by G — G;/K
and the character y;, consists of characters y such that x|k = x;,|x. This condition is equivalent
to x|k, = Xio|xk, for all @ € I. Since x;|k, = Xi, |k, this tac is exactly the intersection of the S;. O

1.10. Fourier—Mellin transforms on semiabelian varieties

Let k be a finite field and G a semiabelian variety over k. Let £ be a prime different from the
characteristic of k. We use the notation of the previous section.

We recall here some results of Gabber and Loeser for tori [50], generalized by Kréamer [90] to
semiabelian varieties.

Let R be the ring of integers of a finite extension of Q; and Q¢ = R[7!(Gyz),]. We have
I1(G)¢ = Spec(Q, @r Qa)-
Let p: G — Spec(k) be the structural morphism. We denote by cang the tautological character
cang: 71 (Gg)e — Q.

which defines a lisse Q2g-sheaf of rank one % on G. Given an object N of D2(Gy, R), one defines
the Fourier—Mellin transforms of N, with and without compact support, as the objects

FM(N) = Rp(N ®r -Zc)
FM.,(N) = Rp«(N ®r -Zc)

of the category DY (k, Qq) = Dlgoh(QG)' Inverting £ and passing to the direct limit over all R C Q,
and all x € TI(G, Qy)w, we then get two functors
FM;, FM,: D2(Gg) — Doy (T1(G)),

where DP | (II(G)) is the derived category of the category of coherent sheaves on II(G).

By (the generalization of) [50, Cor. 3.3.2], for an object N of D?(G;) and every x € II(G)(Q,),
viewed as a closed immersion i, : {x} — II(G), there are canonical isomorphisms

Ly FMy(N) ~ Rpi(Ny)  and  Lil FML(N) = Rp.(Ny),

where Li, indicates left-derived functors.

1.11. A geometric lemma

A connected commutative algebraic group G is said to be almost simple if it has no proper
connected closed subgroup. Examples of such groups are G,, G,, and simple abelian varieties.

We will use the following lemma in the proof of the general higher vanishing theorem.

LEMMA 1.26. Let k be a field. Let s > 0 be an integer. We denote [s] = {1,...,s}. Let

G= ﬁGi
i=1

be a product of almost simple connected commutative algebraic groups over k. Let d = dim(G).

G =[] G
i€l
which we identify with a subgroup of G in the obvious way.

For any subset 1 C [s], let
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Let 1 <i < d. Let & be the set of subsets I such that dim(Gy) > d —i. For each 1 € &;, let Hy
be a non-trivial connected subgroup of Gi. Then the algebraic subgroup H generated by all Hy has
dimension at least i.

ProoOF. We denote d; = dim(G;) for 1 <i <s.

We work by induction on s, and for each s, by induction on i. The case s = 1 is elementary,
since {1} € & then, hence H = Hjy = G in that case. For any s, the result is also elementary for
i =1, since for I = [s] € &1, we have dim(H) > dim(H;) > 1. Assume now that 2 < i < g and that
the result is known for (s,i’) for i/ < i as well as for (¢,7) for any s’ < s.

The subgroup H{;) C G is non-trivial, and hence there exists some integer j < s such that
the image of Hf, under the projection G — Gj is non-trivial; this means that this image must be
equal to G; since all G; are almost simple. Up to reordering the factors, we may assume that the
projection of H, on Gs is surjective.

If ds > i, then we are done since we then have dim(H;) > dim(Gs) = ds > i. We therefore
assume now that dg < 7.

Let G/ = Gy x --- X Gg_1 and ¢/ = i — ds. The dimension of G’ is d = d — d,. We have
1<i<dandd—i=d —1. Bach J C [s — 1] with dim(G)) > d' — ¢ = d — i is an element of &;.
By induction, applied to the subgroups Hjy for J € &, the subgroup H' of G’ generated by all Hj
has dimension > ¢/ =i — dj.

To conclude, we observe that since H' is a subgroup of G’ with dimension > i — dg and Hi is a
subgroup of G = G’ x G such that the projection of Hiy to G is surjective, the subgroup H that
they generate together satisfies

dlm(H) = dim(H') + dlm(H[S]) — dim(H' N H[s])
> dim(H') + dim(Hp) — dim(G' NHyy) > i —ds + ds = i
since dim(G' N Hig) + dim(Gs) = dim(Hyy). O

1.12. Geometric and arithmetic semisimplicity

Let k be a finite field, and k an algebraic closure of k. Let ¢ be a prime different from the
characteristic of k.

For an algebraic variety X over k and a complex M in DE(X,QZ), we will sometimes refer to
properties of M (e.g., M being a simple or semisimple perverse sheaf) as arithmetic, and to the
analogue for the base change of M to Mz as being geometric. Thus we may speak of a geometrically
simple perverse sheaf, or an arithmetically semisimple perverse sheaf.

We collect here some facts about certain relations between such properties.

LEMMA 1.27. Let X a geometrically irreducible algebraic variety over k and % a lisse (-adic
sheaf on X. If F is arithmetically semsimple, then it is geometrically semisimple.

ProoF. Using the correspondence between lisse sheaves and representations of the étale fun-
damental group, this follows, e.g., from [119, Lem. 5 (a)]. O

LEMMA 1.28. Let (X, u) be a quasi-projective variety over k. Let M be an arithmetically simple
perverse sheaf on X. There exists a finite extension of k of degree bounded in terms of ¢, (M) such
that the base change of M to Xy is a direct sum of geometrically simple perverse sheaves on k'.

In particular, M is geometrically semisimple.
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PROOF. By [&, Prop.5.3.9 (ii)], there exists an integer n > 1 and a geometrically simple perverse
sheaf N on Xy, such that M = f,,.N, where f,,: X}, — X is the base change morphism. Since N is
non-zero, we deduce that n < ¢, (M) by looking at the rank at a generic point of the support. The
base change of M to k, is then a direct sum of geometrically simple perverse sheaves. O

LEMMA 1.29. Let k be a finite field and k an algebraic closure of k. Let £ be a prime different
from the characteristic of k. Let X be a smooth and geometrically connected quasi-projective variety
over k. Two perverse sheaves M et N on X which are geometrically simple are geometrically
isomorphic if and only if there exists a € Q, such that M ~ % @ N.

This is a standard fact (see, e.g., [103, Lemme 4.4.4]).

1.13. A result from representation theory

The following basic fact from the representation theory of reductive groups will play a crucial
role.

PROPOSITION 1.30. Let F be a field of characteristic zero and let G be a reductive algebraic group
over F. Let V be a finite-dimensional faithful representation of G over F. Any finite-dimensional
irreducible representation of G over F occurs in a tensor power (V®VY)®™ for some integer m > 0,
where VV is the contragredient of V.

See, for instance, [29, Prop. 3.1] for the proof.
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CHAPTER 2
Generic vanishing theorems

Throughout this chapter, k denotes a finite field, k an algebraic closure of k, and k,, the extension
of degree n of k inside k for each n > 1. We also fix once for all a prime number ¢ different from
the characteristic of k. All complexes of sheaves and characters are tacitly understood to be f-adic
complexes and characters for this choice of £.

2.1. Statement of the vanishing theorems
We now state our main vanishing theorems.

THEOREM 2.1 (Generic vanishing). Let G be a connected commutative algebraic group over k

and let M be a perverse sheaf on G. The set of characters x € G satisfying
1) H' (G, My) = H(GE, M) =0 for alli #0,
. Hg(GkaMX) = HO(GkaMX)

is generic in the sense of Definition 1.22.

This gives the first part of Theorem 1 from the introduction.

REMARK 2.2. Various versions of Theorem 2.1 have been proved by the following authors:

(1) Katz—Laumon [77, Th.2.1.3, Scholie 2.3.1] in the case of powers of the additive group and
Saibi | , Th.3.1] in the case of unipotent groups; in both cases, the generic set is a
Zariski-dense open subset of the k-scheme parameterizing characters.

(2) Gabber—Loeser [50, Cor.2.3.2] for tori, with “generic” replaced by a condition imply-
ing “weakly-generic” in the sense of Definition 1.23; see also [50, Th.7.2.1], for “most”
characters in codimension 1.

(3) Weissauer | , Vanishing Th., p.561] for abelian varieties, with “generic” replaced by
“most”, and Kréamer [90, Th. 2.1] for semiabelian varieties, with “weakly generic” charac-
ters.

We will in fact prove the following stronger result, which also controls the “stratification” arising
from the non-vanishing of other cohomology groups; this has a number of useful applications.

THEOREM 2.3 (Stratified vanishing). Let G be a connected commutative algebraic group of
dimension d over k, and M a perverse sheaf on G. There exist subsets

~

Sy C - CH=G
such that the following holds:

(1) For 0 < i< d, the subset .%; has character codimension at least i.
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(2) For0<i<d, any x € G such that at least one of the cohomology groups
(22) HZ(GE7MX)3 H_Z(GmeX)a HZC(GEaMX)v H(:_Z(GI%MX)

s non-zero belongs to ..

(3) For x € =1, the equality HY(Gy, M, ) = H%(Gj, My,) holds.

(4) If G is a torus or an abelian variety, then .7 is a finite union of tacs of G of dimension
<d-—i.

(5) If G is a unipotent group, then .7 is the set of closed points of a closed subvariety of
dimension < d — i of the Serre dual GV.

Concretely, this implies that for 0 < ¢ < d, the estimate
[{x € G(kn) H(Gg, My) # 0 or Hy'(Gg, My) # 0
or H'(Gg, M) # 0 or H*(Gg, My) # 0} < [k "
holds for all » > 1, and so this implies the second part of Theorem 1.
Note that Theorem 2.1 is a straightforward consequence of Theorem 2.3, since the set of char-

acters satisfying (2.1) contains the generic set ./p—7.

REMARK 2.4. We expect that this result should be true with the stronger information that the
implied constants in (1.11) for the subsets .%; depend only on the complexity of M. A result of this
type would be especially useful for applications to “horizontal” equidistribution theorems.

However, we can only prove this at the current time in the following cases:

(1) if G is a unipotent group (use the equality of Fourier transforms of [112, Th. 3.1] combined
with Theorem 1.7);

(2) if G is a geometrically simple abelian variety (see Corollary 2.19);

(3) and probably, although we have not checked this in full details, if G = U x G,,, where U
is unipotent.

The issues that arise in attempting to handle the general case are:

— For tori, the use of de Jong’s theorem on alterations, where we do not control the number
of exceptional components that appear (thus, a suitably effective version of de Jong’s
theorem, or an effective form of embedded resolution of singularities, would probably
imply the desired conclusion in this case).

— For abelian varieties, the need to find and control the complexity of an alteration that
“moderates” certain perverse sheaves, to apply results of Orgogozo.

COROLLARY 2.5. Let G be a connected commutative algebraic group over k. Let M be an object
of DX(G). Then for generic x € G and any i € Z, we have canonical isomorphisms

HZC(GTm MX) = Hl(Gfm MX) = HB(G];, p%Z(MX))

PROOF. The proof is similar to that of [90, Cor.2.3]; see also the proof of Corollary 2.18
below. 0

We will prove Theorem 2.3 in Section 2.5. Before doing this, we need to establish some pre-
liminaries concerning perverse sheaves on the basic building blocks of Proposition 1.13, namely (in
rough order of difficulty) unipotent groups, tori and abelian varieties.

Note that proving either Theorem 1 or Theorem 2 for a given group G only involves the
corresponding material for groups of the types which actually appear in Proposition 1.13 applied
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to G. In particular, for instance, the proof of Theorem 3 (and other similar statements) only
depends on the case of tori, i.e., on Section 2.3.

To facilitate orientation, we list below the key statements about each type of groups; Section 2.5
only requires these statements from the next three sections.
(1) Unipotent groups: Proposition 2.7.
(2) Tori: Corollary 2.15.

(3) Abelian varieties: Corollary 2.26 and the auxiliary Theorem 2.23, due to Orgogozo [109)].

2.2. The case of unipotent groups

We begin by summarizing the duality theory of commutative unipotent groups; a good account
can also be found in [15, App. F].

Let U be a connected unipotent commutative algebraic group over a finite field £ of characteris-
tic p. The functor that sends a perfect k-scheme S (i.e., a scheme for which the absolute Frobenius
is an automorphism) to the extension group

Ext'(U x¢ S, Qp/Zp) = lim Ext" (U x, S,p™ " Zy/Zy)

in the category of commutative group schemes over S (with Q,/Z, viewed as a constant group
scheme) is representable by a connected commutative group scheme U* over k, called the Serre
dual of U. This goes back to a remark by Serre [117, p.55] and was developed by Bégueri in [6,
Prop. 1.2.1] and Saibi [112]. Morever, if m > 1 is such that p™U = 0, then the natural morphism

Ext' (U %y, S,p™"Zy/Zp) — lim Ext' (U x, S,p™ "2/ Z))

is an isomorphism.
Let A be a finite abelian group. For each integer n > 1, the short exact sequence

x T x -:E_l
1 — Ulky) — Uy, S2E0 @27 gy

induces an isomorphism
Hom(U(k,),A) — Ext!(Uy, ,A)
(see [15, Prop. F.2]).

Let m > 1 be such that p"U = 0. We take A = p~"™Z,/Z, ~ Z/p™Z. For any integer n > 1,

we obtain an isomorphism
Hom(U(ky), A) = U*(ky,).

Fix now a faithful character ¢: p~™"Z,/Z, — QZX . We then obtain, for any n > 1, an isomor-

phism
U* (kn) < Ulkn)-

Saibi [112, Lemma1.5.4.1] (see also [15, Remark F.1 (ii)]) proved that there exists a connected
commutative unipotent algebraic group UY and a bi-extension 2y yv of UY x U by Qp/Z, such
that the bi-extension induces an isomorphism between the perfectization of UY and U*. Together
with the above character 1, this induces isomorphisms

Bn: UY(kp) = U(ky)
for all n > 1. (See also [15, RemarkF.4 (ii)] for a different approach to the construction of the
finite-type model UY.) We also write 9, for the character 3, (z).
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We denote by £y uv 4 the associated lisse f-adic sheaf of rank 1 on UY x U; its trace functions
are given by

tn(.%', Y; kn) = Bn(x) (y)
for all n > 1 and (z,y) € U(ky,) x UY(ky).

EXAMPLE 2.6. Fix a non-trivial additive character 1: k — Q,. Suppose that U = G¢ for some

d > 0. We denote
d
r-y= Zfﬂzyz
i=1

for (x,y) € U x U.
There exists a choice of bi-extension with UY = U, and the isomorphisms

Bt (GE)(kn) — Gl (kn)

are given by x — 1, where

Y (y) = (Trg, iz - ).

We come back to the general case. Let p: U x, UY — U and pY: U x; UY — UV denote the
projections. The Fourier transform is the equivalence of categories FTy,: D2(U) — D2(UY) defined
by

FT,(M) = Rp (0" (M) @ ZLu,uv,9) = Rp) (0" (M) © Zu,uv 0),
where the second equality (more precisely, the fact that the natural transformation “forget sup-
ports” from the left-hand side to the right-hand side is an isomorphism) is | , Th.3.1]. A
corollary of this is that the Fourier transform is compatible with Verdier duality, in that there is a
canonical functorial isomorphism

D(FTy(M)) ~ FTy-1 (D(M))(dim U)

for each object M of DP(U), see [112, Cor.3.2.1]. We refer the reader to Saibi’s article [112] for
the other main properties of the ¢-adic Fourier transform on unipotent groups, such as the formula
for the inverse Fourier transform.

By the proper base change theorem and the definition of Fourier transform using p’, for all

a € UY(k) and i € Z, there are natural isomorphisms
(2.3) H (U, My,) = A (FTy(M)),.

Since unipotent groups are affine, it follows from Artin’s vanishing theorem that the Fourier trans-
form shifts the perverse degree by the dimension of U. In particular, if M is perverse, then so is
FTy(M)[dim(U)].

PROPOSITION 2.7. Let U be a connected unipotent commutative algebraic group of dimension d
over k. Fiz a locally-closed immersion u (resp. u") of U (resp. UY) into some projective space to
compute the complexity. Let M be an object of DP(U) of perverse amplitude [a, b].

There exists an integer C > 0, depending only on ¢, (M), and a stratification (S;) of UV such
that every strat S; is either empty or has dimension d — i, with the following properties:

(1) The sum of the degrees of the irreducible components of u(S;) is at most C.
(2) For each & € S;(k), the vanishing H.(Ug, My, ) = 0 holds for all j & [a, b+ i].

In particular, the estimate
(2.4) 1Si(kn)| < [Fon| "
holds for all m > 1, with an implicit constant that only depends on c,,(M).
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Moreover, for any & € So(k) and any j € Z, we have
Hg(Ufm M¢£) = Hj(Ufm Mtbg)'

PRrROOF. Since the Fourier transform shifts the perverse degree by d, the complex FT,(M) has
perverse amplitude [a+d, b+ d]. By Theorem 1.5, the complexity ¢, (FT,(M)) is bounded in terms
of ¢, (M).

By Theorems 1.7 and 1.8, there exists a smooth open subscheme Sq C UV, with closed comple-
ment Yo of degree bounded in terms of ¢, (FTy(M)), and hence in terms of ¢, (M), such that the
restriction of FTy(M) to Sp has lisse cohomology sheaves and such that FT, (M) is of formation
compatible with any base change S’ — Sy C U" (this follows from the formula for the Fourier
transform in terms of p;). Up to replacing Sy by a smaller open subset we may assume that Sy is
affine (and this does not increase the complexity of the complement).

In particular, using (2.3) and this compatibility, we obtain the following equality for a € So(k):
H(Ug, My,) = A (FTy(M))a = H' (U, My, ).

By a slight generalization of [8, Cor.4.1.10. 4], the pullback by a closed immersion with affine
complement of a complex of perverse amplitude [a, b] has perverse amplitude [a — 1,b]. Therefore,
the restriction of FTy,(M) to Yo has perverse amplitude [a +d — 1,b+d]. Proceeding by induction,
we construct a stratification (S;)o<i<q of UV into strats S; such that

(1) each S; is smooth, empty or equidimensional of dimension d — i;

(2) the closure of each S; has degree bounded in terms of ¢, (M);

(3) the restriction of FT,(M) to each S; has lisse cohomology sheaves and is of perverse
amplitude [a +d —i,b+ d].

Let 0 < ¢ < d. On each connected component of S;, the support of the cohomology sheaves
of FT(M) is either empty or equal to S; (since these sheaves are lisse). However, the definition of
perversity implies the inequality

dim supp 7 (FT(M)js,) < —j + b+d
for all integers j. Since S; has dimension d — i, the non-vanishing of #7(FTy(M)g,) implies
therefore the inequality
d—i<—j+b+d, e j<b+i
Since S; is smooth of dimension d — i (so the dualizing complex on S; is Q[d —i](d — i) and the

Verdier dual of a lisse sheaf is the naive dual) and the cohomology sheaves on S; are lisse, duality
implies that D(FT,, (M)|Si) also has lisse cohomology sheaves, given by the formula

A (D(FTy(M))s,) = (A7 FH(F Ty (M)gs,))¥ (d — i)

for all j.
Thus, arguing as above, the perversity condition shows that the condition J#7 (FTy(M)s,) #0
implies
d—i<j+2d—2i—a—d+i, ie. j>a.
We conclude that the cohomology sheaves of the complex FT, (M) |s; are concentrated in degrees

[a,b + i]. By proper base change, this implies assertion (2) of the proposition and concludes the
proof. O
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REMARK 2.8. This result is a generalization to all unipotent groups, and a quantification by
means of the complexity, of some of the Fouvry—Katz—Laumon stratification results for additive
exponential sums [77, 39]. It may have interesting applications to analytic number theory, since
the quantitative form means that it may be used over varying finite fields, e.g. F, as p — +o0
as in Chapter 6 (although a referee pointed out that the complexity of the Fourier transform of
a perverse sheaf on a non-additive unipotent group, such as Witt vectors of length 2, will usually
have to depend on p).

2.3. Perverse sheaves on tori

In this section, we generalize some of the results of Gabber and Loeser [50] about perverse
sheaves on tori. We begin with a generalization of [50, Th.4.1.1’], which is proved in loc. cit.
under the assumption that resolution of singularities and simplification of ideals hold for varieties
of dimension at most the dimension of the torus in question. The structure of our proof is the
same, but we are able to replace the appeal to resolution of singularities with de Jong’s theorem
on alterations [24].

THEOREM 2.9. Let T be a torus over k and let M be an object of D2(T). For all characters
x € I(T)(Qy) outside of a finite union of tacs, the equality H'(T,M,) = HL(T,M,) holds for
all i € Z.

As in [50], the proof of Theorem 2.9 relies on the auxiliary proposition stated below. We pick
a smooth compactification of T by a simple normal crossing divisor j: T — T (for example, the
projective space), and denote by i: T —T — T the complementary closed immersion. Given any
morphism ¢: W — T of varieties over k, denote by jw: ¢~ 1(T) = W and iw: o (T —=T) - W
the corresponding open and closed immersions. Recall the Qp-sheaf of rank one Zr on T from
Section 1.10. In particular, for N € D2(¢~1(T)) and & € ¢~ 1(T —T), the stalk jw.(N ® ¢*(£r)))e
is a complex of coherent sheaves on II(T).

PROPOSITION 2.10. With notation as above, let N be an object of D2(¢~1(T)). There exists a

finite union . of tacs in T such that, for any r > 0 and any & € o~ (T —=T), the support of the
module (R” jw+«(N ® ¢*(ZLr)))e is contained in 7.

PRrROOF. The idea of the proof is to reduce to the situation of [50, Prop. 4.3.1].

We use induction on the dimension of W. We can then readily assume that N is a lisse sheaf on
a locally-closed irreducible subvariety U of ¢ ~!(T), extended by zero to ¢~ !(T). We can assume
further that U is dense in W. Now the monodromy of N can be assumed to be pro-¢. Indeed,
consider the finite étale cover f: U’ — U associated to the /-Sylow subgroup of the monodromy
group of N, and let W’ be the normalization of W in the function field of U. The sheaf N is a direct
factor of fif*N, and it suffices to prove the theorem for f*N and W’. Hence, we assume that the
monodromy of N is pro-/£.

By de Jong’s theorem [24, Th.4.1], there exists an alteration f: W' — W such that W’ is
smooth and the reduction of the complement of f~!(U) in W’ is a strict normal crossing divisor.
Since we are working over a perfect field, we can further assume that the alteration f is generically
étale. Hence, there exists a dense open subset Ug of U such that f is finite étale over f~(Ug). By
induction, it is enough to prove the result for Uy and Ny, and hence by the same argument as
above, it is enough to prove it for f.f*Nyy,. By proper base change, it is then enough to prove the
result for W and J*Njy,- By a last dévissage, it is finally enough to prove it for f*N.

We are now in a situation where we can suppose that W is smooth, that the complements
of ~1(T) and U in W are strict normal crossing divisors, and that the monodromy of N is pro-£.
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This is exactly the situation at the end of the proof of [50, Prop. 4.3.1’, starting from p. 544, line -4]
(with N replacing A there) and the remaining argument is identical to that of loc. cit. O

PROOF OF THEOREM 2.9. The fact that Proposition 2.10 implies Theorem 2.9 is completely
similar to the fact that Proposition 4.3.1" implies Théoreme 4.1.1" in [50]. We keep the notation
introduced before the statement of Proposition 2.10, and apply Proposition 2.10 with W = T,
with ¢ the identity morphism and N = M, so that jw = j and iw = i.

Let x € T such that x does not belong to the finite number of tacs of T given by Proposition 2.10.
According to [50, Prop.4.5.1(2)], this implies that the object i*Rj.(M,) € D2(T —T) is trivial,
and hence its cohomology complex

RT(T =T, i*Ryj.(My))
is also trivial. But this last complex is isomorphic to the cone of the morphism
Rsi(M,) — R, (M),

where s: T — Spec(k) is the structure morphism, hence the theorem. O

We now use Proposition 2.10 to deduce a relative version of Theorem 2.9.

THEOREM 2.11. Let T be a torus over k, let S be an arbitrary scheme over k, and let G = Sx T.
Denote by p: G — S the projection. Let N € D2(G).

For x € II(T)(Qy) away from a finite union of tacs ., we have Rpi(Ny) = Rp.(Ny).

In particular, if N is a perverse sheaf, then for x not in .7, the complex Rpi(Ny) = Rp.(Ny) is
a perverse sheaf on S.

ProOOF. This is similar to Theorem 2.9. We apply Proposition 2.10 with W = S x T, and check
that, for each character y away from the finite union of tacs given by the proposition, the object
iwRjw« (N ® Zy) is trivial, which follows from the immediate extension of [50, Prop. 4.7.2 (ii)] to
an arbitrary base scheme S (instead of just tori). O

THEOREM 2.12. Let T be a d-dimensional torus over k, let S be an arbitrary scheme over k,
and define X =T x S. Let i be an integer such that 1 < i < d.

Let M be a perverse sheaf on X. There exist a finite extension k' of k and a family (Sf) ez of
tacs of Ty of dimension < d — i with the property that for any x € Tk/ which does not belong to
the union of the Sy there ewists a quotient torus Ty, — Z of dimension i — 1 such that

RgsiM, = Rgs.My

and this complex is perverse on B Xy Spr.

Proor. Up to replacing k by a finite extension, we can assume that T} is split, and thus reduce
to T=GY.
Now let 1 < i < d. For each subset I of [d] = {1,...,d} of size i — 1, we apply Theorem 2.11

with (T,S) = (Gr,[i]_l7 G, x 8) over k, so that the projection p in the theorem is then the canonical
projection
q:GL xS=GMl x5~ Gl xs.

We obtain a finite union of tacs of G,[fll]_l such that for characters y of G[TZH outside of this
finite union, we have

RQI!(MX) = Ra« (Mx)
and this complex is perverse.
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Let
LG v v )
(mj: GR™ = Yij, xug)jex
be the quotient morphisms and characters defining this finite family of tacs. For j € X1, we define
Ky, = ker(m;); this is a non-trivial subtorus of G%]_I, which we identify with a subtorus of G%
using the canonical embedding G, GZ . In addition, we define X1; € I1(G4))(Qy) to be the
character that is trivial on G, and coincides with x1; on G[fé]_l.

Let .7 be the set of all maps f from the subsets of [d] of size i — 1 to the disjoint union of the
X1 that send a subset I to an element j € Xy for each I; this set is finite. For f € .#, let Sy be the
intersection of the tacs of GZ defined by

(G, = G /K gy X1y

We claim that the family (S¢)rc.# (to be precise, the subfamily where Sy is not empty) satisfies
the assertions of the theorem.

Indeed, first of all Lemma 1.25 shows that S is either empty or is again a tac; moreover, in
the second case, it is defined by the projection G — GZ,/T; where T is the subtorue of G,
generated by the Kj sy (as subtori of G2). By Lemma 1.26 applied to G; = G, for all i and the
subgroups Ky f(1y, we have dim(T) > i for all such f, and hence the quotient

py: G, = Yy =Gy /Ty
has image of dimension < d — 4, as desired.

Finally, let x € (A-}gl be a character that does not belong to any of the tacs Sy. This implies
that there exists some f € %, some subset I C [d] of size i — 1 and some j € Xp such that the

restriction x1 of x to G[TflLH is not equal to xi,;.

We can write x = x1x’ where X' is a character of GL . Then, considering the quotient ¢: G%, —
G! , the base change gs is the canonical projection ¢; and from the application of Theorem 2.11 to
q1, we obtain

Rgs«(My) = Rgs(My) @ Ly = Rysi(My;) @ L = Rasi(M,),
and the fact that this object is perverse. O

We deduce two corollaries that are sometimes more convenient for applications. The first one
is Theorem 2.3 for tori.

COROLLARY 2.13. Let T be a torus of dimension d over k. Let M € Perv(T). For —d < i < d,
the sets
{xeT | H(T,My) #0},  {x €T | Hi(Tg, My) # 0}
are contained in a finite union of tacs of T of dimension < d — |i|, and in particular they have
character codimension at least |i|.

PrOOF. We apply Theorem 2.12 to |i| and claim that the characters in either of these sets
belong to the union of the tacs Sy that arise. Indeed, if x is not in any Sy, then there exists a
quotient torus Ty — Z of dimension 7 — 1 such that RgsiM, = Rgs«M,, and hence

H'(T;, M, ) = H (Bg, Rgs«M,) = 0

since Rgs«M,, is a perverse sheaf and dim(B) = i — 1. The argument is similar for cohomology with
compact support. ]
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REMARK 2.14. We recall that, concretely, this corollary implies that for |i| < d, the estimate
{x € T(kn) | H'(T3, My) # 0 or Hy(Tg, My) # 0} < k|1
holds for all n > 1.

The following “stratified” statement is also a useful formulation of the result.

COROLLARY 2.15. Let T be a torus of dimension d over k and S a variety over k. Set X =T xS
and let q denote the projection q: X — S. Let M be a perverse sheaf on X. There exists a finite
extension k' of k and a partition of Ty into subsets (Si)o<i<d of character codimension > i such
that, for any i and x € S;, the object Rqi(My,) of D2(S) has perverse amplitude [0, 1].

PRrROOF. Using the notation of the proof of the theorem, for any integer ¢ with 1 < i < d, let k]
be the finite extension arising from its application to i and let .%; be the corresponding family of
tacs. Define gz to be the union of the Sy for f € .%; for 1 <i < d.

Let k£’ be the compositum of all k}. Define Sy = T—S;and S; =S; —§i+1 for 1 <4 < d. These
sets form a partition of 'Tk/, and since S; C gl for ¢ > 1, they have character codimension > i. This
property is also clear for ¢ = 0.

Let 0 < i < d, and let x € S;. Then x ¢ §i+1, and hence the theorem provides a projection
gs: G4 xS — 7Z xS with dim(Z) = 4 such that RgsiM, is perverse. Composing with the projection
r: Z xS — S, which is affine and hence such that Rr preserves objects with perverse amplitude
[0, +00] (by Artin’s vanishing theorem), it follows that Rg:M, has perverse amplitude [0, 7. O

2.4. Perverse sheaves on abelian varieties

In this section, we will review and extend some results of Kramer and Weissauer on perverse
sheaves on abelian varieties.

2.4.1. Statement of the results and corollaries. Let k be a finite field, and k an algebraic
closure of k.

Let X be an abelian variety over k. We fix a projective embedding u of Xj. For subvarieties
of X, the degree means the degree of the image by u; for a tac of S defined by 7: X — A and y, we
will say that the degree of S is the degree of the image u(ker(m)).

For a perverse sheaf M on X, a combination of the main result of Weissauer [127] and of the
machinery developped by Kramer and Weissauer [93] implies that for most characters x € X, we
have H (X7, M, ) = 0 for all ¢ # 0; we will show here that this result can be made quantitative
using the complexity of M, and will then establish a relative version (see Section 2.4.3).

THEOREM 2.16. Let X be an abelian variety over k. Let M be a perverse sheaf on X.

There exist an integer ¢ > 0 depending only on ¢, (M), a finite extension k' of k of degree
< ¢, and a finite family (Sf)rer of tacs of Xy with |F| < ¢, each of degree at most c, such that

any x € )A(k/ which does not belong to the union of the Sy satisfies
Hi (Xka MX) =0
for all i # 0.

We will prove this below, but first we establish some corollaries.
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COROLLARY 2.17. Let M € D2(X) be a complex on X.

There exist an integer ¢ > 0, depending only on c,(M), a finite extension k' of k of degree < c,
and a finite family (S¢)rer of tacs of Xy, each of degree at most ¢, with |F| < ¢, such that for
any x € Xy which does not belong to the union of the Sy, there is a canonical isomorphism

H' (X, M) ~ HO(XG, P27 (M),)
for alli e Z.

PROOF. This is the same argument as in the proof of Corollary 2.5; the dependency on ¢, (M)
is obtained by means of Proposition 1.9 to control the perverse cohomology sheaves of M. O

Alternatively, the next corollary may be more convenient for applications.

COROLLARY 2.18. Let M € D2(X},) be a complex on X. The set .# of characters x € X such
that we have isomorphisms

H' (X5, M) ~ HO (X, P22 (M),)
for all i € Z is generic, and the implicit constant in (1.12) depends only on c,(M).

In particular, if M is a perverse sheaf, then the set of x such that H(Xp, M,) =0 for all i # 0
is generic and the implicit constant in (1.12) depends only on ¢, (M).

PROOF. Assume first that M is a perverse sheaf. We apply Theorem 2.16 to M, and use the
notation there. For n > 1, let k], = k’k,,. For any x € X(k:n) — .7 (ky), the corresponding character
in X(k,) belongs to S #(k;,) for some f € F. Let Ay be the abelian variety such that S¢ is defined
by 7y: Xpr — Ay; we have

X (kn) = (k)| < D 1A (R3] < [F] (k|2 4 1)7 5 [y [Bm001,
feF

where the implied constant depends only on ¢, (M) by the theorem.

Now in the general case, recalling that P.5#°¢(M, ) is canonically isomorphic to *5#*(M), for all i
and all y, we have the convergent perverse spectral sequences

Eéj - Hi(XITc? p%j(NDX) = HiJrj(XE’ MX)'

By the previous case applied to each of the finitely many perverse cohomology sheaves, the set
of x such that H'(Xz, ?P227(M),) = 0 for all ¢ # 0 and all j is generic; for any such character, the
spectral sequence degenerates and we obtain isomorphisms

Hi(X%va) = HO(XEu p%i(M)x)-

Applying Proposition 1.9, we see that the last statement concerning the implicit constant
in (1.12) holds. O

COROLLARY 2.19. Let X be a geometrically simple abelian variety over k. Let M be a perverse
sheaf on X. Then there exists a constant ¢ depending only on ¢, (M) and a finite set . C I1(X)(Qy)
of cardinality at most ¢ such that for x € II(X)(Q,) — .7,

H' (X5, My) = 0 fori # 0.

PRrROOF. Since X is a geometrically simple abelian variety, then a tac of X contains a single
character. Hence, the result follows from Theorem 2.16. ]
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2.4.2. Proof of the results. We now proceed with the proof of Theorem 2.16. As we indi-
cated, the first ingredient is a quantitative version of a result of Weissauer [127].

PROPOSITION 2.20. Let X be an abelian variety over k with a projective embedding u, and let
M be a geometrically simple perverse sheaf on X such that x(Xz, M) = 0.

There exists a tac S on X with kernel an abelian subvariety A of degree bounded in terms of
cu(M), such that

@Hi<XI?:7 MX) # 0

if and only if x is in S.

Moreover, M is invariant by translation by A.

PROOF. For any perverse sheaf N on X, we denote by 1 (N) the set of characters x such that
for some ¢ # 0 the cohomology group H*(Xz, N) is non-zero.

By [ , Th.3 and Lem. 6], there exists a maximal abelian variety Aj of Xz such that M is
invariant by translation by Az, and this abelian variety is non-trivial.

Denoting by ¢: Xz — Xz/Ajz the quotient morphism, this is equivalent to the fact that M
is isomorphic over k to a perverse sheaf of the form %, ® ¢*(M)[dim(A)] for some character
xo: m1(Xz) — Q. " and some simple perverse sheaf M on X5 /Az-

We claim first that Ay, is defined over k and that the degree of Aj in the image of u is bounded
in terms of ¢, (M).

The fact that Az is defined over k is implicit in the proof of the existence of A by Weissauer.
We recall his argument. First, a perverse sheaf &\ is defined as follows ([127, p.563]): the
evaluation morphism ev: MY * M — 1 (see Section 1.5) induces morphisms of perverse sheaves
PAY (MY % M)[—i] — 1 for all i, and each P#*(M" % M)[—i] is a direct sum of shifted irreducible
perverse sheaves. Since by Lemma 1.15 dim Hom(M" % M, 1) = dim Hom(M, M) = 1, there is a
unique integer v > 0 and a unique perverse irreducible summand 2\[—v] of P27 (MY x M)[—v]

on which the restriction of ev is not zero (see [127, p. 563 and Remark (2), p. 569] for details).
Since x(Xj, M) =0, we have v > 1, and by [127, Lemma 2], it follows that .71 (M) = .%1(Pm).
Weissauer shows (see [127, Prop. 2]) that there exists an abelian subvariety A of X of dimension v >

1, with closed immersion i: A — X, and a character xo such that there is a geometric isomorphism
P~ Ly, @1 Qy[v]. Since A can therefore be recovered as the support of Py, it is defined over k.

The perverse sheaf Z) is invariant by translation by A, and then so is M by [127, Remark (2)].

Moreover, we have ¢, (Z\) < ¢,(M) by the definition of 4\ and Proposition 1.9, and deg(u o
i(A)) < cu(Py) < (M) by Theorem 1.7.

Let g: X — X/A be the quotient morphism and x be a character not in the tac S of X defined
by (¢, X ") We now compute for every i € Z that

H'(Xg, Paix) = H'((X/A)g, Ras (Pary) = H((X/A)f, R (L) @ 1dim(A)]).

Since x is not in the tac S, the restriction of 2., to Aj is non-trivial, and hence we have
R« (ZLyro) = 0 by Lemma 1.16, and therefore H (X}, Zn,) = 0 for all i.

Conversely, if x = Xal (X ©q), then we have
H* (X5, Puy) = H' (A, Q) @ H'((X/A)g, Z51[dim(A)]),
by the Kiinneth formula, and this is non-zero. O
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PROOF OF THEOREM 2.16. We follow the method used by Kramer and Weissauer to prove [93,
Th. 1.1], keeping track of the complexity.

Since X is an abelian variety, the two convolution products of Section 1.5 coincide; for an
object M of D?(X) and an integer n > 1, we denote by M*" the n-th iterated convolution product
of M.

We recall the axiomatic framework of [93, Section 5|, specialized to our situation as in [93,
Example 5.1]. Let D be the full subcategory of DP(X}) whose objects are direct sums of shifts of
geometrically semisimple perverse sheaves which are obtained by pullback from Xy, for some n > 1.
Let P C Perv(Xj) be the corresponding subcategory of perverse sheaves, namely that with objects
the geometrically semisimple perverse sheaves arising by pullback from Xy, for some n > 1. Then
the categories P and D satisfy the axioms (D1), (D2), and (D3) of [93, Section 5|, namely:

(D1) The category D is stable under degree shift, convolution and perverse truncation functors;
the category P is the heart of this ¢t-structure, and is a semisimple abelian category.

(D2) Any object M of D can be written (non-canonically) as a direct sum

P (M)[-m].

nez
(D3) The Hard Lefschetz Theorem holds for objects of D.

Let N be the full subcategory of D whose objects are the complexes N such that all geometrically
simple constituents of all perverse cohomology sheaves P.7#¢(N) for i € Z have Euler-Poincaré
characteristic equal to 0. By [93, Cor.6.4], the category N satisfies the axioms (N1), (N2), (N3)
and (N4) of [93, Section 5|, namely:

(N1) We have N« D C N and the category N is stable under direct sums, retracts, degree
shifts, perverse truncation and duality;

(N2) If N is an object of N, then for most characters y, we have H (X, N,) = 0 for all 4;
(N3) The category N contains all objects M of D such that H (X, N) = 0 for all i € Z;

(N4) The category N contains all simple objects of P with zero Euler—Poincaré characteristic.

(Note that we will not make use of this version of (N2).)

By [93, Theorem 9.1}, every M € P is an N-multiplier, meaning that for all integers i # 0 and
any integer r > 1, every subquotient of P22 ((M & MY)*") lies in N.

We now argue as in the proof of [93, Lemma 8.2] to prove Theorem 2.16 for a perverse sheaf M
on X.

~ Step 1. We assume that M is arithmetically simple. By Lemma 1.28, the base change of M to
k is an object of P. We denote g = dim(X); by (D2), we have

* 1
MY ~ @B My [m),
meZ

for some objects M,,, of P, which are in fact objects of N for m # 0 since M is an N-multiplier.

By Proposition 1.9, the number of integers m such that M,, is non-zero is bounded in terms
of ¢,(M), and similarly ¢,(M,,) is bounded in terms of ¢,(M). By the semisimplicity property
in (D1), each M,, is a direct sum of simple perverse sheaves in N, and by Proposition 1.9, the
number and the complexity of these constituents are bounded in terms of ¢, (M). We denote by ¢
the finite set of all these simple perverse sheaves. By Lemma 1.28, there exists a finite extension &’
of k, of degree bounded in terms of ¢,(M), such that any element C of € is defined over k'
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We apply Proposition 2.20 to each C € €. Let ¢ denote the corresponding tac; it is of degree
bounded in terms of ¢, (M).

We claim that if y € X does not belong to the union of the tacs .7, then we have
Hi (Xfm MX) =0

for all ¢ # 0. This statement will conclude the proof of Theorem 2.16 for M.

Let x be a character that is not in any of the tacs .#¢. Since M;(g g isomorphic to (M*(9+1))X

and H*(X, Cy) = 0 for x ¢ .7, we have
HY (X5, My V) = H (X5, Moy),

for any i € Z. The right-hand side vanishes if |n| > ¢ since My is perverse. Finally, by the
compatibility between convolution and the Kiinneth formula (see Lemma 1.15 below) we also have
an isomorphism

H* (X5, MU HD) o H* (Xp, M, ) 20 FY,

and by comparing we see that only the space H(Xp, M, ) may be non-zero, which establishes the
claim.

Step 2. Now let M be an arbitrary perverse sheaf on X. By Proposition 1.9, the number of
geometric Jordan-Hélder factors of M is bounded in terms of ¢, (M), and hence also the number of
arithmetic Jordan-Holder factors; we then apply the first step to each of the terms of a composition
series for M, and deduce the corresponding result for M. ]

2.4.3. The relative version. Our next goal is to establish a relative version of Theorem 2.16.
The arguments over the complex numbers of Krdmer and Weissauer in [93, Section 2] do not apply
to our situation over finite fields, since they rely on Verdier stratifications. We instead use a
constructibility result of Orgogozo [109], which is a stratification result, locally for the alteration
topology.

THEOREM 2.21. Let S be a quasi-projective scheme over k, and let A be an abelian variety
over k. Let X = A xS, and denote by f: X — S the canonical morphism. Fix a projective
embedding u of X.

Let a: X' — X be an alteration defined over k, and 2" a stratification of X'.

Let a < b be integers. Let M be an object of D2(X) with perverse amplitude [a,b] such that o*M
is tame and constructible along 2.

There exist an integer d > 1, a finite extension k' of k and a finite family (S¢)sez of tacs
of Ay, such that

(1) The integer d and the size of F are bounded in terms of ¢, (M) and the data (X, X', o, Z7),
(2) Each tac Sy has degree at most d,
(3) The degree of k' is at most d,

with the property that for any x € ;‘\xk' which does not belong to the union of the Sy, the object
Rf«(My) has perverse amplitude [a,b].

By [109, Prop.1.6.7], for any object M of D2(X), there does exist an alteration a: X' — X
(in fact, a finite surjective morphism) and a stratification 2" of X’ such that o*M is tame and
constructible along 2”/. In particular, the following corollary follows.

COROLLARY 2.22. Let S be a quasi-projective scheme over k and let A be an abelian variety
over k. Define X = A x S and denote f: A xS — S the projection.
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Let a < b be integers and let M be an object of D2(X) with perverse amplitude [a,b]. There erist
a finite extension k' of k and a finite family (S¢)sez of tacs of Ay such that for any character

X € Ay that does not belong to the union of the S¢, the object R f.(My) has perverse amplitude [a, b].

For the proof of Theorem 2.21, we use the following special case of [109, Th. 3.1.1].

THEOREM 2.23 (Orgogozo). Let f: X — Y be a proper morphism defined over k. Let a: X' — X
be an alteration and X' a stratification of X'. Then there exist an alteration 3:Y' — Y and a
stratification %" of Y' such that for any object M of DY(X), the condition that o*(M) is tame and
constructible along 2~ implies that B*Rf«M is tame and constructible along %" .

PrROOF OF THEOREM 2.21. By shifting and Verdier duality, it is enough to prove the weaker
statement where “M is of perverse amplitude [a, b]” is replaced by “M is semiperverse”.

Apply Theorem 2.23 to the proper morphism f: A xS — S and to the alteration a. We obtain
an alteration 3: S’ — S and a stratification .’ of S’ such that 8*Rf,M is tame and constructible
along .. Note that since any %, is lisse and tame, a*M,, is tame and constructible along 2" (see
[ , 5.2.5] for details), and hence the complex 3*R f.M, is also tame and constructible along .7
for any x € A.

Consider the image of the stratification .#’ by 3. By Chevalley’s theorem, it is a covering of S
by constructible sets, but not necessarily a partition. Refine this covering and remove redundant
strats in order to obtain a stratification . of S where all strats are equidimensional. Then refine
the stratification .’ in such a way that preimages by (8 of strats of . are union of strats of .’
and that 3 induces surjective morphisms from each strat of .’ to a strat of .¥.

Let x € A. Even if the complex Rf;M, is not necessarily constructible along .7, it has the
property that for any strat S; of ., the support of the restriction of each cohomology sheaf of R f, M,
to S; is either S; or empty, since the analogue property holds for 3*R fiM, and the stratification
' and f is surjective from a strat of ./ to one of ..

Consider now the preimage of the stratification . by f, and also the image of the stratification
2" of X" by a. Choose a stratification 2~ of X that refines both these coverings of X, with the
property that for any strats X; and S; of 2" and .# such that f(X;) C S, the restriction of f to X;
is smooth (in particular, that X; is equidimensional above S;). Now refine 2" similarly to ., in
such a way that preimages by « of strats of 2" are union of strats of .2/ and « induces surjective
morphisms from any strat of 2" to a strat of 2.

By Lemma 1.12, up to replacing k with a finite extension of degree bounded in terms of ¢, (M)
(and the fixed data (X, X', «, Z")), we can assume that each strat S; of . has a k-rational point
s;. We now apply Corollary 2.17 for each ¢ to the restriction Mg, of M to f~(s;) ~ A for each i,
obtaining extensions k; of k and families (S¢;) re.#, of tacs of Ay, satisfying the properties of this
corollary.

Let k' be the compositum of all k;, which has degree bounded in terms of ¢, (M) and the fixed
data. We claim that for any character y € Kk/ that belongs to none of the tacs Sy; for any i, the
object Rf.M, is semiperverse. This will conclude the proof.

Suppose that the claim fails for some x. Then there exists an integer k£ € Z such that
dim Supp(HF(Rf.(M,))) > —k.

Since Supp(#%(Rf.(M,))) is a union of strats of ., there is a strat S; C Supp(s*(Rf.(M,)))
of . of dimension > —k. In particular, we have ,%”k(Rf*(MX))Si # 0. By proper base change,
we have 78 (Rf.(My))s, = HE(Af x {s;} , My, ), and hence the latter is also non-zero. From the
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assumption on y and Corollary 2.17, we have
Hk(AE x {5} 7M5ix) = HO(AE x{si}, p‘%ﬂk(MSi)X)v

and hence P7%(My,) = Po#°(My,[k]) # 0. By definition of the perverse t-structure, this implies

i

that there exists some r € Z such that
dim Supp (4" (Ms,)) = —r + k.

The support of " (M) is a union of strats of 2", so there exists a strat X; C Supp(7"(M))
of 2" with dim(X; N A x {s;}) = dim Supp(s"(M,,)). Since X, is equidimensional over S; and
dim(S;) > —k, we conclude that

dim Supp(#£"(M)) > dim(X;) > —r + k + dim(S;) > —r,

contradicting the semiperversity of M. O

We now prove a vanishing theorem for higher cohomology groups of perverse sheaves on abelian
varieties. We begin with an analogue of Theorem 2.12.

PROPOSITION 2.24. Let A be a g-dimensional algebraic variety over k, let S be a quasi-projective
scheme over k, and define X = A X S. Fiz a projective embedding u of X.

Let a: X' — X be an alteration and 2 a stratification of X'.
Let © be an integer with 1 < ¢ < g. Let a < b be integers.

Let M be an object of D2(X) with perverse amplitude [a,b] such that o*M is tame and con-
structible along Z'. There exist a finite extension k' of k and a family (S¢) ez of tacs of Ay

of dimension < d — i with the property that for any x € Kk/ which does not belong to the union
of the Sy there exists a quotient abelian variety q: Ay — B of dimension at most i — 1 such that
Rgs«My, has perverse amplitude [a, b).

Moreover, the degree of k' over k and the size of F depend only on ¢,(M) and (X, X', o, 7).

PROOF. As in the proof of Theorem 2.23, we can work with each perverse cohomology sheaf,
and it is therefore enough to prove the proposition for ¢ = b = 0, which means that M is perverse.

By Poincaré’s complete reducibility theorem, up to replacing k with a finite extension, there
exists an isogeny f: A — B over k where B is a product of geometrically simple abelian varieties.
We first claim that it is enough to prove the proposition for B.

To see this, we assume that the statement holds for B. Consider the base change fg: X — BxS.
Since f is finite, fp«(M) is perverse for every perverse sheaf M on X. By Theorem 2.23, we find
an alteration 3: B’ — B x S and a stratification of B’ such that * fp.(M,) is tame and adapted
for every M such that o*M is tame and adapted to 2. Then the proposition can be applied to
fB+(My). Let N be the kernel of the isogeny f. Choose up to |N| characters of A whose restrictions
to N run over the character group of N. Then the proposition for A follows by applying the result
for B to the objects fp«(M,), where x varies among this finite set of characters. This proves the
claim.

So we assume that A = A; X --- X Ay is a product of geometrically simple abelian varieties. Set
g = dim(Aj) for all j. For any subset I C [s], let

A=A
1€l
viewed as a subvariety of A, and let Af‘ = Alg-1 be the kernel of the canonical projection A — Ay,

47



Fix an integer 1 < i < g = dim(A). Let & be the set of subsets I C [s] such that dim(Ar) < 4
for I € &, we have dim(A{) > g —i.

Fix I € &. Let p: A xS — A1 x S be the projection. We apply Theorem 2.21 to p and M,
i.e., with (A, S) there equal to (A{, A x S). Up to replacing k by a finite extension k’, we obtain a
finite family (Si;);jex, of tacs of Ai‘k, such that the object Rp.(My) is perverse on Ay x S for any

X € ka, not in the union of these tacs. Let

(71,55 X1,5)jexy

be the projection and characters defining these tacs, and let Kj ; = ker (7 ;), viewed as a subgroup
of Ak/ .

Let % be the set of all maps f from & to the disjoint union of the .#; that send a subset I to
an element j € X for each I; this set is finite. For f € %, let Sy be the intersection of the tacs
of Ay defined by

(Ap — Akf/KLf(I)inf(I))
forl € &.

We claim that the family (S¢)rc# (to be precise, the subfamily where Sy is not empty) satisfies
the assertions of the theorem.

Indeed, first of all Lemma 1.25 shows that Sy is either empty or is again a tac; moreover, in
the second case, it is defined by the projection Ay — Aj//By where By is the abelian subvariety
in Ay generated by the Ky y1y, viewed as subvarieties of Aj/. For such f, by Lemma 1.26 applied
to A and the subgroups Kj f(1), we have dim(By) > 4, and hence the quotient

by Ak/ — Akz/Bf
has image of dimension < d — 3.

Finally, let x € Kk/ be a character that does not belong to any of the tacs Sy. This implies
that there exists some f € %, some subset I C & and some j € X; such that the restriction x1 of
x to AILk, is not equal to x7,;.

We can write x = x1x’ where x’ is a character of Ay /. Then, considering the particular quotient
q: Ay — Apy, the base change ¢g is the canonical projection gr and hence

RyexMy = Rys«(My,) @ £y

is perverse. O

As in the case of tori, we state two further consequences that are useful in applications.

COROLLARY 2.25. Let A be an abelian variety defined over k of dimension g. Let M be a
perverse sheaf on A. For —g < i < g, the sets

{x €A | H'(Az,M,) # 0}

are contained in a finite union of tacs of A of dimension < g — |i|, and in particular they have
character codimension at least |i|.

PRrROOF. We argue as in the proof of Corollary 2.13 using the previous theorem (with a = b = 0),
as we may since we have recalled that one can find an alteration « of A such that the pull-back
a*M is tame. g

COROLLARY 2.26. Let A be a g-dimensional algebraic variety over k, let S be a quasi-projective
scheme over k, and define X = A x S. Fiz a projective embedding u of X and denote by q the
projection X — S.
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Let a: X' — X be an alteration and 2" a stratification of X'.

Let M be a perverse sheaf on X such that o*M is tame and constructible along 2. There exists
a finite extension k'/k and a partition of Ay into subsets (S;)o<i<g of character codimension > i
such that for any i and x € S;, the object RgM,, has perverse amplitude [—i,1].

Moreover, for any integer n > 1, we have
(2.5) 1Si(kn)| <[R9,
where the implied constant depends only on (¢, (M), X, X', o, Z7).

PROOF. We argue as in the proof of Corollary 2.15 for the first part; to deduce (2.5), we simply
note for each ¢ < g, the number of tacs in Proposition 2.24 is bounded in terms of the indicated data,
and for each tac S of dimension i, the number of characters in S(k,) is < (|kn|"2+1)% < |k[™. O

2.5. Proof of the general vanishing theorem

We can now prove Theorem 2.3.

We consider the dévissage of Proposition 1.13. Namely, let A be an abelian variety, T a
torus, U a unipotent group and N a finite commutative subgroup scheme of A x U x T such that
G is isomorphic to (A x U x T)/N. Further, we write N = N,. x N; where N, is reduced and N is
local.

Let M be a perverse sheaf on G.
Step 1. We claim that it is enough to prove the theorem for the group G=AxUxT.

Indeed, since N = N,. x N;, the quotient morphism p: G — G can be factored as the composition
of an étale isogeny and a purely inseparable one. The latter is a universal homeomorphism, and
since universal homeomorphisms preserve the étale site, and since pull-back by a finite étale map
preserves perversity, it follows that the pull-back p*(M) is perverse.

Assume that the result of Theorem 2.3 holds for p*(M) on G. Then we obtain the vanishing
theorem for M as follows. Let ./ be the subsets of loc. cit. for p*(M) on G, and define .%; to be

the set of x € G such that xop € /. Since G has the same dimension as G and .#/ has character
codimension i, do does .%;.

If x € (A}, then the projection formula gives isomorphisms
Hi(GE?p*(MX)) = Hi(GI},p*(M)xoz))
for all = € Z.

The vanishing of H(G, p* (M, )yop) implies that of H!(Gg, M,), since the latter space is a direct
summand of the former. A similar argument applies for compactly-supported cohomology, which
shows that the characters xy € G such that any of the groups (2.2) is non-zero belong to .%;.

Finally, suppose that x € .#)— .71, so that x op € 5 — .. Since the forget support map is
functorial, the forget support morphism

HY(Gr, p*(My) — HY(Gg, p"(My))
induces by restriction the forget support morphism
HY(Gy, My) — H (G, M),

and since the former is an isomorphism (from our assumption that Theorem 2.3 holds for (~}), so is
the latter. This concludes the proof of the claim of Step 1.
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Step 2. We now assume that G = A x U x T. We fix a quasi-projective immersion u of G.
Let dy = dim(A), dy = dim(U), dy = dim(T), and d = dp + dy + dr = dim(G). We denote by
pr: A X UxT — A x U the canonical projection.

Up to replacing k£ by a finite extension, we can assume that T is split. By applying The-
orem 2.12 and Corollary 2.15 with S = A x U, we can partition T into subsets (S;)o<i<da, of
character codimension > ¢ such that

(1) if x € Sy, then the complex Rpri(M,) € DP(A x U) is of perverse amplitude [—i, ).
(2) if x € T =S, then Rpri(M,) = Rpr.(M,).
We now wish to apply Proposition 2.24 to A x U, but we first need to find an alteration that

moderates all complexes Rpri(M,).

Let j: T — T = (P')?" be the obvious compactification of T. By [109, Prop.1.6.7], there
exists an alteration a: X — A x U x T and a stratification 2" of X such that a*(;1M) is tame and
constructible along 2. For each character x € T, the sheaf 71(Zy) is tame, and hence o*(51M,) is
also constructible and tame along 2" (see [109, 5.2.5] for details).

We apply Theorem 2.23 to the proper projection A x U x T — A x U. This provides us with an
alteration §: X’ — A x U and a stratification 2" of X’ such that the complex 8*Rpri(M,) is tame
and constructible along 2" for every x € T. Moreover, by Proposition 1.18 and Theorem 1.5, the
complexity of Rpi(My) is bounded independently of x € T.

We can now apply Corollary 2.26 to S = U and the complexes Rpti1(M,). For each character
X € T, we obtain a partition (S, j)o<j<d, of A into subsets such that Sy,j has character codimension
at least j, with the property that for (x,§) € S; x Sy ;, the complex Rpai(Rpri(My))¢) has perverse
amplitude [—i — 7,7 + j].

By Proposition 1.18 and Theorem 1.5, the complexity of the object Rpai(Rpri(My))e) is
bounded independently of (x,£) € S; x Sy ;. Hence, by applying Proposition 2.7 to these ob-
jects we find for each (x, &) a partition (Sy ¢m)o<m<dy Of U such that the set Sy,¢,m has character
codimension at least m and, moreover, we have

He (Gg, Myey) = 0
for each ¥ € Sy ¢, unless n € [—i — j,i+ j +m)].
For 0 < r < d, we now define 5”: to be the set of characters (x,&, ) € G such that

Y E€Syem:  §E€Sy;, XES;

for some 4, j, m such that ¢ +j+m > r.

For any integer n > 1, we have

|<§;T/(k7n)| = Z Z Z 1Sy.e.m(kn)| < |k|n(d—(i+j+m)) < ’k|n(d—r)
i+j+m2r x€S;(kn) E€Sy, j (kn)

by (2.4) and (2.5) (note that the uniformity with respect to the perverse sheaf in these estimates,
and the uniform bound on the complexity, are crucial to control the sums over y and £). Thus the
set .%, has character codimension at least r.

By construction of the sets S;, Sy j and Sy, ¢, the condition H.(Gy, My¢y) # 0, for (x, &, 9) € (A},
implies that (x,§,v) € ;. We apply a similar argument with D(M) to obtain the analogue

conclusion for ordinary cohomology and set .%; to be the intersection of the set 57; for M and of
the analogue for D(M). By construction, the sets .#; satisfy the first two claims of Theorem 2.3.
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We now establish the last claims of Theorem 2.3.

First, let (x,&,¢) € G—.7. By construction of S; through Theorem 2.12 (see point (2) above),
we have Rpri1(My) = Rpr«(My). Moreover par = pa since p is proper, and by the last claim of
Proposition 2.7, we obtain

HO(G, Myey) = HO(Ug, RpasRpraMyey) = H2(Uz, RoaRpmiMyey) = HA(G, Myey).

Finally, if G is a torus (resp. an abelian variety) then we use Corollary 2.13 (resp. Corol-
lary 2.25) to prove that the sets .#; are contained in a finite union of tacs of G of dimension
<d—i.

This finally concludes the proof. O

REMARK 2.27. In view of the relative generic vanishing theorems for tori and abelian varieties
(Theorem 2.11 and Corollary 2.22), one could hope that the generic vanishing theorem for a perverse
sheaf M on a product A x T of an abelian variety A with a torus T could be proved by applying
the relative generic vanishing theorems to the image of M under both projections (with compact
support), and looking at products of characters x and n which satisfy the desired properties for
the image objects. However, this does not work, as explained in Example 2.28 below. (A similar
remark can be made by looking at the diagonal inside G, x Gg; see Chapter 9 for the study of the
arithmetic Fourier transform on this group.)

Nevertheless, we still expect, in the case G = A x T, that the exceptional set for the generic
vanishing theorem is contained in a finite union of tacs, see Section 12, Problem (1). A step in
this direction is that only finitely many abelian varieties can appear in the tacs we construct in
the proof. Indeed they need to be of degree bounded in terms of the complexity of M, and there
are only finitely many abelian subvarieties of a given degree inside a fixed abelian variety (up to
translation), as follows from example from [95].

ExAMPLE 2.28. Let E be an elliptic curve and p: E x G,,, — E and ¢: E x G,,, — G, be the
two projections. Let i: C — E x G, be a closed one-dimensional irreducible subvariety of E x Gy,
with dominant projections to both E and G,,. Let M = i,Q,[1] be the perverse sheaf on E x G,
which is the intermediate extension of the shifted constant sheaf on C.

We claim that both pM and ¢M are perverse. Indeed, we have ggM = q|C!ig*Q€[1], which is
perverse since g C — Gy, is a finite morphism, hence is t-exact by [8, Cor. 2.2.6]. Moreover pM =
p|cﬂ'!*6€[1] and p|c can be factored as a finite morphism followed by an affine open immersion, both
of which are t-exact by [8, Cor. 4.1.3]. It follows that the trivial characters on G,, and E are in the
generic sets for the relative vanishing Theorem 2.11 applied to p and for Corollary 2.22 applied to
q. However, HL(E x G,,, M) ~ H2(C, Q,) # 0, hence the trivial character is not in the generic set
given by Theorem 2.1 applied to E x Gy, and M.

REMARK 2.29. Once we have reduced the proof of Theorem 2.3 to a product, the order in which
we handle the toric, unipotent and abelian variety parts of G in the proof is essentially dictated by
the fact that the current versions of Theorem 2.11 (the relative vanishing theorem for tori) and its
corollaries are not uniform in terms of the complexity of the input object M.

However, if the toric part has dimension 1, it is not difficult to obtain such a statement, and
thus to vary the proof. This is not entirely anecdotal, because the choice of order has implications
on the structure of the sets .#; in Theorem 2.3.

We describe the special case of G = (,,, X G, which will be used in Chapter 9. We note first
that if M is a perverse sheaf on G,,, over k, then the vanishing

H' (G iy My) = Ho(Gyp, s My) = 0
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holds for i # 0 and x outside of a set .# C Gy, such that |.% (k)| < 1 for all n > 1, where
the implied constant depends only on the complexity of M (one reduces to the case of a simple
perverse sheaf, and then one can apply Lemma A.15, for instance). In particular, for x ¢ .7, the
complex M, is a perverse sheaf.

THEOREM 2.30 (Stratified vanishing for G,, x Gg). Let M a perverse sheaf on G = Gy, X G.
There exist subsets N N
yQCleyQZG and yCGa
such that the following holds:

(1) Forn > 1, we have | S (k,)| < 1, |7 (kn)| < 1 and |1 (k)| < |kn|-

~

(2) For 0 <1< 2, any x € G such that at least one of the cohomology groups
HY(Gg, My),  H7(GpMy),  Hu(Gg,My),  H'(Gg, My)
s mon-zero belongs to ..
(3) For x € =1, the equality HY(Gy, M, ) = H%(Gj, M,,) holds.
(4) For ¢ € G, — T, the set Ty, of all x € G, such that Y X x € .S satisfies the bound
| Ty (kn)| < 1 for all n > 1, with an implied constant that only depends on c¢(M).

PRrROOF. Let p: G = G,, be the projection. For 1 varying in (A}a, the complexes Rpi(My)

on G,, have bounded complexity. By Proposition 2.7, we can partition g, in subsets Sy and Sy,
with S; of character codimension > 1, such that Rpi(My) is perverse if ¢ € Sp.

Let ¢ € Sg. Then by the elementary remark before the statement, the set Sq ., of x € G, such
that Rpi(My ), is not perverse has the property that [So(ky)| < 1 for all n > 1, where the implied
constant depends only on ¢(M). The result now follows with

~

S = G,
A1 = (G x S0) U{x B | ¥ € Sp and x € Sy1},
e?:SOa

and .% the set of characters such that one of
HQ(GE7MX)3 H_2(GE7MX)’ Hg(GmeX)? H(?Q(GkaMX)
is non-zero (which satisfies |.#2(ky)| < 1 for all n by the observation before the theorem; note that

S5 C 7 because the existence for given (x,v) € G of non-zero H2 or H? implies that Rpi(My) is
not perverse). O
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CHAPTER 3
Tannakian categories of perverse sheaves

3.1. Introduction

Throughout this chapter, k& denotes a finite field and k& an algebraic closure of k. We denote
by ¢ a prime number different from the characteristic of k. All complexes we consider are f-adic
complexes.

Let G be a connected commutative algebraic group over k.

Let M be a perverse sheaf on G. We wish to define a “symmetry group” that governs the
statistical behavior of the arithmetic Fourier transform

SOMLx) = D x(@)tn(w; kn)

2€G(kn)

for x € G(kn) The fundamental mechanism for this is that the symmetry group G should come
with a faithful linear representation G C GL, for some r > 0, and to almost all characters x there
should be assigned an element (or conjugacy class) Fr, € G such that S(M, x) is the trace of Fr,.

The idea behind the construction of the group G (following Katz [74]) is based on the fact
that we have a “geometric” control on the algebra structure on the space of arithmetic Fourier
transforms through the link with convolution: for two objects M; and My on G, we have

S(My, x)S(Ma, x) = > x(@)(tar, * tas, ) (5 Fin),
2€G(kn)
where
(g * b)) (@i k) = Dty (5 Fon )ty (y 5 ),
yeG(kn)
for € G(ky,), is the convolution product in the classical sense of Fourier analysis on G(k,).

It is fundamental that by the proper base change theorem and the trace formula, we can view
this function as a trace function, namely

(tM1 * tMQ)(‘T; kn) = tM1*!M2 (CC; kn)a
where M; % My is the convolution with compact support (Section 1.5).
This geometric interpretation suggests to use the convolution as “tensor operation” to define

a tannakian category, which would be equivalent to the category of representations of the desired
Symmetry group.

In essence, this is what we will do. However, there are some significant issues to handle:

— The first one, already present in the work of Katz for G,,, has to do with the fact that
convolution with compact support does not always preserve perverse sheaves (for instance,
if G has dimension d, then the convolution %, [d] % -Z,,[d] is not perverse) or duality
(because duality transforms the convolution % into the convolution *,, which is different
in general).
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We can solve this first problem using a suitable quotient category where the two
geometric convolution products turn out to coincide (this idea goes back to Gabber and
Loeser and was also used by Katz).

— A related issue is that weights do not always behave well under convolution, in the case of
affine groups at least. Since weights dictate the size of the sums S(M, x), this is a crucial
issue for our intended applications. This is again related to the difference between the two
geometric convolutions, each of which leads in practice to inequalities in one direction for
the weights.

— Finally there is a major new difficulty in comparison with the work of Katz. The link
between the alg\stract tannakian ideas and the arithmetic Fourier transform is that for a
character x € G(ky,), the formula

S(M, x) = Tr(Fry, | HY(GR, My))

should hold. This is in fact (by the generic vanishing theorem) only true in general for a
generic set of x where the contributions of H. in the trace formula vanish for ¢ # 0. But
we also want “higher-order” versions of this formula to hold, namely for instance

S(M, x)? = Tr(Fry, | HY(GE, My # My)),

and so on for further powers (intuitively, this is because understanding the limits of aver-
ages of such expressions is necessary to apply the Weyl equidistribution criterion, as we will
do in the next chapter). This amounts roughly to requesting that M — HY(Gy, M,) should
be compatible with convolution and so should (roughly) the generic vanishing theorem.

Thus we need to distinguish various types of characters depending on their behavior
with respect to operations of this type.

3.2. Categories of objects defined over finite fields

We denote by D(G) and P(G) the full subcategories of D?(G;) and Perv(Gy) respectively
whose objects are defined over some finite extension of the base field k. These categories are stable
by direct sum, shifts and duality. Moreover, the perverse cohomology sheaves of an object of D(G)
belong to P(G).

We recall from Section 1.5 the definition and properties of the two convolution bifunctors
(M,N) + M *, N and (M,N) ~— M # N for objects M and N of D?(G) or D2(Gj). These are
compatible with base change, so that the convolutions on Gy preserve the category D(G). In
addition, the functor M — M" also induces a functor on D(G) and P(G).

3.3. Weakly unramified characters
DEFINITION 3.1 (Weakly unramified characters). Let M be an object of P(G). A character
x € G is said to be weakly unramified for M if the following holds:
H'(Gg, M, ) = H.(Gg, M, ) =0 for all i # 0,
H(C)(GE7 MX) = HO(Gfm MX)
We denote by Z,,(M) the set of weakly unramified characters for M.

REMARK 3.2. (1) The terminology is suggested by analogy with the case of the additive group,
in which the characters for which generic vanishing holds correspond to points at which the Fourier
transform is lisse. However, we will see that the generic vanishing condition is not in general strong
enough to obtain the properties we seek (namely, that the assignment M — HS(G,;, M, ) defines a
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fiber functor on a suitable tannakian category of perverse sheaves on Gy), see Remark 3.25 and
Example 9.15. We will introduce unramified characters in Definition 3.24, as well as the variant of
Frobenius-unramified characters in Definition 3.35.

(2) Since G is not proper in general, the condition on the cohomology groups with support is
not implied by the one on the cohomology groups without support.

With this definition, we can reformulate the Stratified Generic Vanishing Theorem 2.1 as follows:

THEOREM 3.3. The subset Z,(M) C G of weakly unramified characters for an object M of P(QG)
1S generic.

3.4. Negligible objects

In general, none of the two convolution bifunctors on the derived category preserves the sub-
category of perverse sheaves. As first observed in the case of tori by Gabber and Loeser [50], there
is however a suitable quotient of the category P(G) on which both convolution functors induce the
same bifunctor.

DEFINITION 3.4. An object M of P(G) is said to be negligible if the set of characters y € G
satisfying H?(Gz, M, ) = 0 is generic. An object N of D(G) is said to be negligible if all its perverse
cohomology objects P.#*(N) are negligible.

We denote by Negp(G) and Negp(G) the full subcategories of P(G) and D(G) respectively
consisting of negligible objects.

We denote by Kpeg(G) the subgroup of the Grothendieck group K(G) generated by classes of
negligible perverse sheaves, or equivalently by classes of negligible objects.

Given an object M of P(G), set
N (M) = {x € G| H(G, M,) = H.(G, M) = 0 for all }.
Using Theorem 2.1, we see that M is negligible if and only if .4 (M) is a generic subset of G.

For M € Negp(G), we set
A0 = P o)),

It follows from the definition that, for each negligible perverse sheaf M (resp. object of Negp (G)),
the perverse sheaf M"Y is also negligible (resp. the complex MV is negligible).

EXAMPLE 3.5. Any character sheaf £, on G is negligible. More generally, let f: G — H be a
surjective morphism of algebraic groups such that the dimension d of the kernel ker(f) is positive.
Let € G and let N be any object of D?(H). We claim that the object M = (f*N), is negligible.

Indeed, let ¢ € Z. We can factor f = f1 o fo, where fo is smooth of relative dimension d and f;
is radicial. Then f5[d] is t-exact (see [8, §4.2.4]), and so is tensoring by .%;, (Lemma 1.17), so there
is a canonical isomorphism

PA(FN)) = f5 (P ST(N)))y-
For y € é, the projection formula leads to canonical isomorphisms
H* (G, My) = H (G, f5 (P (f{ (N)) @ L) =~ H* (Hy, P~ (f1(N)) @ RfarZyp).-

The complex R fo.Z;,, is zero if the restriction of ny to the subgroup ker(f2)° is not the trivial
character (see Lemma 1.16). Since this condition defines a generic set of characters x, we deduce
that P7*(M) is negligible, and the result follows.
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REMARK 3.6. Intuitively, to say that M is negligible means that the arithmetic Fourier transform
of M (see Section 1.8) satisfies S(M, x) = 0 for x in a generic subset of G. To illustrate this concrete
aspect, we show how it explains the previous example. Thus consider M = (f*N),,, with notation

as above for some 71 € (A}(k:) Let x € (A}(kn), the corresponding value of the Fourier transform is

SMLx) = > x@tu(zikn) = Y x(@)(no Ny, ) @)tn(f(x); kn)

2€G (k) z€G(kn)
= Y twwika) Y x(oNg, (@),
yEeH (k) x€G(kn)

f(@)=y
and the inner sum is either empty or a sum of a character over the k,-points of a coset of the kernel
of f, which vanishes unless x = (7o Ny /k)_l on the kernel of f.

In some cases, one can show that, conversely, all simple negligible perverse sheaves are of the
form (f*N), for some quotient morphism f with kernel of dimension at least 1. This is for instance
the case for abelian varieties, by a result of Weissauer [127, Lemma 6, Th. 3] (see also Remark 5.15)
and we will prove later that this is also the case for G, X Gy, (see Section 9.4).

This structural property is however not always true. For instance, if G is a unipotent group of
dimension at least 2 (e.g., G = Gg with d > 2), with Serre dual G, then we can take any object
N € D2(GY) whose support S has codimension at least 1, and the inverse Fourier transform M of N
will be a negligible object on G. If S is not a translate of a subgroup of G, then the object M is not
obtained by pullback from any quotient of G. (In the terminology of [39, §4], in the case of Gg,
such objects are said to have A-number equal to 0, and they play a delicate role in certain analytic
applications.)

We recall that a full subcategory S of an abelian category C is said to be a Serre subcategory
if it is not empty, stable by extension and by subobject and quotient. A strictly full triangulated
subcategory S of a triangulated category C is said to be thick if, for any morphism f: X — Y in C
which factors through an object of S, and which appears in a distinguished triangle

Xx-Lyoz
with Z object of S, the objects X and Y are in S.

LEMMA 3.7. The category Negp(G) is a Serre subcategory of P(G), and Negp(G) is a thick
triangulated subcategory of D(G).

Proor. Fix an exact sequence X — Y — Z in P(G) such that X and Z are objects of Negp(G).

By Theorem 3.3, there is a generic set of characters x € G that are weakly unramified for X, Y,
and Z. From the long exact sequence in cohomology, we find that for any such y, the vanishing
HY (G, Yy) = H.(Gj, Yy) = 0 holds for all 4, and hence Y is negligible. The first statement follows
easily. An argument of Gabber—Loeser (see [50, Prop.3.6.1(i)]) then implies that Negp(G) is a
thick triangulated subcategory of D(G). O

LEMMA 3.8. For all objects M and N of D(G), the following properties hold:

(1) The cone of the canonical morphism M % N — M x, N lies in Negp(G).
(2) If M belongs to Negp (G), then so do M % N and M %, N for each object N.
(3) If M and N belong to P(G), then P (M % N) and P7*(M *, N) lie in Negp(G) for each
non-zero integer 1.
We omit the proof, which is the same as that of [90, Lem. 4.3].
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3.5. Tannakian categories

By results of Gabriel [51] for abelian categories and Verdier (see the treatment in the book [107]
of Neeman) for triangulated categories, we can define the quotient of an abelian or triangulated
category by a Serre or thick subcategory. This allows us to make the following definition.

DEFINITION 3.9 (Convolution categories). The convolution category of G, denoted D(G), is the
quotient category of D(G) by Negp(G); it is a triangulated category.

The perverse convolution category of G, denoted P(G), is the quotient abelian category of P(G)
by Negp(G).

Those two constructions are compatible, in the sense that the t-structure on D(G) induces a
t-structure on D(G) whose heart is the category P(G) (see [50, Prop. 3.6.1]).

__ Since the functor N+ NV preserves negligible objects, it induces a functor on P(G) (resp. on
D(G)), which is still an involution.

ProposITION 3.10. With notation as above, the following properties hold:

(1) The convolution products * and *. induce bifunctors on D(G) x D(G).
(2) The canonical forget support morphisms M % N — M *, N induce isomorphisms in D(G),
and define by passing to the quotient a convolution bifunctor denoted
x: D(G) x D(G) — D(G).

(3) The subcategory P(G) of D(G) is stable under the convolution .

(4) The categories D(G) and P(G), endowed with the bifunctor , are symmetric Q,-linear
monoidal categories with unit object 1 the image of the skyscraper sheaf at the meutral
element of G.

PROOF. The fact that % and *, induce functors on D(G) x D(G) follows from Lemma 3.8 (2).
That they agree is Lemma 3.8 (1). The stability of P(G) under * is Lemma 3.8 (3). The fact that
we obtain symmetric Q,-linear monoidal categories is now clear. The last assertion follows from
the canonical isomorphisms 1 % M ~ 1 %, M ~ M which exist for any complex M. (]

It is also very useful that there exists a natural subcategory of P(G) that is equivalent to the

perverse convolution category.

DEFINITION 3.11. The internal convolution category of G is the full subcategory Piy (G) of the
category P(G) whose objects are perverse sheaves that have no subobject or quotient in Negp(G).

PROPOSITION 3.12. The localization functor P(G) — P(G) restricts to an equivalence of cate-
gories
Pint(G) — P(G),

hence the convolution product bifunctor x on P(G) induces a convolution bifunctor s on Piy(G).
PROOF. The argument is the same as that of Gabber and Loeser [50, Déf.-Prop. 3.7.2]. ([l

The convolution product on Piy (G) will sometimes be called the internal or middle convolution.

REMARK 3.13. One can give a more explicit form of the equivalence of categories above, and
of the internal convolution.

First, Gabber and Loeser (loc. C&) give an explicit quasi-inverse functor M +— M, to the
equivalence of categories Piy(G) — P(G). Namely, let M be an object of P(G). Let M; be the
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largest subobject of M that belongs to Negp (G) and let M! be the smallest subobject of M such that

M/M! belongs to Negp(G). Define Mjy, = M!/(M! N M;). Then we have canonical isomorphisms
Mint & (M* + M) /My,

and the assignment M + My is a functor which factors through P(G) and induces a quasi-inverse

of the localization functor.

In particular, this implies that if M is a semisimple object of P(G), then My is the sum of all
the simple constituents of M that are not in Negp(G).

Second, it follows from the argument in [50, Déf.-Prop. 3.7.3] that for M and N in Py (G),
there are canonical isomorphisms

M s#ing N = P20 (M 5 N)ing — PA2°(M #, N)ins.

Recall from Section 1.5 that for M € P(G), the identity morphism idy: M — M defines
evaluation and coevaluation maps

ev: Msx MY =1 and coev: 1 — MY %, M.

They correspond to maps in P(G) which we denote in the same way.
PROPOSITION 3.14. The monoidal category P(G) is rigid. That is, for each object M of P(QG),
the morphisms

evxidyg

Ms«sMYsM— N 1«xM~M

idppkcoev
e

M~M=x1
MY~ 15 MY SOV NV N e MY YY1~ MY

are the identity on M and on MY respectively.
PROOF. The argument is the same as that of Kramer in [90, Th.5.2]. O

For any object M of P(G) (resp. of Piy(G)), we denote by (M) the subcategory of P(G)
(resp. of Pyt (G)) which is tensor-generated by M, i.e., the full subcategory whose objects are the
subquotients of all convolution powers of M & MV.

Our next goal is to prove the following crucial result:

THEOREM 3.15. The categories P(G) and Piy(G) are neutral tannakian categories.

In particular, for any object M of Pint(G) or of P(G), the category (M) is a neutral tannakian
category over Q,.

Recall that this means that there exists a fiber functor, namely a faithful exact tensor functor
from P(G) to the category Vectaé of finite dimensional Q,-vector spaces.

We begin the proof with an auxiliary result. Recall that the trace Tr(f) € Q, = End(1) of an
endomorphism f of M € Pin(G) is defined as the composition

coev

*in id
120, N e MY I MY Y T,

The dimension of M € Pint(G) is then intrinsically defined as dim(M) = Tr(idy). It is, a priori,
an element of Q,.

PROPOSITION 3.16. Let M be an object of Pini(G) and let C be the cone of the canonical
morphism
Mx MY — M x, MY,
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For any character x € G in the generic set
Zw(M) N A (C),
the following equality holds:
(3.1) dim H°(Gg, M) = dim(M).

In particular, dim(M) is a non-negative integer, and there exists a generic set of characters x
such that the dimension of HY(Gj, My) is independent of x.

PRrROOF. We need to determine the morphism

coev

1 2 Mo MY 5 1.

Twisting by x and taking cohomology, the sequence above induces a sequence
Q, — H*(Gj, (M xint MY)y) — Q.

By Lemma 3.8, the object C is in Negp(G) so that for y € A4(C), we have a canonical
isomorphism

H*(Gp, (M sing Mv)x) ~ H*(Gg, (M . Mv)x)-
By Lemma 1.15, there is also a canonical isomorphism
H (G, (M, MY)y ) = H*(Gg, My) @ H' (G, (M) "),

If x € Zw(M), then we also get H*(Gg, My) = H(Gy, M,) and H*(Gg, MY) = H°(G, M,)Y,
and therefore the sequence above becomes

Q; — End(H(Gg, My)) = Q-

Since the evaluation and coevaluation maps are sent to evaluation and covevaluation maps in vector
spaces (see the proof of [90, Th.5.2]), this composition is the multiplication by the dimension of
H%(G, M, ), which is therefore equal to the dimension of M in Piy(G). O

PROOF OF THEOREM 3.15. By Proposition 3.14, the equivalent categories P(G) and Piy(G)
are Q,-linear rigid tensor symmetric categories. Since the unit 1 is (the image of) a skyscraper
sheaf, we have End(1) ~ Q.

Proposition 3.16 and Theorem 3.3 imply that the dimension dim(M) of every object M of P(G)
is a non-negative integer. By a theorem of Deligne [30, Th. 7.1], it follows that the category P(G) is
a tannakian category. A further theorem of Deligne (see the proof by Coulembier in [23, Th.6.4.1])
implies that it is indeed neutral (i.e., there exists a fiber functor defined over Q). 0

REMARK 3.17. (1) In Example 9.15, we will give examples to show that there may exist weakly
unramified characters for which formula (3.1) does not hold.

(2) In this book, we will exclusively consider from now on the categories (M) generated by
a single object. A simpler proof that these are neutral tannakian categories is then provided by
combining [30, Th.7.1] with [30, Cor. 6.20].

COROLLARY 3.18. Let M be an object of Pint(G). There exists an affine algebraic group G
over Q, such that the category (M) is equivalent to the category RepQZ(G) of finite-dimensional

Q,-representations of G. If M is semisimple, then the group G is reductive and the category (M)
18 semisimple.
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PROOF. The first part follows from the tannakian reconstruction theorem [32, Th.2.11]. If M
is semisimple then since the category of representations of G is equivalent to the category (M)
generated by the semisimple object M, it follows, e.g., from | , Th.22.42] that the group G is
reductive, and that every object N € (M) is semisimple. 0

DEFINITION 3.19. For any object M of Piy(G) or of P(G), we denote by G{[° the affine
algebraic group over Q, given by the corollary, and we say that it is the geometric tannakian group
of the object M.

ExAMPLE 3.20. (1) Let G = G,,,. A perverse sheaf N on G,, is negligible if and only if it is
a successive extension of shifted Kummer sheaves %, [1] for some characters x, and it follows that
the category Pint(Gyy,) is the same as the category P of Katz [74, Ch. 2] (see also Section B.1).

(2) Let G = G4. Fix an additive character ¢ of k. By the proper base change theorem, a
perverse sheaf N on G, is negligible if and only if its Fourier transform FT(N) is punctual, which
means that N is a finite direct sum of Artin-Schreier sheaves £, ,)[1] for some y € G,. This
implies that the category Piy(G,) coincides with the category of perverse sheaves on G, with
“property P”, as defined by Katz [70, (2.6.2)] (this follows by combining Cor.2.6.14, Cor.2.6.15
and Lemma 2.6.13 of [70]; see Remark 2.10.4 in loc. cit.).

3.6. Euler—Poincaré characteristic and Grothendieck groups

Proposition 3.16 has some other useful corollaries which we state now.
PROPOSITION 3.21. Let M be an object of D2(G).

(1) There ezists a generic set 2 C G such that the Euler—Poincaré characteristic x(Gz, My)
is independent of x € X .

(2) IfM is negligible, then x(Gy,, My) = 0 for all x in a generic set of characters. The converse
holds if M is a perverse sheaf.

(3) If G is a semiabelian variety, then the Euler—Poincaré characteristic x(Gg, My) is inde-

pendent of x € G and it is non-negative if M is a perverse sheaf.

ProOOF. The decomposition
M= (-1)" b (M)

1€Z

in the Grothendieck group K(G), together with Lemma 1.17, implies that
X(Gi My) = D (=) x(Gg, P (M)y)

1€EZ
for all x € G. Thus the first statement is an immediate consequence of Proposition 3.16, combined
wih the generic vanishing theorem, applied to each perverse cohomology sheaf.

If N is a negligible perverse sheaf, then by definition we get H*(Gz, N, ) = 0 for a generic set of
characters, hence also x(Gg,Ny) = 0 for a generic set of characters. The previous formula shows
that this is also true for any complex M.

Conversely, assume that M is a perverse sheaf and x(Gg, M,) = 0 for all x in a generic set.
Combined with the generic vanishing theorem, this implies that H*(Gz, M, ) = 0 for x generic,
hence M is negligible.

If G is a semiabelian variety, then the Euler-Poincaré characteristic x(Gz, M, ) is independent

of x by a result of Deligne (see [63]), because all the x € G are tame. In this case, the tannakian
dimension of a perverse sheaf on G is therefore the same as its Euler—Poincaré characteristic. [
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COROLLARY 3.22. A perverse sheaf M in P(G) is negligible if and only if its class in the
Grothendieck group K(G) belongs to the subgroup Kneg(G) generated by classes of negligible perverse
sheaves.

PRrOOF. It suffices to prove that a perverse sheaf M is negligible if the class of M in K(G) can
be expressed as a finite sum
M=

in K(G), where M; is a negligible perverse sheaf for all i € I and ¢; € {—1,1}. Such a formula
implies the equality

x(G;, M Zazx Gp, M

i€l

for all x € G. For a generic set of characters we have x(Gj,M;,) = 0 for all i € I, since M; is
negligible by assumption, hence x(Ggz, M) = 0 for a generic set of characters; thus M is negligible
by Proposition 3.21, (2). O

COROLLARY 3.23. Suppose that G is a semiabelian variety. Let M be a negligible perverse sheaf
on G. The Euler—Poincaré characteristic of M is O and the set of characters x € G such that the
space HY(Gy, My) is non-zero is contained in a finite union of tacs.

PrOOF. The fact that x(M) = 0 has been stated in Proposition 3.21. By Theorem 2.16, there
exists a finite family (Sy) of tacs of G such that H*(Gy, My) = 0 for all 7 # 0 and x not belonging
to the union . of these tacs. For any x not in ., we then deduce by loc. cit. that

dim HO(GEa My) = x(My) = x(M) = 0.

3.7. Arithmetic fiber functors

We now address the question of constructing arithmetic fiber functors that will be used to define
conjugacy classes of elements in the tannakian groups.

DEFINITION 3.24 (Unramified characters). Let M be an object of Pint(G). A weakly unramified
character x € G for M is said to be unramified for M if the functor

N +— wy(N) = HY(Gj, N, )
is a fiber functor on the category (M) C Pin(G). We denote by
2 (M) C (M) C G

the set of unramified characters for M. We say that the perverse sheaf M is generically unramified

if the subset 2" (M) C G is generic.

REMARK 3.25. In Example 9.15, we will give examples to show that there may exist weakly
unramified characters which are not unramlﬁed An example is given by the sheaf M = ., ) (1/2)[1]
on G, X Gg, where f is a polynomial of degree d such that f(0) # 0 and n is a multlphcatlve
character such that n¢ is non-trivial.

We shall prove that every character (y,a) is weakly unramified for M, that dim(H°(G,, x
Ga, M(y,0)) is d+ 1 if a # 0 but d if a = 0, implying that (x,0) is not unramified for M.

We expect that all semisimple objects of Pin(G) are generically unramified. We can currently
only prove this property for the three fundamental types of algebraic groups.
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THEOREM 3.26. If G is a torus, an abelian variety or a unipotent group, then any semisimple
object of Pint(G) is generically unramified.

For tori or abelian varieties, we need a general technical criterion ensuring that an object M is
generically unramified.

LEMMA 3.27. Let M be a semisimple object of Pint(G). Set L = M & M. For each m > 2,
let C,, be the cone of the canonical morphism L*" — L*¥". All characters x in

(3.2) ZwM) 0 () A (Crm)
m>2

are unramified for M.

PROOF. Let x be a character in the set (3.2). By Proposition 1.30, every object N of (M) is
a direct sum of direct factors of m-fold convolution products L*i for some integers m. By the
definition of (3.2) and Lemma 1.15, we have canonical isomorphisms

H (G, L) = HY (G, L) = HY (G, Ly)®

for any m.

By (3.2) again, we have H*(Gg, L, ) = H(Gg, Ly ), and hence w, (L*nt) = w, (L)®™. This proves
that the functor w, is compatible with the tensor product; other compatibilities are elementary,
and the functor w,, is exact on (M), hence the result (see [32, Prop. 1.19]). O

PROOF OF THEOREM 3.26 FOR ABELIAN VARIETIES. If G is an abelian variety, then both con-

volution functors are canonically isomorphic; hence, all objects C,,, vanish and the set (3.2) is the
same as Z,(M) = 2 (M), which is generic. O

REMARK 3.28. There is a more precise result if G is an abelian variety. Indeed, we have
recalled that 23,(M) = 2 (M) for any semisimple object of Piy:(G), and by the strong form of the
Stratified Generic Vanishing Theorem (Theorem 2.3), it follows that the set of ramified characters
is contained in a finite union of tacs of G.

PROOF OF THEOREM 3.26 FOR TORI. We use the notation of the previous lemma. For a
torus G, a result of Gabber and Loeser [50, Prop.3.9.3 (iv)] implies that there is an inclusion
N (Cq) € A (Cyy,) for all integers m > 2. So the set

ZwM)N () A (Cm) = Zow(M) N.A(Ca)
m>=2

is generic, by the generic vanishing theorem and the definition of negligible objects. ]
Finally we consider unipotent groups.

PROOF OF THEOREM 3.26 FOR G UNIPOTENT. We denote by GY a form of the Serre dual
of G, and we fix an additive character ¢ to compute the Fourier transform FT; on G (see Sec-
tion 2.2).

Let M be a semisimple object of Py, (G). We claim that there exists a dense open set V. C GV
such that for all objects N and N’ of (M), the restriction of FTy(N) to V is lisse and there exists a
canonical isomorphism

(3.3) FT(N sine N')[V = (FT,(N) @ FTy,(N')|V.

Indeed, if this claim holds, then it is elementary that for any a € V(k), the corresponding
character ¢, € G is unramified for M.
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The claim above follows in turn from a more general statement: for all objects M; and My of
Pint(G), and for any open dense subset W C GV such that the Fourier transforms FT,(M;) and
FTy,(Mz) are lisse on W, there exists a canonical isomorphism

FTd, (Ml *int Mg)’W — (FT¢(M1) X FT¢(M2))‘W

Indeed, the isomorphism shows in particular that the Fourier transform of M i, Mo is also lisse
on W; since the same is true of the dual D(My), it follows that the Fourier transform of any object
of (M) is lisse on W, leading to the previous claim (with V = W).

We now prove the general statement above. Let M = P.2#%(M;* Ms). By definition of My#j,;Ma,
we have My iy Mo = Mjy (see Remark 3.13).

Let PT<o and Pr>( be the perverse truncation functors. We have canonical morphisms

(3.4) pTgo(Ml *) MQ) — My % My
and
(35) pTgQ(Ml X Mg) — pT;o(pTgo(Ml *| MQ)) = pe%pO(Ml *| Mg) = M.

By Lemma 3.8, the mapping cones of both morphisms are negligible. By the vanishing theorem
for unipotent groups (Proposition 2.7), there is a dense open subset W' of W such that the induced
morphisms

(3.6) FTy(P7<0(M; % Ma))|W’ — FTy(M; % My)|W’

and

(3.7) FTy(P7<0(M; % My))|W’ — FT, (M)W

are isomorphisms. Inverting (3.6) and composing with (3.7), we obtain a canonical isomorphism
(3.8) FTy(My % My)|[W’ — FTy, (M)W,

Let M! be the smallest subobject of M such that M/M! is negligible. We then have a canonical
injection M — M with negligible cokernel and a canonical surjection M! — M, with negligible
kernel, by Remark 3.13. By the vanishing theorem for unipotent groups (Proposition 2.7), up to
replacing W’ by a smaller dense open subset, we can assume that the canonical morphisms

(3.9) FTy (M)W — FT,(M)|W’

and

(3.10) FTy (M)W’ — FTy(Mint ) [W

are isomorphisms. Inverting (3.9) and composing with (3.10), we get a canonical isomorphism
(3.11) FTy(M)[W — FT (Mg )|W’ = FT (M sing Ma)[W'.

Composing (3.8) and (3.11), we get a canonical isomorphism
(3.12) FTy (M % M)W’ =~ FTy, (My e Ma)|[W'.

Denote by j: W' — W the open immersion. By the definition of the category Piy(G), the
Fourier transform FT,(M; *in; M) (which is a perverse sheaf up to shift) has no shifted perverse

component supported in GY — W’ (such a component would be negligible), and therefore we have
a canonical isomorphism

(313) ]l*j*(FTw(Ml *int M2)|W) >~ FTd, (Ml *int Mg)’W
by the properties of the intermediate extension functor ji. (see Proposition A.9).
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By Lemma 1.15, there is a canonical isomorphism FTy (M % My) ~ FTy(M;) @ FTy(Ms).
Since FTy(M;) and FT, (M) are lisse on W, we have also a canonical isomorphim

g (FTy(Mp) @ FTy (Mz2))[W) 2 (FTy (M1) @ FTy(Mz))[W,
hence a canonical isomorphism

(3.14) Jred(FTy (M # M2)[W) =~ (FTy (M) ® FTy(Mg))[W.

We now apply the functor ji. to the isomorphism (3.12), and use (3.13) and (3.14) to obtain
the desired canonical isomorphism (3.3); this concludes the proof of the claim. O

3.8. The arithmetic tannakian group

In this section, we consider the situation over the finite field k. Base change M — M gives a
functor Perv(G) — P(G). For a perverse sheaf M on G, we define the set of unramified characters
for M as 2°(M) = 2" (Mz).

We denote by Negis'(G) (resp. P21(G)) the full subcategory of Perv(G) whose objects are the
perverse sheaves M such that Mz is an object of Negp(G) (resp. of Piyt(G)). As in the geometric

ari

case, we find that Negp'(G) is a Serre subcategory of Perv(G) and that the localization functor in-
duces an equivalence from P& (G) to the quotient abelian category P* (G) = Perv(G)/Negi(G).

int

Also similarly to the geometric case, the two convolution bifunctors on Perv(G) induce equiv-

alent bifunctors on P*'(Q) (compare with Proposition 3.10). The categories P* (G) and P2(Q)
are then rigid symmetric Q,-linear tensor categories, with unit object 1 still the skyscraper sheaf
at the unit of G, which again satisfies End(1) ~ Q,.

Let M be a perverse sheaf on G. To distinguish between the arithmetic and geometric sit-
uations, we denote from now on by (M) (resp. (M)5®°) the subcategory of P (G) ~ P*(Q)
(resp. of Pint(G) ~ P(G)) that is tensor-generated by (the image of) M (resp. by Mj). Base
change N — Nz gives a functor from (M)™ to (M)&.

THEOREM 3.29. Let M be an object of Perv(G). The categories (M)™ and (M) are neutral
Q-linear tannakian categories. There exist algebraic groups GE[° and Gi}}i over Q, such that (M)

is equivalent to the category RepQZ(Gi/?) and (M)® is equivalent to the category RepQZ(Gf/[eo).

Moreover, if r is the tannakian dimension of M, then the objects M and Mg of (M)™ and (M)8*°,
respectively, correspond to faithful representations of Gﬁ}ii and G§[° in GL,(Qy).

PROOF. The case of (M)®* is dealt with by Theorem 3.15 and Corollary 3.18. The case of
(M)* follows by the same argument because Proposition 3.16 also applies to P21}(G).

The last assertion is a tautological consequence of the formalism. O

DEFINITION 3.30. In the context of Theorem 3.29, we call Gf\ﬁi the arithmetic tannakian group
of M, and Glgv‘fo its geometric tannakian group.

PROPOSITION 3.31. Let M be an object of Perv(G). The functor of base change to k is a tensor
functor from (M)™" to (M)® that induces a morphism ¢: G§i® — G35, This morphism is a closed
1MMErsion.

PRrROOF. The first assertion is immediate, and it implies by the tannakian formalism the ex-
istence of the homomorphism ¢. According to [32, Prop.2.21 (b)], this morphism ¢ is a closed
immersion if and only if every object of (M)&® is isomorphic to a subquotient of an object in the
essential image of the base-change functor.
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Let N be such an object of (M)®, viewed as an object of Piy(G). By definition of the
category P(G), there exists a finite extension k,, of k in k such that N is the base change to k of a
perverse sheaf N; on Gg, . Then N is a subquotient of the base change of the perverse sheaf f,.N;
to Gy, where f,,: Spec(ky) — Spec(k) is the canonical morphism, hence the result. O

From now on, we will identify the geometric tannakian group of a perverse sheaf M on G with
its image in the arithmetic tannakian group.

We recall the convention from Section 1.12 concerning properties over k and k. Let M be a
perverse sheaf on G. We view (M)™" as a subcategory of Pin(G), so that the weights of an object
N € (M)*" are well-defined.

THEOREM 3.32. Let M be a perverse sheaf on G. Assume that M is arithmetically semisimple
and pure of weight zero. Let r be the tannakian dimension of M.

ari

(1) The groups G§i' and G%/Ieo are reductive subgroups of GL,..

(2) Every object N of <M>ari s arithmetically semisimple and pure of weight zero, and every
object N of (M)& is semisimple.

PROOF. Since any pure perverse sheaf on G is geometrically semisimple by [8, Th.5.3.8], the
assertions for (M)®* follow. The same proof is also valid for (M)™"
semisimple, so that the group i/? is also reductive, and all objects of (M)*" are arithmetically

semisimple.

, since M is arithmetically

We now prove the purity statement. Since M is pure of weight zero, it follows from the descrip-
tion of My, in Remark 3.13 that the corresponding object of P (G) is also pure of weight zero,
and similarly for its dual

For any perverse sheaves N; and Ny on G that are pure of weight zero, the convolution Ny *jut No
is also pure of weight zero. Indeed, by Deligne’s Riemann Hypothesis [28, 3.3.1], the object Ny Ny
is mixed of weights < 0. Hence, the quotient Ny it No of Ny #) Ny is also mixed of weights < 0
by [8, Prop.5.3.1]. Thanks to Lemma 1.15, the same applies to the Verdier dual D(Ny #iy Na),
which implies the claim.

Hence, the property of being pure of weight zero is preserved by convolution, duality and taking
subobjects. Thus we conclude that every object N of (M)*" is pure of weight zero. O

We now show that the tannakian groups coincide with those of Katz for the multiplicative
group using the category P (see [74, Ch.2] and Section B.1), and with monodromy groups of the
Fourier transform for unipotent groups.

PROPOSITION 3.33. Let M be a perverse sheaf on G. Assume that M is arithmetically semisimple
and pure of weight zero.

(1) If G = Gy, then the arithmetic and geometric tannakian groups of G coincide with those
defined by Katz using the category P.

(2) If G is unipotent of dimension d, and v is a fived additive character used to define its
Fourier transform, then there exists a dense open subset U of the Serre dual GV such that
(FTy Ming)|U is isomorphic to a lisse sheaf % on U, pure of weight d, placed in degree 0.
The arithmetic and geometric tannakian groups of M coincide with the arithmetic and
geometric monodromy groups of the lisse sheaf F .

PROOF. In the case of G,,, the statement follows directly from Example 3.20 (1) (see also
Section B.1 for the definition of P).
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Suppose then that G is unipotent. To prove the first assertion of (2), we may assume that
M is simple and non-negligible. Its Fourier transform is then a simple d-shifted perverse sheaf on
the Serre dual GY, pure of weight d, and with support equal to GV (since the object M would be
negligible if the support were smaller). Thus it is a single lisse sheaf, pure of weight d, on an open
dense subset of GV.

For the second part of (2), we note that by (the proof of) Theorem 3.26 for unipotent groups,

the convolution product on <M>ari can be identified with the tensor product on the subcategory
generated by % of the category of lisse sheaves on U. The result then follows. U

3.9. Frobenius conjugacy classes

We keep working over the finite field £ and use the same notation as in the previous subsection.
For any finite extension k,, of k, we denote by Fry, the geometric Frobenius automorphism of k.

For an object M of D?(X), an integer n > 1 and a character y € G(kn), we denote by Fryp g, (x)
the automorphism of the Q,-vector space H(Gp, M, ) induced by the action of Fry,. Recall from
A3 the notions of weights and purity.

Let r be the dimension of this space. If the automorphism Fry g, (x) is pure of weight zero,
for instance if M is pure of weight 0 and x is weakly unramified for M, then there is a unique
conjugacy class Oy, (x) in the complex unitary group U,(C) containing the semisimple part of
vo(Frak, (X))-

We call Fryp g, (x) the Frobenius automorphism of M associated to x over k,, and Oy, (x) the
unitary Frobenius conjugacy class of M associated to x over k.

Suppose now that M is an arithmetically semisimple perverse sheaf on G.

Let n > 1 and let x € CA}(kn) be an unramified character for M, so that the functor wy: N —
H°(Gg,N,) is a fiber functor on the tannakian category (M)™'. For any object N of (M)™ the
Frobenius automorphism Frj,, now induces an automorphism of w, (N), and thus defines an auto-
morphism of the fiber functor w,. By the tannakian formalism, this corresponds to a unique con-
jugacy class in Gﬁi(ﬁe). We denote by Fryyy, (x) the corresponding conjugacy class of Gi/r[i(C),
and call it the Frobenius conjugacy class of M associated to x over k.

Suppose furthermore that M is pure of weight zero. Let Ky be a maximal compact subgroup of
the reductive group G3(C). Since all objects of (M)*" are pure of weight zero (by Theorem 3.32),
the eigenvalues of any element of the conjugacy class Fryp, (x) are complex numbers with mod-
ulus 1, so that the semisimple part of this conjugacy class is a unitary matrix. One can then
deduce from the Peter—Weyl Theorem that the Gi}}i(C)—conjugacy class of the semisimple part of
Fryp 1, (x) intersects Ky in a unique conjugacy class, which is denoted ®y, (x), and is called the
unitary Frobenius conjugacy class of M associated to x. (See, e.g., [78, 9.2.4] for this argument.)

For an unramified character x, the space w, (M) has dimension r, the tannakian dimension
of M, and the conjugacy class of Fry g, (x) in the automorphism group of H2(Gy, M,) coincides
with that of Fryp g, (x), and similarly for @y g, (x)-

When k,, = k, we will sometimes use simply the notation Fryi(x), Om(x), Fram(x), Om(x)-
We have the following important consequences of the formalism.

LEMMA 3.34. Let M be an arithmetically semisimple perverse sheaf on G that is pure of weight
zero and of tannakian dimension r > 0.
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(1) Let x € Zw(M)(k) be a weakly unramified character for M. For any integer n > 1, we
have

Tr(Ow, (X)) = TrOMO0)™) = Y x(Ng, (@) tm (s kn),
2€G(kn)

where ty is the trace function of M and the trace on the left is that on GL,.
(2) Let x € Z(M)(k) be an unramified character. Let o be an algebraic Q,-representation

of G¥ and denote by o(M) the corresponding object of <M>ari. The character x 1is unram-
ified for o(M) and

Tr(o(Fru(x))) = Tr(Fry, | HY(Gy, o(M)y).

PROOF. (1) By definition, we have
Te(@y(x)") = Te(Fra (x)") = Tr(Fr} | HO(Gy, My ).

Since x is weakly unramified, we have H.(Gg,M,) = 0 for all i # 0 and H(Gg,M,) =
HY(Gj, My), so that we can write

Tr(Om(x)") = > (=1 Te(Fry | HU(GE M) = Y x(Ng, i(®))tna (s ),
1€Z zeG(k)
by the trace formula.

(2) The fact that y is unramified for o(M) follows from the definition and Proposition 1.30, and
the formula follows then from the definition of the Frobenius conjugacy class of x for o(M). O

3.10. Frobenius-unramified characters

Because weakly unramified characters do not always give rise to fiber functors, and moreover
we do not always know if there exist sufficiently many (if any) unramified characters, we introduce
an intermediate notion.

DEFINITION 3.35 (Frobenius-unramified characters). Let M be an object of Perv(G) which is
arithmetically semisimple and pure of weight zero, of tannakian dimension 7. Let ¢ be a repre-
sentation of GL, and let N be the object of (M)*" corresponding to the restriction of g to G3l.
Let n > 1 and let x € Z,(M)(k,) be a weakly unramified character for M. We say that x is
Frobenius-unramified for o if x is weakly unramified for N and if the formula

Tr(o(Onis, (1))°) = Te(Frf,, | HY(Gy,N,)
holds for all integers v > 1, or equivalently if
det(1 — 0(Owk, (X))T) = det(1 — TFry, | HY(GE, Ny)).
The disjoint union over n of the set of Frobenius-unramified characters is denoted 2% (o).

REMARK 3.36. (1) The key point is that since g is a representation of GL,, we can consider the
conjugacy class of o(Fry g, (x)) (in GL(V), where g is a representation on V); a priori, this is not
meaningful for a representation of Gla\?, unless we know that elements of the conjugacy class of the
Frobenius automorphism of HY(Gy, M, ) are conjugate to some element of the arithmetic tannakian
group, which is unique up to conjugacy in Gﬁi.

(2) We will also sometimes write Zr(0) = Zr(N), although this set depends on M, since we
view N as an object of (M)™'. When confusion might arise, we may also write 25 (N)u.
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Any unramified character for M is Frobenius-unramified for all objects of (M)*, by Lemma 3.34,
(2). But in contrast to unramified characters, we can prove in all cases that the set of Frobenius-
unramified characters is generic.

PROPOSITION 3.37. Let M be an object of Perv(G) which is arithmetically semisimple and pure
of weight zero and of tannakian dimension r > 0. For any representation o of GL,, the set 2% (o)
1S generic.

ProoF. We first observe that it is straightforward that if two representations ¢; and g9 of GL,
have the property that 2F(01) and 2F(g2) are generic, then the sets 2 (01 ® 02), 2F(01 ® 02)
and 2 (o)) are also generic. Indeed, consider the case of the tensor product, the others being
similar (and in fact simpler). Let N; be the object corresponding to g;. For x generic, we have

Hz(Gg, (N1 #ine N2)y) = Hz (G, (N1 % Na)y) >~ Hz(Gg, N1y ) @ HZ(Gg, Nay )

as well as
H; (G, Niy) = HY(Gg, Niy)

for ¢ = 1 and ¢ = 2, all these isomorphisms being compatible with Frobenius. Thus

det(1 — T Fry, | HY (G, (Ny #int N2)y)) =
det(1 — T Fry, | HJ(G, Nuiy)) det(1 — T Fry, | HJ(Gg, Nay))

for x generic, which then establishes the claim concerning 2% (01 ® p2) using the definition of
27 (0i) and the assumption that these are generic sets.

A first consequence of this observation is that we may assume that g is irreducible to prove the
proposition. Recall next that every irreducible representation ¢ of GL, is isomorphic to one of the
form o = go®det(-)* for some representation gy given by a Schur functor Sy and some integer k € Z
(see, e.g., [49, Prop.15.47]). Since the determinant is itself a Schur functor, and det(-)~* is the
contragredient of det(-)k , the previous observation reduces the proof to the case where o = S for
some .

In this case, p is given by the image of an explicit projector (see, e.g., [49, §6.1,th.6.3]), and
hence makes sense for any symmetric monoidal category where idempotents split. In particular,
this applies to DP(G) with either of the two convolutions, since D2(G) is known to have this
property (e.g., by combining the fact that D2(G) is equivalent to the bounded derived category
of the category of perverse sheaves, by a theorem of Beilinson [7, Th.1.3], and the fact that the
bounded derived category of an abelian category is idempotent complete, by a result of Balmer
and Schlichting [3, Cor. 2.10]). We will denote by (M) (resp. o«(M)) the action of these functors
on M for the symmetric monoidal structures given by the convolution (A,B) — A % B (resp. by
(A,B) — A x, B).

Since taking cohomologgy with compact support (resp. cohomology) is an additive monoidal
functor for the convolution A B (resp. for Ax,B), by the Kiinneth formula, the explicit description
of the idempotent defining ¢ provides isomorphisms

(3.15) H(Gg, a(M)y) ~ o(HZ(Gy, My))

(3.16) H*(Gp, 0:(M)y) =~ o(H*(Gf, My))

for every x, which are also compatible with Frobenius, where the Schur functor acts on the right-
hand sides in the category of bounded complexes of Q,-vector spaces.

Let N = o(M) be the object of <M>‘r’wi corresponding to o. Since p is assumed to be a Schur
functor, there exists an integer [ > 0 and an embedding N — M; = M*! (see, e.g., [49, §6.1]).
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We obtain a commutative square
a(M) —— 0.(M)

| |

My —— M.

where M; | = M*t and M, = M*<!. This implies, in particular, that the cone C of the morphism
ar(M) — 0.(M)

is negligible, since this is the case for the cone of the bottom morphism by Lemma 3.8. Applying
Remark 3.13, there exists a generic set 2 of characters such that for y € 2", we have isomorphisms

(3.17) HZ (G, Ny) =~ Ho (G, eo(M)y)
which are compatible with Frobenius.

Let finally xy € £ be a character which is weakly unramified for both M and N. Then we have
isomorphisms

Hg(waNx) ~ H7 (G, Ny) = Ho (G, oo(M)y) =~ o(HZ (G, My)) =~ Q(Hg(GkaMX))
compatible with Frobenius (the first and fourth of these are given by the theorem, the second
is (3.17) and the third is (3.15)), and hence
det(1 — T Fry, | HJ(Gg, Ny)) = det(1 — o(Onp, (X)) T).
Since this holds for a generic set of characters (by Theorem 3.3), we obtain the desired result. [

COROLLARY 3.38. Let M be an object of Perv(G) which is arithmetically semisimple and pure

of weight zero and of tannakian dimension r > 0. If the group G is finite, then M is generically

unramified.

PRrROOF. The fact that the tannakian group is finite implies that any object of (M)a]ri is a
subobject of a direct sum of copies of a single object N = M*int™ ;. (MV)*int! for some (fixed)
integers m and [ (see [32, Prop.2.20 (a)]). Any Frobenius-unramified character for M is then an
unramified character for M. O

3.11. Group-theoretic properties

We continue with the notation of the previous sections.
The following basic proposition establishes the relation between the geometric and arithmetic
tannakian groups.

PROPOSITION 3.39. Let M be a geometrically semisimple object of Perv(G). The geometric
tannakian group G%Z’O is a normal subgroup of the arithmetic tannakian group G3'.

PROOF. The proof is identical with that of [74, Lemma 6.1]. O

PROPOSITION 3.40. Let M be an arithmetically semisimple object of Perv(G). Assume that M
s pure of weight zero.

(1) The quotient G51/GE[° is of multiplicative type.
(2) Let V be a geometrically trivial object of (M) which corresponds to a faithful represen-

tation of the group Gﬁi/G%{eo. Any character x € G is unramified for V, and the class £
of the Frobenius conjugacy class of any such character is independent of x and generates
a Zariski-dense subgroup of Gi/?/G%/[eo.

69



(3) For anyn > 1 and any character x € G(ky,) unramified for M, the image in G/GE of
the Frobenius conjugacy class Fry,(x) is equal to £".

PRrROOF. This follows by the same arguments as in [74, Lemma 7.1] (checking first that, using
the structure of geometrically trivial objects as direct sums of ad°8 @ §; for suitable «, it is indeed
straightforward that all characters are unramified for such objects). O

We will also use the following result in Chapter 9.

PROPOSITION 3.41. Let Gy and Go be connected commutative algebraic groups over k and
let p: Gy — Go be a morphism of algebraic groups. Let M be a perverse sheaf on Gy which is
arithmetically semisimple and pure of weight zero.

Let x1 € (A}l(k:) be a character such that we have Rpi(My,) = Rp«(M,,). Assume further that
N = Rpi(M,,) is perverse and arithmetically semisimple.

(1) The object N is pure of weight zero.
(2) Letn > 1 and let x € Z(N)(ky) be a character such that x1 - (x op) is weakly unramified
for M. Then the conjugacy classes Ok, (x1 - (x 0p)) and On i, (x) satisfy
det(1 — TOwmk, (x1 - (x 0 p))) = det(l — TON, (X)) € C[T]

and in particular

det (O, (X1 - (X ©p)))) = det(On ,, (X))-
PROOF. It suffices to consider the case where y € é(k‘) For any n > 1, the exponential sums

Sn=">_ tul@ik.)(x1- (xop) N, k(@)
2€G1(kn)

Sy, = Z N (Y5 kn)X (N, /1(y))
y€Ga(kn)

are equal by the trace formula. Hence, the corresponding L-functions
n T’n
exp(3o8utr). en(8io)
n>1 n=>1

are also equal. But these L-functions coincide with the (reversed) characteristic polynomials of the
conjugacy classes Oy (X1 - (x op)) and On x(x), by Lemma 3.34 (1), hence the result. O

REMARK 3.42. If the morphism p: G; — G is affine, then the condition Rpi(My,) = Rp.(M,,)
implies that N is perverse.

We will give an application when the group Gg is the multiplicative group. For this we need a
lemma.

LEMMA 3.43. Let N be a simple perverse sheaf on Gy, over k which is an object of the cate-
gory P2U(G,,). Assume that N is pure of weight 0 and of tannakian dimension 1. Suppose that there

int
exists an integer d > 1 and a finite set % C G, such that for alln > 1 and for x € Gy, (kn)=% (ky),
the determinant det(@N,kn)d depends only on n. Then N is geometrically of finite order.

PRrOOF. If N is not geometrically of finite order, then the perverse sheaf N is a hypergeometric
sheaf of generic rank at least 1 (see Section B.4 and Theorem B.4 for reminders of the definition of
hypergeometric sheaves and for this result, due to Katz). But these hypergeometric sheaves do not
have the indicated property, e.g. because the Oy x, (x) become equidistributed in S! as y varies
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among unramified characters in G, (ky) (see Theorem B.4, (3) and [74, Th. 7.2] or Theorem 4.11).
O

PRrOPOSITION 3.44. Let G be a connected commutative algebraic group over k and let p: G —
G, be a non-trivial morphism of algebraic groups. Let M be a perverse sheaf on G which is
arithmetically semisimple and pure of weight zero.

Let x1 € G(k) be a character such that the equality Rpi(My,) = Rp«(My,) holds. Assume
further that the complex N = Rpi(M,, ) is a perverse sheaf on Gy, and is arithmetically semisimple.
It is then pure of weight zero.

Suppose that the set of x € G, such that x1(xop) is unramified for the object det(M) is generic,
and that the tannakian determinant of N is arithmetically (resp. geometrically) of infinite order.
Then the tannakian determinant of M is arithmetically (resp. geometrically) of infinite order.

PROOF. We begin by proving that the determinant is arithmetically of infinite order in both

cases. Let n > 1 and let x € G,,(ky,,) be a character such that yi(y op) is unramified for the object
det(M). We then have

(3.18) O et (M) kb, (X) = det (On i, (X1(x 0 p))) = det (Onk, (X))

by Proposition 3.41. By assumption this is valid for all but finitely many y € ém, and moreover
N has determinant which is arithmetically of infinite order, so that the arithmetic tannakian group
of det(M) must be infinite.

It remains to deduce that the geometric tannakian determinant of M has infinite order if the
same property holds for N. If not, then det(M)? would be geometrically trivial for some integer
d > 1. In this case, for any n > 1 and any character y € (A}(kn) which is Frobenius-unramified
for det, the determinant det(Oyx, (x))¢ only depends on n (see Proposition 3.40, (2)). By (3.18)
and Lemma 3.43, the tannakian determinant of N (which is an object of tannakian dimension 1
on Gy;,) is geometrically of finite order, which contradicts the assumption. O

REMARK 3.45. If G =T x Gy, for some torus T and p is the projection on G, then, according
to Theorem 2.11 applied to p and M, the assumption that Rp/M,, = Rp.M,, and that this complex
is a perverse sheaf is true for all x; outside of a finite union of tacs of T. Moreover, by varying
X1, we can always find such a character for which x1(x o p) is unramified for generic y, since M is
generically unramified by Theorem 3.26.

Using further work of Katz, we can give a sufficient criterion to apply this proposition.

COROLLARY 3.46. Let G be a connected commutative algebraic group over k and let p: G — G,
be a non-trivial morphism of algebraic groups. Let M be a perverse sheaf on G which is arithmetically
semisimple and pure of weight zero.

Let x1 € G(k) be a character satisfying Rpi(My,) = Rp.(My,). Assume that N = Rpi(M,,) is
a perverse sheaf on G, which is arithmetically semisimple and of the form F[1] for some middle
extension sheaf F (see Example A.12 for the definition of middle extension sheaves). Let

(e1,...,€), (f1,--y fm)

be the sizes of the unipotent Jordan blocks in the tame monodromy representation of % at 0 and oo
respectively.

Suppose that the set of x € G, such that x1(xop) is unramified for the object det(M) is generic.

If we have
Se-Y0 40
i J
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then the tannakian determinant of M is geometrically of infinite order.

PROOF. According to the previous proposition, it suffices to show that the tannakian deter-
minant of N is geometrically of infinite order. By [74, Th.16.1], the condition implies that the
determinant of the Frobenius action on Deligne’s fiber functor wpe(N) is not unitary (see Sec-
tion B.2 for the definition of this functor), and the result follows from Katz’s classification of
objects of tannakian dimension 1 on Gy, (Theorem B.4). O

3.12. External products

The following proposition concerns objects on a product G = Gy x Go, and is useful for con-
structing various examples (see for instance Section 9.4).

PROPOSITION 3.47. Assume that G = Gy X Gy for connected commutative algebraic groups Gq
and Go. For any objects M; € DP(G;), there exist natural isomorphisms

M1 X Mz >~ (M1 X 1G2) *| (1G1 X MQ) ~ (M1 X 1G2) Ky (1(;1 X Mg).

Moreover, if My and My are perverse sheaves on Gy and Go with tannakian rank r1 and ra,
respectively, then the object My X My € DE(G) is perverse and has tannakian rank rirs.

PROOF. We use coordinates (z1,21,y1,y2) on G x G with z; and y; coordinates on G;. Let
mi2: G X G — G be the multiplication map for G, and m;: G; x G; — G; those for G;.

Let N be the object on the right-hand side of the first isomorphism to be established. By
definition, we have
N= (M1 X 1G2) *| (1(;1 X Mz) = m127[((M1 X 1(;2) X (1G1 X Mg))

Let s: G — G be the involution given by (x1,x2,y1,y2) — (1,y2,y1,22). We have mis =
mis o S, and hence
N = mlg’lsg((Ml X 1G2) X (1G1 X Mg))

Since s is an involution, we have sy = s, = s*, and therefore
si(My K 1g,) M (1, B My)) = pi (M1 K Ms) ® p5(1c),
where p1, po: G X G — G are the two projections. Thus, using the definition again, we obtain an
isomorphism
N ~ mlg!(pT(Ml X Mg) ®p§(1@)) = (M1 X Mg) * 1a,
which is isomorphic to My X My since 1¢ is the unit for convolution.
We obtain similarly the second isomorphism
M1 X M2 ~ (Ml X 1(;2) Ky (1(;1 X M2> ~ (Ml X 1(;2) Ky (1(;1 X MQ)

It is classical that M; X My is perverse if My and M, are, and the final assertion then results
from the fact that
H:(Gl_w M; X My) ~ H:(Gl,l_w M;) ® H:(GZ,I_w Ma),

and the generic vanishing theorem. O

REMARK 3.48. Concretely, this proposition reflects the convolution formula
AEDf@) = Y f)da(y) () faley; ")
(y1,y2)€G(kn)
for any functions f;: G;(k,) — C, where the §; are Dirac masses at the unit element of G;.
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3.13. The rank 1 tannakian group

Given the group G over k, we can form the subcategory fl(G) of P(G) (resp. PL.(G) of
Piyt(G)) additively generated by objects of tannakian rank 1. This is again a tannakian category,

since the convolution (resp. dual) of objects of rank 1 is of rank 1.

PROPOSITION 3.49. Let L(G) be the group of isomorphism classes of objects of Pint(G) of
rank 1. The tannakian group OfF1 (G) and P}

int

L(G
GLH®

H apt =1

1<i<m
for all integers m > 0, all families (L;)1<i<m of elements of L(G) and all families (n;)1<i<m of
integers such that the object

(G) is the pro-algebraic subgroup of

defined by the equations

Liintnl *int . *int L:‘riLntnm
18 isomorphic to 1, or equivalently that the relation
Lt Lpm =1

holds in the group L(G).

PrRoOF. This amounts to proving that, for the object
M=L;®---®Lp,
the tannakian group G is the subgroup of GL" determined by the equations
ng __

(3.19) lgm =1
for all (n1,...,nm,) € Z"™ such that
(3.20) Lt Lpm =1.

Being a group of multiplicative type, G is characterized by its character group, and the character
group of G C GL{" is Z" /H, where

H={x: GL" - G,, | G C ker(x)}.

A character x of GLY" restricts to a character of G, so we can form the object y(M) in P,
Since the image x(G) of G by x is the tannakian group of x(M), we then have

G C ker(x) if and only if x(M) ~ 1¢.
On the other hand, there is a natural isomorphism
X(M) = L?ntnl *int **° *int L:ﬁntnm

(indeed, this holds when y is the character (z1,...,z,) — x;, and then the general case follows
by the compatibility with convolution and tensor product, which for characters is just the ordi-
nary product), and therefore H is the subgroup of Z™ formed by the tuples (ni,...,n,,) which
satisfy (3.20). This means that G coincides with the subgroup of GL!" determined by the equa-
tions (3.19), and concludes the proof. O

(G).

REMARK 3.50. This result is in fact valid, with the same proof, in any tannakian category.
In particular, the analogue holds for the categories generated by objects of rank 1 in P (G). Of
course, as usual, the arithmetic tannakian group may be bigger than the geometric one.
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ExXAMPLE 3.51. If G is a torus, then the group L(T) has been determined by Gabber and
Loeser [50, Th8.6.1], who denote it Hin (G).

Precisely, let 7 > 0 be such that G is isomorphic to GJ,. Let .# be the set of one-dimensional
subtori of G7 . For each torus T € ., denote by it the closed immersion T — G’ . and choose

an isomorphism ¢r: G, ; — T. Recall that H(ijg,@g) is the set of continuous tame characters

of G,, 1 (see Section 1.10), and write the basis vectors of the free abelian group Z(‘SﬂXH(Gmﬁ’Q)))
as (T, x). Then Gabber and Loeser prove that there is an isomorphism

(EX)T X Z(yXH(Gm,l_mQZ)) — L(GT ];:)
that maps (A, (T, x)) to the object
O *int R(i 0 ¢1)+(j Ly ® Z)[1],

where j: G,, . — Al is the open immersion.
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CHAPTER 4
Equidistribution theorems

4.1. Equidistribution on average

Along with the classical form of equidistribution that goes back in principle to Weyl and appears
in Deligne’s equidistribution theorem, we will apply a useful variant that allows us to avoid the
assumption that the geometric and the arithmetic tannakian groups are equal, at the cost of getting
slightly weaker statements.

DEFINITION 4.1. Let X be a locally compact topological space and let u be a Borel probability
measure on X. Let (Y,,©,)n>1 be a sequence of pairs of finite sets Y,, and maps 6,,: Y,, — X.

(1) We say that (Y,,©,), or simply (Y,,) when the maps ©,, are clear from the context,
becomes p-equidistributed on average as n — oo if the sets Y,, are non-empty for all large
enough n and if the sequence of probability measures

Z LS e, N =|{n<N| Y, £},
1<n<N M oyey,
Y, £D

defined on X for large enough N, converges weakly to © as N goes to infinity, i.e., for any
bounded continuous function f: X — C, the following holds:

o e Ty 0 - [ e

1<n<N yEY
Yn#2

(2) The sequence (Y, Oy), or simply (Y,), becomes p-equidistributed as n — oo if the sets
Y,, are non-empty for all large enough n and if the sequence of probability measures

fln, = |Y | Z 5®n

yeEY

defined on X for large enough n, converges weakly to p as n goes to infinity, i.e., for any
bounded continuous function f: X — C, the following holds:

o 5 o - s

REMARK 4.2. (1) In practice, since N’ ~ N as N — +o00, we will sometimes not distinguish
between N and N’, and use the convention that those terms for which Y,, is empty are omitted
from the sum over n when discussing equidistribution on average.

(2) Since convergence of a sequence (z,,) of complex numbers implies that of its Cesaro means
(N7LY, <n<N Tn), With the same limit, equidistribution implies equidistribution on average.
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4.2. The basic estimate

We state here a preliminary estimate that will be the key analytic step in the proof of our
equidistribution results, including Theorem 2 from the introduction.

We denote as usual by k a finite field with algebraic closure k, and by k, the extension of k of
degree n in k. We fix a prime £ distinct from the characteristic of k.

PROPOSITION 4.3. Let G be a commutative connected algebraic group over k. Let M be an £-adic
perverse sheaf on G that is arithmetically semisimple and pure of weight zero, and of tannakian
dimension r. Let N be an object of (M)™.

For allm > 1 such that Zr(N)(ky,) is not empty, the following estimate holds:

1 _
43 mmon L Tl [HAGLN) = taleik) + Ok ).
FEIT e 2 (N) ()

PRrROOF. We fix a quasi-projective embedding u of G. Let d denote the dimension of G, and
put 2 = Z7(N). For each non-zero integer i, consider the subset

o = {x € G| Hy(Gg, Ny) # 0}
consisting of those characters x such that N, has non-trivial cohomology with compact support in
degree i. Then the left-hand side of (4.3) is equal to

Z Z ) Tr(Fry, |HL(Gz, N )
) i|<d
(4.4) 1 . :
e Y (-1 ST Te(Fyy, |HA(GENY)
|2 (kn)| 4
0<|i|<d XE; (kn)

_ Lg{(l]%)’ Z Tl“(Fl“kn |H2(GE7NX))'

X€G (kn)=2 (kn)
By the Grothendieck-Lefschetz trace formula (see (A.5)), the equalities
DL Te(Fry, [HUGEN)) = Y v (aka) = ) x(@)in(a;kn)
li|<d z€G(kn) z€G(kn)

hold for any character y. Combined with the orthogonality of characters of G(ky,), this shows that
the first summand in (4.4) is equal to

|G (kn)]

N kn) = tn(eskn) + O(kal ™)

since the set 2" is generic, so that the estimate ‘| f((k"))l‘ =1+ O(|kn|™") holds.

We now turn to bounding the second and the third summands in the right-hand side of (4.4).
Since M is pure of weight zero, the same holds for N and N, by Theorem 3.32. It then follows
from Deligne’s Riemann Hypothesis (see Theorem A.19) that H}(Gz, N, ) is mixed of weights < i
for any 4, in particular the eigenvalues of Frj acting on this space have modulus at most |kn]2/ 2,
Moreover, using (1.1) and Theorem 1.5 (2), we get
he(G, N ) < cu(Ny) < cu(N)eu(Zy) < cu(N)
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since the complexity c,(.Z)) is bounded independently of x by Proposition 1.18. So the second
term in (4.4) can be bounded by

S L X MG e S

O<| |<d x€(kn) 0<| |<d xe;(kn)
The Stratified Vanishing Theorem 2.3 applied to N gives the estimate
(4.5) | i (k)| < [k

for 7 such that 0 < |i| < d. We split the sum over ¢ into that over 1 < ¢ < d and that over —d <
1 < —1, and obtain

T 2 2 bl S g bl e 3l

0<\ |<d xe;(kn) 1<i<d —d<i<—1
d—1/2
[ken |4~

(4.6) <TFE

Thanks to the estimate |2 (kn)| = |kn|? + O(|kn|?"1), the last term is < |k,|~'/2 and tends
to 0 as n — +oo.

Finally, the third term in (4.4) satisfies
|G (kn) = 2" (kn)| 1

<< -
EACH] |Fen

1
(4.7) m Z Tl“(FI‘kn |H8(GE7NX)) <
" €T )= 2 (k)

since HY(Gy, N, ) is mixed of weights < 0 and has dimension bounded for all y, and the set 2" is
generic. This finishes the proof. O

4.3. Equidistribution for characteristic polynomials

Let k be a finite field, with an algebraic closure k, and let G be a connected commutative
algebraic group over k. Let £ be a prime number distinct from the characteristic of k.

Our most general equidistribution result concerns the characteristic polynomials of the uni-
tary Frobenius conjugacy classes for weakly unramified characters. Equivalently, this is about the
conjugacy classes in the ambient unitary group.

THEOREM 4.4. Let M be an ¢-adic perverse sheaf on G that is arithmetically semisimple and
pure of weight zero. Let r > 0 be the tannakian dimension of M. Let K C G#i(C) C GL,(C)
be a mazimal compact subgroup of the arithmetic tannakian group of M, and denote by v, the
measure on the space U.(C)! of conjugacy classes in the unitary group which is the direct image
of the Haar probability measure p on K by the quotient map K — U,(C)!. Then the families of
unitary conjugacy classes (O k, (X))ye 2. (M) (k) become vep-equidistributed on average in U, (C)*
as n — +00.

REMARK 4.5. (1) To be precise, in terms of Definition 4.1, we consider the equidistribution on
average of pairs (Z,(M)(ky), ©r) with ©,(x) = Omk, (X)-

(2) The set U,.(C)* can be identified with the set of characteristic polynomials of unitary matri-
ces of size r, or equivalently with the quotient topological space (S1)" /&, (by mapping a matrix to
the set of eigenvalues, with multiplicity) so the statement means that the characteristic polynomials
of the Frobenius automorphisms for weakly unramified characters tend to be distributed like the
characteristic polynomials of random elements of K (hence the notation v).
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PRrROOF. Let 2" = 2,,(M). It suffices to check the equality (4.1) for f taken in a set of continu-
ous functions on U, (C)* that span a dense subset of the Banach space €' (U,.(C)*) of all continuous
complex-valued functions on U,(C)! (since probability measures on U,(C)* are continuous func-
tionals on €' (U,(C)*) by the Riesz representation theorem). Thanks to the Peter-Weyl Theorem,
it suffices to prove the equality

. 1 1
i 5 Y g X THe®us () = [ Tr(ele)dns)

Nodoo N SN XEZ (kn) K
for any irreducible unitary representation g of U,(C). In fact, we will prove this for any unitary
representation g, not necessarily irreducible.

By the Peter-Weyl Theorem again, the right-hand side is the multiplicity of the trivial repre-
sentation in the representation of G{;' that corresponds to the restriction of o to K. We denote by

N = o(M) the object of (M)™ that corresponds to this restriction of .
Let Zn = Zr(N)u be the set of Frobenius-unramified characters for N. We have

1 1
Gim > 2] Y. Tr(e(®wmy, (x) =0,
1<n<N XE(Z=2N) (kn)

since 2\ is generic (by Proposition 3.37) and the upper-bound

| Tr(e(On .k, (X)))] < dim(o)
holds for all x € 2 (ky).

By the definition of Frobenius-unramified characters, we have

1 1

= > Tr(eOwr () = m D>, Tr(Fry, | HY(GE,Ny)
|2 (kn)| |2 (kn)|
XEZN(k‘n) XG«%N(]CTL)
for n > 1. Since 2" and 2y are both generic, we have % =1+ O(W) By Proposition 4.3,
we deduce that
1 _
S S TH(e(Owk, (0) = e ) + Okl ),
|2 (kn)| -
XGJN(kn)

where e is the identity of G.
We decompose the semisimple perverse sheaf N as a direct sum
N-@ D .
720 5€I(r)
of pairwise non-isomorphic arithmetically simple perverse sheaves N, ; of support of dimension 7.
For r > 1, we get the pointwise bound
1
N, (€5 k) < ——=—

V/Tknl

using Proposition 1.11.

The punctual objects No; are of the form a?eg ® 0, for some unitary scalars a; and some
points x;. If z; # e, then

tNo,¢(6§ kn) = 0.
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Thus, if we denote by J C I(0) the subset where z; = e (which has cardinality equal to the
multiplicity of the trivial representation in the restriction of g to Gﬁ/{eo), then the formula

1 T = ol —1/2
(4.8) %(kn)‘Xe%kn)T(Q(@M,kn(X») ZE; i T O(lkn|™77)

holds. The subset J° C J where o; = 1 has cardinality equal to the multiplicity of the trivial
representation in the restriction of ¢ to G{}'. Averaging over n and using

NLHJrrloo N Z a

1<n<N
for i € J—J°, we conclude that
. _ 110 —-1/2
Nggaoo X > 7 )‘ > Tr(e(Ou, (X)) = % + O(lkn| /%),
1<n<N XE 2 (kn)
which gives the desired result. O

It is useful to state the following corollary of the proof, which is a diophantine version of Schur’s
Lemma in our context.

COROLLARY 4.6 (Schur’s Lemma). Let M and N be geometrically simple £-adic perverse sheaves
on G which are pure of weight zero and are objects of Pi(G). Let Z~ be the set of characters which
are weakly unramified for M ® N, We have

1 1
lim — 3 = S(M s NV, y) =
NiTwNT;\G(kn)\ > S(Mw NY,x)

XEZ (kn)

1 if M is arithmetically isomorphic to N,
0  otherwise.

PrOOF. Proposition 4.3 applied to the perverse sheaf M & NV and the object Q = Hom(N, M)
of the category (M @ NY)*" (the homomorphisms are in the category P&1(G)) implies that

int

\e%(Ql)(k)l Yo S(Qx) = taleska) + O(ka|~1/?)

x€ 27 (Q)(kn)
for any n > 1, where

SQ)= S x@glsk).

Since 2F(Q) is generic, and since there is a canonical isomorphism Q — M it NV, we deduce

that
NZ| al Z S(M #ine NY, X) Zthk)+0(yk 171/

kn) n<N

for all N > 1. Arguing as in the last part of the proof of Theorem 4.4, we see that the right-hand
side converges to the multiplicity of the trivial representation in the representation corresponding
to Q; by the classical form of Schur’s Lemma, this is either 1 or 0, depending on whether M is
isomorphic to N or not. U

REMARK 4.7. The proof of Theorem 4.4 allows us to see clearly what is involved in the use of
the Cesaro mean in the average equidistribution.

First, we can see that it is necessary in general, unless G = G%ZO (see Section 4.6 for state-
ments under this assumption, in particular Proposition 4.18).
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Second, we see that the use of the Cesaro average can be generalized to establish the convergence
to the limit v, of any sequence of average measures of the form

Z|2\I((kn))| Z 0611, ()

n>1 n XEZ (kn)

where pn(n) are non-negative coefficients that are bounded and satisfy the equality

0 ifa#l
4.9 I " ’
(4.9) m D ex(na {1 ifa=1

for any complex number « of modulus 1. The Cesaro case corresponds to ¢n(n) = 1/N for alln < N
and pn(n) = 0 for n > N, but there are many other possibilities. (In classical terms, as expounded
for instance by Hardy [57], these N define a “summation method”, and it is elementary that the
requirements amounts essentially’ to asking that this summation method gives the “right” sum
1/(1 — a) to the geometric series for |a] =1 and a # 1.)

It is also instructive to view the average probabilistically, interpreting ¢n as the law of a
random variable Xy with values in positive integers. The condition above is the requirement that
the equality

lim E(eX~) =0
N—+4o00
holds for all § € R/27Z — {0}.

Besides the Cesaro case, where Xy is a random variable uniform on {1,...,N}, consider a
Poisson distribution Xy with parameter Ax > 0, shifted to have support in the positive integers,
i.e., let
A AN

(n—1)!
for any positive integers N and n. The condition above becomes the limit

E(eXN) = exp(if + Ax (e — 1)) = 0

as N — +oo for § € R/2nZ — {0}, which holds provided Ay — 400, since the modulus of the
left-hand side is exp(An(cos(6) — 1)).

Intuitively, this means that if we pick a positive integer n according to a Poisson distribution
with large parameter, then pick uniformly a random y € 2 (k, ), then the Frobenius conjugacy class
Om i, (x) will be distributed like a random U, (C)-conjugacy class of an element of the maximal
compact subgroup K. (A whimsical enough way to do this — according to the Rényi—Turan form of
the Erdés—Kac Theorem, see e.g. [65, Prop.4.14] — would be to pick a large integer m > 1 and to
take n to be the number of prime factors of m, which corresponds roughly to having AN = loglog N.)

P(Xn=n)=¢n(n)=¢"

Note however that are also many cases where the condition (4.9) is not true. The most obvious
is when oN(N) = 1 and ¢n(n) = 0 for n # N, corresponding to a limit without extra average at
all. In addition, the condition implies that for any integers ¢ > 1 and a € Z, we have

1 , . 1
P(XN =q (HlOd q)> —— Z eszﬂab/qE(ehﬂ'bXN/q) -

q b (mod q) 4
so there is a strong arithmetic restriction that Xy (modgq) converge to the uniform probability
measure modulo ¢ for all ¢ > 1.
1 Precisely, we need that the series 3 a,, with a1 = o and an = a"—a” ! for n > 2 has “sum” a+(a—1)/(1—a) =

0 for |o| =1 and a # 1.
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Similar remarks apply in an obvious manner to our other equidistribution statements, e.g. to
Theorem 2.

4.4. Equidistribution for arithmetic Fourier transforms

We now deduce from Theorem 4.4 the equidistribution of the exponential sums defined by

SOM,x) = Y x(@)tm(w; kn).

LEEG(kJn)

In fact, note that these sums make sense for all characters y € (A}(kn), and we can indeed prove
equidistribution for all of them. This implies Theorem 2 from the introduction. As a final addition,
we prove an equidistribution statement for the arithmetic Fourier transforms of all objects M of
DP(G) which are mixed semiperverse sheaves of weights < 0. This is of interest especially in more
analytic applications, since the condition of being semiperverse and that of being mixed of weights
< 0 are much more flexible, and easier to check, than those of being perverse and pure.

THEOREM 4.8. Let k be a finite field and let G be a connected commutative algebraic group over
k. Let £ be a prime number distinct from the characteristic of k.

Let M be an object of D2(G). Assume that M is semiperverse and mized of weights < 0. Let N
be the maximal perverse subsheaf of weight 0 of the arithmetic semisimplification of the perverse

cohomology sheaf *5¢°(M).

Let r > 0 be the tannakian dimension of N. Let K C G¥(C) C GL,(C) be a mazimal compact
subgroup of the arithmetic tannakian group of N. Denote by p the Haar probability measure on K
and by v its image by the trace.

The families of exponential sums S(M, x) for x € é(k‘n) become v-equidistributed on average as
n — +oo.

PRrROOF. We first assume that M is perverse and pure of weight 0, so that the object N coincides
with M. We then observe that, by the generic vanishing theorem, it suffices to prove that the families
of exponential sums associated to y € Z.,(M) become v-equidistributed on average, since for any
bounded continuous function f: C — C, we have

1

G| ST (O 0| < If]

(G = 2, (M) (k)|
|

X€(G-2(M)) (kn) |
because 2, (M) is generic. But since Tr () = v, this equidistribution follows from Theorem 4.4
by considering the composition K — U,.(C)* o c.

We now consider the general case. We denote by Mg the arithmetic semisimplification of the
perverse sheaf P.2#°(M), and by N’ the perverse sheaf such that Mg = N @ N/, defined using the
weight filtration on My; the perverse sheaf N’ is mixed of weights < —1.

Since M is semiperverse of weights < 0, we have P.221(M) = 0 for 4 > 1, and P2 ~*(M) is of

weights < —i < —1 for all ¢ > 1 (see [8, Th.5.4.1]).
For any n > 1 and x € (A}(kn), we have the equality
(4.10) S(M. x) = S(N,x) + SN, x) + Y _(=1)'S(P# (M), x)
i>1
by (A.4).
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By generic vanishing and the trace formula (see Theorem 6.1 below, applied to N'(—-1/2) and
P~ (M)(—1/2) for i > 1, which are mixed perverse sheaves of weights < 0), there exists a generic
subset 2" C G such that we have

(4.11) S(N',x) + > _(=1)'S(Po2 (M), x) < W

121

for allm > 1 and x € 27 (k). This implies that the sequence (w,,) of probability measures defined
as averages of delta masses at the points

SN, x) + Y (=)'~ (M), x)

121

for all y € (A}(kn) converges to zero in probability, i.e., that for any fixed real number ¢ > 0, the
limit
im @ ({Jt] > e}) = 0
holds.
By the first case applied to the perverse sheaf N, the sums S(N, x) become v-equidistributed
on average as n — 400, and the formula (4.10) ensures then that the same holds for the S(M, x)
(see, e.g., [88, Cor. B.4.2] for the simple probabilistic argument that leads to this conclusion). O

REMARK 4.9. (1) As we will see later, it is often of interest to attempt to apply equidistribution
of exponential sums to the test function z — 2™ or z +— |z|™ for some integer m > 1. Such functions
are continuous but not bounded on C, so that Theorem 4.8 does not apply, and Theorem 4.4 only
gives the equidistribution for weakly unramified characters. In these attempts, the contribution
of the other characters may therefore need to be handled separately (see for instance the proof of
Theorem 9.11).

(2) See Chapter 7 for an application of this theorem to a question of independence of ¢ of
tannakian groups.

(3) The measure v is also the image by the trace of measure v, on characteristic polynomials
appearing in Theorem 4.4. It is often called the Sato—Tate measure associated to M.

EXAMPLE 4.10. Let k = F)p, and let ¢ be the additive character on k such that ¢(z) = e(z/p)
for x € k. Let X C G be a locally-closed subvariety of G of dimension d > 1, and let f: X — Al
be a non-zero function on X. Then there is a semiperverse sheaf M on G, mixed of weights 0, such
that the trace function of M is given by the formula

(—1)?p="2e(Trp , v, (f(2))/p)  if & € X(Fyn)
0 otherwise.

tn(z; Fpn) = {
for n > 1 and x € G(ky,), namely
M =51 f*Zy[d](d/2),

where j: X — G is the natural immersion.

Hence Theorem 4.8 implies that the exponential sums
1 f(z)
e Z X($)6< D )
.TEX(Fpn)

for x € @(Fpn) always satisfy some equidistribution theorem on average.
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A similar property holds if we fix a non-trivial multiplicative character n of F} and an invertible
function ¢g: X = G, and consider the exponential sums

pnld/Q > x(@)nlg())

CEEX(Fpn)

(using the object j1g*.%[d](d/2), which is also mixed and semiperverse of weights < 0).

4.5. Equidistribution for conjugacy classes

We keep the notation of the previous sections. If the object M that we consider is generically
unramified, then we can prove equidistribution at the level of the Frobenius conjugacy classes in
the maximal compact subgroup of the arithmetic tannakian group.

THEOREM 4.11 (Equidistribution on average). Let k be a finite field and let G be a connected
commutative algebraic group over k. Let ¢ be a prime number distinct from the characteristic of k.

Let M be an (-adic perverse sheaf on G that is arithmetically semisimple, pure of weight zero
and generically unramified. Let & = 2 (M) be the set of unramified characters for M. Let K be a
mazimal compact subgroup of the arithmetic tannakian group Gf\‘}ii(C) of M, and denote by u* the
direct image of the Haar probability measure p on K by the projection to the set Kf of conjugacy
classes of K.

The families of unitary Frobenius conjugacy classes (O k, (X))ye2 (k) become p-equidistributed
on average in K* as n — 4o0.

Precisely, we are considering here the equidistribution on average of the pairs (2 (ky), ©y)
where O, (x) = Om ik, (X)-

PrOOF. By Theorem 3.29 and the definition of generic sets, we know that |2 (k)| ~ |G(kn)|
as n — 400, and hence the sets of unramified conjugacy classes are non-empty for n large enough.

By the Peter-Weyl theorem, any continuous central function f: K — C is a uniform limit of
linear combinations of characters of finite-dimensional unitary irreducible representations of K, and
hence it suffices to prove the formula (4.1) when f is such a character. For the trivial representation,
both sides are equal to 1. If the representation is non-trivial, then the integral on the right-hand
side vanishes, and we are reduced to showing that the limit on the left-hand side exists and is
equal to 0. We thus consider a non-trivial irreducible representation ¢ of K, which we identify
with a non-trivial irreducible algebraic Q,-representation of the arithmetic tannakian group Gf\‘}ii
by Weyl’s unitarian trick (see, e.g., [68, 3.2] for this step); applying the next proposition then
completes the proof. O

PROPOSITION 4.12. With notation as in Theorem 4.11, let o be a non-trivial irreducible unitary
representation of K, identified with a non-trivial irreducible representation of Gy .
(1) If the restriction of o to G§{° is non-trivial, then
1

(4.12) erzz(kn)ﬁ@(@mkn(x))) < e

for all n such that Z (ky,) is not empty.
(2) If the restriction of o to GY[° is trivial, then

(4.13) im = Y LS (@, (1)) = 0.

Noreo N 2y 120 n)|x€£'(kn)
X (kn)#2
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PROOF. (1) We assume that the restriction of p to the geometric tannakian group is non-trivial.

Let o(M) denote the object of the tannakian category <M>{‘m corresponding to the representation

o of the arithmetic tannakian group Gﬁi; this is a simple perverse sheaf on G.

We have 2" C Zr(o(M)). Applying Proposition 4.3 to the object N = o(M), we obtain

r%(lk) > Tr(e(®nk, (X)) = toquny (€ kn) + Ok %)
NN e (kn)

since the conjugacy class Oy, (x) coincides with Oyp g, (x) when x is unramified for M.

Since o(M) is a simple perverse sheaf on G, the classification of [8, Th. 4.3.1 (ii)] shows that there
exist an irreducible closed subvariety s: Y — G of dimension r, an open dense smooth subvariety
j: U — Y, and an irreducible lisse Q,-sheaf .# on U such that o(M) = s,j1..Z[r]. Since the functors
sy and ji, are weight-preserving, the sheaf .# is pure of weight —r.

If r = 0, then Y consists of a closed point of G, which must be different from the neutral
element e, since otherwise (M) would be geometrically trivial, contrary to the assumption in (1).
In that case, we have therefore ¢, (€; k) = 0. On the other hand, if 7 > 1 we get

1

v/ Tkl

(by Proposition 1.11), which concludes the proof of (1).

(2) We assume that the restriction of the representation p to GF[° is trivial. Then p has
dimension 1 since the quotient G3f'/G%/° is abelian (Proposition 3.40).

Let Q be the set of integers n > 1 such that 2 (k;,) is not empty; it contains all sufficiently large
integers. It follows from Proposition 3.40 that there exists an element £ of G%}F /GS[°, generating
a Zariski-dense subgroup of this group, such that o(®w,,(x)) = o(&)" for any n > 1 and any
X € (A}(kn) unramified for M. Moreover, we have o(§) # 1, since otherwise the representation o
would be trivial. We conclude that

1 1 1
N Z 12 el Z Tr(Q(G)M,kn(X))):N Z o(§)"
1<n<N e (kn) 1<ngN

2 (kn)#0 neQ

converges to 0 as N — 400 by summing a non-trivial geometric progression.
O

REMARK 4.13. For certain reductive groups G C GL,(C), a conjugacy class in a maximal
compact subgroup K of G is determined by its characteristic polynomial (equivalently, the exterior
powers of the standard representation generate the representation ring of G). If G(C) has
this property, then Theorem 4.4 implies a version of Theorem 4.11, even if M is not generically
unramified.

If G is semisimple, this property holds, for instance, for SL,(C) C GL,(C), for Sp,,(C) C
GL2,(C), and for G3(C) C GL7(C). Indeed, the first two cases are explained by Katz in [68,
Lemma 13.1, Remark 13.2]; in the third case, we note that the second fundamental representation
of G2(C) is virtually /\2 Std — Std (see, e.g., [49, p. 353]) so that the exterior powers of the standard
7-dimensional representation generate the representation ring.

We deduce immediately from Theorem 4.11 a useful corollary, analogue to some classical con-
sequences of the Chebotarev density theorem.
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COROLLARY 4.14. Let k be a finite field and let G be a connected commutative algebraic group
over k. Let M be a perverse sheaf on G which is arithmetically semisimple, pure of weight zero and
generically unramified.

Let S be any finite subset of G. The union of the unitary Frobenius conjugacy classes of M
associated to unramified characters in G —S is dense in a mazximal compact subgroup of Gf\‘}}i(C).

4.6. Equidistribution without average

We continue again with the previous notation. If we make the extra assumption that the
geometric and the arithmetic tannakian groups coincide, then the equidistribution of Frobenius
conjugacy classes holds without averaging over n. We summarize the variants of the previous
theorems in this situation.

THEOREM 4.15 (Equidistribution without average). Let M be an ¢-adic perverse sheaf on G
that is arithmetically semisimple, pure of weight zero. We assume that the inclusion Glg\;/?o C Gf\‘}ii
18 an equality.

Letr > 0 be the tannakian dimension of M. Let K C G#1(C) C GL,(C) be a mazimal compact
subgroup of the arithmetic tannakian group of M. Denote by p the Haar probability measure on K,
by vep its direct image by the map K — U, (C), by v its image by the trace, and by ut its image by
the map K — K.

(1) The families of unitary Frobenius conjugacy classes (O k, (X))ye 2, (M)(k,) become vep-
equidistributed as n — +o0.

(2) The families of exponential sums S(M, x) for x € G(ky) become v-equidistributed as n —
+00.

(3) If M is generically unramified, then the family of conjugacy classes (O k, (X))ye2 (M) (kn)
become pt-equidistributed as n goes to infinity.

Proor. This follows from the Weyl Criterion as in the proof of Theorems 4.4, 4.8 and 4.11; in
the case of the last statement, for instance, we use only the first part of Proposition 4.12 (as we
may since a non-trivial irreducible representation of G{j' is a non-trivial irreducible representation

of G§{° under the assumption). O

REMARK 4.16. There is an obvious further variant of Theorems 4.15 and of the case of mixed
semiperverse objects of weights < 0 of 4.8: if M is mixed semiperverse of weights < 0, with N as in
Theorem 4.8 such that G¥' = G{°, then the discrete Fourier transform becomes equidistributed
towards the measure v without average over n.

There is a converse to Theorem 4.15. In fact, there is a statement which is valid for an individual
representation of the unitary group (this will be useful in Chapter 8).

PROPOSITION 4.17. Let M be an £-adic perverse sheaf on G that is arithmetically semisimple
and pure of weight zero. Let r be the tannakian dimension of M and let " = 2 (M) be the set of
weakly unramified characters for M. Let o be a finite-dimensional unitary representation of U,(C).
Assume that the sequence

1
I Tr(e(Om .k, (X))
AR
X€E (kn)
defined for all integers n > 1 such that 2 (k) is not empty, has a limit. Then this limit is equal

to the multiplicity of the trivial representation in the restriction of o to Gf/[eo, and the latter equals

the multiplicity of the trivial representation in o.
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PROOF. We use the notation in the proof of Theorem 4.4. Taking the equality (4.8) into
account, the assumption of the statement means that the limit

lim E o'
n—-+00
1€J

exists, where the complex numbers «; have modulus 1 and the set J has cardinality equal to the
multiplicity of the trivial representation in the restriction of ¢ to Glg\zo. We claim that the existence
of this limit implies the equality «; = 1 for all i € J, so that the limit is equal to |J|, as desired.

Indeed, let L C J be the set of ¢ where «; # 1. The sequence
>_of
i€l

converges as well, and its limit must be zero since it converges to 0 on average over n < N. However,

the lower bound
lim sup ’Z a?‘ > |12

n—-+o0o

holds (see, e.g., [64, Lemma 11.41]), so we deduce that L is empty, which proves the claim. O

A more global form of this converse, for generically unramified objects, is the following:

PROPOSITION 4.18. Let M be an £-adic perverse sheaf on G that is arithmetically semisimple

and pure of weight zero. Assume that M is generically unramified. Let r be the tannakian dimension
of M and let Z" = Z(M) be the set of unramified characters for M. If the sequence of probability

measures
|%( § : (5@1\/[ e (X
xe 2 (kn)

defined when 2 (ky) is not empty, converges weakly to some probability measure, then we have the
equality G3f' = GE°.

PROOF. Suppose that G§[° # Gi}?. By Proposition 3.40, there exists an element & # 1 of
GE’“rl / Grgeo which generates a Zariski-dense subgroup of this group, which is abelian. Thus there
exists an irreducible representation o of the quotient Gfi/G&[° such that o(¢) # 1; for any n > 1

and any x € G(ky) unramified for M, the equality 0(Omk, (X)) = o(&)™ holds.
Let 2 be the set of characters unramified for M. Then

\35/(1 Z Tr(o(Owm,k, (X)) = 0(§)"

k)|
XEZ (kn)

for all n > 1 for which £ (k,) is not empty. Since o(§) # 1, this quantity does not converge as
n — +oo, which implies the proposition by contraposition. ]

4.7. Horizontal equidistribution

The proof of Theorem 4.11 relies crucially on the estimates in the stratified vanishing theo-
rem 2.3. We expect (see Remark 2.4) that the implied constants in these estimates depend only on
the complexity of the perverse sheaf M (as is the case for unipotent groups).

Under the assumption that such a statement is valid, and in fact that this holds for the size of
the set of unramified characters, one can obtain equidistribution statements for finite fields when
their size tends to infinity (for instance, for F), as p — +00; compare with [74, Ch. 28-29]).
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We include a conditional statement of this type, anticipating some progress soon concerning the
underlying uniformity question. We leave to the interested reader the task of formulating variants
similar to Theorems 4.8 and 4.4.

THEOREM 4.19 (Horizontal equidistribution). Let £ be a prime number. Let N > 1 be an integer
and let (G, u) be a quasi-projective commutative group scheme over Z[1/¢N] such that, for all primes
p1 LN, the fiber G, of G over F), is a connected commutative algebraic group for which the estimate

Gp(Fpr) = 2 (M) ()| < e, (M)p (4G =1
holds for all primes p and n > 1 and all arithmetically semisimple objects M in Pervin(Gp) which
are generically unramified.

Let (My)pne be a sequence of arithmetically semisimple objects in Perving(Gyp) which are pure of
weight zero. Suppose that the tannakian dimension r of M, is independent of p, and that for all p,
we have Gf\‘}}; = G%Zg, and that this common reductive group is conjugate to a fired subgroup G
of GL(Qy).

Let K be a mazimal compact subgroup of G(C) and let u* be the direct image of the Haar
probability measure on K to K.

Let %), be the set of characters x € ap(Fp) which are unramified for the object My,.

If we have c,(My) < 1 for all p { N¢, then the families of conjugacy classes (O, F,(X))xe2,
become pt-equidistributed in K* as p — +oo.

PRrROOF. The argument follows that of Theorem 4.11; it suffices to prove the estimate

! 1
EA X;ypr (o(®1,.e, () <

for all p  N£. The proof of this is similar to the first part of Proposition 4.12, noting that, under our
assumptions, the implied constants in the key bounds (4.14), (4.5), (4.6) and (4.7) are independent
of p, since the complexity of M,, is bounded independently of p, and hence also that of o(M,)
by [115, Prop. 6.33]. O

REMARK 4.20. (1) For G unipotent, results of this form are unconditional by Proposition 2.7
(the case of G, essentially goes back to Katz [68], whereas the case of an arbitrary power of G,
follows from [115, Th.7.22]). For G = G, a similar statement is proved by Katz in [74, Th. 28.1].

(2) The result is also unconditional in the case of abelian varieties (see Remark 2.4). We
expect that a careful look at the proof of the generic vanishing theorem will also show that it is
unconditional for G,, X G,. The case of tori of dimension > 2 is however not yet known.

4.8. Objects of rank 1

In this section, we apply the general equdistribution results to objects in the tannakian subcate-
gory of P¥(G) additively generated by objects of tannakian rank 1. The corresponding arithmetic

int
tannakian groups are computed (in principle) in Proposition 3.49.

PROPOSITION 4.21. Let r > 1 be an integer and let
M=L& &L
where L; is an object of P2 (G) of tannakian rank 1. Let
H={(ny,...,n;) € Z" | LT sjpq - - king L ~ 1},
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and let
K={(z:)e@") | [] «¥=1foral(n,...,n.)e€H}.

1<i<r

Then the unitary Frobenius conjugacy classes of M are equidistributed on average in K.

ProoF. This follows from Theorem 4.4, on noting that the arithmetic tannakian Gﬁ}? group
of M is abelian (it can be viewed as a subgroup of the diagonal subgroup GL] C GL,); hence,
the conjugacy classes of elements of G{}' are just singletons, and in particular are the same as the

conjugacy classes in GL,.. O

As an application, we explain how to recover a theorem of Rojas-Leén [110, Th.1], which
concerns the equidistribution properties of Gauss sums.

THEOREM 4.22 (Rojas-Leén). Let r > 1 be an integer. Let (c;)1<i<r be a family of non-constant
morphisms a;: Gy, — Gl defined over k. Lett = (t;) € (k*)" and let (n;)1<i<r be characters of k.

The tuples

(X(t)7(¢,n1 - (x oa1)) X)W, - (x o ar))

|| 1/2 [ |1/2 >xeé?n(kn)
of Gauss sums are equidistributed on average in C" according to the probability Haar measure on
a closed subgroup K C (S')" c CT.

Moreover, factor o; = [x +— xNi] o B; for some closed immersion f3; and some integer N; > 1.
If, for each i with 1 <1 < r, the elements
> w

wNi=n;

of Z[I(G,, 1, Q)] are linearly independent over Z, then K = (SH" and equidistribution holds
without average.

PRrROOF. For simplicity of notation, we will assume that t = 1 and that each N; is coprime to p.
Let j: G,, — A! be the open immersion. We recall that x — 7(,m; - (x © ;)) is the discrete
Mellin transform on G, of the trace function of the perverse sheaf

Li = i (57 2y % Z4[1])(1/2)

on G, which is pure of weight 0. This is an object of tannakian rank 1.

Thus the first statement is a direct application of Proposition 4.21, with K a maximal compact
subgroup for the arithmetic tannakian group of

M=Li&---®&L,

(note that we consider the Gauss sums in C to avoid excluding those boundedly many x where
some 7; - (x o ;) is trivial, for which the modulus is 1/4/|k,| instead of 1; these do not affect the
equidistribution property).

Using Proposition 4.21 again, for the second statement we need to prove that under the stated
assumptions, there is no convolution relation between the objects L;, or equivalently no relation
between their classes in the group L(G],); this implies that the arithmetic tannakian group of M
is GJ, (i.e., is as large as possible). In fact, we claim that the geometric tannakian group is already
that large, which means that there are no geometric convolution relations between the objects L;.
This in particular also implies the equidistribution without average (see Theorem 4.15).
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To prove the claim, we use the Gabber—Loeser isomorphism described in Example 3.51 to
express the class of L; in L(G? ;) as

N= (1) (Tiw),

wNi=n;

where T} is the image of 3; and (T;,w) is one of the basis vectors in the free abelian group generated
by pairs of a one-dimensional subtorus and a tame character (see loc. cit.). (This fact is a form of
the Hasse-Davenport relation; see [69, Th.8.9.1].)

By definition of a free abelian group, a non-trivial linear relation can only exist if, for some
one-dimensional subtorus T C G, the elements A; with T; = T are linearly dependent, and this
in turn is equivalent with the elements

Y w

wNi=n;

being linearly dependent, as claimed. O
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Part 2

Applications






Description of applications

The remainder of the book is devoted to applications of the theoretical results of the first part
of this book. We split these applications in further chapters as follows:

(1)

(2)

We define in Chapter 5 the analogue of L-functions for the Fourier—-Mellin transforms.
We establish with its help that the arithmetic tannakian group is infinite for many non-
punctual objects on abelian varieties.

We present in Chapter 6 the concrete analytic translation of the stratified vanishing theo-
rem to stratification of estimates for exponential sums, in the spirit of Katz—Laumon [77]
and Fouvry—Katz [39]. We also present a statement of “generic Fourier invertibility”,

which shows that two semsimple perverse sheaves are isomorphic in the category ?an(G)
if and only if the associated exponential sums coincide for a generic set of characters.

In Chapter 7, we add a theoretical application of equidistribution in direction of indepen-
dence of £ properties of the tannakian groups associated to a compatible system of /-adic
complexes.

In applications of equidistribution to concrete perverse sheaves, the main issue is to de-
termine the tannakian group. The main tool that we will use for this purpose is Larsen’s
Alternative, and its link with equidistribution. We present this result (and a new variant
for the exceptional group Eg) in Chapter 8.

Then in the remaining chapters, we present examples of equidistribution for “concrete”
groups, namely:

— the product G,, x G, which (apart from unipotent groups) is probably the simplest
group of dimension > 2 (Chapter 9); this corresponds to rather natural families of
exponential sums parameterized by both an additive character and a multiplicative
character.

— higher-dimensional tori, with applications to the study of the variance of arithmetic
functions on k[t] in arithmetic progressions modulo square-free polynomials (see Chap-
ter 10).

— the jacobian of a curve (Chapter 11); the application we present is a generalization
of an unpublished result of Katz (which answered a question of Tsimerman).

— in the same chapter, the intermediate jacobian of a smooth projective cubic hyper-
surface of dimension 3, which is an abelian variety of dimension 5 (see Chapter 11.2).
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CHAPTER 5
Uber eine neue Art von L-Reihen

5.1. L-functions

Let k be a finite field, with algebraic closure k and intermediate extensions k,. We fix as usual
a prime £ different from the characteristic of k. Let G be a connected commutative algebraic group
over k, and let d be its dimension. We denote by e the neutral element of G.

By analogy with algebraic varieties over k, we can define “L-functions” for objects of D2(G),
where suitable characters xy € G play the role of primes in an “Euler product”.

We denote by G* C G the set of characters such that X € @*(kn) if and only if there is no
d | n with d < n such that x = }/ o N, /k,- We say that elements of G* are primitive, and for

X € @*(k:n), we put deg(x) = n. We then denote by [@] the quotient set of G* by the equivalence
relation defined by x1 ~ x2 if and only if deg(x1) = deg(x2) and

= o Fr!
X2 X1 kdcg(x1)

for some integer j € Z. There are deg(x) primitive characters equivalent to a given x € G*.

DEFINITION 5.1 (L-function). Let M be an object of DP(G). The Fourier-L-function, or L-
function, of M is the formal power series
LM, T) = [ det(1— T Fry, | Hi(Gg, M, )" € Q[T]).
x€[C]

This is similar to the definition
LOM,T) = [] det(1 — T Fry,, | M,)™' € Q[T]]
z€[X]
of the L-function of M on an arbitrary algebraic variety X over k, with primitive characters replacing
the set [X] of closed points of X.

Indeed, if G is unipotent of dimension d, and FT(M) denotes the Fourier transform of M on the

[T

(or “a”) Serre dual GY defined with respect to some additive character v, as in Section 2.2, then
we obtain the identity

L(M, T) = L(ET(M), [k[*T),
(e.g. by the formula (5.2) below, since the stalk of FT(M) at the origin is canonically isomorphic
to M by the proper base change theorem, and |G(k,)| = |k|™® in this case).
In general, however, we obtain “new” L-functions. Their fundamental properties, including
rationaliy, are given by the next proposition.

PROPOSITION 5.2. Let M be an object of D2(G). We denote as usual
SML) = Y Xt k)
2€G(kn)
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forn>1 andxeG(k ).
(1) The L-function satisfies

- o) —ep(( Y s000) )

(52) = exp (3 IG k) ina(es ) )

(2) The L -function is a rational function; if M is a mized complex, then the zeros and poles
of LM, T) are |k|-Weil numbers of some weights.
(3) For any x € G(k) the equality L(M ,T) = L(M, T) holds.

PROOF. The proof of the formula (5.1), like in the classical case, is a simple consequence of the
trace formula. Precisely, we apply the operator f(T) — Tdlog f(T) to both sides of this equality.
On the left-hand side, after expressing the determinant as alternating product of the determinants
on the various groups H%(Gj, M), we obtain

Tdlog L(M,T) = > deg(x) Y _ T Te(Ffl, [ HI(GR, My) =

x€[G] m>1
STy Y AT HE (G My).

nzl o dn xe[G)(ka)
On the right-hand side of (5.1), we obtain

DT D S(M.x),

nz1 Xe@(k!n)
and hence the formula is equivalent with the fact that the identity

d *
(5.3) S Y dm(E H(GR M) = Y S(M,x)
dln x€[G](ka) x€G(kn)

holds for any integer n > 1.
Let n > 1. To establish (5.3) for n, we begin with the trace formula (A.5), which implies that

S(M7X) - TI‘ Frkn ’ HZ(GTWMX));
for any y € G(ky,).

There exists a unique divisor d of n and a character xo € a*(kd) such that x = x0 o Ny, /-

The map sending x to the equivalence class of g in [@] has image the subset of classes [n] of
primitive characters n with degree dividing n, and for any such class [7], there are exactly deg([n])

characters x € @(kn) mapping to [n]. Moreover, there are canonical isomorphisms
HZ(Gy, My) =~ Hi(Gy, My),
with the actions of Fry corresponding to that of Frn/ , so that
S(M, x) = Tr(Frj))" | Hi(G. M,))
for all x mapping to [n]. This implies the desired identity (5.3).
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The second formula (5.2) for i(M,T) follows immediately from (5.1), since orthogonality of
characters implies that the formula

D SOM,x) = [G(kn)|ta(e; kn)
X€G (k)
holds for all n > 1

Using next the trace formula and the Riemann Hypothesis to compute |G(k, )| as an alternating
sum of |k|-Weil numbers, it follows that

|G (kn) [t (€5 n) = ) i}
i€l

for some finite set I, some ¢; € {—1, 1}, and some |k|-Weil numbers «;. The second assertion follows
then from the usual power series expansion

a™T" 1
exp(Z n >_1—04T'

n=1

The final assertion is clear either from the definition, or from the above, noting that tyr, (e; k) =
M(e; ky) for any x € G(k) and n > 1. O

REMARK 5.3. To illustrate the differences with L-functions, we note that if G is not unipotent,
then the L-function is very rarely a polynomial or the inverse of a polynomial, and does not satisfy
in general any functional equation of the form

i(M,T) = (simple quantities) x f(Mv,anfl).
as is the case for the standard L-function of M (this is related to the remark of Boyarchenko and

Drinfeld [15, §1.6, Example 1.8]).

To give a concrete example, take G = Gy,,. In this case, we deduce from (5.2) the formula

B T) = exp( (K" — 1) taales ) ) = m

n=>1

where M, is the stalk of M at e (where L(M,, T) is the L-function of the stalk of M at e, viewed as
a complex on {e}). If the L-function L(M,, T) is not constant, then there can never be cancellation
in this quotient to obtain a polynomial or the inverse of a polynomial. If (say) we have

L(M,,T) = (1—-aT)(1 —a 'T),

then

1 — |klaT)(1 — |kla~1T)
(1—-aT)1—a71T)

and this satisfies no simple functional relation.

L(M,T) = (

We conclude with a result that will be useful in the next section when performing induction.

PROPOSITION 5.4. Let G be a semiabelian variety over k. Let S be a tac of Gy defined by a

morphism m: G — G’ over k and a character xo € G(k), and let [S] denote the classes in [G] of
elements of S. Let M be an object of D?(G). We then have

~

I det(n — TN Fry, | HE(GE, M) ™! = L(RmM,,, T).
x€[S]
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PRrROOF. We have x € [S] if and only if x = x¢ - (7*n) for some 7 € [@'], with deg(y) = deg(n).
By the projection formula, we have a canonical isomorphism
H(Gz, M, ) = HX (G, My, ® m°.%) ~ HE(G;;, RmM,, ® £),
from which the identity
det(1 — T9E Fry, | HE(Gg, My)) ™! = det(1 — T8 Fry, | HE (G, (RmMy,)y)) "

follows for any x € [S]. O

5.2. Objects with finite arithmetic tannakian groups on abelian varieties

As a non-trivial application of i—functions, we will show that they lead to a characterization of
objects with finite arithmetic tannakian groups on abelian varieties. This is an analogue of a result
of Katz (sce [74, Th. 6.2], recalled in Theorem B.2, (1)) for G,,, where in fact the L-function appears
implicitly (more precisely, where the logarithmic derivative Td log i(M, T) appears); similar results
appear in a preprint of Weissauer [126].

More generally, inspired by the formulation used by Katz, we can prove a stronger statement.

DEFINITION 5.5 (Quasi-unipotent object). Let G be a connected commutative algebraic group
over k. An object M of D2(G) is said to be quasi-unipotent if it is generically unramified and if
there exists an integer m > 1 such that for any unramified character x € é, the eigenvalues of
Frobenius on H(Gy, M, ) are roots of unity of order at most m.

REMARK 5.6. (1) Any perverse sheaf M on G with Gt finite is quasi-unipotent. Indeed, first
M is generically unramified by Corollary 3.38. Let then m be the size of G5 For any unramified

character x € C‘r, the Frobenius action on H%(Gy, M, ) is “conjugate” to an element of la\ii, so its

eigenvalues are m-th roots of unity.

(2) If M is a quasi-unipotent perverse sheaf on G, then it follows from the definition that any
object of (M) is also quasi-unipotent.

(3) Let M be a quasi-unipotent object of D2(G). Let go € G(k). Then the translated object
M = [g — ggo]*M is also quasi-unipotent. Indeed, since M’ is canonically isomorphic to the

convolution dg4, *1 M, we obtain for any x € G a canonical isomorphism
HZ(Gy, M) ~ HE (G, (0,-1)y) @ HE (G, My).
Noting that H} (G, (5961)’() =HY(Gg, (6961)X)’ this shows already that x is weakly-unramified
for M if and only if it is for M.

If x is weakly-unramified for M’; and belongs to @(kn), then the Frobenius automorphism of &,

acts on HO(Gy, ((5951)X) by multiplication by x(g '), which is a root of unity of order bounded by

the order of go in G(k). Since M is quasi-unipotent, the eigenvalues of Frobenius on H°(Gg, M)
are roots of unity of order bounded independently of .

THEOREM 5.7. Let A be an abelian variety over k. Let M be an arithmetically semisimple
perverse sheaf of weight zero in P21 (A) which is non-zero. If M is quasi-unipotent, for instance if
ari

the group Gy}' is finite, then M is punctual.

REMARK 5.8. As proved by Katz in the case of G,,,, one may expect that the conclusion of the
theorem extends to objects with finite geometric tannakian group (see [74, Th. 6.4] or Theorem B.2,
(2)). We do not know how to prove this in general (Katz’s deduction of this fact from the analogue
of Theorem 5.7 for G, uses the classification of objects of tannakian rank 1, for instance, which
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we do not have in this setting). We will however prove a weaker statement in Section 8.7 which
turns out to be sufficient for many applications, including those of Chapter 11.

Before giving the proof, we state two corollaries.

COROLLARY 5.9. Let M be an arithmetically simple perverse sheaf of weight zero on an abelian
variety A over k of dimension g > 1. Let G be the neutral component of Gﬁi, and let S be the
support of M. The restriction of the standard representation of Gf\”/}i to G s irreducible unless there
erists x # e such that M x 9, is isomorphic to M. In particular, this holds unless there exists x € A
with x # e such that x +S = S.

PROOF. Let P be an object of (M)™ which is a faithful representation of the finite component
group C = Gi/r[i / G. Its tannakian group is isomorphic to C, and hence the object P is punctual
by Theorem 5.7. The points appearing in the decomposition of P generate a finite subgroup B
of A(k), and each skyscraper sheaf for x € B corresponds to a character y, of Gi}}i trivial on G.

By a simple application of Frobenius reciprocity, a representation o of ﬁ/}i restricts to an

irreducible representation of G unless there exists x € C such that z # e and ¢ ® ¥, is isomorphic
to 0. In terms of perverse sheaves on A, this condition (for the standard representation) means
that M # ¢, is isomorphic to M, which is the first assertion. Since it also implies that S+ z = S,
this concludes the proof. O

COROLLARY 5.10. Let A be an abelian variety over k. Let M be a non-zero arithmetically
semisimple perverse sheaf of weight zero in Pii(A). If M is quasi-unipotent, for instance if the
group Gy' is finite, then Glgv?o s a finite abelian group which is naturally isomorphic to the dual of

the subgroup of A(k) generated by the support of M.

ProoOF. By Theorem 5.7, the object M is punctual. If F denotes its support, we have an
isomorphism
M = @ ade © 5,
zeF
for some unitary scalars «,, and therefore a geometric isomorphism of M with the direct sum of

the d, for z € F. Let H be the subgroup of A(k) generated by F, which is a finite abelian group
and let H = Hom(H, Q,”) be the dual group of H. We obtain an additive functor from the finite-
dimensional Q-representations of H to (M)8® by associating to the character “evaluation at z”
of H the object 0;. Since d; * dy =~ 6,4, this is a tensor functor, and it gives an equivalence of
categories. Hence G%ZO is isomorphic to H. O

We will prove Theorem 5.7 in the next two sections. In fact, since this case is somewhat easier,
we will begin by assuming that the abelian variety A is simple (which is in a reasonable sense the
generic case) before handling the general situation. The reader may skip the first case to read
directly the proof of the general result.

We first prove two lemmas that are used in both proofs.

LEMMA 5.11. Let R be a commutative ring with unit and A a non-archimedean valuation on R.
Assume that R is complete with the topology given by A.

Let (a)ie1 be a family of elements of R such that ||y < 1 for all i € 1, and let (d;)ier be a
family of positive integers such that
1i{n d; = 400,
where the limit is along the filter of the complements of finite subsets of 1.
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The product

[]a - eiT®)
i€l
converges and is non-zero for T such that |T|y < 1.

PRrROOF. Let J C K be finite subsets of I. Then for |T|y < 1, we compute that

’Hu — %) = [T = o) = ’H(l - adei)< I (- aiT%) - 1) )A

ieK i€l i€l i€K=J
_ iy _ _ 1)Ll d
g“‘[u a; T%) 1‘;) > (Mo |
i€K=J @ALCK=J
where
UL:Haia dL:Zdi-
€L €L

We note that |or|y < 1 for all L. Moreover, since the lower-bound

dr, > min d;
i€l=J

holds, the assumption that d; — 400 implies that for any integer N > 1, we can choose J so that
Y. (Mo <|T}
G#ALCK=J

for any finite set K containing J. The absolute convergence of the product follows when |T|y < 1
using the Cauchy criterion. In particular, the product can only be zero if some term is zero, and
this is not the case if |T|) < 1. O

The next lemma gives basic structural information on zeros and poles of i(M, T), refining the
last part of Proposition 5.2 in the case of abelian varieties.

DEFINITION 5.12. Let f € Qu(X) be a non-zero rational function, k a finite field and r € Z.
We denote by wty, (f) the rational function

II @a-omt
a of k-weight —r
where o runs over elements of Q, which are k-Weil numbers of weight —r, and v,, is the order of f

at a.

In other words (note the minus sign), the rational function wty,(f) is (up to leading terms)
“the part of f with zeros and poles of weight r”. Below, we will sometimes write wt, when the
finite field k is clear from context.

The definition implies that the identity
Wtkm(fl f2) = Wtk,r(fl) Wtk,r(fQ)
holds for any rational functions f; and fs.

PROPOSITION 5.13. Let M be a complex on an abelian variety A over k of dimension g > 0.
Assume that M is pure of weight zero and that M, has weights in [a,b].
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(1) The poles (resp. zeros) of L(M,T) are k-Weil numbers. Their weights are of the form
—w — i for some even (resp. odd) integer i with 0 < i < 2g and some integer w with
a<w<h.

If there exists such a zero or pole then there exists an eigenvalue of weight w on M.,
and the formula

wtg, (LM, T)) = Wiy, o, (det(1 — T Fry | M) ™"

holds.
(2) If M is an arithmetically simple perverse sheaf, and if e belongs to the open set of the

support of M where M is lisse, then the poles (resp. zeros) ofi(M, T) have k-weights equal
to dim Supp(M) — i for some integers i with 0 < i < 2g such that
dim Supp(M) = i (mod 2),

and there are poles and zeros of all these possible weights.

PRrROOF. (1) By Proposition 5.2, we have

BV, T) = exp (S 1A Gn)ltni(e b))

n=1

This expression, combined with the purity of M and the structure of the cohomology of A,
shows that L(M, T) has:

(i) Poles of the form

1
af’
where « is an eigenvalue of Frobenius on the stalk of M at e, and [ is an eigenvalue of
Frobenius on H'(Az, Q,) for some even integer ¢ with 0 < i < 2g. Since « is pure of some
weight w where a < w < b, and f is of weight ¢, such a pole is a |k|-Weil number of
weight —w — 1.

(ii) Zeros of the form
1

where « is an eigenvalue of Frobenius on the stalk of M at e, and § is an eigenvalue of
Frobenius on H'(Az, Q,) for some odd integer ¢ with 1 < i < 2¢g — 1. As above, such a
zero is a |k|-Weil number of weight —w — i where a < w < b.

The precise formula for the parts of weight —w follows from the above since 8 = 1 is the unique
eigenvalue of weight 0 on H*(Az, Q).

(2) If M is an arithmetically simple perverse sheaf and e is a point where M is lisse, then the
eigenvalues « above have weight w = — dim(supp(M)), and there is at least one « since the stalk
at e is non-zero. Thus the poles and zeros above have weight dim(supp(M)) — i. O

5.3. Perverse sheaves with finitely many ramified characters

In this section, we prove Theorem 5.7 in the case of an arithmetically semisimple perverse sheaf
of weight zero in P& (A) which has the property that the set of ramified characters for M is finite.
This applies in particular, for instance, if the abelian variety A is simple, since the set of ramified
characters is a finite union of tacs of A (see Remark 3.28), and each tac is reduced to a single

character if A is simple.
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Let M be an arithmetically semisimple perverse sheaf of weight zero such that the set . of
ramified characters for M is finite. We will prove the following:

PROPOSITION 5.14. Under the above assumptions, if M s quasi-unipotent and non-punctual,
then it is negligible.

In Theorem 5.7, we assume that M is quasi-unipotent and that M;j, is non-zero; comparing
with the proposition, it implies that M must be punctual.

We now prove the proposition. After a finite extension of k£, we may assume that each y € .%
is in A(k).
One reduces using Lemma 1.28 to the case of M geometrically simple. We denote by S the

support of M and by r its dimension; we have » > 1 since M is not punctual. We denote by U a
smooth open dense subset of S such that M is lisse on U.

Let n > 1 and let a € A(k,). We denote M(®) = [z +— 2 + a]*M, which is a simple perverse
sheaf on Ay, . The stalk of M(®) at e is canonically isomorphic to the stalk M, of M at a. We note

that the set of ramified characters for M(®) is also contained in .¥, and that M(® is quasi-unipotent
(see Remark 5.6, (3)).

We then write
LM, T) = Lo(M®@, T) T det(1 — TFry | H*(Ag, M{))~"
X€
where
Lo(M®, T) = T det(1 — T*E0 Fyy,, | HO(Ap, M(®))~!
x¢S

Note that Lo(M(@, T) is a rational function since L(M(®, T) is one (Proposition 5.2).
The quasi-unipotence property of M(®) shows that the infinite product Lo (M(®) | T) can be viewed
as a formal power series in ¢[[T]] for some cyclotomic order &. We can apply Lemma 5.11 to any

non-archimedean place A of @, since the eigenvalues of Frobenius on H°(Ag, Mﬁf)) are roots of unity
of bounded order for all unramified characters x. This implies that, for any non-archimedean place
), the infinite product Lo(M(®, T) converges in the disc defined by |T|y < 1. Taking ) to correspond
to places above the characteristic of k, this implies that the rational function Lg (M(a)7 T) cannot
have a zero or pole which is a |k|-Weil number of positive weight.
Suppose that a € (A —S)(k). Then M = 0. Hence we deduce that
(5.4) 1= J] wtr(det(1 — TFry, | H*(Ag, M)
XE€S

Thus, the Frobenius automorphism has no eigenvalue of weight —r acting on any of the cohomology
Mle ))

spaces H (Az, M By purity, this translates to the condition

77-(A]27M§<a)) — 0
for all x € .77.

On the other hand, suppose that a € U(k). Then Mé“) = M, is pure of weight —r. From the
above and Proposition 5.13, (2), we deduce that

(5.5) LM®, T) = wt,(LM@, T)) = J] wtr(det(1 — T Fry | H*(Ag, M),
XE€S
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and since the left-hand side is not 1, there exists (by purity again) at least one x € .# such that

H7(Ap, M) £ 0.

If we combine these two statements, we conclude that S = A. Indeed, the spaces H™"(Ag, Mgca))

are independent of a € A(k) up to isomorphism. Hence, since there exists some ag € U(k), if one
of these spaces is non-zero, then no a € A(k) can satisfy the condition required to have a ¢ S(k).

Fixing again ag € U(k), let x € . be such that
H™" (A M)

is non-zero. Since M(@) is a simple perverse sheaf supported on S = A, and r = dim(S) = dim(A),
it follows from Lemma A.15 that Mg(ao) is geometrically trivial. This implies that M is negligible.

5.4. The general case

In this section, we prove Theorem 5.7 in the general case. Thus let M be an arithmetically
semisimple perverse sheaf of weight zero in P{(A), which we assume is quasi-unipotent and not
punctual. We will show that M is negligible.

It suffices to treat the case of a simple perverse sheaf M (Lemma 1.28).

We denote by S the support of M and by r its dimension; we have r > 1 by our assumption
that M is not punctual. Let U be an open dense subset of S contained in the smooth locus of S
such that M is lisse on U.

Let (#)ier be a finite family of tacs such that the set of ramified characters is contained in
the union . of the .%;. After a finite extension of k, we may assume that each . is defined by a
quotient morphism 7;: A — A; defined over k and a character x; € A(k).

For any subset J of I, we denote by .5 the intersection of .7 for ¢ € J; this is either empty or
a tac of A, also defined over k (Lemma 1.25), in which case we denote by 75: A — Ay and xy the
corresponding quotient morphism and character; these are all defined over k. From Lemma 1.25,
it follows also that ker(my) is the algebraic subgroup of A generated by the family of subgroups

~

(ker(m;))ier. We write [.#]] for the set of classes in [A] of characters in .75.

Let a € A(k). We denote M(®) = [z +— z4a]*M, so that the stalk M i canonically isomorphic
to the stalk M, of M at a. The ramified characters for M(®) are also contained in the tac ., and
the perverse sheaf M(®) is quasi-unipotent (see Remark 5.6, (3)).

We define
LoM® 1) = J] det(1 — T*™ Fry, | HO(Af, M)~ L
X€[A]~7
By an application of inclusion—exclusion, we have

[J]

LOM®, T) =LoM@,T) [[ ] det( — T Fry, [ H* (A, M)
@#ICI xe[S]
SyF#D
For any J C I such that ./ is not empty, we denote
an) = RFJ*M%)'
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Proposition 5.4 implies the formula

(5.6) [T det( — T Fry, | H*(Af, M@))~! = L(Q(", T),
X€[S]
so that we can rewrite the above expression as

)IJ|+1

(5.7) LM®,T) = LoM@,T) ] LQg.T
o#JC1
Sy #D

By Proposition 5.2 (2), this shows in particular that iO(M(“),T) is a rational function. The

quasi-unipotence property of M(® shows that the infinite product io(M(“), T) can be viewed as a
formal power series in ¢[[T]] for some cyclotomic order &. We can apply Lemma 5.11 to any non-

archimedean place A of &, since the eigenvalues of Frobenius on H%(Ag, M;a)) are roots of unity of
bounded order for all unramified characters x. This implies that, for any non-archimedean place A,
the infinite product Lo(M(®, T) converges in the disc defined by |T|y < 1. Taking A to correspond

to places above the characteristic of k, this implies that the rational function fO(M(“),T) cannot
have a zero or pole which is a |k|-Weil number of positive weight.

Since r > 1, the formula (5. 7) therefore implies the formula

(5.8) wi (L@, T) = T wee (TeQs, 10",
@#JC1
Ly F#D

Let J C I. By proper base change, we have a canonical isomorphism
QL) = (Rmy. M), = H (ker(my ), MY).

Since M@ hence also Mggl), is a perverse sheaf, the complex Mgfl) is concentrated in degrees

between —r and r. Its support is S — a, and consequently, the cohomology group
H' (ker(my), M) = H'((ker(my) N (S — a))z, M)

vanishes unless 0 < i +r < 2dim(ker(7y) N (S —a)). Since M(® has weight 0, this space has weight
¢ when it is non-zero. Using the formula

~ (a "
L(QST) = exp (D [kt o (e k) —)
n>1

of Proposition 5.2, this means that
wt, (L(QY, T)) = det(1 — T Fry, | H™"((ker(my) N (S — @)z, M)~
=det(1 — TFry | H"(((a + ker(my)) N S)z, My, )~
=det(1 = TFrg [ (R 75My; )7, (a)” =det(1 - TFrg | (TR 75 My,)a)

Let X =S—=U, sothat A—X =UU(A=8). If a € (A=X)(k), the left-hand side of (5.8) is
the part of weight —r of

LM®@, —exp(Z|A Yt (as k )Tn")

n>1
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Since M, is |k|-pure of weight —r (either because a € U(k), so that M is lisse and of weight —r
at a, or because a € (A —S)(k), so that M, is zero, hence pure of any weight), we deduce that the
equality
(5.9) det(1—TFr, |My) = [ det(l —TFry | (xjR "5 My, )a) 0"

o#JCI
SFD

holds. In particular, this gives the equality
tm(as k) = Z (‘Umﬂtwmﬂ'mmm (as k)

o£JCl
SyF#D

of values of trace functions for a € (A —X)(k).
Let n > 1. Applying this argument to the base change of M to k,, we see that the formula

tm(a; k) = Z (—1)‘J‘+1tw;waJ*MXJ (as kn)

o#JCI
Sy#D
holds for a € (A —=X)(k,). By the injectivity of trace functions (see [98, Th.1.1.2]), this means
that we have an equality
(5.10) M= > (- R™m,M,,
o£JC1
Sy #D

in the Grothendieck group K(A —X).

If U=S (e.g. if M is the extension by zero of a lisse sheaf of weight 0 placed in degree —r
on a smooth closed subvariety S, which will be the case in the applications of Theorem 5.7 in
Chapter 11), then X is empty, so this equality holds in K(A). The right-hand side is a linear
combination of negligible objects (see Example 3.5) so we deduce that M is negligible by taking
the Euler—Poincaré characteristic (see Corollary 3.22).

We now consider the general case. Let j be the open immersion of A—X in A. Recall that the
classes of simple perverse sheaves form a basis of the Z-module K(A —X) (see Proposition A.22).
Thus, the equality (5.10) implies that there exists some J such that the simple perverse sheaf j*M
appears in the decomposition in simple perverse sheaves of the class of j*N in K(A —X), where

N = WjR_T']TJ*MXJ.

Furthermore, this means that there exists ¢ € Z such that j*M occurs in the decomposition of the
perverse sheaf P77 (j*N), since

FN= (1) P (*N)
1€Z
in K(A —=X).

The functor j* is t-exact (since j is smooth of relative dimension 0) so that there exists a canon-
ical isomorphism P5#7'(j*N) — j*P°*(N). Since j*M and j*P.7*(N) are pure, hence geometrically
semisimple, this implies the existence of an injective morphism

fri™M = A N(N)

of perverse sheaves. Applying the functor ji., which preserves injectivity (e.g., by [70, §.2.17])
and satisfies ji. o j* = Id on perverse sheaves, we deduce that there exists an injective morphism
Jif: M — Po#%(N). Since N is negligible, so is P2#*(N), and hence also M.
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REMARK 5.15. A similar argument leads to a proof of the following fact: if M is a negligible
arithmetically simple perverse sheaf of weight zero in P21 (A), and if .4 (M) is contained in a finite
union of tacs of A, then there exists a morphism 7: A — B of abelian varieties with dim(ker(7)) > 1,
a character Y € A and an object N of DP(B) such that M is geometrically isomorphic to (m*N)y.

This fact is equivalent (for pure perverse sheaves of weight 0) to the characterization of negligible
objects by Weissauer [127, Th. 3], since it is known that the assumption on 4 (M) is always
true (Corollary 3.23). However, the proof that this is so relies on the generic vanishing theorem
(Theorem 2.16), which appeals to this result of Weissauer, so this remark does not provide a
different proof of this characterization.

We sketch the argument nevertheless for the sake of illustration. It is relatively elementary that
it suffices to prove that the isomorphism class of M is invariant under translation by a non-trivial
abelian subvariety (this is [127, Lemma6]), and we will establish this fact.

To simplify matters, we assume that S = U in the notation of the previous proof. Since M is
negligible, it is quasi-unipotent; arguing as in the previous proof, we obtain a finite decomposition

i€l

in K(A) for some morphisms 7;: A — A; with dim(ker(m;)) > 1, some objects M; € D2(A;) and
some non-zero n; € 7.

Since the classes of simple perverse sheaves form a basis of the Z-module K(A), there exists
some ¢ € I such that

W:Mi =mM + Zm]’MZ’J
j€J

in K(A) for some non-zero integers m and m; and some simple perverse sheaves M; j not isomorphic
to M.

The isomorphism class of the complex 7} M; is invariant under translation by elements of ker(7;),
and a fortiori by the abelian subvariety A’ = ker(m;)°. We claim that this implies that the same
property holds for M and the other constituents M; ;. Indeed, the k-valued points of A’ act on the
finite set of isomorphism classes of the simple perverse sheaves (M, M, ;), and thus the stabilizer of
any of them is a finite index subgroup. Since it is also an algebraic subgroup, it is equal to A’(k),
and the assertion follows. Thus the isomorphism class of M is invariant under translation by the

non-trivial abelian variety ker(m;)°, as desired.
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CHAPTER 6
Stratification and generic Fourier invertibility

As usual, k is a finite field, with an algebraic closure k and finite extensions k, of k in k of
degree n. We fix a prime ¢ distinct from the characteristic of k.

Let G be a connected commutative algebraic group over k, with dimension d. Given an object
M of D?(G), an integer n > 1 and a character x € G(ky,), we set

SM,x) = Y x(@)tm(w; kn).

2€G(kn)

6.1. Stratification for exponential sums

The results of this section are straightforward consequences of Theorem 2.3 and Deligne’s
Riemann Hypothesis. We spell them out since some of them are likely to be useful for applications
to analytic number theory.

THEOREM 6.1. Let M be an object of D2(G). Assume that M is semiperverse and mized of
weights < 0. There exist subsets Sy C -+ C Sy = G such that

(1) For 0 < i< d, the estimate
|7 (k)| <[]0
holds forn > 1.
(2) The set .74 is empty if M belongs to the category P& (G).

int

(3) For any n > 1, any integer i with 1 < ¢ < d and any x € é(kn) — Fi(kn), the estimate
D x(@)ha(s k) < cu(M)[R[MH/2,
2€G(kn)

holds, where the implied constant is independent of M.

(4) If G is either a torus or an abelian variety, then .7 is a finite union of tacs of G of
dimension < d — 1.

(5) If G is a unipotent group, then .7 is the set of closed points of a closed subvariety of
dimension < d — i of the Serre dual GV .

ProOF. For 1 < i < d, let . be the set of characters such that there exists some [ > i with
HL(Gj, M) # 0.

If x € (A}—%, then we deduce from the trace formula and the Riemann Hypothesis of Deligne,
combined with Lemma 1.3, that the estimate

D x(@)t(s k) < cu(M)[R[0H/2
2€G(kn)
holds for n > 1, which is (3). We will check that these sets also satisfy conditions (1) and (2).
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Fix an integer ¢ with 1 < ¢ < d. For any [ and j, we have the perverse spectral sequence
H.(Gy, P77 (M) = HL(Gg, M)
(see (A.3)) so that the condition x € .#; implies that
(G, P27 (M) # 0
for some [ > i. Since M is semiperverse, so is M, , which means that this condition implies j > [ > .

Thus, if we denote by (%}i)o<i<a the sets provided by the Stratified Vanishing Theorem 2.3
applied to P77 (M), we have shown that

sic U U S

i<j<di<I<)

The set .]_; ; has character codimension at least j, so that .#; has the same property, estab-
lishing (1). Point (2) follows from the fact that
Hg(Gfm NX) =0
for a geometrically simple perverse sheaf N which is not geometrically isomorphic to £,

Points (4) and (5) follow from the strengthened versions of the Stratified Vanishing Theorem for
tori, abelian varieties and unipotent groups, which are stated in Theorem 2.3, (4) or Proposition 2.7.
O

REMARK 6.2. The following elementary estimate can also sometimes be useful. Fix a locally-
closed immersion u: G — P™ for some integer m > 1. Let M be an ¢-adic perverse sheaf on G that
is pure of weight zero. Then by orthogonality of characters, we derive that the formula

2
" tv(zs kn) x(x )‘ = Z ltn (s k)|
(kn) :vGG(kn)

holds for n > 1. By the Riemann Hypothesis, it follows that the estimate

\G(Zm S Y kx| < e

x€G(kn) x€G(kn)

holds for n > 1 (see Theorem 1.10). Fix then a sequence T = (T,,) of positive real numbers, and
let Z1 C G be the set such that y € Z7(k,) if and only if

‘ Z tm(x; k‘n)x(:z:)‘ > T,.
Then we find by positivity that
| 270 (kn)| < cu(M)|G(kn)| T2

COROLLARY 6.3. Let k be a finite field, and let G be a connected commutative algebraic group
of dimension d over k. Let £ be a prime distinct from the characteristic of k and let M be an £-adic
perverse sheaf on G which is pure of weight zero.

For any generic subsets 2 and % of @, the estimate

1 1
ol 2 | S @] <

XE(Z =) (ky) ©Ckn

holds for alln > 1
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PROOF. We may assume that 2" = G. Let (-%)o<i<a be sets of characters as in Theorem 6.1.

We have )
Gyl 2|2 x|

xE(G-@) kn) zekn
where for each integer ¢ with 0 < i < d, we put

1
Rt TP SR POL LT

XE(F (S 110 )) (k) Ekn

-+ Sd*la

For i = 0, the exponential sums in the inner sum are < 1, and since % is generic, the set
S0 — (S UZ) has character codimension at least 1, so that

Sy < ‘k|n(7d+(d71)) _ |k’fn
For i <1i < d, we have ., — (11 U¥) C . — F;+1, so that by Theorem 6.1, (1) (for the size
of .%;) and (3) (estlmatlng the exponential sums for y ¢ .%;11), we obtain
S < ’k‘—nd+n((d—i)+i/2) _ ’k’—m’/Z'

0

The next corollary states, intuitively, that for the purpose of computing the arithmetic Fourier
transform of a semiperverse complex (mixed of weights < 0), the contribution of any closed (suitably
“transverse” ) subvariety is negligible.

COROLLARY 6.4. Let k be a finite field, and let G be a connected commutative algebraic group
of dimension d over k. Let ¢ be a prime distinct from the characteristic of k and let M be an object
of D2(G). Assume that M is semiperverse and mived of weights < 0.

Let X C G be a closed subvariety of G and let i: X — G be the corresponding closed immersion.
Let m > 0 be an integer such that for each j € Z, the estimate

dim (X N Supp (7 (M))) < dim Supp(#7 (M)) —m

holds.
There exists a generic subset 2 of G such that the estimate
' cu(M)

zeX(kn)
holds for allm > 1 and all x € Z (ky,).

Alternatively, we have
SMx) = Y x(@)tu(wka) + O(ka| ™),
z€(G=-X)(kn)
which explains the interpretation that X does not contribute “systematically” to the arithmetic
Fourier transform.

PrOOF. The assumption implies that the complex N = 4,7*M[—m](—m/2) is semiperverse on G,
since M is semiperverse and, for any j € Z, the support of 77 (N) is X N Supp(#7~""(M)) so that
dim(Supp(#” (N))) = dim(X N Supp(#7~™(M))) < dim(Supp(#7~™(M))) —m

<—(—m)—m=—j.
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Moreover, the complex N has weights < 0. Thus we may apply Theorem 6.1 to N. Let .7, ...,
%4 be the corresponding sets of characters, and let 2" = G — .. This is a generic subset of G,
and for n > 1 and x € £ (ky), we have

CD™ka™2 D x@)ta(mika) = Y x(@)in(@ikn) < co(M),
wEX(k’n) $EG(kn)
hence the result. OJ

EXAMPLE 6.5. Let 7 be a non-zero lisse sheaf on G, pure of weight 0, and let M = Z[d|(d/2).
We then have Supp(##7(M)) = @ except when j = —d, in which case the support of #~¢(M) is G.
We can therefore apply the corollary to any closed subvariety X of G of codimension at least m. In
particular, for any closed subvariety X # G, hence of codimension at least 1, there exists a generic
set of characters 2 for which the estimate

cy(M
Z x(x)tnm (s k) < u(M)
’ kn’1/2

holds for n > 1 and x € 2 (ky).

A uniform version of the stratified vanishing theorem, as in Remark 2.4, would be especially
welcome for stratification estimates, as it would lead to strong potential applications in analytic
number theory (compare with the results of Fouvry and Katz [39] based on stratification for the
additive Fourier transform). We state a conditional result of this kind for emphasis.

THEOREM 6.6. Let £ be a prime number. Let N > 1 be an integer and let (G,u) be a quasi-
projective commutative group scheme over Z[1/¢N].

Assume that, for all primes p { {N, the fiber G, of G over F, is a connected commutative
algebraic group such that Theorem 2.3 holds uniformly with respect to the complexity c,,(M) where
up 18 the locally-closed immersion of G, deduced from u, i.e., such that for a perverse sheaf M
on Gy, the sets 7 in loc. cit. satisfy

[ (R) | <[]0
where the implied constant depends only on c,,(M).

Let (Mp)pne be a sequence of arithmetically semisimple sheaves on Gy, pure of weight zero,
such that c¢,(Mp) < 1 for all p.

For each prime p, there exist subsets /y3(Fp) C --- C A (Fp) = @p(Fp) such that

(1) For 0 < i< d and p prime, we have
|=%(Fp)‘ < pdii-
(2) The set S4(F,) is empty if M,, belongs to the category Pii(G,).

nt

(3) For any prime p, any integer i with 0 < i < d and any x € @p(Fp) — Zi(Fp), we have
> x(@)ty(a) < pimhz,
z€G(Fp)

where t, is the trace function of My, over F,,.
(4) If G is a torus or an abelian variety, then the sets 7;(F,) are contained in the union of a
bounded number of tacs of Gy, of dimension < d —i.

REMARK 6.7. For G = G¢, results of this kind are unconditional; see for instance [39, Th.1.1,
Th. 3.1] (note that there the sets .#; are points of subschemes defined over Z, which we cannot hope
in the general situation where M, is allowed to vary with p).
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In the case of GZ (which is currently conditional), this would give (for instance) stratification
and generic square-root cancellation for sums of the type
P l‘d) )

> alm): "Xd(xd)€<’}c(xl”é'

zl,...,xdGFif
where f € Z[Xy,...,Xy] is a polynomial and x1, ..., xq are Dirichlet characters modulo p, together
with an a priori algebraic description of the sets of characters where the sum has size = p/2.

Over finite fields, we can still derive some applications, such as the following proposition, similar
to [39, Cor.1.4] (although the vertical direction means that equidistribution is only in the finite
set (1/pZ)/Z C R/Z, or equivalently modulo p, as we phrase it.)

PROPOSITION 6.8. Let p be the characteristic of k. Let d > 1 and r < d be integers and let
f=(f): G4 — A" be a morphism whose image is not contained in an affine hyperplane. For a
sequence (wy) such that 0 < wy, < |k|* — 1 and wy/(|kna|"/?log |kn|) — +o0, and for an arbitrary
generator yy, of kX, the family of residue classes

Try, /p, (f(yn's -+ yp?)) (mod p), 0 < v <wy, foralli
become uniformly distributed in (Z/pZ)".

ProOF. Let G = G¢ and ¢ = |k|; for n > 1, denote by 1, the additive character = +
e(Try, /v, (7)/p) of k. Using the generator y,, we can identify the group G(k,) = (kX)) with the

group (Z/(¢"—1)Z)® and we also identify G(k,) with (Z/(¢"—1)Z)?, the element 38 € (Z/(q"—1)Z)?
corresponding to the character x such that

X(ylé%---,yfﬁ)Ze(

. 7 (Bro+-- +ﬁdvd)>-

By the Weyl Criterion, we need to prove that

d
) 1
g, 5 (G w0)

0<v;<wnp,

for any h € (Z/pZ)" —{0}. Detecting the interval 0 < v < w, by Fourier expansion, we have to
study the limit of

d
" X€G(kn) 2€G(kn) i1
where

~ 1 — oy
Om(X):W Z X(ynty oy yn?).

0<v;<wn,

Define g5 : G — A! by
d
(@) =3 hifi(w).
i=1

We can write

LY a Y (X k@) = Y a0a SO0
i=1 "

" xeG(kn) z€G(kn) x€G(kn)
for the complex M = g;.Z,[d](d/2) on G, which is a simple perverse sheaf, pure of weight 0, on G.
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We apply Theorem 6.1 to M. Let (.%;) be the subsets described there. We have .7; = &
because the image of f is not contained in an affine hyperplane, which implies that g is non-
constant, and hence M is non-trivial, from which the fact that it does not coincide with .Z, for
any character y € G follows. Moreover, we also know that each .7; is a finite union of tacs of G of
dimension < d — 1.

The contribution of all x € () —.#1)(ky) to the previous sum satisfies the bound

1 N N qnd/2 N
2. WIS < T Y [an()l
" XE(@=1) (kn) " xe€Gkn)

It is well-known that the bound
(6.1) > |@n(x)| < (log g)
X€G (kn)

holds for all n > 1 (see Remark 6.10 below), where the implied constant depends on d, so that

n/2
X a0 SeLy) < (q“j’f@)d,
x€(G=1)(kn)
which converges to 0 as n — +oo by assumption.
We now handle the remaining terms. Let 1 < j < d — 2. By Theorem 6.1, the estimate

1 ~ nd/2 qn(dﬂ)/2 ~
il Z an(X)q"7S(M, x) < Tl Z |an (X))
" XE(Fj=Fj41) (kn) " x€(kn)

holsd for all n > 1. From Lemma 6.9 below and the fact that .} is a finite union of tacs of
codimension at least j, we deduce that the estimate

. Wp \J
> @0l < (52) (oga)?
Xeyj (kn) q
holds for n > 1. It follows that

1 . n(d+j)/2 j n/2\ d—j
— Y @0 son ) <« T (%) (log g)* = (q ) (log q).
wd wd qr Wnp
" XE(Fj=Tj11) (kn) "
The conclusion follows. ([l

LEMMA 6.9. With notation as above, for any tac . of Gfln of dimension d — j < d, we have

> a0l < (42) toga)"

XES (kn)

PROOF. Mutatis mutandis, this is very close to [39, Lemma 9.5], in the (simpler) case where the
variety ¥ of loc. cit. is an affine hyperplane (but with the primes p replaced by the sequence ¢ —1).
Indeed, let f: G¢ — ng_j and xo = (xo0,1,---,X0,d) be the morphism of tori and the character o
defining .. There exists a matrix m = (my,) of size d x (d — j) with integral coefficients of rank j
such that a character n = (11, ...,1q4) of G, belongs to .7 (k,) if and only if

d
mE1 . —1
M = Xok
=1
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for 1 < k < d—j. When we identify G (k,) with (Z/(¢" — 1)Z)%, this means that .#(k,) is
identified with the set of solutions (&1, ...,&4) in (Z/(¢" — 1))% of the linear equation

d
> mi& = yk
=1

for some y, € (Z/(¢" — 1)Z). O

REMARK 6.10. We recall the proof of (6.1). We denote N = ¢™ — 1 so that G (k) is isomorphic
0 (Z/NZ)?. The sum to estimate is

w 2|3 () I > (%)

¢€(Z/NZ)4 0<v;Swp €(Z/NZ)d i=1 0<v<wn

LY S ()

i=1¢€(Z/NZ) 0<v<wn

)

which shows that it is enough to handle the case d = 1. In this case, one uses the bound

‘Ogyzgwn e(%)‘ < min(wn +1, e((wZ(;_/ll\I))g/—Nl) — 1) < min(wn +

where ||£/N|| is the distance to the nearest integer of /N (the sum is a finite geometric sum, and
in the last step, we used the lower-bound |sin(z)| > 2||z||, valid for x € R). We then sum over the
range 0 < £ < N —1; for £ = 0, the bound is < (w, +1) <N, and for 1 < < N — 1, we have

1
1, ——
’2||£/N||)

§ N-¢
l&/NI > min (%, =)
hence
1 £v (N2
N Z ‘ Z e(ﬁ)‘ 1+ Z f<<logN
¢€(Z/NZ) 0<v<wy,
as claimed.

6.2. Generic Fourier invertibility

For two semisimple perverse sheaves M and N, Proposition 1.20 implies that if the arithmetic
Fourier transforms of M and N coincide, in the sense that S(M, x) = S(N, x) for any x € é, then
the trace functions of M and N coincide over k,, for all n > 1, which implies that M and N are
isomorphic (Proposition A.22; see also [103, Prop.4.2.3] for tori).

The stratified vanishing theorem allows us to prove a statement of “generic Fourier invertibility”
for pure perverse sheaves, which relaxes the condition of equality of all sums S(M, x) and S(N, x)
to a condition for a generic set of characters.

THEOREM 6.11 (Generic Fourier invertibility). Let G be a connected commutative algebraic
group over k. Let M and N be arithmetically semisimple £-adic perverse sheaves on G which are
pure of weight zero.

The perverse sheaves My, and Nint are arithmetically isomorphic if and only if there exists a
generic set 2 C G such that S(M, x) = S(N, x) for all x € 2.
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PROOF. If Mjy is isomorphic to Niyt, then the sums S(M, x) and S(N, x) coincide for a generic
set of characters because S(P, x) vanishes generically for a negligible object P.

To prove the converse, we may assume that M = Mj,; and N = Njy, i.e., that M and N are
objects of P2 (G). We then argue by induction on the sum m of the lengths of M and N.

int

If m = 0, then the perverse sheaves M and N are both zero.

Suppose now that m > 1 and that the statement holds for all pairs (M;, N;) of perverse sheaves
in P&1(G) such that the sum of the lengths of M; and Ny is < m — 1. One at least of the perverse
sheaves M and N is non-zero, and (up to exchanging M and N) we may assume that M is non-zero.
Let (Q;)ie1 be the simple components (without multiplicity) of the perverse sheaf M & N, and for
i €1, let un(i) (resp. un(i)) be the multiplicity of Q; in My (resp. Nint).

Let 2 be the set of Frobenius-unramified characters for the perverse sheaf

(M sing NY) @ (M i MY),

viewed as an object of (M @ N)**,
For any integer n > 1, we consider the sum

Z S(M #int NV, x).
XEY (kn)

G (k)]

Applying Corollary 4.6 after decomposing M and N in terms of the simple perverse sheaves Q;,

we obtain the formula
1 T, =
i T = Sl
n<N i€l

On the other hand, we can write

1 1
T, = > S(Msine MY, x) + > (SO ki NY, %) = S(M it MY, )
|G (kn) G (kn)| 4
for any n > 1. For x in the generic set 2" N %, the assumption implies that

S(M *int Nv? X) = S(M *int Mva X)
Thus, using Corollary 6.3, the assumption implies that the bound

. _
G (k)| ) (S(M sint NV, X) = S(M #ing MV7X)) & [k M2
" XE (kn)

holds for n > 1. Applying Corollary 4.6 once more and comparing with the previous computation,

we deduce that
S i) = 3
iel i€l

The right-hand side is > 1 since M is non-zero. Hence, there exists ¢ such that un(i)un(i) > 1,
which means that Q; appears with positive multiplicity in both M and N. Removing one occurrence
of Q; from M and N, we obtain perverse sheaves M; and Ny in Pfrfé(G) for which we can apply the

induction hypothesm, so that My is isomorphic to N1, and adding the simple perverse sheaf Q; to
both sides, we deduce that M is isomorphic to N. O

REMARK 6.12. In the case of tori, this theorem can be compared with a conditional result of
Loeser [103, Prop.4.2.5].
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CHAPTER 7
Independence of ¢

We consider in this section a connected commutative algebraic group G over a finite field k.
Let p be the characteristic of k. Since we will vary the prime £ # p, we will indicate it in the notation.
For an object M of D?(G, Q,), we will now denote by ty(z; k) the Q-valued trace function of M,
and we will also specify explicitly the isomorphisms ¢ used to define their complex-valued analogues.
In particular, we write G® for the set of f-adic characters.

We recall (see, e.g, [48, Def. 1.2] with E = C) that if A is a set of pairs (¢, ¢) consisting of a prime
number ¢ different from the characteristic of & and an isomorphism ¢: Q, — C, a family (Mg )aea
of objects of Perv(G, Q,) is said to be a compatible system if for any n > 1 and = € G(k,), the
complex numbers ¢(ty,, (x; k) are independent of o = (¢,¢) € A. This is equivalent to asking that
the eigenvalues of Frobenius for the stalk of M, at z are independent of a.

The question we wish to address is the following;:

QUESTION. Suppose that we have a compatible system (Mg, )aca; to what extent are the arith-
metic and geometric tannakian groups of M, independent of a7

We note that the analogue question for the monodromy groups of a compatible system of lisse
sheaves on an algebraic variety X over k (especially a curve) has been considered in depth by, among
others, Serre [120, p.1-21], Larsen-Pink [97] and Chin [20]. Using Deligne’s Fourier transform,
this gives corresponding answers to our question in the case of the group G,. We note also that
the deepest results (such as that of Chin) depend on the global Langlands correspondance over
functions fields.

In this section, we take a first step in addressing the question. We will only compare two objects,
so for the remainder of this section, we let (¢1,¢1) and (¢2,t2) be pairs of primes and isomorphisms
Lj: er — C. For j =1, 2, we fix an /;-adic arithmetically semisimple perverse sheaf M; on G
which is pure of ¢;-weight zero. We assume that M; and My are compatible, that is we assume that
the system with A = {(¢1,¢1), (¢2,t2)} is compatible.

LEMMA 7.1. The following properties hold:

(1) For anyn > 1, the map n: X +— 15 011 0X is a bijection from CA}(EI)(kn) to @“”(kn) such
that 11(S(My, x)) = t2(S(Mz,n(x))) for all x.

(2) For any x € G\, the objects (M;), and (Mz)n(x) are compatible.

(3) The set of weakly unramified characters x € G) for My such that n(x) is weakly unram-
ified for Ms is generic.

ProOOF. This boils down to the computation

(b, (@ kn)) = 1 (b (25 kn )X (N, k(7))
v (tny (5 k) (X (N, 7k (%))
b2ty (5 k) )12 (N(X) (N, 1 (7)) = 22(t )

115

(; kn))

n(x)



for any n > 1 and = € G(k,,), which follows from the definitions, and the fact that 27,(M;) and
n- (%W(MQ)) are both generic, and hence so is their intersection in G(1). O

LEMMA 7.2. The tannakian dimensions of M1 and Msy coincide.

PRrOOF. By Proposition 3.16, the tannakian dimension of M; is equal to the Euler—Poincaré
characteristic of (Mj), and the tannakian dimension of My is equal to the Euler-Poincaré charac-
teristic of (M2),(y), provided the character y is weakly-unramified as well as n(x). The set of such
characters is generic and in particular not empty, and the result then follows from the fact that,
since (M1), and (Mg),(,) are compatible, they have the same Euler—Poincaré characteristic (see,
e.g., [115, Lemma6.38]). O

We denote from now on by r the common tannakian dimension of M; and My. We further by K
a maximal compact subgroup of Lj(Gf\‘jil)(C), and by p; the probability Haar measure on K;. We

define the measures v, j on U,(C)* and the measure v; on C as in Theorem 4.4 and 4.8, respectively
(the latter is the Sato—Tate measure of M;).

The basic information we have is the following consequence of equidistribution.

PROPOSITION 7.3. With notation and assumptions as above, we have Vep1 = Vep2 and vy = va.

Proor. It suffices to prove the equality v, 1 = v¢p 2, and this is essentially because the mea-
sures Vqp ; are both determined by equidistribution of “the same data”.

To be precise, we first note that by the Peter—Weyl Theorem, it is enough to prove that

/ Tr(o(g))dveps (g) = / Te(o(g))dvep(9)

for all finite-dimensional representations g of U, (C). By Theorem 4.4, applied to the bounded test
function f = Tr(p), the equality

/Tr( (9))dvep,j(g9) = N_>+00N Z |Gr

> Tr(e(Om; k., (X))
XEZ; (kn)
holds, where 2 is the set of characters in G®) which are weakly unramified for M;.

The compatibility assumption implies that o(M;) and o(Ms) are also compatible (since the
character Tr(p) of g is an integral symmetric function of the eigenvalues of its argument), and
hence by Lemma 7.1 applied to these two perverse sheaves, we have

(7.1) Tr(e(Om; £, (X)) = Tr(e(Om, k., (1(x))))
if x € 21(ky) is such that n(x) € Z2(ky). Therefore, by the previous lemma, the difference

/Tr( (9)dvepa(g /Tr ))dvep2(9)
is equal to

N%mNZ,G (0 MOk 00) 3 TreOn (),

XE%(]C”) Xe%(kn)

where %] (resp. %) is the set of x € 27 such that n(x) ¢ 22 (resp. the set of y € 25 such that
X) ¢ 21).

Both of the sets %] and %4 have positive character codimension, and hence we deduce that

/ Tr(0(g))dvep. (9) — / Tr(o(g))dvepa(g) = 0,
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which implies the theorem. ]

The equality of the characteristic polynomial measure or of the Sato—Tate measures of objects
in a compatible system can provide a considerable amount of information. In ideal cases, this
ari ari

equality may be enough to imply that Gy, and Gi}, are isomorphic. This does happen, but it is
far from being always the case.

ExAMPLE 7.4. Let H be a finite group and H C U (C) be its regular representation. Then
the Sato—Tate measure is

(1 - |IfI’)CSO + |}1H5|H|,

where §, denotes a Dirac mass at a point z € C. Thus the Sato—Tate measure only determines the
order of H in that case.

For characteristic polynomials, Sutherland | , Remark 1.5] gives examples of non-isomorphic
transitive finite permutation groups with the same distributions of characteristic polynomials. We
refer to Sutherland’s survey [123] for more examples and discussion of Sato—Tate measures in a
more traditional context.

COROLLARY 7.5. We continue with the notation and assumptions above.

ari ari

(1) The reductive ranks of the reductive groups G{i, and Gi, are the same.
(2) Tthe group Gf{ﬁ s finite if and only if the group Gi}}; is finite, and in this case, both
groups have the same order.

PrOOF. (1) The reductive rank of Gf\‘/ﬁ is the dimension of the space of characteristic polyno-
mials of Gi/ﬁ (see [120, p.17] for this fact), hence is equal to the dimension of the support of the
measure Vg j on U, (C)%. The result therefore follows from the proposition.

(2) This holds because the group Gi}g is finite if and only if the measure v; is a finite sum of
Dirac masses (for the “if” direction, one can use the same result of Serre as in (1)), and if that is
true, then the size of Gﬁ/ﬂ is determined by

1
vi({r})

G| =
]

REMARK 7.6. In the next chapter, we will also see results which imply that M; has tannakian
group containing SL, if and only Ms has the same property, and some related statements, following
from Larsen’s Alternative (see Theorem 8.5 or Proposition 8.17 below).

The next result goes a little bit beyond the equality of Sato—Tate measures, under the assump-
tion that the objects are generically unramified.

PROPOSITION 7.7. We continue with the notation and assumptions above. If M qnd M, are
generically unramified, then the exponent of the groups of connected components of Gif, and GiJ,
are equal.

The key ingredient of the proof is a version of the “zero-one law” used by Serre [120, Th., p. 18]
for the analogue statement for compatible systems of Galois representations over Q.

LEMMA 7.8 (Zero-one law). Let M be a generically unramified ¢-adic perverse sheaf on G of
tannakian dimension r, for some prime { # p. Denote by GO the neutral component of G&5i. For a
polynomial f € Zlai, ..., a,| and an integer m > 1, we denote by Xy, the set of weakly unramified

117



characters x € Zw(M) such that x € Zym(kn) if and only if f(Fryg,(X)™) =0, where we define
f(g) for g € GL, by interpreting the variables a; as the coefficients of the characteristic polynomial
det(T — g) of an element g of GL,.

Let m > 1 be an integer. Then all connected components H of G satisfy H™ = G if and
only if for all f € Z[ay, ..., a,], the limit

. 1 |3'/rfm( )|
(7.2) SN 2 (k)

exists and is equal to either O or 1.

PROOF. We can follow Serre’s argument very closely.

First, assume that H™ = GO for all connected components. It follows in particular that
Fry; k, (x)™ belongs to G for any unramified character x.

Let F denote the set of g € Ga“ C GL, such that f(g) = 0, so that F is a Zariski-closed
subvariety of Gi‘t}}l which is conJugacy—lnvariant. We have then

Zpm(kn) = {x € ZuwM)(ky) | Frae, (x)™ € FN G}

for all n > 1 by the previous observation.

If F contains the neutral component, we get 27, = Zw(M); since M is assumed to be generi-
cally unramified, we get

lim ~ 7"’%’ )l _ 4.

N—rtoo N | Zw (kn)|

On the other hand, if F does not contain the neutral component of Gﬁi, then FNGY corresponds
to a closed set of measure 0 in the set of conjugacy classes of a maximal compact subgroup of
G'(C), hence

. 1 |‘%f,m(kn)| _
BR 2 ER

1<n<N
follows from Theorem 4.11 by standard properties of convergence of probability measures.
In any case, the limit (7.2) exists and is equal to either 0 or 1.
Conversely, suppose that there exists a connected component H of Gl"ﬁi such that H™ # G°; we

can find some n > 1 and some unramified character x € G(k,) such that Fryi i, (x) € H, so that
Fryr, (x)™ is not in the neutral component. In fact, for the same reason as above, we have

1 1 1
lim — S 1=~
B 2 | 2, (M) 2 T

1<n<N XEZ (M) (kn)

Fru, ke, (X)EH
where 7 is the number of connected components. Applying | , Lemme 1,p.17], we find an f
such that 27 ,, has “density” different from 0 and 1 in the above sense. O

PROOF OF PROPOSITION 7.7. We use the notation of Lemma 7.1, and denote by 2" the set of
weakly unramified characters y € G(t) for M; such that n(x) is weakly unramified for My; this is
a generic set. Let f € Z[aq,...,a,|. By compatibility, the equality

w1 (f (Fragy ik, 00)™)) = 2 (f (Fragy v, (1(6))™))

holds for any character x € 2 (k,,) and any integer m > 1, since f has integral coefficients. Hence,
for a given m, the statement of Lemma 7.8 holds for Mg 1f and only if it does for M;. The equality

118



of the exponents of the groups of connected components follows by looking at the smallest m > 1
for which the zero-one law holds. g

REMARK 7.9. It is of course natural to expect that the groups of connected components are in
fact isomorphic.

Finally, under rather strong “connectedness” assumptions, we can get a definitive answer by
exploiting deep results of Larsen and Pink [96].

ProprosITION 7.10. We continue with the notation and assumptions above. Denote by G; the
connected derived subgroup of Gi}ﬂ Assume that for all representations o: GL, — GL(V), the

multiplicity of the trivial representation in the restrictions of o to Gﬁ; and to G; are equal.

Then the complex semisimple Lie groups 11(G1) and 12(Gs) are isomorphic.

Moreover, if My or Mgy is arithmetically simple, then the groups t1(G1) and 12(G2) are conjugate
in GL,(C).

PRrROOF. Let p: GL, - GL(V) be any finite-dimensional representation of GL, and let 11;(o)
be the multiplicity of the trivial representation in the restriction of p to GI“{/E By Proposition 7.3,
we have

ii(e) = / Tr(0)dvep: = / Tr(0)dveps — 12(0).
~(C)t ~(C)t

By our assumption, the multiplicity p;(o) is also the multiplicity v;(g) of the trivial represen-
tation in the restriction of ¢ to G;, and thus we have v1(0) = v2(p).

Since this equality holds for all representations o, and G; and Go are connected semisimple
algebraic groups, a theorem of Larsen and Pink [96, Th.1] implies that ¢1(G1) and t2(Gz) are
isomorphic.

Assume now that M; is arithmetically simple. Denoting by Ad the adjoint representation
of GL,, this is equivalent to p1(Ad) = 1 by Schur’s Lemma, hence we also have v4(Ad) = 1 and
v2(Ad) = 1 by the previous results. The result then follows from another theorem of Larsen and
Pink [96, Th.2]. O

REMARK 7.11. (1) Proposition 7.10 applies for instance if one knows that, for j =1 and j = 2,

ari e
the groups M, are connected and semisimple.

However, it doesn’t apply in a situation where, say Gﬁ‘l = SL, and Gﬁ; = GL,, since the
determinant is an example of a representation where the multiplicities for Gi}; and for its derived
connected subgroup are not the same. (We thank one referee for pointing out this issue in our

previous version.)

(2) Larsen and Pink [96, Th. 3 and § 3] give examples showing that, in general, the assumption
that My (or My) is simple cannot be omitted in the second part of the proposition.
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CHAPTER 8
Diophantine group theory

In order to determine the tannakian (or monodromy) group associated to a perverse sheaf, Katz
has developed essentially two different sets of methods. The first one (see, e.g., [68, 69]) relies on
local monodromy information, and applies mostly to the additive group, although there is also a
weaker analogue for the multiplicative group (see [74, Ch. 16] and Corollary 3.46). However, we are
not currently aware of any similar tools for other groups. The second method, expounded in [72],
is much more global, and exploits the diophantine potential of the equidistribution of exponential
sums to reveal properties of the underlying group. It turns out that this global method adapts very
well to the tannakian framework, and this will be our fundamental tool.

We denote as usual by k a finite field, with an algebraic closure k, and finite extensions k, of
degree n in k. We fix a prime £ different from the characteristic of k.

8.1. The diophantine irreducibility criterion

We first state Katz’s criterion for a perverse sheaf to be geometrically simple in terms of its
trace functions.

PRrROPOSITION 8.1. Let X be a quasi-projective algebraic variety over k, and M an £-adic perverse
sheaf on X which is pure of weight zero. Then the equality
(8.1) lim Y [tk ? =1

n—-4o00

holds if and only if M is geometrically simple.
See [72, Th.1.7.2 (3)] for the proof.

REMARK 8.2. This can be seen as a version of Schur’s Lemma (compare with Corollary 4.6):
intuitively, by equidistribution, the limit in the proposition should converge to the multiplicity of
the trivial representation in the representation End(Std), where Std is the standard representation
of the (usual) geometric monodromy group of the lisse sheaf on an open dense subset of the support
of M that is associated to M. The classical version of Schur’s Lemma states that this multiplicity
is equal to 1 if and only if the standard representation is irreducible.

8.2. The Frobenius—Schur indicator

Recall that if G is an arbitrary group and g: G — GL,(C) is a finite-dimensional representa-
tion, one says that o is of orthogonal type (resp. of symplectic type) if there exists a G-invariant
non-degenerate symmetric (resp. alternating) bilinear form on C”. Suppose that g is irreducible.
The Frobenius—Schur indicator FS(p) is defined to be 1 if ¢ is of orthogonal type, —1 if ¢ is of
symplectic type, and 0 otherwise. If G = K is a compact group, with probability Haar measure px,
and if p is irreducible and continuous, then one has an integral formula

FS(o) = /K Tr(0(e?))duxc(9)

121



(see, e.g., [86, Th.6.2.3]).

As in previous works of Katz (see, e.g., [74, Th.9.1] or [72, Th. 1.9.6]), there is a diophantine
interpretation of the Frobenius—Schur indicator.

PROPOSITION 8.3. Let G be a connected commutative algebraic group over k, and let M be an
arithmetically irreducible £-adic perverse sheaf on G which is pure of weight zero. Let 2" = 24, (M)
be the set of weakly unramified characters for M.

The Frobenius—Schur indicator of M, viewed as a representation of the arithmetic tannakian
ari

group G3f', is given by the formula

o1 1 2
FS(M) = lim = > 20 > Tr(Om, (X))
1<n<N x€Z (kn)
P (kn)#2

The proof is straightforward using the integral formula above and the equidistribution theorem
(Theorem 4.4).

8.3. Larsen’s Alternative

In this section, r > 1 is an integer and G is a reductive algebraic subgroup of GL, over an
algebraically closed field of characteristic zero (recall that reductive groups are not required to be
connected). For each integer m > 1, the absolute 2m-th moment of an algebraic representation V
of G is defined as

Mo, (G, V) = dim(VE™ @ (VV)&m)E,
When V is the “standard” r-dimensional representation given by the inclusion G C GL, (also
denoted by Std), we will simply write Moy, (G).

If the base field is C, so that G is a reductive subgroup of GL,(C), the moments can be written
as integrals over a maximal compact subgroup K of G with Haar probability measure ux. Namely,
for all m > 1, they are given by the integral expression

(8.2) My (G) = /K | Te(g) 2™ dpaxc(g).

We first note some elementary properties of the moments.

(1) Given a surjective homomorphism f: H — G and a representation ¢: G — GL(V), the
equality
Mam (H, 00 f) = Man (G, 0)
holds for all m > 1 (since (0™ ® (0¥)2™)G = ((00 £)®™ @ (00 f)V)®™)H by definition).

(2) For groups Gj and Gg with representations Vi and Vg, the equality
(8.3) Mo (G1 X Go, V1 K Vy) = Mo, (G1, V1)Mop, (Ga, Va)
holds for all m > 1 (this might be easiest to see using the integral expression (8.2)).
(3) If G € GL(V), and Z is a subgroup of scalar matrices in GL(V), then the equality
Mo (G, V) = Mgy, (ZG, V)
holds (because Z acts trivially on the whole space V&™ @ (VV)&™),

(4) If there exists a G-invariant decomposition
Ve = Pn; Vi,
i
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then the 2m-th moment satisfies the inequality

(8.4) Mo (G, V) = Y " n?,

with equality if and only if the V; are pairwise non-isomorphic irreducible representations
(see [71, 1.1.4]).

(5) If there exists a G-invariant decomposition
End(V) = @ miW,,
i

then the fourth moment satisfies
(8.5) My(G,V) = > m},

with equality if and only if the W; are pairwise non-isomorphic irreducible representations
(see [71, 1.1.5]).

Since the tensor constructions involved in the definition of the moments are representations
of the ambient group GL(V), Theorem 4.4 immediately yields a diophantine interpretation of the
moments of the arithmetic tannakian group of a perverse sheaf.

PRrOPOSITION 8.4. Let G be a connected commutative algebraic group over k, and let M be
an arithmetically semisimple £-adic perverse sheaf on G which is pure of weight zero. For each
character x € G(ky,), consider the sum

SM,x) = > tulz;kn)x().
CCEG(kn)
Let ' = Zw(M) be the set of weakly unramified characters for M and let m > 0 be an integer.

The absolute moments of M, viewed as a representation of the arithmetic tannakian group Gla\}i,
satisfy the following:

ari : 1 1 m
1<n<N e (kn)
2 (kn)#2

ari N 1 1 m

(8.7) Mo (GR1', M) <%\III_I>1J1erN Z 1G] Z [S(M, x)[*™.
* 7 1<n<N " x€Ckn)
Moreover, if the limit
1
(8.8) lim — SOV, )2
n—+oo |2 (ky,)] XG;(kn)

exists, then it is equal to the 2m-th moment Mgm(Gf/?o, M) of M, viewed as a representation of the
geometric tannakian group G%ZO, and we have

Mam (GE1°, M) = Mo, (G, M).
ProOOF. We use the integral expression

Moy (G, M) = /K | Te(g) 2™ dpxc(g),

where K C Gi‘}}i(C) is a maximal compact subgroup with Haar probability measure ux. Recall that
to each weakly unramified character x € 2 (k) is associated the unitary conjugacy class O k,, (X)
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such that the equality S(M, x) = Tr(Owm,(x)) holds, and that these conjugacy classes become
equidistributed on average as n — 400 by Theorem 4.4. The first formula (8.6) follows from this
result applied to the test function g — | Tr(g)[*™.

Moreover, the inequality

1 1 1 1
N Z Gl Z |S(M7X)’2m<ﬁ Z Gl Z S(M, x)[*™

1<n<N XEZ (kn) 1<n<N x€G (kn)

holds by positivity of [S(M, x)|?™. Taking the equivalence |G (k)| ~ |2 (kn)| as n — +oo from the
generic vanishing theorem into account, we deduce the second formula (8.7).

Finally, the last assertion follows from Proposition 4.17, applied to the representation
0 = Std®™ ®(Std")®™,

and from the fact that if the limit (8.8) exists, then its value is the same as the limit in (8.6). O

We can combine this computation with Larsen’s Alternative, a remarkable criterion that ensures
that a reductive subgroup G C GL, is either finite or contains one of the standard classical groups,
provided it has the correct fourth or eighth moment.

THEOREM 8.5 (Larsen’s Alternative). Let V be a vector space of dimension r > 2 over an
algebraically closed field of characteristic zero and let G C GL(V) be a reductive algebraic subgroup.
Let Z denote the center of GL(V) and G° the connected component of the identity of G.

(1) The fourth moment satisfies M4(G,V) > 2. Furthermore, if V is self-dual and r > 3, then
My(G,V) > 3.

(2) If My(G,V) < 5, then the representation of G on V is irreducible.

(3) If Mu(G, V) = 2, then either SL(V) C G or G /(GN Z) is finite. If GN Z is finite, for
instance if G is semisimple, then either G° = SL(V) or G is finite.

(4) Assume r = 5. If My(G,V) =2 and Mg(G, V) = 24, then SL(V) C G.

(5) Assume that there exists a non-degenerate symmetric bilinear form B on V such that G
lies in O(B). If My(G, V) = 3, then either G = SO(B), or G = O(B), or G is finite. If
r is 2 or 4, then G is not contained in SO(B).

(6) Assume that there exists a non-degenerate alternating bilinear form B on V such that G

lies in Sp(B). If r > 4 and M4(G, V) = 3, then either G = Sp(B) or G is finite.

PRrROOF. The first statement concerning the fourth moment is a straightforward consequence
of the inequality (8.4). Indeed, since V¥? @ (VV)®? always contains a trivial one-dimensional
subrepresentation, the fourth moment can only be 1 for V of dimension 1. Moreover, there is a
GL(V)-invariant (and hence G-invariant) decomposition

2
Ve =Sym’ Vo /\"V,

where the factors are distinct and non-trivial, and of dimension > 2 if » > 3. If V is self-dual, one
of the two summands contains a proper one-dimensional G-invariant subspace, so that the fourth
moment is at least 3 using (8.4) again.

The other statements concerning the fourth moment are proved by Katz in [71, Th. 1.1.6]. The
statement about the eighth moment was conjectured by Katz in [72, 2.3], and proved by Guralnick
and Tiep in [55, Th. 1.4]. Indeed, according to loc. cit., a reductive subgroup G of GL(V) either
satisfies Mg(G) > Mg(GL(V)) or contains the commutator subgroup [GL(V), GL(V)] = SL(V),

124



and the eighth moment of GL(V) is equal to 24 for r > 4, for instance in view of the GL(V)-
invariant decomposition

4
VOt =Sym* Vo /\ Ve 3sEIV e 28tV g 35ty

into pairwise non-isomorphic irreducible representations (see e.g. [49, Ex.6.5]), where S* denotes
the Schur functor associated to a partition A of 4. U

In practice, computing a given moment of the arithmetic tannakian group Gi‘}}? by means
of the limit (8.6) is feasible if there are sufficiently many independent variables of summation,
corresponding to the characters of G, in comparison with the number of variables involved in the
object M, that is, the dimension of its support. It is then possible, at least in some cases, to detect
a diagonal behavior that can lead to the asymptotic formula for the moment. This limitation
explains why it is difficult to apply Larsen’s alternative when G is one-dimensional, but starting
from two-dimensional groups it can be sometimes implemented for objects supported on curves.

REMARK 8.6. (1) Using typical terminology from geometric group theory, it is convenient to
summarize the third part of Theorem 8.5 by saying that if G C GL(V) has fourth moment equal
to 2, then either G D SL(V) or G is virtually central in GL(V).

(2) The book [72] of Katz develops applications of Larsen’s alternative which involve sums of
the type

S(H) = Y. t@)ta(f(x),
zeX(k)
for suitable trace functions ¢; and t2 (on X and some affine space A", respectively), parameterized
by elements f: X — A" of a “function space” .%. One of the conditions that are shown by Katz
to ensure that the 2m-th moment can be computed is that the evaluation maps

= (Fn), - f(am)

be surjective for distinct z; in X(k) (see [72, §1.15, Th.1.20.2] for a precise and more general
statement).

8.4. Sidon morphisms

DEFINITION 8.7 (Sidon sets and Sidon morphisms). Let A be an abelian group. A subset
S C A is called a Sidon set if all solutions x1, x2, x3, x4 in S of the equation z1x9 = x3x4 satisfy
x1 € {x3,24}.

More generally, let 7 > 2 be an integer. We say that S is an r-Sidon set if all tuples (x;)1<i<r
and (y;)1<i<r in S” such that the equality

xle:ylyT
holds satisfy {x1,...,2,} = {y1,...,yr}. A Sidon set is thus the same as a 2-Sidon set.

Let o € A. A subset S C A is called an a-symmetric Sidon set if S = aS™! and all solutions
x1,x2,x3,x4 € S of the equation z1x9 = waxy satisfy x1 € {x3, x4} or z9 = ozxfl.

Let G be a connected commutative algebraic group over a field k, and let s: X — G be a
locally-closed immersion of k-schemes. We say that s is a Sidon morphism, or that s(X) is a Sidon
subvariety of G if, for any extension k' of k, the subset s(X)(k") C G(k') is a Sidon set. We define

similarly r-Sidon morphisms for any r > 2.

Let ¢ be an involution on X and a € G. We say that s is an i-symmetric Sidon morphism if the
product morphism (soi)-s: X — G is a constant morphism, say equal to o € G(k), and if, for any
extension k' of k, the set s(X(k’)) is an a-symmetric Sidon set in G(k/).
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The interest of a Sidon morphism X — G is that it leads to computations of the fourth moment
for objects M on G that are pushed from X. We have two versions, depending on whether we have
a Sidon morphism or a symmetric Sidon morphism.

PRrROPOSITION 8.8. Let G be a connected commutative algebraic group over a finite field k and
let s: X = G be a closed immersion of k-schemes. Let N be a geometrically simple £-adic perverse
sheaf on X which is pure of weight 0, so that the object M = s, N = siN on G is a geometrically
simple perverse sheaf on G and is pure of weight 0.

(1) If s is a Sidon morphism, then the equality
My (G, M) = 2
holds unless M has tannakian dimension < 1.
(2) If X is a curve and s: X — G is a 4-Sidon morphism, then the equality
Ms(GR°, M) = Ms(G3f, M) = 24

holds unless N is geometrically isomorphic to s*.%,[1] for some character x € G.

PRrROOF. Let n > 1 be an integer. The formula

IG(; ST osoLx)t = > N (Y1, k)N (Y23 k)i (Y35 kn )N (ya3 K

x€G (kn) Y1y y2s €EX (k)
s(y1)s(y2)=s(y3)s(ya)

holds by orthogonality of characters. If s is a Sidon morphism, then we obtain by definition

i) L BOLot =2 X Inwk?) - X k)l

x€G (kn) yEX(kn) yEX(kn)

where the second term accounts for the double-counting of the solutions of the equation s(y1)s(y2) =
s(y3)s(ys4) where y; = yo = y3 = y4. In particular, we deduce that the inequality

‘G(:;:n” > |S(M7X)!4<2< > |1t1\r(y,kn)|2>2

x€G(kn) y€X(kn)

holds for all n > 1. Since N is geometrically simple, the right-hand side of this expression converges
to 2 as n — 400 by Proposition 8.1. Using the inequality (8.7) from Proposition 8.4, we deduce
that

Ma(GRI', M) < 2
in the setting of (1). Hence, the fourth moment is either < 1 or equal to 2. By Theorem 8.5 (1),
the former is only possible if Mj, is of tannakian dimension < 1.

Now we assume that s is a 4-Sidon morphism. We obtain similarly

Y soLf<a( Y kP

|G(kn)| <
x€C(kn) yEX (kn)

where the right-hand side converges to 24 for the same reason as before.

Assume now that X is a curve and s is a 4-Sidon morphism. We apply the Riemann Hypoth-
esis (Theorem 1.10) to the simple perverse sheaves s*.Z, -1[1](1/2) (of weight 0) and to N. By
assumption, these are not geometrically isomorphic, and therefore the estimate

SIM,x) = Y x(sW)in(y;kn) < 1
y€X(kn)
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holds for all characters xy. We deduce then that the formula
1
lim ——— S(M, x)[*™ =0
R TIPSR LRl
X¢ 2w (M) (kn)
holds for any integer m > 1; we finally conclude from the previous computations and the last

assertion of Proposition 8.4 that Ms(G%;°, M) = Mg(Gi, M) = 24. O

We now state the version involving symmetric Sidon morphisms.

PROPOSITION 8.9. Let G be a connected commutative algebraic group over a finite field k. Let X
be a smooth irreducible algebraic variety over k and ¢ an involution on X. Let s: X — G be an
i-symmetric Sidon morphism which is a closed immersion. Let o be the constant value of the
morphism (soi) - s.

Let N be a geometrically simple £-adic perverse sheaf on X which is pure of weight 0, so that
the object suN = siN on G is a geometrically simple perverse sheaf on G and is pure of weight 0.

(1) If i*N is isomorphic to D(N), then we have (s,N)V = [xa~1]*(s.N), and
My (G¥y, s:N) = 3,

unless (8«N)int has tannakian dimension < 2.
(2) If i*N is not isomorphic to D(N), then

My(GiiN, 5:N) = 2,

unless ($«N)int has tannakian dimension < 2.

PROOF. Let M = s,N. In the situation of (1), the definition of & means that there is an equality
soi=[xa]o (inv o s). Therefore, we obtain canonical isomorphisms

(8.9) MY = inv*(D(s.N)) = inv*(s(D(N))) = inv*((s 0).N)
= inv*([x a4 (inv 0 5),N) = (inv o [xa] 0 inv),(s,N) = [xa"1*M.

We go back to the general case. Arguing as in the proof of the previous proposition, we obtain
the inequality

IG(;n)! ) !S(M,X)\4<2( > \tN(y,kn)\2>2

x€G(kn) y€X (kn)

+ Y N k)N (i) k)N (2 R )i (i(2); K
(5.2) X (kn)?

for all n > 1, by the definition of symmetric Sidon sets. The second sum is equal to the quantity

> Ny ka)in(i(y); kn)

2

i

which converges to 1 under the assumption (1) (using (A.6)), by Proposition 8.1, and to 0 under
the assumption (2), by the Riemann Hypothesis. Thus we deduce from Proposition 8.4 that

My(G3, M) <3,  resp.  My(GP,M) <2,
in case (1) (resp. (2)), and we conclude as before from Theorem 8.5, (1). 0
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REMARK 8.10. The caveats concerning the tannakian dimension of s,N in these statements
are necessary. We will indeed see concrete examples (see Example 9.12, (1) and Remark 11.2, (1))
where the fourth moment does not coincide with the limit

Y Isv !

lim

n=r+oo |G(kn))|

(althouth the latter exists) because of the contribution of some special ramified characters.

The result of Propositions 8.8 and 8.9 will be the basis of applications in Chapters 9, 10 and 11.
Here are the relevant cases of Sidon morphisms, together with some further elementary examples.

PROPOSITION 8.11. Let k be a field, not necessarily finite.

(1) For any o € k™, the embedding x — (x,ax) of Gy, in Gy, X Gg is a Sidon morphism.

(2) Let C be a smooth projective connected algebraic curve of genus g > 2 over k. Let D be a
divisor of degree 1 on C, and let A = Jac(C) be the jacobian of C. The closed immersion
stx—x—D of Cin A is a Sidon morphism unless C is hyperelliptic, in which case it is
an i-symmetric Sidon morphism, where i is the hyperelliptic involution.

(3) With notation as in the previous item, if the gonality of C is at least 5, then s is a 4-Sidon
morphism.

(4) Let d = 1 be an integer and let f be a separable polynomial of degree d over k. Let Z be
the set of zeros of f. The closed immersion x + (2 — x),cz of AY[1/f] in GZ is a Sidon
morphism if d > 2. It is a 4-Sidon morphism if d > 4.

(5) Suppose that the characteristic of k is not 3. The graph s: x — (z,23) from G, to G2 is
an i-symmetric Sidon morphism, where i is the involution x — —x.

(6) The morphism x — (x,1 — x) from G, —{1} to G, X Gy, is a Sidon morphism.

PRrROOF. (1) For z1, ..., x4 in Gy, the equation
(x1, ) - (22, axg) = (23, ) - (T4, Ax4)
in G4 x G, means that x1 +x9 = x3+x4 and r1x9 = x324, which implies that {x1,x2} = {x3, 24},

both sets being the solutions of the same quadratic equation.
(2) Let z1, ..., x4 in C be solutions of

s(x1) + s(xe) = s(w3) + s(z4).

Assume z1 ¢ {x3,z4}. Then the equation implies the existence of a rational function on C
with zeros {x1, 22} and poles {z3,74}, which corresponds to a morphism f: C — P! of degree at
most 2. This is not possible unless C is hyperelliptic.

With the same notation, if C is hyperelliptic with hyperelliptic involution ¢, then the uniqueness
of the morphism f: C — P! of degree 2 up to automorphisms (see, e.g., [100, Rem. 4.30]) shows
that ¢ exchanges the points of the fibers of f, or in other words, that the equalities zo = i(z1) and
x4 = i(x3) hold.

(3) The argument is similar: the equation
s(x1) + s(x2) + s(x3) + s(xq) = s(xs) + s(wg) + s(x7) + s(xg)

where {z;} # {y;} implies the existence of a non-constant morphism f: C — P! of degree at
most 4, and hence implies that C has gonality at most 4.

(4) Suppose that 1, ...x4 satisfy s(z1)s(z2) = s(x3)s(x4). Then we get
(1 — 2) (w2 — 2) = (3 — 2) (w4 — 2)
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for all z € Z, i.e., the monic polynomials (z; — X)(z2 — X) and (z3 — X)(z4 — X) take the same
values at the points of Z. By interpolation, they are equal if |Z| = d > 2. The case of the 4-Sidon
property is analogous with polynomials of degree 4.

(5) Suppose that z1, ..., x4 € G satisfy

r1+x2 =23+ x4
z$ + a3 :x§+xi.
If 9 # —x1, then these imply that
(z1 + x2)% — 3129 = (23 + 24)% — 3324,

and therefore x129 = w324 when the characteristic is not 3. Now we conclude as in (1).

(6) This is again about quadratic equations: let 1, ..., x4 in Gy, — {1} be such that

1T = X3
(1—21)(1 —x9) = (1 —2x3)(1 — x4).

Then we get further x1 + 9 = x3 + x4, and conclude as before. O
REMARK 8.12. (1) Example (1) is classical: it is often attributed to Ruzsa [111], but it was
pointed out by Eberhard and Manners [34] that it occurs previously in a paper of Ganley [52,

p. 323|, where it is attributed to Spence.
Example (5) was also indicated to us by Eberhard and Manners.

(2) There is much work in combinatorics in trying to find the largest possible Sidon sets in a
finite abelian group A (for instance, see the classification in [34] of known examples of size ~ |A['/2]
which they show are all related to finite projective planes). A natural analogue geometric question

is to classify the Sidon morphisms s: X — G such that dim(X) is maximal. The best possible value
for a given group G is dim(X) = LdlmT(G')J When can this be achieved?

Note that a subset S of an abelian group A is a Sidon set if and only if the induced map
S?/&5 — A defined by (z,y) — x4y is injective (where &5 acts by permuting the two coordinates).
Consider the variant definition of a Sidon morphism s: X — G where we ask that s be a morphism
such that the induced map s®: X® — G from the symmetric square of X to G is a closed
immersion. Again we have 2dim(X) < dim(G), but we can see in this case that if G is an abelian
variety, then equality is not possible. Indeed, this would imply that s(?) is an isomorphism, which
is impossible (if dim(X) > 2, because X(?) is then singular, and if X is a curve, because it would
have to be smooth of genus 2, so G is an abelian surface, but for instance the second cohomology
groups do not have the same dimension).

The result concerning jacobians of smooth projective curves can be generalized by considering
either Rosenlicht’s generalized jacobians (which appear in geometric class field theory, see the book
of Serre [118]), or the Picard group of certain singular curves. The case of generalized jacobians is
analyzed in complete generality in our paper [37]. We state the result here (see [37, Th. 1]).

PROPOSITION 8.13. Let k be a (not necessarily finite) field and let C be a smooth projec-
tive geometrically connected curve of genus g over k. Let m be an effective divisor on C and
Jm the associated generalized jacobian, which is a commutative algebraic group of dimension g +
max(deg(m) —1,0). Let § be a divisor of degree 1 on C whose support does not intersect that of m.
Let s: C—m — Jy be the morphism induced by the map x — (x) — § on divisors.

If dim(Jw) = 2, then s is either a Sidon morphism or a symmetric Sidon morphism.
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If, moreover, (C—m)(k) is non-empty, then it is a symmetric Sidon set if and only if one of
the following conditions hold:

(1)

(2)

g = 1 and deg(m) = 2; in this case, writing m = (p) + (q) (where p and q are not
necessarily k-points of C, but the divisor m is assumed to be defined over k), the value o
of s(z) +s(p+q—x) for x € (C—=m)(k) is independent of x and s((C —m)(k)) is an
a-symmetric Sidon set.

g = 2, the curve C is hyperelliptic, and either deg(m) < 1 orm = (p)+ (i(p)) for some p €
C, where i is the hyperelliptic involution on C. In both of these cases, the value o« of
s(x)+s(i(x)) for x € (C=m)(k) is independent of x and s((C—m)(k)) is an a-symmetric
Sidon set.

REMARK 8.14. (1) Both the generalized jacobians Jg and the Picard group scheme of an irre-
ducible curve are connected commutative algebraic groups over k which may involve all types of
groups (unipotent groups, abelian varieties and tori).

More precisely, the following results hold:

(1)

Let C be a smooth projective curve of genus g > 0 over k and m an effective divisor on C.
Write m in the form
m= Z ng ()

z€Supp(S)

with n, > 1. The generalized jacobian Jy, is an extension
0 — Lypy — Jn — Jac(C) — 0

of the (usual) jacobian of C, with kernel Ly, = Run/G,,, where Ry, is isomorphic to a
product

Rm= [] (GmxV,)
x€Supp(m)

with V, unipotent of dimension n, — 1, and with G,,, embedded diagonally in Ry, (see,
e.g., [118, p.2 and V.13, V.14]).

In particular, assuming that g > 1, the group J, has non-trivial abelian, toric and
unipotent parts as soon as the support of m contains two distinct points, one of which at
least has coefficient > 2.

Let C be an irreducible projective curve C over an algebraically closed field. Let C—C
be the normalization of C, and for x € C(k), define m, to be the cardinality of the fiber

of C — C over x. Then Pic’(C) has dimension dim H(C, 6¢), and it is an extension
0 — K¢ — Pic’(C) — Jac(C) — 0
of the jacobian of the normalization 6, with kernel K¢ which is an extension of a torus of
dimension
Z (mg — 1)

zeC=U
by a unipotent group, of dimension therefore equal to

dimHY(C, 60) — g(C) = 3 (me—1)
zcC-U
(see, e.g., [100, Def. 5.13, Th. 7.5.19, Lemmab5.18]).
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Note furthermore that these two classes of algebraic groups are closely related (e.g., any gener-
alized jacobian Jy, is the Picard group of some singular curve).

(2) All the examples of Sidon morphisms in Proposition 8.11 can be interpreted in terms of
generalized jacobians. For instance, consider the curve C = P! over k, and the effective divisor
S = (0) 4+ 2(00), so that U = P! —{0, 00} = G,,,. According to the above, the generalized jacobian
Jg is isomorphic to G = (G, X (G X G4))/GE, where the subgroup G4 is embedded diagonally
by = — (x,(x,0)). An isomorphism ¢: Jg — G is given as follows: given a divisor E of degree 0
on P!, represent it as the divisor of a rational function ¢g: P — P!, and let

(this can be checked from the description in [118, p.2 and V.13, V.14]). The morphism G —
G,, x G, given by (z,(y,a)) + (zy~!,a) is an isomorphism, and using it to identify G with

G, X Gy, the formula above becomes ¢(E) = (%, %l(oo)).

Consider then the morphism U = G,, — Js defined using the divisor D = (1). Then the
morphism sp: x — (x) — (1) is given by sp(x) = (z,1 — z) (take g(t) = (t —z)/(t — 1) to compute
©((z)—(1))). This is a Sidon morphism, the argument for this being identical with Proposition 8.11,
(1).

We refer again to [37, §2] for more discussion, in particular in comparison with the paper of
Eberhard and Manners.

8.5. Gabber’s torus trick

We discuss here another criterion to have a large tannakian group that also involves Sidon sets,
but in a very different manner from their appearance in the previous sections. This criterion is
difficult to apply for an individual object, but it leads to simple specialization results.

We use a version of Gabber’s “torus trick” (see [69, Th.1.0]). The following statement is
specialized to the case of SL, and written in the language of compact Lie groups.

THEOREM 8.15 (Gabber). Let V be a finite-dimensional complex vector space of dimension
r > 1, and let G be a connected semisimple compact subgroup of GL(V) that acts irreducibly on V.
Let D be the subgroup consisting of the elements of GL(V) that are diagonal with respect to some
basis, and let x1,...,Xxr be the characters D — C* giving the coefficients of the elements of D.

Let A C D be a subgroup of the normalizer of G in GL(V). Let S C A be the subset of the
group of characters of A given by the restrictions to A of the diagonal characters x;. If |S| = r and
S is a Sidon set in A, then G = SU(V).

REMARK 8.16. Properly speaking, Gabber’s original result implies here that G contains a
maximal torus of SU(V), and the fact that G is semisimple and connected then implies that G is
SU(V) (see, e.g., [13, p. 36, prop. 13]).

We emphasize that the subgroup A can be arbitrary: it may be finite, and need not be closed.

We can then deduce the following criterion.

PROPOSITION 8.17. Let G be a connected commutative algebraic group over the finite field k.
Let M be a simple perverse sheaf on G which is pure of weight 0 and of tannakian dimension r > 1.
Assume that M is generically unramified.
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The geometric tannakian group G%EO contains SL, if and only there exists an unramified char-

acter x € (A}(kn) for some integer n > 1 such that the eigenvalues of Oy, (x) are distinct and
form a Sidon set in C*.

PROOF. Suppose that G§{° contains SL,. Let U C SU,(C) be the set of matrices whose
eigenvalues are distinct and form a Sidon set in C*. This is an open set (for the Lie group
topology), so that equidistribution implies

1 |
lminf < > Gk 2. 1>0

1<naN T @ g, (X)EU

and hence there exists n > 1 and y € @(kn) such that Oy, (x) € U.

Conversely, if an unramified character y € a(kn) exists with Oy, (x) € U, then we can apply
Theorem 8.15 to the group A generated by a fixed element in the conjugacy class Oy, (x), and
to the neutral component of the geometric tannakian group of M (which is normalized by f{/?,
since G§{° is normal in Gﬁi by Proposition 3.39 and its neutral component is a characteristic

subgroup). O

In general, we do not have robust methods to check the existence of a character with the desired
properties. However, we may combine this with a specialization argument.

PROPOSITION 8.18. Let G be a connected commutative algebraic group over the finite field k.
Let M be a simple perverse sheaf on G which is pure of weight 0 and of tannakian dimension r > 1.
Assume that M is generically unramified. Let f: G — H be a morphism of commutative algebraic
groups over k.

Suppose that the object N = RfiM is a geometrically simple perverse sheaf on H that is pure of
weight 0, and suppose that x o f is unramified for M whenever x is unramified for N.

If the geometric tannakian group G¥° contains SLy, then G§[° contains SL,.

PrOOF. By Proposition 8.17, the assumption implies that there exists a character x € ﬁ(kn)
unramified for N for which @y, (x) has distinct eigenvalues forming a Sidon set. Since O g, (xo f)
has the same characteristic polynomial, the character x o f € a(k:n) has the same property; by
Proposition 8.17 again, it follows that G§{° contains SL,. O

8.6. Recognition criteria for Eg

We include here a criterion of Kridmer to recognize the exceptional group Eg in one of its
27-dimensional faithful representations (we always mean by Eg the simply-connected form).

PROPOSITION 8.19 (Krdmer). Let G be a connected semisimple linear algebraic group over Q,
or C and o an irreducible faithful 27-dimensional representation of G. If the 729-dimensional
representation End(o) of G contains an irreducible 78-dimensional subrepresentation, then G is
isomorphic to the exceptional group Eg and ¢ is one of its two fundamental 27-dimensional repre-
sentations.

See [91, Lemma4] for the proof. We will apply this in Section 11.2, although somewhat differ-
ently than we use Larsen’s Alternative. The following criterion is closer to the spirit of the latter,
and might have interesting applications (see again Section 11.2 for an attempt).
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PROPOSITION 8.20. Let G be a connected semisimple linear algebraic group over Q, or C, and
let o be a faithful representation of G of dimension 27. Then G is isomorphic to the exceptional
group Eg and o to one of the two fundamental 27-dimensional representations of G if and only if
My (G, 0) = 3 and ¢ is not self-dual.

PROOF. Suppose first that G = Eg and p is one of its fundamental representations of dimen-
sion 27. These representations are not self-dual (see [11, Table 1, p. 213]). Using the Weyl dimension
formula (see [12, Th.2, p.151] and [11, PL. V,p. 260]), we see that the dimensions of the irreducible
representations of Eg that may possibly occur in the 729-dimensional representation on End(p) are
1, 27, 78, 351, 650. We know that the trivial representation appears once in End(p), and that the
78-dimensional adjoint representation Ad appears at least once. But the equation

729 — 79 = 650 = 27a + 78b + 351c + 650d

has the unique non-negative integral solution (a, b, ¢,d) = (0,0,0,1) (looking modulo 3, it becomes
d =1 (mod3)). So we must have an isomorphism

End(p) ~ 1 & Ad ®oss0,

where gg50 has dimension 650, and hence the fourth moment My(Eg, o) is equal to 3. (This is also
noted without proof by Katz [71, Rem. 1.2.3].)

We now prove the converse, and assume that My (G, 9) = 3 and p is not self-dual. Since the
fourth moment is < 5, the representation g is irreducible (Theorem 8.5, (1)). Now let

Gix - xGr— G -2 GLyr

be the representation obtained from the decomposition of the algebraic universal covering of G in
product of almost simple groups. This composition decomposes as an external tensor product

o1 X---X oy

of irreducible representations of G;. We then have

k
3=My(G,0) = [[Ma(Gi, 01)
=1

by (8.3). The condition M4(Gy, ¢;) = 1 is impossible (since it implies that dim(g;) = 1, and hence
0; would be trivial and this contradicts the faithfulness assumption), so we have a single factor G.

The representation g; is not self-dual, which implies that the root system of G; (and hence of
G) can only be of type Eg, or A; for | > 2 or D; with [ > 3 odd (see, e.g. [12, p.132, prop. 12],
combined with the fact that the longest element of the Weyl group acts by —Id for the other simple
root systems).

The groups of type A; with [ > 2 which have a 27-dimensional irreducible representation are of
type Az (the representation with highest weight 2ww; + 2w9, in the standard notation of Bourbaki)
or Ay (the standard representation). In the first case, the representation is actually self-dual, and
in the second case, the fourth moment is equal to 2, so these are excluded (in particular, groups of
type D3 = Ay are also excluded).

Let I > 5 be an odd integer. The representations of groups of type D; which are not self-dual
and have smallest possible dimension are the half-spin representations of dimension 2!~! (see [12,
p.210]). Thus only D5 could possibly give rise to a representation of dimension 27; but one can
check that there is no representation of this dimension of a group of type D5 (e.g., because of the
Weyl Dimension Formula, see [12, Th. 2, p.151]).
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We conclude that the group G must be Eg; since its 27-dimensional representations are faithful,
the projection G; — G is an isomorphism. ]

REMARK 8.21. This criterion also shows that it may happen that the fourth moment M4(G, V)
of a representation of a group G is equal to 3, but the representation V is not self-dual.

8.7. Finiteness of tannakian groups on abelian varieties

The following result strenghtens Theorem 5.7 in situations when one can apply Larsen’s Alter-
native to the fourth moment on abelian varieties.

PROPOSITION 8.22. Let M be a geometrically simple perverse sheaf of weight zero on a simple
abelian variety A over k. Let d be the tannakian dimension of M. If the group G3f is virtually

central, then the object End(M) in Pin(G) is punctual and the fourth moment of G is equal to
d?.

PROOF. We observe that Gt /(ZNG&H) is the arithmetic tannakian group of the arithmetically
semisimple object End(M), and apply Theorem 5.7 to obtain the first conclusion.

In particular, this implies that End(M), as a representation of 1?/?, is a direct sum of characters.

From (8.4), applied to a decomposition in sum of characters, it follows that
My (G > d%
On the other hand, let K be a maximal compact subgroup of Gﬁ}}i(C), and p its Haar probability
measure. By (8.2) and Schur’s Lemma, we derive the inequality

ML (G) = /K | Tr(g) | dulg) < &2 /K | Tr(g) Pdulg) = &,
which concludes the proof. O

REMARK 8.23. There may exist irreducible subgroups G of GL(V) with fourth moment equal
to dim(V)2. Indeed, this is the case, for instance, of any group which has the property that
all irreducible representations with trivial central character have dimension 1, since only such
representations can appear in the decomposition of End(V). A concrete example is given by finite
Heisenberg groups (see, e.g., the paper [53] of Gérardin for the relevant facts).
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CHAPTER 9
The product of the additive and the multiplicative groups

9.1. Introduction

In this chapter, we consider what is perhaps the simplest case of our equidistribution results
beyond those of the additive group and the multiplicative group, namely the case of G = G, X G,.
Concretely, this means that we are looking at the distribution of two-parameter exponential sums
of the type

91) LY x@e(Y)ta,

(z,y)EF, xFyp

where p is a prime number, x a complex-valued multiplicative character of the finite field F,,
and the function ¢ is a trace function on G,, x G, over F,. In practice, we mostly consider the
analogues over extensions of F;, of degree n — +o00, but we will also discuss an horizontal statement
in Corollary 9.16.

Throughout this chapter, we denote by k a finite field with an algebraic closure k, and by ¢ a
prime different from the characteristic of k. We also fix a non-trivial additive character v: k — QZX .
For every n > 1, we define 9, = ¢ 0 Try, /1, a non-trivial additive character of the extension k;, of k
of degree n in k.

We always denote by G the group G,, x G4, and we will denote by p; and po the projections
G — Gy, and G — G,. For any n > 1 and any pair (x,a) of an f-adic character of k5 and an
element of k,, we will sometimes denote by (x, a) the character (x,y) — x(z)¥n(ay) of G(k,), and
by .2, o the corresponding /-adic character sheaf.

We first state the specialization of Theorem 4.8 to this case, showing that there is always some
equidistribution statement for the sums (9.1) in the vertical direction.

THEOREM 9.1. Let M be an arithmetically semisimple £-adic perverse sheaf on G, x G, over k,
with trace function over ky denoted t(xz,y;ky,). Assume that M is pure of weight zero.

There exist an integer v = 0 and a reductive subgroup G C GL, such that the sums
Sn(aa X) = Z X(x)¢n(ay)t(x’y;kn)v
(z,y) €k Xkn,

where (a,x) are pairs of an element of k, and a multiplicative character of k), become equidis-
tributed on average as n — 400, with limit measure the image under the trace of the Haar probability
measure on a mazximal compact subgroup of G(C).

With G = G, x G,, G = Gi‘{/? and r the tannakian dimension of M, this is Theorem 4.8 for
the object M.

The remainder of this chapter will be dedicated to the exploration of special examples. We
consider in particular examples where the object M (and hence the trace function in (9.1)) is
supported on the “diagonal” y = x. Larsen’s Alternative will allow us to prove, with surprisingly
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little computation, that in this case the group G in Theorem 9.1 is always essentially as large as
possible.

More precisely, we first define A: G,,, = G, X G, to be the diagonal embedding z — (z,x);
this is a closed immersion. Define the diagonal in G,,, X G, to be the image of A, and j: G, — G,
to be the open immersion.

For any morphism A: G,, — G, for an integer n > 1 and a pair (x,a) € ém(kn) X ky, we
denote by .,S,”Qa the sheaf \.(Zy ® j*Ly(ay)) on Gy

THEOREM 9.2. With notation as in Theorem 9.1, suppose that the input object M is geometri-
cally simple and supported on the diagonal. Suppose that M is not punctual and not geometrically
isomorphic to ffb[l] for some (n,b) € G(ky). Then the integer v is = 2 and the group G con-
tains SL,..

We will see that we can in fact fairly often show that G = GL,, and in that setting the sums
Sn(X7 a) - Z X(x)wn(ax)tM(xy 3 kn)

x€ky

tend to be distributed like the trace of a random matrix in U,(C), almost independently of the
input object M.

ExXAMPLE 9.3. Let a € k, and let x be a multiplicative character of k. The Kloosterman—Salié¢
sums over k are defined by

Kl(x, a; k) Z x(x)¢(az +271).

1
- v |k’ zek>

These sums have been studied extensively, in particular because of their applications in the
analytic theory of modular forms (see the surveys [85] or [59]). We may fix y, obtaining a family of
exponential sums parameterized by a: this is the discrete additive Fourier transform of the function
which is 0 at 2 = 0 and otherwise maps = to x(x)(z~!). Alternatively, we may fix a, and then
we are considering the discrete Mellin transform of the function x + 1 (az + 2~1). These are both
well-known examples of their respective theories, and their distribution properties are as follows:

— If x is the trivial character, we have Kloosterman sums, which are equidistributed with
respect to the Sato—Tate measure, that is, to the image of the Haar probability measure
on the space of conjugacy classes of SU3(C); this reflects the fact that the geometric and
arithmetic monodromy groups for the ¢-adic Fourier transform of the extension by zero of
Zy(z—1) are both equal to SLg, by work of Katz [68, Thm. 11.1].

— If the characteristic p of k is odd and x is the character of order 2, then we have Salié sums,
whose arithmetic monodromy group is a finite subgroup of SLs, isomorphic to a semi-direct
product of F); and Z/2Z (this can be deduced from [69, Cor.8.9.2], which shows that the

corresponding sheaf is Kummer-induced). The finiteness of the group reflects the fact that

Salié sums can be computed elementarily (see, e.g., [14, p. 288, Exerc. 50]), and is also an
analogue of the fact that Bessel functions with half-integral index are elementary functions
(see, e.g., [14, p. 269, Exerc. 20]).

— If p > 7 and Y is fixed, but x? is non-trivial, then the neutral component of the geometric
monodromy group is SLs, but the determinant of geometric monodromy group is not
trivial, and more precisely has order equal to the order of x; see [69, Th.8.11.3, Lemma
8.11.6].
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— If instead we fix a € F) and vary the multiplicative character x, then the geometric
tannakian group (which coincides with the one associated by Katz’s theory in [74], see
Appendix B) contains SLy for all a. Indeed, the sheaf .Z) 54,1y on Gy is not geomet-
rically isomorphic to any of its non-trivial multiplicative translates by the same argument
as in the proof of [74, Th. 14.2], and hence the characterisation in [74, Cor.8.3] shows
that this tannakian group is Lie-irreducible; since it is a subgroup of GLo, it necessarily
contains SLs. If @ = —1, then the arithmetic and geometric tannakian groups are both
equal to SLy (this is the case of the Evans sums in [74, Th.14.2]). In general, the tan-
nakian determinant is geometrically isomorphic to the skyscraper sheaf at « = —1/a (so
its Mellin transform is proportional to x + x(«)) by [74, Th.21.1]. Letting n denote the

order of « in the finite group F;, it follows that the geometric tannakian group consists
of those matrices whose determinant is an nth root of unity.

— If a = 0 and we vary x, we have Gauss sums; the arithmetic and tannakian groups are
equal to GL;.

The relation with Theorem 9.1 is the following: we are considering the finite field &, and the
perverse sheaf M of weight zero is M = A, Z[1](1/2), where . is the lisse sheaf & = £, 1) of
rank one; it is geometrically simple, and perverse since A is a closed immersion (Corollary A.8).
The group G of Theorem 9.1 is then GL2 (as follows from Theorem 9.2).

Note that when we specialize to a fixed character y or a fixed a, we obtain a monodromy group
or a tannakian group that is a subgroup of G (as seems natural), which has the following property:
the identity component of the derived group G’ is independent of x (resp. a), except for a finite
exceptional set. In fact, the exceptional set for fixed x contains only the Legendre character (if p
is odd), and the exceptional set for fixed a contains only a = 0.

Note also that when we vary x for a fixed, only the neutral component of the identity of the
geometric tannakian group is independent of x, but the tannakian group is usually not connected.

Finally, observe that here none of the “specialized” geometric tannakian groups for either G,
or G,, coincides with the geometric tannakian group G = GL2. However, in an intuitive sense,
the collection of all of them “generate” this group.

We expect these phenomena to be very general, and we will consider such questions in greater
generality in later works.

REMARK 9.4. (1) Theorem 9.2 applies for instance to one-variable exponential sums of the form

ﬁ\ 3 x(@)n(g(@))blaz + f(x))
z€kX

for suitable polynomials f and g and for a multiplicative character 7.

It is worth noting that, even if we are only interested in the distribution of these one-variable
sums (and not in the more general sums allowed by Theorem 9.1 with a two-variable trace function),
the proof of Theorem 9.1, passing through the tannakian machinery, requires the consideration of
objects supported on all of G,, X G4, simply because the convolution of two objects on G,, x Gg
that are supported on the diagonal A will be supported on the product set A - A = G,;, X G,.

(2) Remark 8.14, (2), suggests a different interpretation of Theorem 9.2. Indeed, using this
remark, we can view G,, x G, as a generalized jacobian of C = P! and the diagonal morphism
G, — Gy, x G, as a morphism of the type z — (x) — (D) for a suitable divisor D on G,. For a
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perverse sheaf of weight zero on G,,,, we have the arithmetic Mellin transform
X = Z tn (s kn ) x ()
x€ky

as in the work of Katz, which may have a variety of tannakian groups (see [74, Ch.14to027] for
examples involving for instance SL,,, GL,, O2,, SO,, SpQQ and Gg). Then the further operation
of twisting by an additive character 1 leads to the sums

— Z tm(z; kn) x (@)Y (z)

x€ky

which correspond to the diagonal object A,M on the generalized jacobian G,, x G,. The theorem
is then, analytically, an instance of the common situation where twisting an exponential sum by a
generic additive character leads to “more random” exponential sums (here, replacing a potentially
complicated tannakian group on G,, by one that in almost all cases contains the special linear
group). Note however that the tannakian dimension may change when adding this extra twist.

ExAMPLE 9.5. The following case of two-variable equidistribution has been studied “by hand”
by Kowalski and Nikeghbali [89, §4.1, Th. 11]. Let d > 5 be a fixed integer, and consider the sums

S(x,a) = \/WZX — dt —a)
tek

where the character y is extended by x(0) = 0 if x is non-trivial and x(0) = 1 if y is trivial.

We can express these sums as Mellin transforms, namely

a)= > > S(a,y)x(z)¥(ay)

z€k>* yek

S(z,y) Z > X@)w(—ay)S(x. a).

< a)eG(k)

where

We compute then

. 1 -
S(x,y) = —— =t Z > x(@)(—ay) Y x(t? - dt —a)
\/> Gl x,a)€G(k

) tek

1
:W@k ZZ@Z) —ay ZX t? — dt — a)

tek ack
|3/2 ZZ |l<:]3/2 ZUJ t! — dt - x)).
tek,ack tek
t—dt—a=zx
Note that this trace function is not of diagonal type. It was proved however in [89] that

when |k| — +oo (including the horizontal case where k = F,, with p — 400), the sums S(x, a)
become equidistributed like the trace of random matrices in the unitary group Ug_1(C). This
was done by applying Deligne’s equidistribution theorem, and the computation of the relevant
monodromy group by Katz, for each fixed x, and then averaging over .

It would be interesting to recover this result directly from Theorem 9.1 (with G = GL4_1), but
it is not obvious how to do so: the reader can check that the computation of the fourth moment,
for instance, is not at all straightforward.
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REMARK 9.6. Finally we remark that since the key tool to compute tannakian groups for objects
supported on the diagonal will be Larsen’s Alternative combined with the Sidon property of the
diagonal, one can prove similar results for objects of the form [z — (x,2%)].M on G2, for M on G,
(in characteristic # 3), and objects of the form [z + (2,1 — 2)],M on G2, for M on G, — {1} (see
Proposition 8.11, (5) and (6)). The corresponding exponential sums are of the form

Z tv(x; kn )t (ax + bw3)

z€kn
and
> bl ka)xa(z)x2(1 — ).
x€ky={1}
respectively.

9.2. Tannakian group for diagonal objects

We first compute the tannakian dimension r for a perverse sheaf on G = G,, X G, which is
supported on the diagonal.

LEMMA 9.7. Let M = A, (A )[1] for some geometrically irreducible middle extension sheaf A
on G,

(1) The tannakian dimension r of the object M is given by the formula
(9.2) r= Z max(0,A — 1) + Z (swang () + drop, (A )) + rank(.#') + swang (4 ),
A

z€kX
where X runs over the breaks of 4 at infinity, in the sense of (68, Ch.1], counted with
multiplicity. R
(2) We have r =1 if and only if M = .i{fb[l] for some (n,b) € G.
(3) For all but finitely many a € k, the tannakian dimension of My = p1.M ® j* Ly (az)
on G, k(a) 18 equal to 1.

ProOOF. (1) By Proposition 3.16, it is enough to determine the “generic” value of the dimension
of the cohomology space

HO (G, M @ p1-%y @ 05 y(ay))
as x varies in (A}m and @ in k. We have a canonical isomorphism
H8<GE7 M® pigx ® pggd)(ay)) = Hi(ijC, MR gx ® j*gw(ax))a
If x is non-trivial, this space is also isomorphic to

HU(AL /(M @ L) @ Ly(an))-

For all but at most one value of x, the sheaf ji(.# ® %, ) is a Fourier sheaf in the sense of [69,
(7.3.5)] (i.e., a middle extension sheaf .# such that Deligne’s Fourier transform is also a middle
extension sheaf). Hence, the space HL(AL, ji(# ® Zy) ® Lyaz)) is the stalk at a of the Fourier

transform of ji(.# @ %, ), and its generic value r, as a varies in k is computed in [69, Lemma
7.3.9,(2)], namely

re= o max(0,A — 1) + Y (swan, (4 © 2,)) + drop, (4 © L)),
A z€k
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where A runs over the breaks at oo of ji(.# ® 2, ), counted with multiplicity. Since .7} is lisse
on G,,, the formulas

swan, (ji( A © Zy)) = swan, () drop, (ji(A# ® Z,)) = drop, (A )
hold for any x € k*. Since 2, is tamely ramified at 0 for x non-trivial, we have
swang (j1(A# ® Z,)) = swang(.#) dropy(ji(A# ® £y)) = rank(.4)

for x non-trivial, which leads to (9.2).

(2) Since rank(.#) > 1, and all terms in the sum (9.2) are non-negative, we deduce that the
condition 7 = 1 may hold only if .# has rank 1 and . is lisse on G, tame at 0, and has (unique)
break at most 1 at co. Twisting by a suitable Kummer sheaf, we may then assume that .# is
lisse on A', and it must then be geometrically isomorphic to an Artin-Schreier sheaf, which by
untwisting implies that M is geometrically isomorphic to some 92”77%.

(3) For the object My, = A [1]® j* L (az) o0 Gy k(q), the tannakian dimension is its compactly-
supported Euler—Poincaré characteristic, which is equal to

(9.3) Tq = swano(/// & j*-iﬂzp(a:c)) + swanq (A ® j*fd,(w&))
+ Z (SW&HI(% ®J*$1p(ax)) + dropx(% ®J*$w(ax)))
zEkX
(see (C.12)). Since Zy(4q) is lisse on Gy, the formulas
swang (A @ j* Ly(az)) = swang (A ), drop, (A ® j* Ly(ax))) = drop, (A)

hold for z € k.

Assume that a # 0. Let X\ be a break of .Z at infinity, and V) the corresponding break-space.
Then V) ® Zy(qr) coincides with the u-break-space W, of .# © j*.Z)qr) Where p = max(1,\),
except possibly if A =1 and Z,_,,) occurs in V. Thus, for all but finitely many a, we have

sWaloo (A @ j* Lip(ar)) = Z,udiqu = ZdimV)\ + Z(/\ —1)dim V)
o A A>1
= rank(.Z) + Z max (0, A — 1),
A

which leads to 7, = r by comparing (9.3) with (9.2). O

REMARK 9.8. We will classify all objects of tannakian dimension 1 in Section 9.4, and the
diagonal objects of tannakian dimension 2 in Section 9.3.

We continue with a lemma to exclude finite tannakian groups in the diagonal situation. The
first step is to exploit the specific shape of G to understand the structure of the set of characters
which are not Frobenius unramified for suitable objects (or which are ramified, for objects which
are generically unramified).

LEMMA 9.9. Let M be a perverse sheaf on G = Gy, X G4 and N an object of <M>3“ri which s

arithmetically semisimple and pure of weight 0. For all but finitely many a € k, the set of x € G,
such that (x,a) is not Frobenius-unramified for N is finite.

In particular, if M has finite arithmetic tannakian group, then for all but finitely many a € k,
the set of x € Gy, such that (x,a) is ramified is finite.
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PRrROOF. The first statement follows immediately from the proof of Proposition 3.37 combined
with Theorem 2.30.

The last statement follows from the first as in the proof of Corollary 3.38. 0
LEMMA 9.10. Let C C G = G, X G be a line given by y = ax where « € k*.

Let M be a geometrically simple perverse sheaf on Gy, X G, supported on C and of weight zero.
Assume that the arithmetic tannakian group G of M is finite. Then M is punctual.

PROOF. The assumption implies that M is generically unramified by Corollary 3.38.

We assume that M is not punctual to get a contradiction. Then M is, up to twist and shift, the
pushforward to G of a middle extension sheaf .#Z on G, ~ C.

For all a, we denote .#, = M @ j*Ly(az); then M, = #,[1](1/2) is a perverse sheaf on G,.

By Lemma 9.9, there exists n > 1 and a € k, such that for all but finitely many x € (A}m, the
character (x, a) is unramified for M. The action of the Frobenius automorphism of k,, on the space

Hg(GEv M® Z ,a) = Hg(Gm,fcv M, ® ,,%X)
is then by assumption of finite order bounded independently of y. The corresponding unitary
Frobenius elements Oy, k,..(x), for m > 1, are then dense in a maximal compact subgroup K
of the complex points of the arithmetic tannakian group of the perverse sheaf M, on G,, by
Corollary 4.14. It follows that K, and hence also G{j , is a finite group since a compact real Lie

group has no non-trivial small subgroup. By Katz’s results on finite tannakian groups on G, (see
Theorem B.2), this would imply that the perverse sheaf M, is punctual, which is a contradiction. [

We will now prove a slightly more general statement than Theorem 9.2.

THEOREM 9.11. Let A\: G,,, — Gy, X Gy be the closed embedding A(x) = (x,ax) for some
a € k* and let C be its image.

Let M be a geometrically simple perverse sheaf on Gy, X G, supported on C and of weight zero.
Assume that M is not punctual, and that M is not geometrically isomorphic to fn):b[l}(l/Q) for
some (n,b) € G(k).

Let v > 0 be the tannakian dimension of M and denote G = Gi@? C GL,.

We then have r = 2, the group G contains SL, and the standard representation of G in GL,
s not self-dual.

Note that the last item implies in particular that G cannot be equal to SLo or £SLy =
SLy U{—Id} SLs.

PROOF. We may assume that o = 1. We first note that our assumptions and Lemma 9.7 imply
that r > 2 (otherwise, M would be punctual or geometrically isomorphic to some perverse sheaf
Z511(1/2)).

We will apply Larsen’s Alternative. The closed immersion A is a Sidon morphism (Proposi-
tion 8.11, (1)), and therefore we have M4(G) = 2 by Proposition 8.8 (since r > 2).

Our assumptions therefore imply that My(G) = 2. By Larsen’s Alternative (Theorem 8.5, (3)),
it follows that either G contains SL,, or G/G N Z is finite, where Z C GL, is the group of scalar
matrices. We must show that this second case actually does not arise. We proceed by contradiction,
assuming therefore that G/G N Z is finite.

The intersection G N Z is either finite or equal to Z. In the first case, the group G would be
finite, so that the object M would be punctual by Lemma 9.10, which contradicts our assumptions.
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So we are left with the case G N'Z = Z. The object End(M) of (M) has tannakian group
G /G NZ, which is then finite. In particular, this object is generically unramified (Corollary 3.38).

Let n > 1. For a € ky, the complex My = p1 M ® j* L) o0 G, is a perverse sheaf,
geometrically simple and of weight 0, since the restriction of p; to C is an isomorphism. For all but
a bounded number of a € k,, Lemma 9.9 implies that M, has the property that

S(End(Ma), x) = [S(Ma, X)|* = [S(M, (x, a)) |

take only finitely many values as y € émkn varies. By equidistribution, this is only possible if

the arithmetic tannakian group of the object End(M,) € <Ma>ari on Gy, 1, is finite. By Katz’s
Theorem B.2, this implies that End(M,) is punctual, say

End(M,) = @ n(a, s)ygi,g ® b
SES,

for a subset S, C k,, integers n(a,s) > 1 and unitary scalars v, 5. For all but finitely many a € k,
we know also from Lemma 9.7 (3) that

r? = dim End(M) = dim End(M,) = Z n(a, s).
SESa

Since all x € G(ky) are unramified for End(M,) and |Ya,s| = 1, we compute

1 1
Eoog 2 BMenlt= s 3 I8Ed0L). 0P
’ m( n Xeém(kn) | m( n) XGém(k‘n)
1 2
a2 ’Z”(%S)ﬁ,sx(s)‘ = n(a,s)’ P =02
|C}m(kn)’x€awdkn)868a s€S,

Averaging over a € k,, then letting n — +oo0, it follows that M4(G) > r? > 4, which is a
contradiction.

Finally, we note that the tannakian dual of M is supported on the image of the diagonal under
the inversion map of G,,, x G, namely on the hyperbola
{(z™Y —z) | € G} C Gy x Gy

Since this is not a translate of the diagonal, the tannakian dual of M cannot be geometrically
isomorphic to M. O

EXAMPLE 9.12. (1) Suppose that M = fﬁ[l](l/Q) for some (1,b) € G(k), which corresponds
to the case excluded in Theorem 9.11. For n > 1, denote by 7, the character noNy, /. of k. Then
the sums S,,(x, a) are essentially Gauss sums, namely

1 1 —
Sn(X7 CL) = |/€|n/2 Z (Xﬂn)(if)%((a + b)l’) = W(X'Hn)(a + b)T(Xnm ¢n)
z€k)
(see (3) for the normalization).
The equidistribution properties of the Gauss sums are well-known (see for instance [68, Th. 9.5]),

and one deduces easily that the arithmetic tannakian group of M is equal to GL;. The fourth mo-
ment of all sums S,,(x, a) converges to 2, as we saw in the previous proof, but the single contribution
to the fourth moment of the (ramified) character (n~!, —=b) is (|k,| — 1)*/|kn|* — 1. (See Proposi-
tion 9.20 for the classification of objects of tannakian dimension 1 in general.)
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(2) Let Mg = % l5,,(1/2) be the Kloosterman complex of rank 2 on G, (see (B.2)) associated
to 1, twisted to be pure of weight 0 (see [69, Th.8.4.13]). It is of the form .#,[1](1/2) for some
middle extension sheaf .#(, pure of weight 0 as lisse sheaf on G,

The object My has tannakian dimension 1 and geometric tannakian group equal to GL; as a
G,,-object (since it is a hypergeometric complex, see Theorem B.4). On the other hand, the object
M = AMy = A..#,[1](1/2) on G has tannakian dimension 2, and arithmetic tannakian group
GL> by Lemma 9.7 and Theorem 9.11.

We compute the corresponding exponential sums to see the concrete meaning of the theorem
in this case. For n > 1 and (x,a) € G(k ), we have the formula

Su(x. a) = W S (X ey +1/m)x(@)in(az)

x€ky  yEky

1

Tz¢n1/y an a"‘?/ ) ()
yekX wekx

For x non-trivial, extended by x(0) = 0, this is equal to

S, (x.a) = W S Xt g)en(1/y).

yekn

In order to complete the determination of the tannakian group in the situation of Theorem 9.11,
we need to compute the tannakian determinant of M. There are various tools to do this:

(1) one can attempt to compare the tannakian determinants for M (supported on a line) with
those on Gy, which can often be computed using the results of Katz [74];

(2) one can use the relation between the tannakian determinant at (x, a) and the determinant
of Frobenius acting on the cohomology group

H)(Gg, My0) = HY(G,, 1. Mo ® Z)

(with notation as above). The latter determinant (on a curve) may often be computed
using the theory of local epsilon factors of Deligne and Laumon (see Appendix C). We will
not give explicit examples here, but we perform a computation of this kind in Chapter 10
(see Proposition 10.10).

m,k>

As an example of the first approach, we have for instance the following criterion:

PROPOSITION 9.13. Let C C G = G,,, X G, be a line defined by y = ax where o € k*. Let M
be a geometrically simple perverse sheaf on G, X G, supported on C and of weight zero. Assume
that M is not punctual, and that the restriction of M to C is not geometrically isomorphic to £, y[1]
for some multiplicative character n and some b. Let r > 0 be the tannakian dimension of M.

Suppose that for all but finitely many a, the tannakian determinant of p1.M q)y on Gp, s
geometrically of infinite order. Then we have G = GL,..

PRrROOF. Since G contains SL,, it suffices to prove that the determinant of G is arithmetically
of infinite order.

Since p1: C — Gy, is an isomorphism, it follows that for any a € G, the object Ng = p1 «Mq o)
on G, is a perverse sheaf, and is arithmetically semisimple and pure of weight 0.

We claim that the assumption implies that the determinants of Oy i, ((x, a)) are equidistributed
on average on the unit circle, where (x,a) vary among Frobenius-unramified classes for the deter-
minant. Indeed, denoting 2 this set of characters, we have for any non-zero integer h € Z the
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relation

’Gén)‘ Z det(Oncr, (0, )" = ]k:ln\ Z |k1m Z det (On, .k, (X))".

(x,a)€Z (kn) a€kn Xeém(kn)
(x,a)€Z (kn)

The contribution of those finitely many a such that N, has geometrically finite-order determi-
nant tends to 0. For the other values of a, we have

1 1
lim — ) —— det(© h=0
Gim > e Z et (ON, b, (X))
n<N XEGm (kn)
(x,a)€Z (kn)
by equidistribution, in fact uniformly with respect to a since the complexity of det(N,) is bounded
independently of a. We deduce that

1 > 1 3 1 3

i L L — det(@Na,kn(X))hzof

N—+oo N L lkn| %
n<N a€kn XEGm(kn)
<X,a>€<%(kn)

which proves the claim.

But by Theorem 4.4, the determinants of Oy, ((X,a)) are known to be equidistributed on
average on the subset of the unit circle corresponding to the determinant of the arithmetic tannakian
group of M; if the latter were finite, this would be a finite group of roots of unity. By contraposition,
the result follows. ]

REMARK 9.14. If det(M) is known to be generically unramified, then it suffices to assume that
the tannakian determinant of p; .M on G, is geometrically of infinite order, since in this case we
can apply Proposition 3.44 to some twist M, 4,y such that the set of characters x for which the
character (x1,a1)(x,0) is unramified is generic.

ExXAMPLE 9.15. Proposition 9.13 applies for instance to objects of the form
M = 2, p[1](1/2)

where 7 is a non-trivial multiplicative character of k, and f € k[X] is a polynomial such that f(0) # 0
with degree d > 2 such that n? is non-trivial, as explained by Katz in [74, Th.17.5]. Indeed, in
this case, the assumption of the proposition holds for all a # 0.

The dimension formula (9.2) shows that the tannakian dimension is d + 1. Note that [74,
Th. 17.5] provides the equidistribution for the subfamily with a = 0, under the assumption that f is
not of the form g(X®) for some b > 2, but as traces of matrices in Ug(C), because the corresponding
object on Gy, has tannakian dimension d. This means that the characters (x,0) are examples of
weakly-unramified characters for M which are not unramified (since they do not give the “right”
dimension).

As explained in Remark 4.20, (2), we expect that we can apply Theorem 4.19 unconditionally
to G. Thus this proposition should imply the following result:

COROLLARY 9.16. Let £ be a prime number. Assume that Theorem 4.19 holds for G. For all
p # L, let My, be a geometrically simple perverse sheaf of weight zero on (G, x Go)F, supported on
the diagonal with c,,(M,,) < 1, where u is the natural locally-closed immersion Gy, X Gq — A2 —
P2. Suppose that the tannakian dimension r of M,, is independent of p and that M, satisfies the
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assumption of Proposition 9.13 for k = F,. Then the sums

ax
S ap) = Y tMp@c)x(x)e(?),
z€F,
for x a multiplicative character of ¥, and a € F,,, become equidistributed according to the trace of
a random unitary matriz in U,(C).

9.3. Diagonal objects of dimension 2

The computation of Lemma 9.7 allow us, for instance, to classify those sheaves .# which give
rise to geometrically simple perverse sheaves on the diagonal with tannakian dimension r = 2.
Indeed, the (usual) rank of .# must be either 1 or 2.

In the first case, one and only one of the following conditions must be true:

(1) A is lisse on Gy, tamely ramified at 0 and has (unique) break at oo equal to 2; if the
characteristic of k£ is not equal to 2, then the only such sheaves are isomorphic to

gl/}(axz-i-bx) ® "E’ﬂn

where a # 0 and 7 is a multiplicative character. The corresponding exponential sums are
“twisted quadratic Gauss sums”.

(2) A is lisse on Gy, and has Swan conductor 1 at 0 and unique break < 1 at oo; the only
such sheaves are isomorphic to

Ly(ajatbz) © Ly

where a # 0 and 7 is a multiplicative character (we recover the example of Kloosterman—
Salié sums).

(3) there exists a unique B € kX such that .# is lisse on A' — {3}, it has unique break < 1
at oo and is tamely ramified at 0 and 3; the only such sheaves are isomorphic to

L(a—8) @ Le(z) ® Lyp(az)

where 8 # 0, a € G, and 7 and £ are multiplicative characters. The corresponding
exponential sums are

W > e = B)(xE) (@) ((a+ a)x),

z€k)
which can be seen as twisted Jacobi sums.

On the other hand, if .# has rank 2, then it must be lisse on G,;, tamely ramified at 0 and
have breaks < 1 at oo. Up to twist by a multiplicative character, we obtain a sheaf lisse on A'
with breaks < 1 at co. Since we assume .# to be geometrically irreducible, the two breaks must
be equal, say equal to A\. Their sum is the Swan conductor at oo, which is also the Euler—Poincaré
characteristic (since . is lisse on G, and tame at 0, see (C.12)); thus either A = 1/2 or A = 1.
The first case gives Euler—Poincaré characteristic equal to 1, so we have a hypergeometric sheaf
of rank 2 by Katz’s classification (see Theorem B.4, e.g., a Kloosterman sheaf of rank 2, with the
corresponding sums described in Example 9.12, (2)). In the second case, we may have a pullback
of such a sheaf by x — 22. For the pullback of the Kloosterman sheaf, the exponential sums are
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then given by the formulas

Su(00) = 7 2 (20 enloy + ™) )x(@)in(ar)

x€ky  yEky

- ‘,j‘ S S x@n(eaty+yh)

yeky xek)

T X,¢ NPT Y
=(|k |”) > xlaty+yh),
" y€ky
aty+y~'£0

for x non-trivial.

9.4. Negligible objects and objects of dimension one

We conclude our discussion of the group G = G,, x G, by classifying the negligible objects as
well as the objects of tannakian dimension 1. This may be helpful for further investigations (e.g., to
compute the determinant of the tannakian group in some cases, or to apply the Goursat—Kolchin—
Ribet criterion, see [69, Prop. 1.8.2]).

We will denote by FT,/q,, the relative Fourier transform functor DE(G) — Db(G), defined by
FTy/ G, (M) = Rg2 (1M ® Ly qy))

where ¢; and g9 are the two projections G,, x G, x G, — G,, X G,, and we use coordinates
(z,y,a) on G x G, = G, X G4 X G,. This functor satisfies the same basic properties as the
Fourier transform over base fields (see, e.g., [77, §2]), and in particular FTy g, (M)[1] is perverse
if M is perverse.

PROPOSITION 9.17. Let M be a simple perverse sheaf on G over k.
The perverse sheaf M is negligible if and only if M is isomorphic to an object of the form

(9.4) PI(N) ® Ly (ay) [1]
for some perverse sheaf N on Gy, and some a, or to an object of the form
(9.5) 2 [1] @ p3(M),

for some perverse sheaf M on G, and some multiplicative character x.

PROOF. It is elementary that the objects of the two forms in the statement are negligible (see
Example 3.5), so we need to prove the converse.

Let M be a simple negligible perverse sheaf on G. We consider the (shifted) Fourier transform
F=FTyq,, (M)]

of M relative to G,,; this is a perverse sheaf on G. For a € G, the restriction F, of this complex

to G, X {a} is isomorphic to p1(Myqy))- Hence, for a generic, the object Fy = (F|Gy, x {a })[—1]

is a perverse sheaf by Proposition 1.1; moreover, if a is such that G, x {a} intersects a dense open
subset where M is lisse, the generic rank of F, is still zero.

We now distinguish cases according to the dimension d of the support of F.

(1) If d = 0, then F is supported on finitely many points. Since M is simple and the Fourier
transform preserves simple perverse sheaves, F is also simple. This implies that the support of F is
irreducible, and hence it is a single point (z,a). The point a correspond to the character ¥ (ay) via
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inverse Fourier transform. Hence, M is of the form pj(N) ® £4,), where N is a sheaf with finite
support in G, which is an object of the form (9.4).

(2) If d = 1, then the support of F is a curve C C Gy, x G,. If, for generic a € G,, the
intersection of C with G,, x {a} is non-empty, then the support of F, is finite and non-empty,
contradicting the fact that this sheaf is of generic rank zero. Hence, for generic a € G,, the
intersection of C with G, x {a} is empty. We then deduce that F, = 0 for generic a. Hence, C is
a finite union of horizontal lines. As in (1), C is irreducible, and hence is of the form G,, x {a }
for some a € G,. Hence, M is of the form pj(N) ® £, for some perverse sheaf N on G; this
is again of the form (9.4).

(3) Finally, assume that d = 2. Let n be the generic point of G,. Then F, is a perverse sheaf
with Euler-Poincaré characteristic zero on Gy, over k(n). By Proposition B.3, it follows that F,,
viewed as a perverse sheaf on G,, over k(n), is geometrically isomorphic to a Kummer perverse
sheaf .2, [1] for some multiplicative character x. Hence, F is of the form p5(N') ® £, [1] for some
perverse sheaf N’ on G,. Taking the relative inverse (shifted) Fourier transform, we find that there
exists some object N of D2(G,) such that M is isomorphic to p3(N) ® £ [1]. O

We will now classify the objects of tannakian dimension one.

By Proposition 3.47, the most obvious objects of tannakian dimension one on G,, x G, are
those of the form H X N, for some simple hypergeometric complex H on G,, and some simple
perverse sheaf N on G, with Fourier transform of rank one (we refer again to Section B.4 for
reminders concerning hypergeometric complexes, which are the objects of tannakian rank 1 on the
multiplicative group). The next lemma provides another class of such objects.

LEMMA 9.18. Let f € k(x)* be a rational function and U a dense open set of G, where f is
defined and non-zero. Let C Cc V =Gy, x U, with coordinates (x,a), be the curve with equation
fla) = x. Let Qs be the intermediate extension to Gp X Gg of the constant sheaf on C shifted

by 1, and let My be the inverse relative Fourier transform of Qg’f, also shifted by 1.
(1) Write f = f1/fo with f; € k[x] coprime. Let C C G be the curve with equation
fila) = faa)z,
and let i: C — G be the closed immersion. We then have isomorphisms
Qup ~ Q1] ~ 01Q,[1].
(2) The perverse sheaf My on G has tannakian dimension one.

(3) For any yo € Gy, the restriction of My to Gy, x {yo} C G is of the form 9,,[2] for
some sheaf 4y, on Gy, identified to a sheaf on Gy, % {yo}, of generic rank bounded by

max(deg(f1), deg(f2))-
(4) If f € k(x), then for n > 1, the Fourier transform on G(ky) of the trace function of My

s given by
(X; 0) = [kn|x(f (b))

for (x,b) € G(ky) in a generic set.

PROOF. The curve C contains C, and the assumption that fi and f; are coprime implies that C
is smooth (since the partial derivative with respect to x is f2(a), which is non-zero on C). It is
irreducible since it is isomorphic to the open subset of G, where f; f3 is non-zero by the projection
(z,a) — a with inverse a — fi(a)/f2(a). Since i, = 4 for a closed immersion, it follows that
i»Qy[1] = i1Qy[1] is a perverse sheaf, and since it restricts to Q, ; on V, these perverse sheaves are
isomorphic.
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We next show that for generic (x,b) € G, we have
dim HY (G, (M) ) = 1,
which will prove (2).

This cohomology group can be computed by first taking the relative additive Fourier transform F
of My, restricting it to the line Gy, x { b}, then taking the cohomology of F ® .2, on G,, x {b}.
Since the Fourier transform F of My is Q& , there exists a dense open set U of G, such that for
b € U, the restriction of F to G,, x {b} is a rank one skyscraper sheaf supported on f(b). Such a
sheaf, tensored with any character %), has its 0-th cohomology group of dimension 1.

In fact, the same argument shows that if (x,b) is defined over k,,, then the action of Frobenius
on the one-dimensional space H (G, (Mf)(yp)) is [kn|x(f(b)), which proves the last statement.

To prove (3), we observe that, by definition of the Fourier transform, yet another description
of My is
My = RowZy(—ay 2],

where ¢ is the restriction of the projection (x,y,a) — (x,y) to the subvariety

Z={(r,y,a) € Gy x Gy X Gq | fi(a) =z fa(a)}

of G, x G2. Since ¢ is an affine quasi-finite morphism, we obtain (3) with
g = ¢*g’¢'(fay0)7

where 5 is the restriction of ¢ to Z,,. This sheaf has generic rank bounded by the size of the fibers
of ¢, and is < max(deg(f1),deg(f2)). O

REMARK 9.19. The last statement amounts to the following computation of Fourier transform
on G(ky): by the first part, writing f = f1 / f2, where f; are polynomials without common factor,
the perverse sheaf Qg ; is the shifted constant sheaf on the smooth irreducible curve defined by

fi(a) = zf>(a) in G. Therefore, the trace function of Q,; at (x,a) € G(ky,) is equal to 1 if
fi(a) = zfs(a), and 0 otherwise, so the trace function of M has the value

> Pu(—ay)

ack
Ji(a)=zf2(a)

at (z,y) € kX X ky. For (x,b) € G(ky), we get the Fourier transform
STox@ualy) D> Yl—ay) = > D x(F(@)va((b - a)y)
(z,y)€G(kn) a€kny ackp y€kn
fi(a)=zf2(a) fi(a)f2(a)#0
and this is equal to |k |x(f (b)) if f1(b)f2(b) # 0, and 0 otherwise.

The basic classes of objects of tannakian dimension 1 we have just described turn out to be
sufficient to obtain all of them.

PROPOSITION 9.20. Let M be a simple perverse sheaf on G over k. Assume that M is in Py (G).
Then M has tannakian dimension one if and only if there exist a rational function f, a simple
hypergeometric complex H on G,, and a perverse sheaf N on G, with Fourier transform of rank
one such that M is isomorphic to the convolution

My *ine (HXIN).
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PROOF. Since the tannakian dimension is multiplicative in convolutions, the “if” assertion
follows from Lemma 9.18 and the fact that HX N has tannakian dimension 1 by an application of
Proposition 3.47.

Conversely, let M be a simple perverse sheaf on G of tannakian dimension one. As in the
dimension zero case, we consider the shifted Fourier transform F = FTy,q,, (M)[1] of M relative
to Gy, For generic a € Gg, the object F, = F|G,, x {a} on Gy, x {a} is perverse of generic rank
one, as in the beginning of the proof of Proposition 9.17.

In particular, for the generic point 7 of G, the object F;), viewed as a perverse sheaf on G, 1),
is of tannakian dimension one. By Theorem B.4, (2), it is isomorphic to a hypergeometric complex
multiplicatively translated by a non-zero rational function f(n) of 7, and tensored by a rank one
object on k(n). Thus, there exists a dense open subset W of G,,, X G, and an isomorphism

(9.6) FIW =~ p5(N)|W © m}(H),

where N is a perverse sheaf on G, of generic rank one, H is a hypergeometric complex on G,,, and
my: W — Gy, is the morphism

(z,a) = x/f(a)
(in particular, z/f(a) is defined and non-zero for (z,a) € W). Using [69, Th.8.4.10] and Proposi-
tion 9.17, we may assume that H is simple.

Let N be the Fourier transform of N. We claim that there are isomorphisms
(9.7) M =~ (HK 1) #ing My #ing (1RN) o My s (HEN),

which will conclude the proof. The second isomorphism follows from commutativity and associa-
tivity of the convolution combined with the isomorphism of Proposition 3.47, hence we need only
check the first.

Let P = (HX 1) #j5y My; we need to show that M is isomorphic to P s#jn (1 X N) We will do
this by showing that the restriction to W of their relative Fourier transforms are isomorphic; since
both objects involved are perverse sheaves, this will give the result.

Precisely, denote

Py = (HX1) % My, P, = (HX1)x, My.

We claim that there are isomorphisms

(9.8) Py~P~P,
(9.9) FTy/q,, (P)IW ~mj}(H),
(9.10) FTy/q,, (P #in (LEN)) = p3(N) ® FTy g, (P),

where My is the complex in Lemma 9.18, and 1 denotes the unit object on G.
Assuming these to be true, it follows by combining (9.6), (9.9) and (9.10) that

FTyq,, (M)IW ~ p3(N)[W @ m¢(H) ~ py(N)[W @ FTyq,, (P)IW ~ FTyq,, (P * (1 KN))[W,
proving the first part of (9.7), and thereby concluding the proof.

We will begin with the rigorous sheaf-theoretic computations, but we include afterwards the
(potentially more enlightening) computations of trace functions (assuming all objects to be defined
over k).

Proof of (9.8). Since G is affine, it suffices to prove that Py is semiperverse: indeed, it first
follows that P is perverse by [70, Lemma 2.6.7]; since the dual of P, is (D(H) X 1) % D(M;), this
first fact (applied to the duals of H of My, which are of the same type) also implies that P, is
perverse, and (9.8) follows.
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To prove that Py is semiperverse, we need to estimate the dimension of the support of the
cohomology sheaves 7" (Py). Let i € Z and (¢, yp) € G. By the definition of convolution and the
proper base change theorem, we have an isomorphism

K (P1) (o) = He(Gi, [(2,y) = (zoz, yo + )" (K1) @ [(z,y) = (27", —y)]"My).
Let H,, = [z — xoz|*H. The last cohomology group is isomorphic to
He (G piHay @ p3ly = y + 30" 1 @ [(2,) = (27", —y)]"My).

If we denote by 1\~/[f7y0 the complex on Gy, given by [z +— (271, —y0)]*My, then the projection
formula shows that the cohomology group is isomorphic to

Hi(Gm,E’ Hzy ® Mf,yo)~

By Lemma 9.18 (3) the object Mf,yo is of the form ¥,,[2| for some sheaf on Gy,.

(1) If Hy, is of the form %, [1] for some simple middle extension hypergeometric sheaf on Gy,
then J2(Py)( is isomorphic to

Hg+i(Gm,Ev eg}fo ® gyo)-

It follows immediately that #*(Py) is zero for i > 0.

For i = —1, since .%;, and ¥, are lisse on dense open subsets of G,,, and .7, is simple,
the stalk at (20, yo) is non-trivial if and only if .%;, is a Jordan-Hélder factor of the dual
of 4,, (on such an open set).

But given yp, Lemma 9.18(3) shows that the sheaf ¥, has generic rank at most
max(deg(f1),deg(f2)), hence has at most as many Jordan—-Holder factors. The hyperge-
ometric sheaves .%,, are pairwise non-isomorphic by [69, 8.5.6], since they are all mul-
tiplicative translates of a fixed hypergeometric sheaf; for a given yg, there are therefore
at most max(deg(f1),deg(f2)) values of xg for which the stalk of s#1(Py) at (zo,yo) is
non-zero. This implies that the support of #!(P)) is of dimension < 1, so that P, is
semiperverse.

(2) If H is isomorphic to 6, for some z1 € Gy, then Hy, =~ 03, Then %i(P!)(
isomorphic to

Z0,40)

z0,y0) 1
o
HC+Z(Gm7E7 (S-'EOII ® gyo)a
which is zero if i # —2. Thus P is also semiperverse in that case.

Proof of (9.9). We compute FT,/g,, (P1), which is the same as FTy,q,, (P) by the previous
result. Consider

X = {(z,u,v,y,¢c,d,a) € G, x G | wv =2, c+d =1y},
and the morphism o, 4: (z,u,v,y,¢,d,a) — (z,a) from X to G. Then
FTy/q,,(P1) = Rowa)(Lyay) @ H(w) ® 1(c) @ My (v, d)),
where we use a shorthand notation for pullbacks, where, e.g.
H(u) = [(z,u,v,¢,d,y) — u]*H.
Denoting
Y ={(z,u,v,y,¢,d,a) € X | ¢ =0}, Z={(z,u,v,y,a) € G3 x G2 | wv =z},
and noting the isomorphism Y — Z given by
(z,u,v,y,c,d,a) = (x,u,v,y,a)
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with inverse
(z,u,v,y,a) — (u,z,v,y,0,y,a),

this becomes

Roz.0,1(Lp(ay) @ H(u) @ My (v,y)),
with an abuse of notation involving in using the notation o, , again for the projection from points
on Z to (x,a). Factoring o, 4 into (z,u,v,y,a) — (z,u,v,a) — (z,a), we recognize

Roga)(H(u) ® FTyq,, (Mf)(v,a)) = Rog o) (H(u) @ Qg ¢ (v, a)),
again with some abuse of notation.
We write f = f1/f2 as in Lemma 9.18. Let

Zy ={(z,u,v,a) | w ==z, vfa(a) = fi(a)}.
By Lemma 9.18, we have an isomorphism
Rog.q)(H(u) @ Qy (v,a)) ~ Rog 0,1 (H(u)),
(W) = W C Gy, x G, is an isomorphism with inverse
(z,a) = (x,x/f(a), f(a), a),

this is simply H(z/f(a)) = m}(H) on W. In other words, we have proved that there is an isomor-
phism

and since 0, 4: 0}
k)

FTy,q,,(P1)|W ~ m}(H),
as desired.

(Formally, we can also show that the trace functions on both sides of (9.9) coincide, disregarding
the difference between the various convolutions. For (z,a) € k* x k, the object FT, /g, (P) has
trace function at (z,a) equal to

Z Z tH(u)th (IL’/"LL, y)l/f(ay) = Z tH(u) Z th (IL’/U, y)1/}<ay)
yEk uckx uekX yek

The inner sum over y is the value at (x/u,a) of the trace function of the relative Fourier
transform of My, hence by definition it is the trace function at (x/u, a) of the object 6& 7 Writing
f = fi/f2 where f; and fy are polynomials without common zeros, this value is 1 if fi(a) =
zu~! fo(a), and 0 otherwise. Thus, provided fi(a)f2(a) # 0, the above expression is

S ta(w) Y b @fuyilay) = Y ta() = ta(o/f(@).
uekx yek uck>
fi(a)=zu~! fa(a)

If (z,a) € W, this is the same as the trace function of m}(H), as desired.)
Proof of (9.10). The argument is similar. Consider
X = {(z,u,v,y,¢c,d,a) € G2, x G | wv =12, c+d =1y},
and the morphism o, 4: (z,u,v,y,¢,d,a) — (x,a) from X to G. Then
FTy/q,, (P (LEN)) ~ Roy o1(Lpgay) © Pi(u,c) @ 1(v) @ N(d)),
where we use the shorthand notation for pullbacks. Denoting
Y ={(z,u,v,y,¢,d,a) eX |u=2x, v=1, c+d=y} ~Z={(x,¢,d,y,a) | c+d =y},
this is R
Roz.0)(Ly(ay) © Pi(z, ) @ N(d))
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(with again an abuse of notation involved in the notation o, ). From the isomorphism
7~ {(z,c,d,a) € G, x G3}
with inverse (z,c¢,d,a) — (z,¢,d,c+ d,a), we get
Roz01(Ly(ae) @ Liaay @ Pi(z,¢) @ N(d)).
Factor 0, 4 as (z,¢,d,a) — (z,¢,a) — (x,a); by Fourier inversion, we obtain
FTy/q,, (Prx (LRN)) ~ Roy o1(Pi(2,¢) © N(a) © Lyae) = N(a) @ FTyq,, (P1).

We know that Py ~ P, ~ P (see (9.8)); the argument above can be repeated with the Fourier
transform and convolution defined by direct images, and we also obtain an isomorphism
FTy/q, Py % (1BN)) ~ N(a) @ FTyq,, .(P).
Again because P) ~ P, ~ P and the two Fourier transforms coincide, we conclude that
M~ P (1RN) ~ P x, (1KN) ~ P sy (1KN),
which establishes (9.10).

(Here also we illustrate the result by computing trace functions. The value at (z,a) of the trace
function of the relative Fourier transform of P *j,; (1 X N) is equal to

> way) (3 te(@,)tgly = ) = 3 te(e,0) > bla(v + w))ig(w).
yek vek vek wek

By Fourier inversion, this is the same as

tnla) S to (e, v)i(av),

vek
which is the value at (z,a) of the trace function of p3(N) ® FTy,q,, (P). By (9.9), this coincides
on W with the trace function of p3(N)|W @ m}(H).) O

REMARK 9.21. The trace functions (over k) of simple negligible objects are of the form
(2,y) = t(z)(by)
for some trace function ¢t on G,,, and some b € k, or
(z,y) = x(2)t(y)
for some trace function t on G, and some multiplicative character y.

The trace functions of simple objects of tannakian dimension one are convolutions of functions
of the three types

(@y) = > Y(-y2),  (my) = Hx),  (2,y) — ),
zek
)=z

where f is a non-zero rational function, J# is the trace function of a hypergeometric sheaf and ¢ is
the trace function of an object on G, whose Fourier transform has generic rank one. The associated
exponential sums are (up to normalization by powers of |k|) of the form

S(x, a) = x(f(a)) A2 (x)ila),

where ¢ is the trace function of an f-adic character, and His a product of monomials in Gauss
sums (see (B.1)).
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CHAPTER 10
Variance of arithmetic functions in arithmetic progressions

10.1. Introduction

In this chapter, we will consider some of the first natural concrete applications of our results to
problems which, as stated, do not seem to refer to algebraic groups, or equidistribution statements
of any kind. These problems are related to one of the most essential questions of modern analytic
number theory, namely the study of arithmetic functions in arithmetic progressions to large moduli.

Concretely, this means that we are given an arithmetic function f (i.e., a complex-valued
function defined on the set of positive integers), an integer ¢ > 1 (the “modulus”) and = > 2, and
we seek to understand the quantities

> fn)

n<x
n=a (mod q)
for a varying among residue classes modulo ¢, or only for a coprime to q. The focus is on these
sums in settings where both x and ¢ are large, and the goal is often to obtain asymptotic formulas
valid for ¢ as large as possible in comparison with x.

The literature on this topic is enormous, and the applications cover almost all of analytic
number theory: indeed, this subject encompasses, almost by definition, all of sieve theory and its
applications (see [46]), and it is in particular at the source of most of the recent developments in
prime number theory, going back to the Bombieri—Vinogradov Theorem (see, e.g., [64, Ch.17]),
and including such celebrated results as the Green-Tao Theorem, or Zhang’s Theorem [128], or
the Maynard—Tao method (see, e.g., [87]).

The problems that we consider here are the analogue for polynomials over finite fields, and
in the limit when the size of the field tends to infinity, of questions related to the distribution of
the quantities above, and especially of their variance, as functions of a. In other words, we are

interested in )
DRED SENIOEE SF0)]

a (mod q) n<e n<x
n=a (mod q)

or (often more naturally for applications) the variant

(10.1) DI DI (OB it

a (mod q) n<x
(a,q)=1 n=a(modq)

where the sum covers only invertible residue classes. (In both cases, the choice of “expected main
term” is natural, but might require adjustments, depending on the arithmetic function involved.)

The serious study of these function field analogues has been initiated especially by Keating

and Rudnick and a number of collaborators (see for instance [80], in the case where f is the von
Mangoldt function, using results of Katz [75], which themselves relied on his work on the Mellin
transform over finite fields [74]).
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It is quite easy to understand the link between a quantity like (10.1), in the function field case,
and equidistribution problems of the type considered in Chapter 4. Indeed, we are then in the
situation where ¢ is a polynomial in k[t] for some finite field k, and the sum over n < z is replaced
by the sum over monic polynomials g € k[t] of degree m. Then for any complex-valued function f
defined for polynomials in k[t], we see (using orthogonality of characters, or the discrete Plancherel
formula) that the formula

> | Y 0 g 2 0] =

a€(k[t]/qk[t])*  deg(g)=m deg(g)=m
g=a (mod q)

/e Y| Y x|

x#1 deg(g)=m

holds, where y runs over non-trivial characters of the group (k[t]/qk[t])*. These characters can be
identified with the characters of G(k) for some commutative algebraic group G (by a simple special
case of geometric class-field theory; in the case which we will consider, when ¢ is squarefree, it will
be a very explicit torus). Moreover, for many natural arithmetic functions, the inner sum over g
monic of degree m in k[t| can be interpreted as the value at x of the arithmetic Fourier transform
of some object on this group G. In the limit where k is replaced by its extensions k, of degree
n — +oo (and m is fixed), we can therefore expect to determine the asymptotic behavior of this
variance from our equidistribution theorems.

We will now consider in detail the version of this question when f is the von Mangoldt function
associated to a higher-degree L-function (the classical von Mangoldt function being related to the
Riemann zeta function, which has degree 1), in which case Hall, Keating, and Roddity-Gershon [56]
have shown that new phenomena appear (again relying on [74]). These are conjectured to corre-
spond to new behavior also in the (currently inaccessible) situation over number fields. We refer the
reader to the introductions of both papers [80] and [56] for extensive discussions of these motivating
conjectures, and for additional references to other papers.

We will see that, as suggested by the discussion above, the equidistribution theory for arithmetic
Fourier transforms on higher-dimensional tori leads to generalizations, strengthenings, and better
understanding, of these previous results. This leads in particular to Theorem 3 in the Introduction,
but the method is suitable for the proof of many similar statements.

In the remainder of this chapter, as before, we denote by k a finite field, with an algebraic
closure k, and for each n > 1 by k, the extension of degree n of k£ in k. We fix a prime ¢ distinct
from the characteristic of k, and all complexes are understood to be f-adic complexes.

10.2. Equidistribution on tori associated to polynomials

In what follows, we fix a square-free monic polynomial f € k[t] of degree d > 2. We denote
by B the (étale) k-algebra B = kl[t]/fk[t] of degree d over k (in spite of the notation, B depends
on f), by Z the zero locus of f, and by A}[1/f] the complement of Z in the affine line over .

We begin with a result of Katz [75].

ProposiTION 10.1 (Katz). The functor A — (B ®; A)* on k-algebras is represented by a
torus T defined over k. This torus splits over any extension of k where f splits in linear factors.

Moreover, the map x — t — x defines a closed immersion
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and there exists a morphism of algebraic groups
p: T — G,
satisfying poiy = (— 1)dee(f) £ where we view f as defining a morphism A'[1/f] = G

REMARK 10.2. As noted by Katz [75, p.3224], the torus T is isomorphic to a generalized
jacobian associated to P! with divisor (o0) 4+ Z (compare Remark 8.14).

We call the morphism p the norm. If f splits completely over k, say
f= H(t - Z)a
z€Z
then the torus T is split by the morphism sending g to (g(2)).cz. The norm is then given by
=[] 9
2€E7Z
and in particular one has

plig(@) =[]z = 2) = (-1)* ¥V f(a).

z€7Z

We denote by BX (resp. by EX) the group of ¢-adic characters of the finite group B* (resp. of £*).
We extend characters of B* to k[t] by putting x(g) = 0if g is not coprime to f. Since B* = T(k), the
group BX of characters of BX is also equal to the group r/l\‘(k:) of characters of T(k) (although we will
sometimes distinguish them to avoid confusion between characters of B, operating on polynomials,
and characters of T).

If f splits over k as above, then the Chinese Remainder Theorem induces an isomorphism
(k*)? — B, under which an element (x.).ez € (kX)? corresponds to the character x of BX that

maps g € kl[t] to
= [ x:(a(2)
2€7Z

Let M be a perverse sheaf on Aj[1/f] which is pure of weight zero. We are interested in the
distribution properties of families of one-variable exponential sums of the type

(10.2) > tu(@)x(t - )
xek-7Z
for y € ]?)X, or of the underlying L-functions (recall that ¢ is an indeterminate).

We start by interpreting these sums as Mellin transforms on T in order to apply our general
equidistribution results. Let x € B*. Let Y be the character of T(k) corresponding to x. The
sum (10.2) takes the form

(10.3) dotm@xt—x)= > tul@)X = >t
zck 2€AL[L/f](k) yeT (k)
Note also that by adapting the argument of [ , Lem. 1.1], for any n > 1, we have
(10.4) > (@ k)X Ne it —2) = > tipona (W5 k) XNk, /()

xEkn y€T (kn)

The variation with y € BX of the sums (10.2) is therefore governed by the tannakian group of
the perverse sheaf iy, M on T. By Theorem 3.26, this perverse sheaf is generically unramified.

We first compute the tannakian dimension of the object i .M, in the most important cases.
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LEMMA 10.3. Let % be a middle extension sheaf on A,lﬁ[l/f] which is pure of weight zero."
Define M = Z[1](1/2), which is a perverse sheaf of weight zero on AL[1/f]. The tannakian
dimension v of ip.M is given by

r = (deg(f) — 1) rank(%) + Z swany (%) + Zdropx(ﬂ) > (deg(f) — 1) rank(#).

z€P1(k) z€k

PROOF. The object M is a perverse sheaf and so is i, M because i is a closed immersion (see
Corollary A.8). The tannakian dimension is the Euler-Poincaré characteristic x.(Tj, (i7+M),) for

a generic character y € T (Proposition 3.16).

For any integer ¢, we have natural isomorphisms

HU(Tg, (ip.M)y) ~ HU(AML/ flp, M@ i7.2,) ~ Ho(A' L/ flg, Z[1] @ i7.2,).

As explained in [75, p.3227], the pullback 3% is geometrically isomorphic to the tensor
product
Z=Q L)
z€Z

where x is the coordinate on A'[1/f] and x corresponds to the tuple (x.) of characters of k* as
above.

Now using the Euler-Poincaré formula on a curve (see Theorem C.2), we obtain

r= _Xc(Al[l/.ﬂfcﬂ F @ g) == rank('gz)Xc(Al[l/f]I})
+ Z swan, (% ® £) + Z drop,(# ® .Z).

zeP! z€A1[1/f]

The first term is equal to rank(f)(deg(f) — 1) since f is square-free, and the second is the sum
of Swan conductors of .#, since the sheaf £ is everywhere tame. The third is the sum of the drops
of F on A'1/f], since . is lisse on A'[1/f]. O

We now apply Larsen’s Alternative to compute the tannakian group of such perverse sheaves.

PROPOSITION 10.4. Let .Z be a middle extension sheaf on AL[1/f] which is pure of weight
zero and irreducible of rank at least 2. Let M = F[1](1/2). Assume that M is not geometrically
isomorphic to z*,,i” " [1] for some character x of G.

Then i7p.M is a geometrically simple perverse sheaf, pure of weight zero and of tannakian di-
mension at least 2.

ari

Moreover, if deg(f) > 2, then the fourth moment of the tannakian group sz M of iy« M is equal
to 2, and if deg(f) > 4, then the eighth moment is equal to 24.

PRrOOF. The previous lema implies that 7y,M has tannakian dimension > 2. It is geometrically
simple since M is.

One argument to obtain the result is to observe that iy is a Sidon morphism when deg(f) > 2,
and a 4-Sidon morphism when deg(f) > 4 (by Proposition 8.11, (4), since these properties can be
checked after a finite extension), so that the result follows from Proposition 8.8 since the tannakian
dimension is > 2, and the assumption on M).

1 Recall (see Example A.18 (3)) that this means that the restriction of .Z to any dense open set where it is lisse
is punctually pure of weight 0.
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For the sake of concreteness, we show also how to perform the computation of the eighth
moment using the interpretation of the sums in terms of Dirichlet characters. The eighth moment
of the full family of exponential sums over k is equal to

Z‘ZtM t—x‘ = Z ﬁthl :

xeBx z€k 150,28 1=1

|BX

> ox((t—wn) - (t—wa))x((t—s) - (t—28)).

BX| =
x€BX

By orthogonality, the inner sum is 0 unless
(t—m1) - (t—24) = (t —x5) - (t — 28) (mod f),

in which case it is equal to |B*|. Since the degree of f is at least 4, this congruence can only occur
when

(t—x1) - (t—mg)=(t —2x5) - (t — x38)
in k[t]. We then distinguish according to the size of {x1,...,z4}. If this set has four elements, then
so does {x5,...,xs}, and the two sets are equal. The contribution arising from this case is

S Y )t ) o) = 24( 3 @)

T1,...,24 0€Gy ek

On the other hand, if the set {x1,...,24} has three elements, say x, y and z, then so does
{x5, ¢, 7,28}, and there are an absolutely bounded number of possibilities for (x1,x2,x3,z4)
given x, y and z. A similar result holds for two or one elements, and since ty(z) < |k|~'/2, one
sees that these altogether contribute at most

These computations can be repeated over k,, for n > 1 using (10.4), and using Proposition 8.1,
we deduce by letting n — +oco that

8
BX‘ Z )ZtM t—x)‘ — 24
xeBx =€k
as |k| — +o0.

Finally, the usual argument using the definition of generic sets of characters together with (10.3)
and the Riemann Hypothesis imply that

|BX ‘ZtM x(t—z)| —0,
XGBX €k
X ramified
so that Proposition 8.4 gives the result. O

COROLLARY 10.5. Under the assumptions of the proposition, the tannakian group of ip.M
contains SL,, where r is the tannakian dimension of ip M, if deg(f) > 4.

ProOOF. By Lemma 10.3, the assumption implies r > 4, and the result follows from Larsen’s
Alternative, in the form of the eighth moment theorem of Guralnick and Tiep (see Theorem 8.5 (4)).
O
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10.3. Application to von Mangoldt functions

Suppose again that M is of the form .Z[1](1/2) for some middle extension sheaf .7# on A[1/f]
which is pure of weight zero and geometrically irreducible of rank at least 2.

The statement of equidistribution on average for the object i ;.M leads automatically to distri-
bution statements of any “continuous” function of the polynomials in the variable T which are the
twisted L-functions of M, namely

det(1 — Fry T | HY(A'[1/flp. M ® %%)) = det(1 — Fryy T | HY(Ty, (i7.M)y))
asy € BX varies, where Y is now the character of the fundamental group of A} [1/f] that corresponds

to x by class-field theory, and %% is the associated rank one sheaf.

For instance, this leads to statements concerning the variance of von Mangoldt functions in
arithmetic progressions, as we now explain.

Write
L(M,T) = det(1 — Fr,, T | HY(A[1/f]z, M Hdet — Frgy,,,, T0) | Z,)71,

where z runs over the set of closed points of A}[1/f], which may be identified with the set of
irreducible monic polynomials in k[t] which are coprime to f. Expanding the logarithmic derivative
of the local factor at a closed point x, corresponding to an irreducible monic polynomial 7 € k[t],
we have
—Tdlog(det(1 — Fry,,, , T | Z,)71) = Ay (r”)T 48",
v>1

which defines the von Mangoldt function Ayf(7”) for any monic irreducible polynomial 7 coprime
to f and any v > 1. We further define Ap(g) = 0 if g € k[t] is not a power of such an irreducible
polynomial. The full logarithmic derivative then has the formal power series expansion

L’MT ZA -

over all monic polynomials g € k[t].
For an integer m > 1 and a polynomial a € k[t], we then define

Ya(mi foa) = > Aulg).

deg(g)=m
g=a (mod f)

We consider the average
An(m; f) = ‘BX’Zl/JMmfa)
aeBX
and the variance
Vai(m; f) = |BX| > la(ms £,a) — An(ms )
a€BX

These are related to exponential sums as follows.
ProposiTION 10.6. With assumptions and notation as above, we have

Vam(m; f) = |BX|2 Z Vi (m; x)

xeBX
x#1
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where
2

Varmi ) = | 3 taa(ai k) X (N, (= )

xek‘m

In particular, if x is weakly unramified for ip M, then we have Vai(m; x) = | Tr(Om(x)™)|*.

PROOF. The first part is proved, using the orthogonality of characters, exactly like [56, §6,
(6.3.4)]. The second assertion then follows from Lemma 3.34 and (10.4). O

REMARK 10.7. The von Mangoldt function can be replaced by many other arithmetic functions
in this argument; we refer to the discussion by Sawin in [113] (which proves analogue equidistribu-
tion statements to ours for the case of “short intervals”, which amounts to considering a unipotent
group instead of a torus) and to [114] for a discussion of how classical arithmetic functions which
are related to “factorization functions” (functions of polynomials g that depend only on the factor-
ization type of g) can be interpreted as trace functions using representation theory of the symmetric
groups.

We now obtain a formula for the variance, with some additional assumption.

COROLLARY 10.8. In addition to the assumptions of this section, assume that m > 2, and that
the tannakian determinant of M is geometrically of infinite order. Then
lim  |B*[*Vy(m; f) = min(m, ),
|k|—+o0

where r is the tannakian dimension of iy, M.

PRrooOF. Combined with Corollary 10.5, the assumption implies that the arithmetic and geo-
metric tannakian groups of iy,M are both equal to GL,. Thus the limit exists by Theorem 4.15
and is equal to

/ | Te(g™) Pdu(g)
U,(C)

where p is the Haar probability measure. This matrix integral is equal to min(m,r) by work of
Diaconis and Evans [33, Th. 2.1]. O

To check the assumption on the tannakian determinant, we have a first general criterion, which
is however quite restricted.

ProposiTION 10.9. With notation and assumptions as above, suppose that there exists z € 7.
such that the local monodromy representation of % at z has a non-zero unipotent tame component
while the local monodromy at infinity has no unipotent tame component. Then the tannakian
determinant of ip.M is geometrically of infinite order.

Proor. We apply Corollary 3.46 to the norm morphism p: T — Gy,. Indeed, p o i co-
incides with the finite morphism ef: A'Y[1/f] — G, where ¢ = (—1)d&(/) (Proposition 10.1),
so that the equalities Rpi(is.M) = Rpi(ipM) = (ef).M = ((ef)1.#)[1](1/2) hold, and the sheaf
((efNF)1](1/2) = ((ef)«F)[1](1/2) has no tame unipotent local monodromy at infinity, but has
some non-trival tame unipotent monodromy at 0 in view of the canonical isomorphism

(ef)eF)o ~ P Z-.
z2€Z
Hence, the tannakian determinant of the object 7¢.M is geometrically of infinite order. O
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We now explain the proof of Theorem 3, where we will also use a different approach to checking
that the tannakian determinant has infinite order, which may be useful in other contexts.

Let m: & — P! be the morphism which “is” the Legendre elliptic curve. We start with the
sheaf

= R!'7m.Q,(1/2).

This is a middle extension sheaf on A,lg. It is pure of weight zero and geometrically irreducible
of rank 2 (in particular, its H? vanishes), and is tamely ramified at 0, 1 and oo, with drop equal to 1
at 0 and 1. Using Lemma 10.3, we compute that the tannakian dimension is r = 2deg(f) — 2 + a,
where a is the degree of the ged of f and (¢t — 1).

Now the pullback of . to A}[1/f] is a middle extension sheaf, geometrically irreducible of rank 2
and pure of weight 0, for which we keep the same notation. We can then apply Corollary 10.8 to .#,
using the following proposition. In order to conclude after doing so, we check that the contribution
of the local factors at z € Z to the L-functions (which might not be of weight 0) is negligible
(compare [56, Prop.6.5.3]).

PROPOSITION 10.10. Let M = .#[1|(1/2). The tannakian determinant of is.M is geometrically
of infinite order.

PRrROOF. If f is not coprime to ¢(t — 1), then we can apply Proposition 10.9, since .# has non-
trivial tame unipotent monodromy at 0 and 1, and none at infinity. So we assume that f is coprime
with ¢(t — 1).

We may assume that the polynomial f splits in linear factors over k and that k # Z U {0, 1}.
Fix a non-trivial additive character ¢ of k. We will then prove in Proposition 10.11 below, using
the theory of local constants, that there exists a generic set of characters 2~ C 2 (M) and elements
¢, € AY[1/f] such that for n > 1 and x € 2 (k,), the equality

det(Onk, (X)) = 7" Hi(x H2<H Xz )

z€Z

holds, for some number v independent of x and n, where the functions H; and Hs are products of
Gauss sums described in (10.6) and (10.7) below.

On G,,, the function
2
Xz X=(&2) W(Z x=(y ))

yekX
coincides for y, non-trivial with the arithmetic Mellin transform of the multiplicative translated
hypergeometric complex Hyp,_ (!,%,1,1; @)(1/2) (see (B.1) for this; in this case, this is a shifted and
translated Kloosterman sheaf). Since the function y + Hi(x) ™! is the product of these functions
over z € 7, it coincides generically with the Mellin transform on T of the tensor product

Q) piHyp-1 (54, 1,1;2)(1/2),
z€Z

where p, is the projection from T to the z-component in the splitting g — (g(z)) of the torus T.
(Indeed, this reflects the formula

z€T (k) 2€Z (2.)€(kX)Z 2€Z ZEZ 2€Z pekX

for arbitrary functions f, on k*.)
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Similarly, the function x + Ha(J] x5 !)~!, which only depends on the product i of the com-
ponent characters (x.), coincides (for n non-trivial) with the arithmetic Mellin transform of the
object AL, where L = Hyp(!, ¢, Ag, A2; @)(1/2) and

A:Gm—>G7Zn:T
1

is the closed immersion z + (x71,... 271). This reflects the fact that A is a morphism of algebraic
groups, and that the dual A on T(k) is given by

(XZ)ZGZ = H Xz_l-
2€7Z

By Theorem 6.11, the formula (10.5) therefore implies that the tannakian determinant of M is
geometrically isomorphic in P(T) to the perverse sheaf

D = (A.L) + (@ piHype. (5, 1,1:2)(1/2) ).
z€Z
The object D visibly has infinite geometric tannakian group since for any m > 1, we have
D™ = (A,L)*" ((g)p;HypE;l(!;w, 1, 1;@)*m(1/2)),
1VA
in P(T), and the m-th convolution powers on G, of the hypergeometric complexes that appear

are not geometrically trivial (see Theorem B.4). O

We complete this section by proving the formula for the determinant.

ProposITIiON 10.11. Suppose that f splits in linear factors over k. For z € Z, define
& =2(2-1) H (z —x)* € kX,
z€Z-{z}

There exist numbers ey, €1 with the following property. For a character x € Z (M) such that
all components x, for z € Z are non-trivial, and such that the product of the components is not of
order at most 2, we have

(10.5) det(@n(x)) ™" = (1) [k| 201 Hy () Ha (T )
2€7Z
where
(106) 100 = [T @O (X o)
z€Z yekX
(10.7) (0 = K1 ( 32 o) ))
yek>

PROOF. Let j: A![1/f] — P! be the open immersion. Let x € B be a Dirichlet character and
%, the lisse rank 1 sheaf on A'[1/f] that corresponds to it. The L-function of ji(M ® .%, ) satisfies
a functional equation of the form

LGIM @ 2,), T) = () T'LD(1(M @ 4,)), T~
where a = —x(ji(M ® %)) = —r is an integer and
e(x) = det(— Fry | H'(P}, i(M ® .%,))) ! = det(— Fry, | HA(AL[1/fl. M ® .2)) "
(see, e.g., [98, (3.1.1.3),(3.1.1.5)] or the reminder in Section C.1).
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By Lemma 3.34, if y € T is unramified for M, then we deduce that
(10.8) det(On(X)) = (=1)"e(x) ",

where 7 is the tannakian dimension of i ;.M. By a theorem of Laumon,
e(x) as a product over closed points
-2
)=k ] &)

ze|P1|

2 we can express the constant

of local constants, previously defined by Deligne [26] and characterized by the properties of [98,
Th.3.1.5.4]. Precisely, fixing a non-trivial additive character ¢ of k and a non-zero meromorphic
differential 1-form w on P!, we can then define

£2(X) = £(Plyy, 1 (M® B[P0 | PLy)

with the notation of loc. cit. See again Section C.1; in particular the factor |k|~2 above is given
by (C.1), namely the exponent is obtained by the computation

2= 1-(1-0)-(-2),
where —2 is the generic rank of the object M (a sheaf of rank 2 in degree —1).

We take w = dt, where ¢ is the standard coordinate on P'. The data of ¢ and w allows us to
define non-trivial additive characters 1, of the completed local field at any closed point z € |P!
by the recipe in [98, Th. 3.1.5.4, (v)]. For all closed points x € A, the character v, is of conductor
zero since w is regular at = (see [98, 3.1.3.6]). For z = oo, we have ¢(1)o) = —2 since w has a
double pole at co.

The main tool to compute the local constants is the formula (C.7) for twisting by a lisse sheaf:
for any closed point z, if K is an f-adic complex on the trait P%m) and F is a lisse Q,-sheaf on P%x)
of rank r(F), then we have

P KwP r
(10.9) e(Pl,), (K@ F)|PL, w[P,)) = det(Fr, | F)“ P)e(Pl,), K, wPl,) ),

where the local exponent a(P( ) K w|P(x)) is defined in (C.4) and (C.3). Moreover, we will often

use the formula

(see (C.10)).
Let (Xz) ez be the tuple of characters corresponding to x. We recall that .%, is isomorphic to
®Z€Z Z t)

We now compute the local constants, distinguishing between the cases z € Al — ({0,1} U Z),
x€{0,1},z€Z and 2 = ©

Case 1. Let z € A and = ¢ ZU {0,1}. In this case, M ® .%, is a lisse sheaf shifted by 1, and
since ¢(¢,) = 0, we find
(10.10) ea(x) = 1
by (10.9).

Case 2. Let x € {0,1}. Then .2, is a lisse sheaf at z, since we assumed that f is coprime with
t(t —1). We find
1
ex(x) =&z ty, (l,)a(P(z),M|P(I), t)

2 Which, in the case we use it, goes back to Deligne [26, Th.9.3]; see [98, 3.2.1.9] for references.
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by (10.9) with F = %, , where ¢, = E(P%$), M, dt), which is independent of x. We further compute
that
(Pl MIPL ) = ~a(Ply F(1/DIPL ) = ~(2=1+0) = -

by (C.4) and (C.3), since .# has drop 1 at = (see, e.g., [74, p.73]) and dt is regular at x. Hence,
(10.11) ea(X) = [ [ oz —2) 7
zEZ

Case 3. Let x € Z. Then we can write
M® % = Z1](1/2) © L@ @ L 1w = (F(1/2) © L@ @ L (1)1,
where .# and .Z(*) are both lisse sheaves at . Applying (10.9) after an inversion due to the shift,
we get
eo(X) = e(PL, Z[1(1/2) © L@ @ Ly 1y, i)™
= det(Fr, | 7(1/2) @ LW)%(P,), L, (1—a), dt) >
where
a= a(P%x),fxgc(t_x), dt)y=14+0-0=1
if x, is non-trivial by (C.4) and (C.3) again.
We have
det(Fr, | #(1/2) 9 2) = 1 [ =)

2€7Z
z#T

and by (C.9), we find that
(Pl Lra(t—a) At) = €0(P ), Lo (t-a), ) = —Xa(=1) D X (1))

yekX
if x, is not trivial (here we also use the fact that = € k).
These computations imply that
-2
(10.12) &0 = [Tz =) 2kl (X xw)v)
z€Z yekX
z#T
if x, is not trivial.
Case 4. Let 2 = oo. Write u = 1/t, a uniformizer at co, so that dt = —u~2du. Then

L = L) g Z(u) Where
g(m):®$z(uz71)v U:HX;1
z2€Z 2€Z

The sheaf .Z(®) is lisse at oo and the local eigenvalue of Frobenius there is equal to (—1)de&(/),
On the other hand, we have M = .7 [1|(1/2), and .7 is of rank 2, tamely ramified at oo with local
monodromy isomorphic to %, ® Unip(2), where Ay is the Legendre character and Unip(2) is a
unipotent Jordan block of size 2 (see, e.g., [74, p. 73]).

Computing first as in the previous case, we get
eoo(X) = €(Pl), F(1/2) @ L) @ L), —u"2du) ™"
= det(Froo | L) %Py, F(1/2) @ Ly, —u2du) ™!
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where
a= a(Ploo), F(1/2) ® Ly —u"?du)
=a(P ), Z(1/2) © Lyy) —2x2=(2+0-2) —4=—4
if 1 is non-trivial (see again (C.4) and (C.3)). Note then that
det(Froo | £2°) ™ = [ xo(-1)* = L.

z€7Z

The shape of the local monodromy and the multiplicativity property under extensions shows
that if Aon is not trivial, then the formula

e(P%OO), F(1/2) ® Ly, —u"du) = E(P%oo)’ L Dam)(u)> —u"2du)?

holds. Indeed, in this case, the stalk at co of .7 ® %), and of its semisimplification both vanish, so
that
E(P%Oo), f(l/Q) &® gﬂ(u)’ —u’zdu) = E()(P%oo), .7*9(1/2) X gﬂ(u)? —uizdu),

where ¢¢ is the local factor defined by (C.5), and j is the inclusion of the generic point of P%

)’
and one can apply (C.6); compare [26, 8.12].

Let B be the character of the local field at infinity associated to Aen by local class field theory.
Using (C.8), we derive the formula

E(P%OO)"’%)Q??)(U)’ _U_Qdu) = B(_u_z)’k’_z‘E(P%OO)?Dg(kzn)(u)a du).
From (C.9), we deduce further that if A\an is non-trivial, then
=(Plocy Lonmy —u"du) = [F7* 3 Qam) (m)¥(y)-

yekX
The final outcome is that
-2
(10.13) 2(0) = K (3 Qam@)ey))

yekX

We now simply combine the formulas (10.10), (10.11), (10.12) and (10.13) to conclude the proof,
noting that the contribution of all € Z involves the product

[T ITxete =0 = [T (ITG - )

x€Z 2€7Z 2€Z T€Z
zF#x TF#z

O

REMARK 10.12. It it also certainly possible to perform this computation by automorphic meth-
ods (using the global case of the GLg-Langlands correspondence over k(t), first proved by Drinfeld).
However, more general situations might be easier to handle using these geometric arguments.

Yet another possible approach, which would be well-suited for generalizations, would be to use
Loeser’s general computation of the tannakian determinant for an arbitrary perverse sheaf on a
torus T (see [103, Th. 3.6.1]), which can be identified with an element of the hypergeometric group
H;,(T) of Gabber and Loeser (see Example 3.51). This group is isomorphic (loc. cit.) to T(k) x Z°
for some explicit set S (related to sub-tori of dimension 1 in T and tame ¢-adic characters of Gy,.
It would then be enough to show that there exists some s € S such that the s-component of det(M)
is non-zero to deduce that det(M) has infinite order (without computing exactly the determinant).
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CHAPTER 11
Equidistribution on abelian varieties

In this chapter, we consider some aspects of equidistribution on abelian varieties. We denote
as before by k a finite field, and by k an algebraic closure of k. We denote by k;, the extension of
degree n in k. The prime £ is different from the characteristic of k.

11.1. Equidistribution in the jacobian of a curve

The main result of this section is a generalization of a theorem announced by Katz during a
talk at a workshop held at the University of Ziirich in September 2012 [73], answering a question
of Tsimerman.

Let C be a smooth projective geometrically connected curve of genus g > 2 over k, and let
A = Jac(C) be its jacobian. We recall that C may not have k-rational points but always has a
k-rational divisor of degree one. We fix such a divisor A and we denote by sa: C < A the closed
immersion obtained by sending a point x to the class of the divisor (z) — A. Recall that the functor
SAx = sa1 preserves perversity (Corollary A.8).

THEOREM 11.1 (Katz). Let A be a divisor of degree one on C. Let My be a geometrically simple
perverse sheaf on C of generic rank r > 1 which is pure of weight zero. Let M = sa.Mqg and let d
denote the tannakian dimension of M.

(1) We have d > (29 —2)r > 2.

(2) Assume that C is hyperelliptic, that A = (0¢) for some k-rational point Oc € C(k) fized by
the hyperelliptic involution i, and that D(My) is geometrically isomorphic to i*My. Then,
up to conjugacy, there are inclusions

G{° =G =Sp, or SO, C G§° C Gi{' Cc O, .
(3) If C is not hyperelliptic, or if C is hyperelliptic but D(Mp) is not geometrically isomorphic
to i*Mg, then there are inclusions
SLy C G§° € Gif' € GLg.

PROOF. We write s = sa for simplicity. Since é is an abelian variety, the dimension d is the
Euler-Poincaré characteristic of My, for any x € A (see Proposition 3.21), in particular for the
trivial character, which means that d = x(A;, M) = x(Cg, Mp). Write My = .%p[1](1/2) for some
middle extension sheaf %y on C of generic rank r; using the Euler—Poincaré characteristic formula
on a curve (see (C.11), for instance), it follows that

(1L1)  (CpMo) = (Cr Foll]) = (29 = 2)r + 3 (swan, (Fo) + drop, (%)) > (29— 2)r.
zeC(k)
According to Proposition 8.11 (2), the embedding s is a Sidon morphism if C is not hyperelliptic,
and is an ¢-symmetric Sidon morphism in the hyperelliptic situation of (2).

Suppose first that C is not hyperelliptic. Using the fact that d > 2, we deduce from Proposi-
tion 8.8 that M4(G{}') = 2. Thus, by Larsen’s Alternative (Theorem 8.5 (3)), either G3}' is virtually
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central, i.e., Gi/? / Gi/? N Z is finite, or ﬁi contains SL,. Proposition 8.22 shows that the first case
is not possible, since M4(G%}') = 2 is not the square of an integer. Then the fact that G4 contains
SL, implies that G%}fo also contains SLy (indeed, the intersection G%ZO N SLy is a normal subgroup
of Gf{/}i by Proposition 3.39, and hence is a normal subgroup of SLy; it is therefore either equal to
SLg, or is contained in the center pg; but since d > 2, the latter would imply that G3f'/ G%}fo is
not abelian).

We now assume that C is hyperelliptic. First we consider the case when d > 3.

If D(M)) is not geometrically isomorphic to i*My, then Proposition 8.9 (2) implies My(G&) = 2

since we assume that d > 3; as previously, we then conclude that G%}}i contains SLy.

If the conditions of (2) hold, then the constant morphism (s o) + s is given by
s(i(x)) + s(z) = (x) +i(x) — 2(0c) =0,

the identity element of A. Proposition 8.9 (1) implies then that M is self-dual and has My (G =
3, again from our assumption that d > 3. We conclude in that case by Larsen’s Alternative
(Theorem 8.5 (5)), combined with the fact that G{}' is infinite by Theorem 5.7.

There remains to consider the case when d = 2 (and C hyperelliptic). Since d = x(Cg, My),
formula (11.1) shows that this situation can only occur if (g,r) = (2,1) and if the sheaf % is
lisse on C. Thus the curve C has genus 2, and the sheaf .%j is a rank 1 sheaf corresponding to a
character of the fundamental group of C. As we will recall below in general, there exists then a
character xo € A(k) such that .%; is geometrically isomorphic to s*.%,, on C. The duality condition
My ~ i* D(My) is then always satisfied.

We claim that in this situation, the fourth moment My (G&) is still equal to 2. Indeed, from
the proof of Proposition 8.9, we know that
1
|A(kn)|

> IseLylt

XEA (kn)

converges to 3 as n — +oo. The contribution of the character ! which is the only ramified
character, is

1 N 1 — 4 |C (k) [

———|S(M, xg H)|* = ‘ tm, (x5 k z)| = 41—

Ak S0 = gyl 2 (ko] =y
which converges to 1 as n — +00. We then conclude from Larsen’s Alternative that the group Gﬁ}}i
contains SLy = Sps. O

REMARK 11.2. (1) Note that the last case provides a concrete example where the limit
1
lim S(M, x)|*
S R 2= SOL

XEA (kn)

exists, where the sum ranges over all characters, but its value is not the fourth moment of the
standard representation of the tannakian group (see Remark 8.10).

(2) If the curve C has gonality at least 5, then the inclusions
SLs C G§{° C G¥' € GLy

can be deduced without appealing to Proposition 8.22. Indeed, the immersion sa is then a 4-Sidon
morphism by Proposition 8.11(3), so we deduce from Proposition 8.8(2) that G§}' (and hence
also G%}O, as before) contains SLy. (Precisely, we are in the excluded case of this statement, but
we can observe that there are only finitely many ramified characters here, and that the assumption
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implies that the genus of C is at least five, so that the contribution to the 8-th moment of the
ramified characters is

1
< ——|ka|¥? =0,
ol !
so that we do obtain the correct 8-th moment.)

REMARK 11.3. In characteristic zero, Kramer and Weissauer [92] have obtained closely related
results, using more geometric methods in the case of the object M = saA.Q/[1].

We now explain how Theorem 11.1 answers a question of Tsimerman, which was Katz’s original
motivation. Let g: 7(C)* — C* be a character of finite order. By the Riemann hypothesis for
curves over finite fields, the Artin L-function L (g, s) is a polynomial of degree 2¢g —2 in the variable
T = ¢ all of whose reciprocal roots have absolute value ,/g. We can then write

L(o,T/y/q) = det (1 = TO¢/s,)

for a unique conjugacy class ©¢y, , in the unitary group Uzy_2(C).
QUESTION (Tsimerman). How are these conjugacy classes distributed as g varies?

From now on, we shall normalize the characters as follows: we fix a divisor A = > n;x; of
degree one on C and we only consider those characters g satisfying

H Q(Frn(xi),xi )nz =

Through the isomorphism 7 (C)*” ~ m1(A) induced by sa: C < A = Jac(C), such normalized
characters correspond to characters p: m1(A) — C* satisfying o(Fryp,) = 1. Since they are in
addition supposed to be of finite order, they arise via the Lang isogeny from the elements of K(k)
Replacing k with k,, we obtain the corresponding characters in K(kn) Thus the following state-
ment answers Tsimerman’s question when considering conjugacy classes associated to normalized
characters over k,, and taking n — 4o0.

COROLLARY 11.4. Let C be a smooth projective geometrically connected curve of genus g > 2
over k with jacobian A.

(1) If C is hyperelliptic, the hyperelliptic involution has a fixed k-point 0 € C(k), and we use
this point to define the embedding C — A, then the conjugacy classes (Gc/kvx)xeG(An) YA

are conjugacy classes in USpQQ_Q(C) and become equidistributed with respect to the image
of the Haar probability measure on the set of conjugacy classes.

(2) If C is not hyperelliptic and (2g — 2)A is a canonical divisor on C, then the conjugacy
classes (@C/kax)xeﬁ(kn),x;él are conjugacy classes in SUgg_o(C) and become equidistributed
with respect to the image of the Haar probability measure on the set of conjugacy classes.

PROOF. Consider the weight zero perverse sheaf My = Q,(1/2)[1] on C and set M = sa,Mp.
For each rank one f-adic lisse sheaf .Z on A, there are isomorphisms
H (A7, M ® %) ~ H (Az, sa(Mo ® s3.Z)) ~ H (Cg, Mg ® s8.Z) ~ H(Cy, shZ(1/2))
by the projection formula and the exactness of sa,.. It follows that M has tannakian dimension
—X(Cp, sAL) =29 - 2,

and moreover that all non-trivial characters are unramified for M (since we are considering an
abelian variety). By Theorem 4.11, it suffices therefore to prove that the arithmetic and geometric
tannakian groups of M coincide and are equal to Spy,_5 in case (1) and to SLgy—2 in case (2).
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Assume C is hyperelliptic with hyperelliptic involution i. Then the sheaf My is geometrically
isomorphic to i* D(My) and, because of the shift by 1 in the definition of My, the corresponding
self-duality is symplectic. Therefore, if in addition we assume that i has a fixed k-point 0 € C(k),

ari

which we use as divisor A, Theorem 11.1 (2) gives the equality G§;° = G}’ = Spy, -

If C is not hyperelliptic and (2g—2)A is a canonical divisor on C, in view of Theorem 11.1 (3), it
suffices to show that the arithmetic group Gi/r[i lies in SLg,_o. For this, we compute the determinant
of the action of Frobenius on H!(Cj,.#(1/2)). Since this cohomology is even-dimensional, this is
also the determinant of —Frj, which is the constant in the functional equation for the L-function of
Z£(1/2). By a classical result of Weil [125], in the case of .Z this constant is given by ¢'~90.&(can)
for a canonical divisor can, where ¢« is the character associated to .Z, which factors through the
jacobian. Taking the half-Tate twist into account, along with the fact that pg(can) = 1 since
(29 — 2)A is a canonical divisor and characters are normalized to take the value 1 at A, it follows
that the determinant is trivial, as claimed. ]

We conclude this section by a (partial) generalization of Theorem 11.1 to the setting of general-
ized jacobians arising in geometric class-field theory. This gives a natural example of an application
of our results where the algebraic group G is not restricted to being either a torus, an abelian va-
riety or a unipotent group, but may involve all three of these fundamental building blocks (see
Remark 8.14). For simplicity, we will only deal with the case where C is not hyperelliptic.

THEOREM 11.5. Assume that the curve C is not hyperelliptic. Let S be an effective divisor on
the curve C. Let U be the complement of the support of S in C. Let A be a divisor of degree one
on U. Let Jg be the generalized jacobian of C relative to the divisor S, and let sa: U — Jg be the
natural immersion defined by x — (x) — A.

Let Mg be a semiperverse object on U, mized of weights < 0 and put M = saiMy. Let d be the
tannakian dimension of the semisimplification M of the part of *5#°(M) which is pure of weight 0.
Assume that M is non-zero.

Then we have d > 2, and either the arithmetic tannakian group ofl\N/[ contains SLy or G%/r[i 18
virtually central in GLg.

PROOF. We note that M is a semiperverse object on Jg since sp is quasi-finite, and is mixed
of weights < 0 by the Riemann Hypothesis.

To check that d > 2, we use the general Euler—Poincaré characteristic formula (see Theo-
rem C.2) as in (11.1), to conclude. We then need only observe that sp is a Sidon morphism by
Proposition 8.13, and apply Larsen’s Alternative. g

REMARK 11.6. (1) Since we do not know in general if perverse sheaves on the group Jg are
generically unramified, the corresponding equidistribution statement is currently restricted to the
distribution of the arithmetic Fourier transforms

Z tM(xQ kn)X(x>
z€U(ky)
for x € Jg(kn).
(2) Again because the group Jg is a priori fairly arbitrary here, we can not exclude the possibility
that G“ﬁ‘ is virtually central (e.g., finite), since we do not have currently a general version of

1 Which can also easily be recovered from the theory of local constants, applying the results of Deligne and
Laumon (see Appendix C).
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Proposition 8.22. (In our case, since the jacobian of C is a non-trivial quotient of Jg, we can expect
that the statement should indeed extend.)

(3) It is possible that M is zero; in this case, we have of course d = 0, and the tannakian group
is trivial.

11.2. The intermediate jacobian of a cubic threefold

Our second application involving abelian varieties is related to a very classical and important
construction in algebraic geometry, that of the intermediate jacobian of a smooth cubic threefold,
which was used by Clemens and Griffiths to prove that these threefolds, over C, are not rational
(although they are unirational).

The geometric setting, which over finite fields goes back at least to the work of Bombieri and
Swinnerton-Dyer [10] (computing the zeta function of smooth cubic threefolds over finite fields) is
the following.

Let k be a field of characteristic different from 2, and let X C Pi be a smooth cubic threefold
over k. We denote by F(X) the Fano scheme of lines in X, which is a smooth projective and
geometrically connected surface over k (see, e.g., [5, §4] or [10, Lem. 3] or [2, Cor.1.12, Th. 1.16];
this uses the fact that the characteristic is different from 2). Let then A(X) be the Albanese variety
of F(X), which is known to be isomorphic to the Picard variety of F(X) (see, e.g. [61, Cor.4.3.3]).
It has dimension 5, and if the base field is contained in C, then the analytification of A(X) is
canonically isomorphic to the intermediate jacobian J(X) of Griffiths, which is defined analytically
in terms of Hodge theory (this is due to Murre; see [5, Prop. 9]).

The Albanese morphism s: F(X) — A(X) is a closed immersion, according to a theorem of
Beauville [5, p.201, cor.]. If we view A(X) as the Picard variety, then the morphism s can be
identified geometrically with the map sending a line [ € F(X) to the divisor defined by the curve
Cs which is the Zariski-closure in F(X) of the set of lines I’ # [ such that I’ N[ is not empty.

The problem we consider is then the following: if k is a finite field of odd characteristic, what
is the arithmetic tannakian group of the perverse sheaf M = s,Q,[2](1) on A(X)? (It is perverse
because s is a closed immersion, as in previous similar examples.) The corresponding exponential
sums are then

SOMX) = 1 > x(s()
" 1ER(X) (kn)

—

for a character y € A(X) (k).

Up to correcting a small oversight, the following answer is the analogue over finite fields of a
result of Kramer over C (see [91, Th.2]).

PROPOSITION 11.7. Let k be a finite field of characteristic different from 2. Let X be a smooth
cubic threefold over k, and denote by F(X) the Fano scheme of lines in X, by A(X) the Albanese
variety of F(X), and by

s: F(X) = A(X)
the natural closed immersion.

Let £ be a prime different from the characteristic of k, and let M be the object M = 5,Q,[2](1)
on A(X). The connected derived subgroup of the arithmetic tannakian monodromy group of the

object M of the category P*" (A(X)) is isomorphic to the exceptional group Eg.

For the proof, we will use the following lemma, whose proof was communicated to us by
Beauville.
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LEMMA 11.8 (Beauville). With notation as above, there is no x € A(X) such that —s(F(X)) =
x + s(F(X)), and there is no non-zero x € A(X) such that s(F(X)) = z + s(F(X)).

Proor. We argue by contradiction.

For the first assertion, if x existed such that —s(F(X)) = z + s(F(X)), then the involution
a — —x — a of A(X) would induce an involution i of the variety F(X) with a finite number of
fixed points. The quotient variety F(X)/i is then a normal variety with only isolated ordinary
double points as singularities. In particular, it is Gorenstein (see, e.g., [35, Cor.21.19]), so its
canonical divisor Kp(x)/;, defined as the direct image of the canonical divisor of the smooth locus
of F(X)/i, is a Cartier divisor (see e.g [83, p.79]). Since the projection p: F(X) — F(X)/i is étale
outside of the set of fixed points, the canonical divisor of F(X) is K = p*(Kg(x)/;). This implies
that K? = 2(KF(X)/Z) is even. However, it is known that K? = 45, which is odd (see, e.g., [61,
Prop. 4.6]).

For the second assertion, note that s(F(X)) = z + s(F(X)) would imply that
s(F(X)) = s(F(X)) = z + s(F(X)) - s(F(X)),

so that the theta divisor ©(X) = s(F(X)) — s(F(X)) satisfies O(X) = z + ©(X). However,
Beauville [5, § 3, Prop. 2] showed that ©(X) is smooth except for a single singularity, so this equality
can only happen if x =0. O

REMARK 11.9. The cohomological analogue of this proposition is not true: for ¢ € {—1,1},
the cohomology class of es(F(X)) in HS(A(X)) is ©3/6, where © is the cohomology class of the
symmetric theta divisor s(F(X)) — s(F(X)) (the fact that s(F(X)) has the same class as —s(F(X))
is due to the fact that z — —z acts trivially on even-degree cohomology groups; the computation
in terms of © is explained, e.g., in [61, Cor.5.3.12, (1)]).

We now give a proof of Proposition 11.7 adapting Krédmer’s argument over C, the key point
being the recognition criterion of Eg in Proposition 8.19.

PROOF. Since F(X) is a smooth, projective and geometrically connected surface, the object M
is a simple perverse sheaf on A(X). The tannakian dimension of M is equal to the Euler—Poincaré
characteristic of M over k (Proposition 3.21), which is equal to the Euler-Poincaré characteristic
of the Fano surface F(X), which is 27 (a result of Fano, see, e.g., [2, Prop. 1.23]).

Let ©(X) be the theta divisor s(F(X)) — s(F(X)) in A(X), and i: ©(X) — A(X) the closed
immersion. The object M x MY contains the object N = i,Q,[1] by the decomposition theorem
(see [91, proof of Th.2]). This is also a simple perverse sheaf since © is a geometrically irreducible
divisor (see, e.g., [5, Prop.2]). The tannakian dimension of N can be computed as in [91, Cor. 6]
(or by lifting to characteristic 0, as can be done as in [10, Proof of Lemma5]), and is equal to 78.

To conclude using Proposition 8.19, applied to the connected derived subgroup G of G,
it suffices therefore to check that G still acts irreducibly on the 27-dimensional representation
corresponding to M.

To see this, note that the neutral component (Gf{}}i)o acts irreducibly by Corollary 5.9 combined
with Lemma 11.8. Then its derived group G must also act irreducibly since

(Gif)°=C-G
for some torus C, which is central by irreducibility. O
It is natural to ask whether this proposition can also be proved using the fourth moment
criterion of Proposition 8.20 instead of Kramer’s criterion.
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We have not fully succeeded in doing so, but we can show that the question translates to an
interesting geometric property of the cubic threefolds. Conversely, this property follows in fact
from the previous proof, as we will now explain.

In order to apply Proposition 8.20, we need to check that the object M is not self-dual, that it
has tannakian dimension 27 and that its fourth moment is M4 (G}}') = 3.

Lemma 11.8 implies that M is not self-dual. The second property is derived as in the beginning
of the previous proof. Now we attempt to compute the fourth moment.

We write F = F(X) and A = A(X). We use the diophantine interpretation of the fourth
moment. Summing over all characters, we find as usual using orthogonality that for n > 1, the

formula
1 L1
Ay 2 SOLIT= 2 !

XEA (kn) (11,14 EF (kp)*
s(l1)—s(l2)=s(l3)—s(lg)

holds. We rewrite this in the form
1
[k (11,l2)€ZF(/’fn)2 N
where
N(l, l2) = [{(I3,la) € F(ka)* | s(l1) = 5(l2) = s(I3) — s(la) }]-
For s € F(ky,), we have
N(s, s) = [F(kn)l,

and hence

1 F(kn)|? 1
R X Now= SR S N

(l1,12)€F (kn)? 11 #12€F (kn)

Since F is a geometrically irreducible surface over k, the first term converges to 1 as n — 4o0.
To handle the second term, consider the morphism given by the first projection
f:F2x,F? - F2?
where the fiber product is defined by the morphisms (I1,12) +— s(l1)—s(l2) and (I3,14) — s(I3)—s(l4).
We then have
N(l,lo) = |f 7l o) (k)| = 171 (0, L2) ()4
the number of fixed points of the Frobenius of k, acting on the fiber of f. The fiber product

F2 x 5 F2 contains the diagonal A = {(I1,12,11,12)}, and we denote by f the morphism obtained by
restriction

f:(F2xAF)—A - F2
We then deduce that
N(l1,15) =14 N(ly,lo)  where N(ly, 1) = [f ' (I1, o) (k)= |,

and hence
1 ‘F(kn”g |F(kn)|(|F(kn)| - 1) 1 N
E N(ly,1l5) = E N(ly,15).
|kn‘4 (17 2) |k3n|4 + |l€n|4 + |]€n|4 (1, 2)
(I1,l2)€F (kn)? 1 #£l2€F (ky)
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A theorem of Beauville [5, Prop. 8] implies that f is generically finite of degree 5. By the

Chebotarev Density Theorem (see, e.g., [78, Th.9.7.13]) it follows that
: 1 <
Jmomm o > Nk
ll7ﬁl2€F(kn)

is equal to the number of orbits of the Galois group of the Galois closure of f in its permutation
representation on the generic fiber of f.

The generic point 1 of F? is a pair of two disjoint lines n = (51, 52). Beauville showed that
the points (33,54) € F? such that (31,32, 83,54) is in the fiber over 7 are such that the lines 33
and Sy are contained in the intersection S of X and of the projective 3-space spanned by (1, 2).
Thus S is a smooth cubic surface, and the lines 53 and 54 are elements of the set A of the five lines
in S intersecting both s; and $»; for these geometric facts, see [5, p.203, rem. 2] or [61, proof of
Cor. 4.3.9].

We claim that the subgroup of the Galois group of the 27 lines which fixes the two lines §;
and sy is the Galois group of the set of seven lines {51,352} U A (see Lemma 11.11 below). Now it
follows from the work of Harris on Galois groups of enumerative problems (see [58, p.718]) that
this permutation representation is indeed transitive, in fact that it has image isomorphic to the
whole symmetric group Gs, if we take the base field to be C and the cubic threefold to be general.

One may expect this to also be true in our situation:

— the restriction of the base field should not be problematic (indeed, the fact that the
“generic” Galois group of the 27 lines on a smooth cubic surface is isomorphic to the Weyl
group of Eg, which is the starting point of Harris’s work, is known in all odd characteristics,
by work of Achter [1, Prop.4.8]);

— the (four-dimensional) family of hyperplane sections that we consider is dominant over the
(also four-dimensional) space of hyperplane sections of the cubic hypersurface X (indeed,
for any hyperplane H in P* intersecting X in a smooth surface, we can pick two distinct
lines (l1,12) in X N H, and the corresponding section is H N X);

— and the family of all hyperplane sections of X is probably general enough for the result of
Harris to extend. (This is in fact the most delicate point.)

If we assume that this expectation holds for X, then we would deduce that

1 ~
(11.2) lim = > Nyl =1
n—-+00 | n’ LAl eF (k)

holds, and hence conclude that

. 1
(11,12)€F (kn)?

Under this assumption, we therefore derive from Proposition 8.4 that M4(G§/?) < 3. Since M is
not of tannakian dimension 1, the fourth moment is equal to either 2 or 3. We can at least partially
exclude the first possibility as follows:

(1) For “most” cubic threefolds, the abelian variety A is absolutely simple (see Lemma 11.12
below for a precise statement). In this case, there are only finitely many characters x € A
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which are not weakly-unramified, and for which

1
SO0 = | 30 x| <l

" CEEF(kn)

so that
1 L
E Yoo syt < o —0
AR g 273 () "

as n — 400, and from Proposition 8.4, the computation we have performed actually means
that the fourth moment is equal to 3.

(2) We may use the beginning of Kramer’s proof to deduce that M*M" contains an irreducible
summand of dimension 78, which excludes the possibility that the fourth moment be equal
to 2.

So under the above assumptions, we conclude that M4(G§}F) = 3 and we can then apply
Proposition 8.20 (as in the previous argument, we use Corollary 5.9 to deduce that the neutral
component of G{}' still acts irreducibly).

Now, going backwards, if we use Proposition 11.7, then we do know that the fourth moment
of G{}' is equal to 3, since the tannakian group is Eg. It follows that, at least in the first of the
above two situations, the limit formula (11.2) must be true.

REMARK 11.10. In contrast with Theorem 11.1, Proposition 11.7 will not extend to compute
the fourth moment for perverse sheaves of the form s,M for a more general simple perverse sheaf
M on F(X). One can expect that, in this case, the fourth moment should be equal to 2, but this
seems difficult to prove.

We now state and prove the two lemmas we used above. The first one is certainly a standard
fact in the study of the 27 lines.

LEMMA 11.11. Let S be a smooth cubic hypersurface in P? over an algebraically closed field.
Let 11 and Iy be two disjoint lines in S. Let A be the set of the five lines in S intersecting both Iy
and ly. Any Galois-automorphism of the twenty seven lines that fizes the lines in {l1,la} UA is the
identity.

Proor. The key point in this computation is the fact that no line on S is disjoint from all lines
in A. More precisely, we use the classical description of S as a blow-up of P? in six points which are
in general position (see, e.g., [61, Prop. 3.2.3]), and the resulting partition of the 27 lines in subsets

Ei,....Eg
Lij, 1<i<j<6
Lq,...,Lg,
with incidences described as follows:
E; NL; # @ if and only if i # j,
E; NL;; # @ for any j,
L; NL; ; # @ for any j,
L;j N Ly # @ for {i,j} n{k, 1} = @,
all other pairs of lines being disjoint (see, e.g., [61, Rem. 3.2.4, 3.3.1]).
We choose the blow-up, as we may, so that [; = E; and Iy = Ey (see [61, 3.3.2]). We then have

A = {Li2,L3, Ly, L5, Lg}.
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Let o be a Galois automorphism which fixes the seven given lines. Since o respects incidence
relations, we see:

(1) For any i, we have o(E;) = E;. Indeed, assume that ¢ = 3 for simplicity, since all cases are
similar. Then E3 meets Ly, Ls, Lg, which implies that o(E3) also intersects these three
lines. But the only lines with this property are E;, Eo and Es; since o fixes the first two
of these, we have o(E3) = E3.

(2) For any i, we have o(L;) = L;. Indeed, assume that ¢ = 1; from the previous point, the
lines Ljo, Eo, ..., Eg, which all meet L, are fixed by o, so that (L) fixes all of them.
We see that the only line with this property is Li, so that o(L;) = L.

(3) For any i < j, we have o(L; ;) = L; ;. We consider the example of L; 3, the other cases
being similar. The lines Eq, E3, L;, L3 all meet L; 3, and hence (by the first two points)
also intersect o(L13). But this means that o(L;3) must of one of the L;;, and the only
one that has the desired property is Ly 3.

0

The second lemma concerns the “generic” simplicity of the intermediate jacobian. Explicit
examples that show that this property is not always valid are given for instance by Debarre, Laface
and Roulleau [25, Cor. 4.12]; for the Fermat threefold

a4+t =0
over F,,, with p > 5, the intermediate jacobian is isogenous to E®, where E is the Fermat curve
Yo+l +ys =0.
LEMMA 11.12. Let k be a finite field of characteristic p > 11. Let .# be the coarse moduli space

of smooth projective cubic threefolds over k. For any integer n > 1, let #s(ky) be the subset of
X € M (ky) such that the abelian variety A(X) is simple over ky,.

There exists § > 0 such that the asymptotic formula
| s (Ken)| = [ (Kn) (1 4 O([kn] =)
holds forn > 1.

PrROOF. Fix a prime ¢ invertible in k. Let .# be the lisse ¢-adic sheaf on .# parameterizing
the cohomology group H!(A(X)z, Q). The geometric monodromy group of .7 is the symplectic
group Sp;y by a result of Achter [1, Th.4.3] (based on semicontinuity of monodromy and the
extension to positive odd characteristic of a result of Collino [21] over C, which states that the
Zariski-closure of the image of .# in the moduli space o of principally polarized abelian varieties
of dimension 5 contains the locus 743 of jacobians of hyperelliptic curves of genus 5).

Using the method in [84, § 6, § 8], this implies that there exists § > 0 such that the set .#;(k,,) of
threefold X € .# (ky,) for which the characteristic polynomial of Frobenius acting on H!(A(X)z, Q)
is irreducible in Q[X] satisfies the asymptotic

| M(En)| = |2 (k)| (1 + O(Jkn| %))

for n > 1, and one deduces the lemma since #;(k,) C (k). O
REMARK 11.13. A qualitative form of the result, namely the equality
| A ()
1 —— =1
noteo [ (k)]

can be proved, mutatis mutandis, for finite fields of all odd characteristic. It also possible to improve
this estimate to obtain absolute simplicity.
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CHAPTER 12

“Much remains to be done”

We conclude this book with a selection of open problems (related to the results of this text)
and questions (concerning potential generalizations and more speculative possibilities).

(1)

(7)

12.1. Problems

Prove a version of the vanishing theorem where the size of the exceptional sets is controlled
by the complexity in all cases, and moreover where those sets have a clear algebraic or
geometric structure (similar to that of tacs for tori and abelian varieties).

Prove that any object is generically unramified for a general group, or find a counter-
example to this statement.

Establish functoriality properties relating tannakian groups of M on G (resp. N on H)
with those of f.M (resp. of f*N) when we have a morphism f: G — H of commutative
algebraic groups.

Study the situation in families over a base like Spec(Z).

Find additional and robust tools to compute the tannakian group, or at least to determine
some of its properties, which are applicable when Larsen’s Alternative is not. In particular,
find analogues (if they exist) of the local monodromy techniques for the Fourier transform
on G, (i.e, of the local Fourier transform functors of Laumon).

We note that recent work of Lawrence and Sawin [99] and Javanpeykar, Kramer, Lehn
and Maculan [66] computes the tannakian group of many objects of the form i,Q,[d]
on abelian varieties over C, where i: X — A is a closed immersion which is either a
hypersurface (in the case of [99]) or has dimension < (dim(A) —1)/2 (in the case of [66]).
It should be possible to extend their results to the situation over finite fields, and it would
be interesting to see if it also leads to more cases with other perverse sheaves with similar
support conditions.

Construct interesting concrete perverse sheaves where the tannakian group is an excep-
tional group. In this direction, we note that automorphic methods have been used by
Heinloth, Ng6 and Yun [60] to construct sheaves on G, with any of the exceptional groups
as geometric monodromy groups, hence (taking inverse Fourier transforms of these) also
to sheaves with these as tannakian groups. Moreover, Katz has shown the existence of
examples involving Gq, for G, [68, Th.11.1], Gy, [74, Ch.26,27] and on some elliptic
curves [76, Th.4.1]. In the case of G,,, his result is of a “statistic” nature: in a certain
family of objects whose trace functions are related to hypergeometric sums evaluated at
a fized a, he shows that for “most” values of a in G, the tannakian group is Go. After
the first draft of this book was written, Zurbuchen [129] improved this result by showing
that (as expected by Katz) any (non-zero) value of a has the desired property, provided
the characteristic of the finite field is large enough.

Find further applications!
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12.2. Questions

Many of the following questions are rather speculative and much more open-ended that the
problems above. They may not have any interesting answer, but we find them intriguing.

(1)

For a given G, what are the tannakian groups that may arise?

This is motivated in part by the striking difference concerning finite groups between G,
and G,,, or abelian varieties. In the former case, the solution of Abhyankar’s Conjecture
gives a characterization of which finite groups will appear, and a recent series of works
of Katz, Rojas-Léon and Tiep has shown that there are many possibilities, even when
one restricts attention to Fourier transforms of general hypergeometric sheaves (see for
instance [79]) and G,,). On the other hand, we have already mentioned that Katz proved
that finite cyclic groups are the only possible finite geometric tannakian groups on Gy,
and Corollary 5.10 is a statement going in a similar direction for abelian varieties (although
not yet as precise since it requires a priori that the arithmetic tannakian group be finite).

For a given group G, if M is a semisimple perverse sheaf associated to a semisimple
lisse sheaf F on an open dense subset of G, what (if any) are the relations between the
“ordinary” monodromy group G of F and its tannakian groups?

In particular, suppose that .# has finite monodromy group; what constraints does that
impose on the tannakian group of M? We note that there is one “obvious” relation: the
tannakian group acts irreducibly on its standard representation if and only if the lisse
sheaf .% is irreducible.

Since this last fact amounts to the discrete Plancherel formula, or equivalently to a
relation between the second moments of both groups, a more specific question could be:
are there non-trivial inequalities between the moments of the monodromy group of .% and
those of the tannakian group? For instance, does there exist a constant ¢ > 0, independent
of the size of the finite field k&, such that

M4(G18\L/1P) < My (G), and (or) My(G) < CM4(G18\”21) 2

One can get trivial bounds, similar to the bounds for the norm of the discrete Fourier
transform on G(k,) when viewed as a map from L?™(G(k,)) to L>™(G(k,)) for m > 1
and n varying, but this norm has been determined by Gilbert and Rzeszotnik [54, Th. 2.1]
and depends on n. (On the other hand, a referee has pointed out that certain heuristic
examples indicate that the question is most likely “No”, and it will be interesting to
confirm this rigorously.)

Of course, the meaning of “relation” between the ordinary and tannakian groups could
encompass very different aspects, and it is of interest to note that the papers of Lawrence
and Sawin and of Javanpeykar, Kramer, Lehn and Maculan use their computations of
tannakian groups of certain objects on abelian varieties to study the ordinary monodromy
groups of families of subvarieties of abelian varieties (see [99, Th.5.6] and [66, Th. 4.10]
for details).

Can one construct a “natural” fiber functor w on the tannakian category for G, similar to
Deligne’s fiber functor for Gy, ?

This would lead to a definition of Frobenius conjugacy classes for all characters (by
considering for any y the conjugacy class in G corresponding to the fiber functor defined
by M — w(M,)), and potentially provide useful extra information to help determine the

tannakian group. But note that this is not even clear in the case of G,.
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(4)

Can one find an a priori characterization of the families (fn)n>1, where fy: @(kn) — C is
a function, that arise as the arithmetic Fourier transforms of trace functions of complezes,
or of perverse sheaves, on G?

More generally, is there a natural “geometric” object, with appropriate notions of
sheaves, etc, on the “space” of characters of G? A crucial test for such a geometric
interpretation of the discrete Fourier transforms would be the definition of an inverse
transform.

This geometric description exists when G is unipotent, since the Serre dual GV is
also a commutative algebraic group, and the Fourier transform is defined as a functor
from DP(G) to D2(GY), but such a strong “algebraicity” property does not hold for other
commutative algebraic groups (see for instance [15, Example 1.8], or Remark 5.3).

There are however some hints in a more positive direction:

(a) Gabber and Loeser [50, Th. 3.4.7] have characterized perverse sheaves on tori in terms
of the structure of their (coherent) Mellin transforms (which can also be defined for
semiabelian varieties), and Loeser [103, Ch. 4] has defined a variant over finite fields
taking the Frobenius automorphism into account.

It would be of considerable interest to understand better the (essential) image of these

Mellin transforms, and to obtain a geometric form of Mellin inversion in this context.

(b) Considering the well-established analogy of ¢-adic sheaves with Z-modules (the basic
setup of Katz’s work [69]), it is well-understood in the complex setting that the Mellin
transform of a Z-module is a difference equation (e.g., the Mellin transform I'(s) of
the exponential satisfies the difference equation I'(s + 1) = sI'(s)); see for instance
the paper of Loeser and Sabbah [104].

Is there an analogous theory for non-commutative algebraic groups?

For instance, let G be a reductive group over a finite field k, such as SLg4(k). Deligne—
Lusztig Theory parameterizes the irreducible representations of G(ky,) (or some other more
convenient basis of the f-adic representation ring) in terms of pairs (T,#) of a maximal
torus of G over k and a character 6 of T(k) (see for instance [19, Ch.7]), and the cor-
responding series of representations have (essentially) constant dimension as 6 varies, so
that the character values in such series are suggestively sums of a fixed number of roots
of unity. The theory of character sheaves of Lusztig gives a geometric form of this theory.

Are there equidistribution statements for the Fourier coefficients of suitably algebraic
conjugacy-invariant functions on G(k,)? In the case of characteristic functions of conju-
gacy classes, this might lead to interesting consequences concerning the error term in the
Chebotarev Density Theorem for Galois extensions with Galois group of the form G(ky,).

In the case of (possibly non-commutative) unipotent groups, the Serre dual still exists
as a unipotent group; a theory of character sheaves, and of the Fourier transform has been
studied by Lusztig and Boyarchenko—Drinfeld (see for instance the survey [15]).

Is there an analogue of automorphic duality for other groups than G, ?

What we mean by this is the following: in the case of a simple middle extension
sheaf .# on G, over a finite field k£ that is pure of weight zero and not geometrically
isomorphic to an Artin—Schreier sheaf, there is (by the Langlands correspondence, due to
Lafforgue in this generality) an automorphic representation 7 on some general linear group
over the adele ring of k(¢) such that (among other properties) the L-functions of (twists
of) m coincide (up to normalization) with those of (twists of) the Fourier transform of 7.
Automorphic methods and results are then available to study the Fourier transform of .%#.
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If G is a commutative algebraic group which is different from G, are there objects
of a similar nature as automorphic forms and representations that would “correspond” to
the arithmetic Fourier transform of suitable perverse sheaves on G? Such objects would
presumably have some kind of L-function, which would coincide with the L-function that
we have defined. In particular, is there such a theory for G,,?
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APPENDIX A
Review of perverse sheaves

In this appendix, we summarize the basic definitions and facts about f-adic perverse sheaves.
The fundamental reference for this material is the work of Beillison, Bernstein, Deligne and Gab-
ber [8]. Other useful summaries of perverse sheaves are provided by Katz in [70, §2.1t02.3] and
in [72, §1.1,1.2,1.5]. For basic material on trace functions in this context, see also [98, §1.1].

A.1. Complexes of /-adic sheaves

In this appendix, we work over a field k of characteristic p and fix a prime ¢ # p. For X a
separated scheme of finite type over k, one can define the triangulated category of complexes of
(-adic sheaves DP?(X) = D?(X, Q,).

For M € DP(X), we write 7" (M) for the n-th cohomology sheaf of M, which is an f-adic
constructible sheaf. We denote by 7™ and 72" the truncation functors; for every object M, we

have canonical maps 7<*(M) — M and M — 72"(M). The composite functor 72°07<Y is canonically

isomorphic to M — #°(M).

For varying X, the categories DP(X) satisfy all the properties of Grothendieck’s formalism of
the six functors (see [28, 1.12] or [8, 2.2.18] in the case when k is finite or algebraically closed,
which suffices for this book).

More precisely, D2(X) is endowed with two bifunctors
(M,N) = RHom(M,N),  (M,N) - M®N
from D2(X) x D2(X) to D2(X), and for a morphism f: X — Y of finite type, we have functors
M — Rf.M M — RAM
from D?(X) to D2(Y), and functors
M M Me f'M

from D2(Y) to D2(X). These functors satisfy the usual compatibilities and adjunctions.

The dualizing complex for X is defined to be s'Q,, where s: X — Spec(k) is the structure
morphism, and the Verdier dual of M € D2(X) is D(M) = RHom(M, s'Q,). When X is smooth of
pure dimension d, there is a canonical isomorphism

(A1) Slﬁz = Qz(d) [2d].

Let s: X — Spec(k) be the structure morphism. For any object M of D2(X) and i € Z, the i-th
cohomology group of X with coefficients in M (resp. cohomology group with compact support of X
with coefficients in M) is given by

H(X,M) = #(s,.M),  HLX,M) =" (M),
where we identify /-adic sheaves on Spec(k) with Q,-vector spaces.
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When X is a smooth curve, two other important results (the Euler—Poincaré characteristic
formula and Laumon’s product formula for epsilon factors) which are used in this book will be
reviewed in Appendix C.

A.2. Perverse sheaves

DEFINITION A.1. A complex M € DP(X) is said to be semiperverse if its cohomology sheaves
satisfy
dim supp (£ (M)) < —i for every i € Z,
and M is said to be perverse if both M and D(M) are semiperverse (see [8, (4.0.1)]).

We denote by Perv(X) the full subcategory of perverse sheaves in D2(X), by PD<0(X) the full
subcategory of semiperverse sheaves, and by PD>%(X) the full subcategory of objects M such that
D(M) is semiperverse.

THEOREM A.2. The data of PDSO(X) and PDZ°(X) give rise to a t-structure on D2(X). Its
heart Perv(X) = PD<Y(X) NPDZ(X) is therefore an abelian category.

ExXAaMPLE A.3. Suppose that X is smooth of pure dimension d, and let .% be a lisse f-adic sheaf
on X. Then the complex .Z|[d] (i.e., the sheaf .Z put in degree —d) is a perverse sheaf.

Indeed, .7 [d] is clearly semiperverse and by (A.1), we see that D(Z#[d]) = % "(d)[d], where .Z"
is the dual lisse sheaf of .#, so the dual of .#[d] is also semiperverse.

If M is a complex in DE(X) with support Y C X, then there exists an open dense subset U
of Y such that the restriction of M to U is lisse, i.e., all of the cohomology sheaves of M|U are lisse
sheaves. We then say that M is lisse on U.

One also defines
PDS"(X) = PDSY(X)[n] and PD>"(X) = PD>°(X)[n].

The inclusion functors PD<"(X) € DP(X) and PD>"(X) € DE(X) admit right and left adjoints,

called the perverse truncation functors, which are denoted
Pr<: DP(X) — PDS*(X) and Pr7": D2(X) — PD="(X).

DEFINITION A.4. The n-th perverse cohomology sheaf of a complex M € DB(X) is the perverse

sheaf
P(M) = 759720(M[n]) € Perv(X).

Given a distinguished triangle M — N — L — in D2(X), we have a long exact sequence
(A.2) ce S PAHM) = PAHN(N) = PNL) = P TTI M) = -
of perverse cohomology sheaves.

Let M be a perverse sheaf on X. From general principles, there are convergent spectral sequences
(A.3)  EBN!=HP(X,"#1M)) = HTI(X, M), ERY = HP(X, P79 (M)) = HETI(X, M),
which are called the perverse spectral sequences.

We also have an equality
(A.4) M=) (1) P9 (M)

JEZ
in the Grothendieck group K(X) (see, e.g., [98, (0.8)]).

As with the standard t-structure, perverse cohomology sheaves give a criterion to check whether
a complex is semiperverse.
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LEMMA A.5. A compler M € D2(X) is semiperverse if and only if P2 (M) = 0 for all integers
12> 1.

See [8, Prop. 1.3.7] for the proof.
DEFINITION A.6. An exact! functor from D?(X) to DP(Y) is said to be left t-exact (vesp. right

t-eract) if it sends PDZ(X) to PDZ(Y) (resp. PDS?(X) to PDSO(Y)). It is said to be t-evact if it
is both left and right ¢-exact.

The following important result is a direct consequence of Artin’s cohomological vanishing the-
orem (see [8, Th.4.1.1]).

THEOREM A.7. Let f: X = Y be an affine morphism, then R f. is right t-exact and R fi is left
t-exact.

Since a closed immersion i is affine and proper (so that Ri, = 4;), we obtain as corollary:

COROLLARY A.8. Ifi is a closed immersion, then i, is t-exact.

More generally (see [8, Cor.4.1.3]), the functors f; and f, are t-exact if f is quasi-finite and
affine.

A central result is the construction of the intermediate extension, see [8, Cor. 1.4.25].
PRrROPOSITION A.9. Let j: U — X be a locally closed immersion. Let M be a perverse sheaf on U.

Then there exists a unique perverse sheaf ji.(M) on X, called the middle extension or intermediate
extension of M, such that

— There exists an isomorphism j*ji. (M) ~ M.
— The perverse sheaf ji.(M) is supported on the closure U of U.
— The perverse sheaf ji.(M) has no subobject and no quotient supported on U —U.

The most important example of this construction is when j: U — X is a dense open immersion,
with U smooth of pure dimension d, and M = .%[d] for a lisse sheaf .#. Note that the uniqueness
implies that D(j1..#[d]) = j1..# " (d)[d]. When .# = Q, is the constant sheaf on U, then j,.Q,[d] is
called the intersection complex of X.

ExaMPLE A.10. Let X be a curve, U a dense open subset of X contained in the smooth locus
of X and .7 a lisse sheaf on U. Then j..Z[1] = R%j..#[1], where j: U — X is the open immersion.

The fundamental result concerning the category of perverse sheaves is the following theorem [8,
Th.4.3.1].

THEOREM A.11. The category Perv(X) is artinian and noetherian, i.e., all objects are of finite
length. Its simple objects are of the form ji..#[d] where j: U — X is a locally closed immersion
with U smooth irreducible of dimension d and .% is an irreducible lisse sheaf on U.

EXAMPLE A.12. Let X be a smooth and geometrically connected curve. Following Katz [69,
§7.3], a constructible sheaf .# on X is called a middle extension sheaf if, for any dense open
set U of X such that % is lisse on U, with open immersion j: U — X, the canonical morphism
F = juj*F is an isomorphism.

There is a one-to-one correspondence between irreducible middle extension sheaves and simple
perverse sheaves on X with support equal to X; for a middle extension sheaf .%, the corresponding

1 Namely, a functor that commutes with shift and preserves distinguished triangles.
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simple perverse sheaf is .#[1]. Conversely, for a simple perverse sheaf M with support equal to X,
of the form j..#[1] as in the theorem, the corresponding (irreducible) middle extension sheaf is
JxZ.

For simple perverse sheaves, the bounds on the dimension of the support of the cohomology

sheaves have an “automatic improvement” from the bound given by the semi-perversity, except
for 7~ dim(X),

PROPOSITION A.13. Let M be a simple perverse sheaf on X which is not punctual. Then for
any i # — dim(supp(X)), we have

dim supp(#*(M)) < —i — 1.

ProOOF. This results from the classification of simple perverse sheaves and from the general
description of the intermediate extension functor in [8, Prop.2.1.11]. O

ExaMPLE A.14. In the case of a curve, this property can be seen from Example A.10, since in
that case any simple perverse sheaf which is not punctual is supported on a dense open subset.

We thank S. Morel for communicating us a proof of the following lemma (see also [72, Sub-
lemma 1.10.5]).

LEMMA A.15. Let k be an algebraically closed field. Let X be an irreducible projective variety
of dimension d over k, and let M be a simple perverse sheaf on X such that H*d(X, M) is non-zero.
Then the support of M is X and there exists an open immersion j: U < X such that M = j,Q,[d].

PROOF. By the classification of simple perverse sheaves in Theorem A.11, there exists a locally
closed immersion j: U < X and a simple lisse sheaf .# on U such that M = j,.Z[dim(U)].
The cohomolog H*(X, M) vanishes unless |i| < dim(U) (see [8, 4.2.4]), so the assumption implies
that dim(U) = d. Besides, the formula for intermediate extensions from [&, 2.1.11] implies the
vanishing ##*(M) = 0 for i < —d. From the spectral sequence

B = HP(X, #7(M)) — HPHI(X, M),

we then get an isomorphim H~(X, M) ~ H%(X, #~%¢(M)). The non-vanishing of this cohomology
group implies that s#~%¢(M) has a global section. Hence, .# has a global section and is therefore
trivial. O

A.3. Weights

In this section we assume that k is a finite field of characteristic p, and denote by k an algebraic
closure. We also fix an isomorphism ¢: Q, — C.

Let ¢ be a prime power and let w € Z be an integer. An element x € Q, is said to be a g- Weil
number of weight w if it is algebraic over Q, and if all the complex conjugates of ¢«(z) are complex
numbers with modulus ¢%/2.

Let X be a separated scheme of finite type over k and .% a Q,-sheaf on X. Let z be a closed point
of X, with residue field k(z). Viewing k(z) as a subfield of the fixed algebraic closure & of k defines a
geometric point Z: Spec(k) — X supported at . The geometric Frobenius automorphism, inverse
of y — y*®) in Gal(k/k), acts on the stalk .%; of .# at Z. We denote by Fr, this endomorphism of

Zz, which is well-defined up to conjugacy.

_ DEFINITION A.16 ([28, 1.2], [8, 5.1.5]). Let X be a separated scheme of finite type over k, 7
a Qg-sheaf on X, and M an object of DP(X).
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(1) The sheaf .Z is punctually pure of weight w if for every x € |X|, the eigenvalues of Fr, are
|k(2)|-Weil numbers of weight w.

(2) The sheaf . is mized if it admits a finite filtration with successive quotients that are
punctually pure. The weights of the non-zero quotients are called the punctual weights
of 7.

(3) The complex M is mized if all its cohomology sheaves are mixed. It is mized of weights
< w if for every i € Z, the sheaf J#'(M) is mixed with punctual weights < w + 4. It is
mized of weights > w if its Verdier dual D(M) is mixed of weights < —w.

(4) The complex M is pure of weight w if it is both mixed of weights < w and of weights > w.

REMARK A.17. Deligne also defines (-weights and ¢-pure or mixed sheaves and complexes for
any fixed isomorphism ¢; the notion above means that the objects are (-pure for all ¢ (see [28,
1.2.6]).

We write D, (X) and Dx,,(X) for the full subcategories of D2(X) of objects mixed of weights
< w and > w. Thanks to the shift in the definition, one has in particular D<,[1] = D<yt1-

ExaMpLE A.18. (1) Suppose that X is smooth of pure dimension d, and that M € D2(X) is
such that all its cohomology sheaves are lisse on X. Then M is pure of weight w if and only if each
sheaf 7#*(M) is punctually pure of weight w + 1.

(2) The characterization of (1) does not apply in general. For instance, let X = A be the affine
line, and j: G,, — X the open immersion. Let M = (j. Klz)[1](1/2) be the Kloosterman sheaf
of rank 2 shifted to be in degree —1 and Tate-twisted to be of weight 0 (see (B.2)). Then M is
pure of weight 0. However, the cohomology sheaf /#~1(M) = j, Kla(1/2) is not punctually pure of
weight —1: indeed, the stalk of this sheaf at 0 has rank 1 with a Frobenius eigenvalue of weight —2.

(3) If .# is a middle extension sheaf on X (see Example A.12 for the definition), we say that %
is pure of weight w if the perverse sheaf M[dim(X)](dim(X)/2) is pre of weight w. This is equivalent
to the condition that the restriction of .% to any dense open set where it is lisse is punctually pure
of weight w.

Deligne’s main theorem in [28, 3.3.1, 6.2.3], which directly implies the most general form of the
Riemann Hypothesis over finite fields, is the following:

THEOREM A.19 (Deligne). Let f: X — Y be a separated morphism of schemes of finite type
over k. Then the functor Rfi sends Deyy(X) to Dey(Y).

Using duality, one gets the following list of compatibilities of the different functors on D2(X)
(see [8, 5.1.14)):
(1) Rfi and f* preserve D¢y;
(2) Rf. and f' preserve Ds,;
(3) ® sends D<y, X Dy 10 Dy
(4) RHom sends D<y, X D>y t0 Doyt
(5)

5) Verdier duality exchanges D¢, and D>_,,.

A.4. Trace functions

We continue with the notation of the previous section, so that X is an algebraic variety over a
finite field k.
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Let M be a complex in D2(X). For any integer n > 1 and x € X(k,), the stalk Mz of M
at a geometric point Z above x is a complex of finite-dimensional Q,-vector spaces, with only
finitely many non-zero cohomology spaces. The geometric Frobenius Fry, of &, (the inverse of the
automorphisme a — al*»l of k,) acts on Mz, and this action is independent of the choice of Z up
to conjugacy. We denote

ta(zikn) = (1) Tr(Fry, | 7 (M)z),
i€z

which is also independent of T above x.

Whenever we have fixed the isomorphism 19: Q, — C (as in the whole of the main text, see
Section 3), we will view the trace function as a function X(k,) — C whenever convenient.

DEFINITION A.20. The trace function ty of M is the data of the whole family of functions
(tM('; kn))n}l-

REMARK A.21. We will sometimes write simply ty(x) for ty(z; k), when x € X(k).

Viewing X (k) as a subset of X(k), we will also sometimes denote the stalk of M simply by M,
instead of introducing explicitly a specific geometric point over x.

Let f: X — Y be a morphism of algebraic varieties over k. The following properties holds for
objects M; and M of D2(X) and N of D2(Y):

tg, =1 (Qy in degree 0)

Imik) = (—1)*tur, IM(w) = q "ty
tv, = tm, +tvy  for any distinguished triangle M; — My — Ms —,
IM1@M2 = tM;EM,
tpen=tnof, e trn(zikn) =tn(f(2);ky) for all n > 1 and = € X(ky,)
tRf!M(y; kn) = Z tM(:U;kn)'

zeX(kn)
f(@)=y

The last of these properties is a form of the Grothendieck—Lefschetz trace formula (see [62,
Exp.III, §4]). Applied to a complex M and to the structure morphism X — Spec(k), it takes the
customary form

(A'5> Z tm(z; kn) = Z(_l)i Tr(Frg, ‘ ch(Xfw M))

z€X(kn) i€z
Suppose that M is a semisimple perverse sheaf which is pure of weight 0. Then by a result of
Gabber (see [115, proofof Prop. 6.40]), the equality
(A.6) toa (3 kp) = tm(z; kp)

holds for all n > 1 and = € X(k,).
We also recall a useful injectivity statement:

PROPOSITION A.22. Let My and My be objects of D2(X). The trace functions of My and Ma
coincide, in the sense that
tny (75 kn) = ta, (75 k)
for alln > 1 and all x € X(ky,), if and only if the classes of My and My in the Grothendieck
group K(X) are equal. In particular, if M and N are semisimple perverse sheaves, then M and N
are isomorphic.
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Moreover, the classes of simple perverse sheaves form a basis of the Z-module K(X).

This is proved in [98, Th.1.1.2].
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APPENDIX B
The arithmetic Mellin transform over finite fields

We summarize here the most important results of Katz [74] concerning the arithmetic Mellin
transform on G,,. These results are used in various places in the book.

B.1. The category P

Let k be a finite field with algebraic closure k and with finite extensions k, /k for n > 1.

Katz defines a category P as the full subcategory of the category of perverse sheaves on G,
over k whose objects are perverse sheaves N such that, for any perverse sheaf M on G,,, the
objects M # N and M %, N are both perverse (see [74, Ch.2] and [70, 2.6.2]). Katz proved that a
perverse sheaf N is an object of P if and only if it admits no shifted Kummer sheaf % [1] as either
subobject or quotient (this follows, e.g, from the combination of [70, Lemma2.6.13, Lemma 2.6.14,
Cor. 2.6.15]).

The category Pai is defined as the full subcategory of perverse sheaves on Gy, over k whose
objects are those perverse sheaves N such that the base change of N to k is an object of P ([74,
Ch.4]).

Using the correct notion of exactness from the work of Gabber and Loeser, the categories Py
and P are neutral tannakian categories with the middle convolution

M #ipt N = Im(M % N — M #, N)

as tensor operation (see [50, p.535]).

The tannakian dimension of an object of P is its Euler—Poincaré characteristic.

B.2. Deligne’s fiber functor and Frobenius conjugacy classes

One remarkable canonical fiber functor on the tannakian category P is given by a theorem of
Deligne.

THEOREM B.1 (Deligne). Let k be a finite field with algebraic closure k. Let jo: Gy, — Al be
the open immersion. Then the functor

wpel: M — HO(A}, jorM)

s a fiber functor on the category P.

This is [74, Th. 3.1 and Appendix].

Let N be an object of P,;; which is arithmetically semisimple and pure of weight 0. Let G%ri
be the tannakian group of the tannakian subcategory of Pari generated by N. Using Deligne’s fiber
functor and the tannakian formalism, Katz defines a Frobenius conjugacy class Fry k, (x) in G{*
for any n > 1 and any ¢-adic character x of k,° by considering the fiber functor wy : M — wpe(My)
(see [74, Ch.5]).
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B.3. Finite tannakian groups

THEOREM B.2 (Katz). Let k be a finite field with algebraic closure k. Let N be a perverse sheaf
in the category Pai. Assume that N is arithmetically semisimple and pure of weight 0.

(1) If every Frobenius conjugacy class of N is quasi-unipotent, then the object N is punctual.
(2) If the geometric tannakian group of N, i.e., the tannakian group of the tannakian subcat-
egory of P generated by N ® k, is finite, then the object N is punctual.

These statements are [74, Th6.2 and Th. 6.4].

B.4. Hypergeometric complexes and sheaves

Katz has also classified the perverse sheaves on G, with tannakian dimension 0 and 1. Indeed,
since the tannakian dimension is equal to the Euler—Poincaré characteristic in this case, the question
is to classify simple perverse sheaves M on G, with x(M) =0 or 1.

For Euler—Poincaré characteristic zero, we have:
PROPOSITION B.3. Let k be an algebraically closed field of characteristic p > 0 with p # .

Let M be a simple perverse sheaf on Gy, with x(Gu, M) = 0. Then there exists a tame character x
of Gy, such that M is isomorphic to 2, [1].

This is [69, Prop. 8.5.2].

Katz has furthermore shown that the objects with Euler—Poincaré characteristic 1 are exactly
the hypergeometric complezes on G, defined in [69, 8.2, 8.3].

We recall the definition and notation for hypergeometric complexes. Let k be a field of pos-
itive characteristic. Fix a pair (m,n) of non-negative integers and a non-trivial ¢-adic additive
character ¢ of a finite subfield of k. Denote by j: G,, — A the open immersion. Let

X:(Xlw"aXn)a Q:(Ql7"'agm)

be two tuples of tame f-adic continuous characters 7t (G,,) — Q@ Denote by ¢ the inverse of 1
and write

X:(Xl_la"wX;Ll% @:(&Ql_17agr:zl)
The hypergeometric complez Hyp(!,,x; @) in D2(G,,) is then defined inductively as follows:
(1) If (m,n) = (0,0) then Hyp(!, %, @; @) is the skyscraper sheaf supported at 1.

(2) If (m,n) = (1,0) then Hyp(!, 9, x; @) = j*(Ly) ® L [1].
(3) If (m,n) = (0,1) then Hyp(!,%, @, 0) = inv*(j*(ZL) @ Lp)[1].
(4) If (m,n) = (m,0) with m > 2 then Hyp(!, v, x; @) is the convolution

Hyp(!, 9, x1: @) #1 -+ Hyp(L, ¥, x5 @).
(5) If (m,n) = (0,n) with n > 2 then Hyp(!, ¢, &; ) is the convolution

Hyp(!, ¢, &5 01) * - - - * Hyp(!, ¥, &; 0p).

(6) In the general case, we have

Hyp(!, ¢, x; @) = Hyp(!, ¢, x; @) + Hyp(!, ¢, @; 0).
For A € k*, define also

Hyp,(1, ¥, x; @) = [z = Az Hyp(!, ¥, x; 0)-
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It follows from these definitions that the general convolution formula

Hyp, (L4, x; @) 1 Hyp,, (1, ¥, X’; @) = Hyp,, (L, ¥, x, x5 0, @)
holds.

Let K be an extension of k. We say that a complex M on G, over K is hypergeometric over k
if there exists A € k*, an additive character 1, and families of tame multiplicative characters x
and g over k such that M ® K is isomorphic to Hyp, (!, 1, x; ©), where the characters involved are
defined on G, over K by composition with the canonical morphism 7} ((Gy,)k) — 7 ((Gm)k)-

Before stating some of the main results concerning hypergeometric sheaves, we need a further
definition: the tuples x and g are said to be disjoint if (n,m) # (0,0) and x; # ¢; for all i and j.

THEOREM B.4 (Katz). Assume that k is algebraically closed.

(1) If the tuples x and o are disjoint, then Hyp, (!, %, x; @) is a simple nonpunctual perverse
sheaf of Euler characteristic 1 on Gy,.

(2) Let K be an extension of k and K an algebraic closure of K. Let M be a simple perverse
sheaf M on G,, over K with Euler—Poincaré characteristic equal to 1. Then the base
change M ® K of M to K is hypergeometric over K.

(3) Let k be a finite field and k an algebraic closure of k. If the tuples x and o are disjoint,
then the tannakian group of the hypergeometric object Hyp, (1,4, x; 0) on Gy, over k is
GL;.

PROOF. The first statement follows from [69, Th. 8.4.2], and the third is explained, e.g., in |
proof of Cor. 6.3].

The second statement is [69, Th.8.5.3] if K = K = k. Applied to K instead of an algebraic
closure of k, this gives the result except that we only know a priori that A € K*. We need to check
that in fact A € K*. To do this, we check the steps of the proof of loc. cit., which is easily seen to
provide this extra information.

)

Say that M is of type (m,n) if m is the dimension of the tame part of M at 0 and n the
dimension of the tame part at infinity. The strategy of the proof is to reduce by induction to the
case m > n, then to n = 0 and finally to the case m =n = 0.

Each of these reduction steps follows a similar pattern. First, up to tensoring M by Zj for
some tame continuous character A of (G, ), one can assume that the trivial character occurs
in the local monodromy at 0. From Kummer theory, we have an isomorphism 7} (G, ) =~ 2(1)73/;
since M is defined over k(n), the character A must be of finite order and hence is a character of k£*.
All the characters x and g appear as such A.

After this tensoring step, one considers the Fourier transform FTy(j,M), and one checks that
it is of type (n,m — 1), and is still a geometrically simple perverse sheaf of Euler characteristic 1.
At the end of the induction, one is left either with a skyscraper sheaf, which must be supported
on some A € K* since M is geometrically simple over K, or with a perverse sheaf that is geometrically
isomorphic to £\, for some A € K*, and since this sheaf is defined over K, we must have A € K,

as desired. ]

REMARK B.5. (1) In [69, Ch. 8], Katz has also determined the geometric monodromy group
of almost all hypergeometric sheaves. We observe in passing that this computation has recently
been used by Fresan and Jossen [44] to construct examples of E-functions that are not related to

hypergeometric functions, answering a question raised by Siegel in his fundamental paper [121].

(2) Theorem B.4 is a key ingredient in the proof of the theorem of Gabber and Loeser that

determines the group Him(G”m E) of isomorphism classes of objects on G . with tannakian rank 1,
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which is explained in Example 3.51. In fact, it is not very difficult to deduce from Theorem B.4,
(3), that the group Hiyt(G,, ;) is isomorphic to

EX X ZH(Gm,E76£)7
where we recall that H(Gm’,;,ag) denotes the set of continuous tame characters of G,, 5 (see
Section 1.10).

An isomomorphism ® between these groups is determined as follows: given A € kX and a

function f € ZH(GkvE’Qf), let x be the tuple whose distinct elements are the characters x such that
f(x) = 1, each repeated with multiplicity f(x), and let g be the tuple whose distinct elements are
the characters x such that f(x) < —1, each repeated with multiplicity —f(x). Then one has

DA, f) = Hypy (1, ¥, x: 0).

Conversely, the function f can be recovered from an element M of Hin(G,,) by looking at the
tame characters appearing in the local monodromy at 0 and oo, and their multiplicities.

Let now k be a finite field, with ¢ a non-trivial additive character of k. Let A € £* and let
M = Hyp, (', %, x; @)

for tuples x and g of tame characters associated to multiplicative characters k> — QZ (denoted
in the same manner). The trace function of M is then given by

m(zik) = (=1)"™" > 1/’(2"’“'_2%)HXi(mi)HQj(yj)’
@), @ewm =1 =L T J=1
T Tp=A" Y1 Ym

with the obvious analogue for finite extensions of k (see [69, (8.2.7)]).

For a multiplicative character y: k™ — QZ , let
X)= > v(a)x()
zekX

denote the Gauss sums over k. Then the arithmetic Mellin transform of the hypergeometric com-
plex M is

(B.1) > x(@)ta(zs k) = x(N) [ 7@, xx) H
rekX i=1 j=1
for x: kX — Q, (a monomial in Gauss sums; see [69, (8.2.7), (8.2.8)]).

In particular, if n > 1 and x; = 1 for all 4, and if g is empty and A = 1, we obtain the
unnormalized hyper-Kloosterman sums

D™ D e+ ).

X
Z1,..,Zn €K
Tl Tn==I

The corresponding hypergeometric complex

(B.2) H oy = Hyp(L o, (1., 1); @)
is called a Kloosterman complez; it is of the form Kil,, [1] or a lisse sheaf Kl,, of rank n on G,,,
called the Kloosterman sheaf of rank n (see [69, Rem. 8.4.3]).
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APPENDIX C
The product formula for epsilon factors

We recall in this Appendix the formula of Laumon [98] for the epsilon factor of an object of
DE(X) on a curve X, and recall the main parts of the formalism of local epsilon factors. We also
include the general Euler—Poincaré characteristic formula.

C.1. The product formula

The results in this section are quoted directly from [98, §3].

Let k be a finite field of characteristic p, with k,,/k the extension of k of degree n in an algebraic
closure k of k.

Let X be a smooth projective curve over k. We denote by [X] the set of closed points of X. For

a complex M in DP(X), the L-function of M is defined by the product
LOM,T) = [ det(1 — T9® Fry,, | M)~
z€[X]
It satisfies the relation
L(M, T) = det(1 — T Fry, | H*(Xz, M)) ™!
and the functional equation
LOM, T) = eM)T*COL (D), T,
where
a(M) = —x(Xp M), e(M) = det(— Fry | H*(Xz, M)~

Laumon’s product formula, which had been conjectured by Deligne, is an expression for (M)
in terms of local epsilon factors.

Consider a fixed non-trivial f-adic additive character ¢ of F), and denote ¢ = v o Try /g, .
Furthermore, consider a fixed non-zero meromorphic 1-form w on X.

THEOREM C.1 (Laumon). Suppose that X is connected. Let g be the common genus of all the
connected components of Xz, and n > 1 the number of these connected components.

Let M be an object of D2(X) of generic rank r(M). There exist specific local constants e,(M),
depending on the choice of w, such that

(C.1) =) = [k [ )

z€|X]|
where ¢ = n(1 — g)r(M).

This is [98, Th. 3.2.1.1], defining (in the notation of loc. cit.) the local factors by
(02) é‘x(M) = 5(X(:p), M‘X(w),w|X(x))
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C.2. Local epsilon factors

We summarize here the basic identities and formal properties of the local epsilon factors e, (M)
in Laumon’s Theorem C.1. The existence and uniqueness of these local factors, subject to cer-
tain conditions, are given precisely by Laumon in [98, Th3.1.5.4]; they were defined earlier by
Deligne [26].

The local epsilon factors are attached to a triple (T, M,w), where T is a strictly henselian local
ring of equal characteristic with residue field containing k£, M is an object of DS(T) and w is a
non-zero meromorphic 1-form on T.

The notation &(X(z), M[X(4),w|X(z)) in (C.2) refers to these factors with the subscript (z)
referring to strict localization at x.

We now recall the local exponents a(T,M,w) and a(T, M), which require additional notation
(see [98, 3.1.5]):

1) We denote by v the valuation of T, extended to 1-forms by v(adb) = v(a) if v(b) = 1.
2) We denote by t the closed point of T and by 7 the generic point.

4) We denote by k; the residue field of T at t.

5) For an object M of D2(T), we denote by r(Mj) (resp. 7(Mj)) the generic rank of M (resp.
the rank of the stalk at the closed point) and by s(Mj) the Swan conductor; all of these
are defined for an étale sheaf first and extended by additivity, see [98, §2.2.1].

(1)
(2)
(3) We denote by ¢ (resp. 7) a geometric generic point of T above t (resp. above 7).
(4)
(5)

With these notation, the local conductor exponents are defined by the formulas
(C.3) a(T, M) = r(Mg) + s(Mg) — r(Mg),
(C4) a(T,M,w) = a(T,M) + r(Mz)v(w).
(see [98, (3.1.5.1),(3.1.5.2))).

In the global case, we will denote

ax(M, w) = a(X(x), M‘X(I), w]X(x))

Furthermore, for a lisse Q,-sheaf .# on the generic point 1 of T, one defines
(C.5) eo(T, F#,w) = (T, 1 F,w),
where j: {n} — T is the open immersion (see [98, 3.1.5.6, p.187]).

For a short exact sequence 0 — #' — F — F#"” — 0, we have

(CG) 60(T,9,W> = Eo(T,y/,CU)Eo(T,y”,W).

The local epsilon factors satisfy (among other things) the following properties (see, respectively,
formula (3.1.5.6), formula (3.1.5.5) and section 3.5.3.1 in [98]):

(1) For any lisse Q -sheaf .# of rank r on T, the formula
(C.7) e(T,M ® .Z,w) = det(Fr | Z){TM)e(T M, w)"
holds, where Fr denotes the geometric Frobenius automorphism at the closed point ¢ of T.
(2) For a non-zero rational function a on T, the formula
(C.8) (T, M, aw) = x(a)|ke|" M@ (T, M, w)
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holds, where x is the character of the completion of the residue field at 1 associated, by
local class field theory,' to the lisse sheaf det(M)|n on 7, viewed as a character of the local
Galois group.

(3) For a non-trivial multiplicative character y of the residue field k; and the corresponding
lisse Kummer sheaf %, on {n}, and for a uniformizer 7 at x, we have

(C.9) eo(T, Ly, dm) = x(—1) > x(a)(Try, r, (a)).
ack
We also have the elementary shift formula

(C.10) e(T,M[1],w) = &(T, M, w) L.
C.3. The Euler—Poincaré characteristic formula

We keep the notation of Section C.1. In particular, X is a smooth projective curve over a finite
field k with algebraic closure k. We assume that X is geometrically connected, and denote by g the
genus of X.

Let M be a complex in D2(X). For any point # € X(k), the Swan conductor swan, (M) is
defined by additivity from the case of a Q-sheaf (in which case, it is defined for instance in [98,
(2.1.2.5)] or [68, Ch.1]). Similarly, the drop drop,(M) is defined by additivity from the drop

drop, (%) = rank(.#) — dim(%#)
of a Q-sheaf .7,

THEOREM C.2 (Grothendieck—Ogg—Shafarevich). Let U C X be an open dense subset. Let M be
a complez in DP(U), let V be an open dense subset of U on which M is lisse of generic rank r(M).

We have
(U M) = X(Up, Q)r(M) = 3 swang(M) = drop, (M),
zeX(k) z€U(k)
where x(Uy, @) = (2 — 29) — |(X =),
This statement follows from [98, Th.2.2.1.2], which corresponds to X = U (up to changes in

notation) by applying this result to j.M, where j: U — X is the open immersion, and using the
additivity of the Euler—Poincaré characteristic, in the sense that

X(Xg, 3:M) = x(Ug, M) + x (X = U)g, 1" M)
with ¢ the closed immersion of X — U in X.
For the case of a Q-sheaf, the statement is also given for instance in [74, Ch. 14].
We consider some special cases that appear in this book.
(1) f U = X and M = .Z[1] for some Q,-sheaf .7 of generic rank 7 on X, then the formula

becomes
(C.11) XX M) = (29— 2)r + > (swang(F) + drop,(F)).

zeX(k)
N IfU=G,, c X=P!and M = .Z#[1] for some Q,-sheaf .# of generic rank r on G,,, then
4
(C.12) X(Gm)js M) = swang(F) + swane (F) + Z (swang(#) + drop,(F)).

xEkX

1 Normalized as explained in [98, (3.1.4)].
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APPENDIX D
Deligne’s letter to Kazhdan

We reproduce below the content of Deligne’s letter to Kazhdan, in which the f-adic Fourier
transform was defined for the first time (the typography is not faithfully reproduced).

29-11-76

Dear Kaxknan,

This is perhaps a partial answer to an old letter of yours. I thought to the matter again because
of some estimations of trigonometrical sums Hooley asked me about. As I am in a hurry to continue
writing up Weil II, I will leave many open ends and soon turn to French.

Theme: many functions correspond to sheaves, and operations on functions to operations on
sheaves. What about harmonic analysis on G,?

(@) If X is a scheme /F,, we will consider

) objects of the derived category D’(X,Qy)
} by > (=1)"H’
B) virtual f-adic sheaves [this means either: elements of the Grothendieck group of the abelian
category of constructible sheaves — or if possible and useful, objects of some Picard

category having this K as set of isomorphism classes of objects]
1 by Tr(F%, #z) (this map is injective)

7v) “functions”: a system of functions on the X(Fyn)

() Here are corresponding operations:
On functions: +, -, On «),3): @, ®, Rm
Convolution of functions: if G is a group, and K, L € D*(X,Q,), one considers the product
7:GxG—=G, and KXL=priK® prsL, and
K+«+L=Rm(KKXL)
Kernel: given Z — X x Y and K € D%(Z,Q,), this defines an operation D?(X) — D?(Y)
Lx + Rpy (K @ RpjLx).

(©) Now I want to consider Fourier transform.

Let us choose ¢: F, — @Z If f is a function on X, we get a sheaf .# (1 f).! Fourier transform,
on Gy, is given by the kernel .7 (¢)(zy)) on G, x Gy.
Y

Ty
Definition: F(K) = Rpry(Z (¢¥(xy)) ® RpriK)
Proposition 1: F(K + L) = F(K) @ F(L) (from F((z(y +¢")) = F(Wlay)) @
Z (Y (zy")))
1 pull back by f of the sheaf on G, rank 1, defined by % and Artin—Schreier T? — T = X.
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Proposition 2: FF(K) = KY(-1)[-2]:  V is for “image by z — —z”, (—1) for a Tate twist, and
[—] for décalage.

13
Kernels compose like expected: we have to compute Rm.Z (¢(x + 2)y) for m: G, x G, x G, a3
Gg X Gy, one gets

Q¢(—1) on the diagonal, in degree 2
0 elsewhere

hence the result.

It is convenient in such computations to forget writing ¢ and writing [ ---dy for a Rm.
Remark: this defines, via prop 1, an isomorphism F(K ® L)(—1)[—2] = E(K) = F(L).

For Plancherel formula, one suffer somewhat of not having complex conjugation. Let F be F
defined using 1(—x). Then

a) inner product: (K,L) = RI'(K® L)
b) Proposition (FK,FL) = (K, L)(—1)[-2].
This boils down to the usual

/w((x’ — 2" y)K(z)L(2")da' dz" dy = /5(_1)[_2} (2" — 2K (2 )L(2")dx'dx".
by fy
Everything done above can be generalized to any abelian connected unipotent group U. The

dual U* is to be taken in Serre’s sense (it is natural only up to inseparable isogenies, but this does
not matter. For n large enough, one has a pairing

UxU*— W,
(better: the pairing is in the cowitt vectors W_o, = thn) Given ¢: Qp/Z, = W_oo(F,) — Qy,
by V

and using the sheaf given by the Lang covering of W_,/F, and 1, everything can be repeated,
with (—1)[—2] replaced by (—d)[—2d] where d is the dimension.

This requires to be careful if one wants to consider @, as a (ind pro quasi) unipotent algebraic
group /).
(d Where F is, there should also be an action of the metaplectic group! (here symplectic). Let

me work for G, and for p # 2. The most precise way of speaking I see is working over [F),, with
kernels. [It gives more than actions of SL(2,k) on D*(G,, Qy), k/F,.]

Wanted: P € Db(SL(2) x G, x G,), viewed as a family of kernels on G, x G, parametrized by
SL(2). Plus “Pg/ . Pg// = Pg“g””

We know what is wanted for generators:

U~ (clz (1)) — ( @F(Y( ‘ZQLZ)) (noyau sur la diagonale)
A0
H <0 )\1) — (x = Ax)e( ) (noyau sur y = Ax)

_ -1
a#0US (é Cll) = (fx Fp(* ;xz)) Fp(“ 29”2) * (noyau: faisceau loc ct, de rg 1,
en degré —1)
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An explanation: RI.%# @b(a_“;) is of dimension 1, and degree 1, and I take the dual one
dimensional vector space [in a: a sheaf], in degree —1.

En francais:

Raisonnons un peu a priori. Comme “fonctions”, on sait ce que sont les noyaux cherchés. On
cherche des faisceaux leur donnant naissance. Sur U~ x H x Uar x U™ x G, x Gy, composant les
générateurs, on trouve un faisceau localement constant de rang 1, placé en degré —1, qui convient.
En chaque point de U™ x H x Uar x U™, comme fonction de z,y, il est de la forme 9 f, pour f une
fonction qui, en z,y (sur G, x G,) est quadratique homogene. Regardons la surjection

U xHxUf x U™ — G—B~ (G=SL(2),B” = (1))

* 3k

Puisque comme “fonctions” ce que nous cherchons existe, le faisceau obtenu est constant sur les
fibres de (cette application xG, x Gg).

Obtenu: un faisceau de rang 1, en degré —1, localement constant, sur (G — B7) x G, x G,.

Pour compléter ce tableau, il est bon de comprendre en quel sens, pour a — 0, on a

(/ 9¢(a1$;)dx)_l . FP(a

-1 1:2

5 ) — § (faisceau Q; en x =0)

/9w(alf)dm

est un faisceau de rang 1 (degré —1) sur la droite de a; ce faisceau se trivialise sur le revétement
de la droite de a donné par \/a, car

2 —1,.)2 2
/ffw(aQZ)dx: /ﬂw(wzx)dm: /ﬁw(g;)dx par ch™ de variable

Il correspond & une somme de Gauss; sur [---,  |[Frobenius| = ¢'/2.

Tracons le plan a,x ; le faisceau considéré est défini pour a # 0; il se ramifie (sauvagement) le
long de a = 0, et la ramification est équisinguliere pour x # 0. Si j est I'inclusion de a # 0 dans le
plan, on a

J«(faisceau) = ji(faisceau) nul pour a =0
R1j, (faiscean) concentré en (0,0), ou c’est &
R2j, (faiscean) concentré en (0,0)

Ceci se vérifie assez facilement en éclatant 2 fois (0,0), la 2eme fois en éclatant (courbe excep-
tionnelle) N (transformé pur de 'axe des x) : on utilise
(plan éclaté) Rj. = Rm.Rj.

(a # 0)° (plan)

On controdle en projetant sur la droite des a : si p, est cette projection, on a
RpasxRjx = RjxRpax
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[ou] Rpgs« donne Qg sur la droite a, —{0}, et Rj, sur cette droite (a # 0) < a = 0, donc

deg. 0 Qy
deg. 1 Qu(—1) en 0.

Ceci nous dit ce que nous devons faire pour construire P:

(a) sur UT, le noyau s’obtient & partir de
2

reo(R ([ #oa D) F )

sur UT x G,, comme convolution.

(b) sur G x G4 X Gg, on prend le noyau déja construit sur (G — B7) x G, x Gg, et pour j
I'inclusion dans G x G, x G4, on lui applique T<oRj«.

Je me suis convaincu que la formule P, - Py = Pgy vaut au sens le plus fort possible:
a) sur G x G x G, x G, , on prend Py (y, 2)Py(z,y).
b) on intégre par rapport & y: (P-P)y v = [dy--- sur G x G X G4 x G,
c)simest GXG = G: ¢,¢"— ¢¢”, on a un isomorphisme
(P.P) = 7P

d) on a une compatibilité pour un composé triple [en c), on a unicité a une constante pres,
et on normalise par ce qui se passe a l'origine].

Bien siir, tout ceci devrait valoir pour un espace vectoriel V, et Sp(V @ V*). 1l est facile de se
convaincre qu’on a en tout cas un noyau P, (v,v’) qui est un faisceau virtuel, et que sur la cellule
des g € Sp ou gV*NV* =0, il est donné de fagon naturelle par un faisceau de rang 1, localement
constant, en degré —n. J’espere que le noyau lui-méme s’en déduit par une suite d’opérations
T<Jx, avec un résultat localement constant de rang 1 sur un sous-espace, en degré —k, sur la strate
dim(V*/V* N gV*) = k... (qu’'on ait un noyau ainsi stratifié doit pouvoir se vérifier par Fourier).

Question: Le foncteur K — (z — —z),RHom(K, Q) commute-t-il & I’action de SL(2) ?
Question bis: pour P, le noyau, et K sur G,, a-t-on

Rpry (P, ® priK) — Rpry, (Py @ priK) ?

Question ter: y commute-t-il virtuellement — au moins virtuellement sur F  ?

Bien a toi,

P. Deligne
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APPENDIX E
Intuition for analytic number theorists

The goal of this informal appendix is to provide readers who have a background in analytic num-
ber theory with some intuition and feeling for objects such as f-adic complexes, perverse sheaves,
or tannakian categories, all of which are essential tools in this book.

The focus here concerns trace functions of more than one variable. On the other hand, the
theory of trace functions in one variable is more accessible, as the algebraic objects can be presented
more concretely using Galois theory of function fields. Some familiarity with this point of view will
certainly also be very helpful in developing intuition. A very concise introduction can be found in
the Pisa survey of Fouvry, Kowalski and Michel [40], and a more detailed treatment is contained
in the lectures of Michel at the 2016 Arizona Winter School [42].

We fix a finite field k, and denote by k, the extension of k of degree n inside a fixed algebraic
closure k. For simplicity of notation, we will mostly speak about trace functions on the affine
space A™ for some integer m > 0. However, it will be implicit that most of what we discuss can be
done for any algebraic variety Y over k (and this is needed, for instance because we often naturally
wish to restrict a trace function to a subvariety, where some particular property holds), for instance
for powers of the multiplicative group G, (i.e., Y such that Y(k,) = (k)¢ for some d > 0). The
reader should keep in mind that for such a subvariety, of dimension d < m, the size of the finite
set Y(k,) of points of Y with coordinates in k, is approximately |k,|? when n is large.

Throughout, we fix a non-trivial additive character ¥: k — C* and, for n > 1, we define
Y kp — C*
x> (Try, /(7))
We finally note that we will completely ignore (here) the distinction between Q, and C.

E.1. Trace functions

The concrete origin for the use of methods of algebraic geometry and étale cohomology in ana-
lytic number theory lies in trace functions, and especially in exponential sums. Properly speaking,
a trace function on A™ is the data of a family (¢,),>1 of functions k' — C, and it is associ-
ated to some algebraic object M, which we call a “coefficient object”. This object is not uniquely
determined by (t,), but we will not worry about this matter in this appendix.

The first examples of trace functions arise from polynomials f € k[Xy,...,X,,] by means of

(E.1) tn(T1, s Tm) = Un(f(T1, . 2m));

the corresponding coefficient object is denoted by £ (s). Many other examples are then obtained
by applying various operations, which are known to preserve the set of trace functions (these are
operations on the coefficient objects, which are reflected in a specific operation at the level of trace
functions). These operations include the following, where we indicate the algebraic notation for the
corresponding coefficient objects:

— The constant function 1 is associated to the coefficient object M = Q.
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— The sum of the trace functions associated to M; and M, is associated to My & Ms.

— If (t,) is a trace function associated to M, then ((—1)*t,) is a trace function for each
integer k € Z, associated to a coefficient denoted by M[k] and called a “shift” of M.

— If (t,) is a trace function associated to M, then (|k,|"t,) is a trace function for each
integer r € Z, associated to a coefficient denoted by M(—r) and called a “(Tate) twist” of
M.

— The product of the trace functions associated to M; and Ms is associated to M; ® Ms.
~If f=(f1,..., fa): A™ — A% is a tuple of polynomials in k[X1,...,X,,], and s = (s,,) is
a trace function on A? associated to a coefficient N, then
tn(x1y ooy xm) = sp(f(z1, ...y 2m))

defines a trace function () on A™, which we also denote by s o f. The corresponding
coefficient is f*N.

~If f=(f1,....fs): A™ — A% is a tuple of polynomials in k[X1,...,X,,], and t = (t,) is
a trace function on A™, associated to a coefficient object M, then

(E.2) Sn(Yi--yya) = Y tol@)

xek?
f(@)=y

defines a trace function on A% the associated coefficient object is denoted by RfiM.

ExaMPLE E.1 (Fourier transform). This formalism is already sufficient to explain Deligne’s
Fourier transform. Let m > 1 be an integer, and consider the projections

b1, p2: A2m — A"
given by

pl(xla"'vxm7y1>"'7ym) = (xlv"'axm)v pQ(xlv"-awmaylw"aym) = (ylv"'aym)'

We write
X-Y=X1Yi+ -+ X, Y

for variables X; and Y;. This is a polynomial with coefficients in k, so the functions

Fn(l‘,y) = ¢n($1y1 +--+ xmym)

define a trace function F = (F,,) on A?™, associated to the coefficient object Lp(xY)-

Let t = (t,) be a trace function on A™ with coordinates (z1,...,zy,). Then the discrete Fourier
transforms (t,,), which are defined for n > 1 and y € k]I* by

o~

ta(y) = Y ta(@)Fu(@,y) = D ta(@)tu(z-y),

zeky xekm

also define a trace function ¢ = (£,). Indeed, for any ¥, the set of all z € k" can be identified
with the set of (z,y) € k2™ such that ps(z,y) = y, and we have t,(z) = t,(p1(z,y)), so that if ¢ is

~

associated to the coefficient object M, then the formalism above shows that ¢ is associated to

M = Rpa(piM ® ZLyxv))-
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E.2. Weights and purity: lisse sheaves

The formalism of trace functions is useful in analytic number theory because of Deligne’s Rie-
mann hypothesis over finite fields. This also leads to some understanding of the important quali-
tative differences between various types of trace functions—corresponding to classes of coefficients
which may (for instance) be lisse sheaves, constructible sheaves, complexes of constructible sheaves,
or perverse sheaves. We will try in this and the following sections to provide the readers with some
intuition of the concrete meaning of these notions.

The key concept (due to Deligne) is that of a coefficient M which is punctually pure, or pure,
of some weight w € Z. The main conceptual difficulty is that the meaning of this property for the
corresponding trace function is not straightforward in general.

The simplest case (from which the others will be derived) is that of M which is a single “lisse
sheaf”. In that case, the concrete meaning' of M being punctually pure of weight w, in terms of
the trace function ¢ = (t,), is that there exist

— an integer r > 0, the rank of M,

—for eachm > 1 and z € k™

™ a unitary matrix Oy (z;ky,) € U,.(C), well-defined up to
conjugacy,

so that the following equality holds:
tn(x) = [kn|"/? Tr(On(2; kn)).
In particular, note that this implies the estimate
[t ()] < 7lka| 2

for all n and x € k).

In the remainder of this appendix, we will sometimes say that a lisse sheaf, or its trace function,
is “pure” instead of the more correct “punctually pure”.

REMARK E.2. The matrix ©y(z; ky) is not arbitrary in U,(C). For instance, its eigenvalues
(which of course determine the trace) are Weil numbers of weight 0, i.e., algebraic numbers in C
for which all Galois conjugates have modulus 1. Moreover, if n’ is a multiple of n, then € k]"* can
also be viewed as an element of £/ through the inclusion k,, C k,, and the formula

@M(x; kn’) = @M(ZL‘, kn)n//n
holds (i.e., the eigenvalues of the matrix Oy (x; k,,/) are those of Oy (z; &y, ) raised to the power n'/n).
As one can expect, the trace functions defined by the formulas (I£.1), associated to .2 sy, are
of this type, with » = 1, w = 0, and the matrix O(z;k,) reduced to the single complex number of

modulus one ¥, (f(x)). Moreover, it is also intuitively clear (and true) that some of the operations
discussed above will respect the special class of trace functions associated to pure lisse sheaves.

For instance:

— If t and t' are trace functions associated to objects M and N which are both lisse sheaves
pure of (the same) weight w, then ¢ + ¢’ is also pure of weight w; we have

Oren (75 kn) = Om(z; k) B On(w; ky).

L But not exactly the precise definition.
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— If t and t' are trace functions associated to objects M and N which are both lisse sheaves
pure of weights w and w’, respectively, then tt’ is also pure of weight w + w’. In other
words, M ® N is still a lisse sheaf, pure of that weight; in fact, we have

OmeN(X; k) = Om(z; ky) @ On (x5 ky).

~Iff=(f1,...,fs): A™ — A% is a tuple of polynomials in k[Xy,...,X,,], and s is a trace
function on A? associated to a lisse sheaf of weight w, then so f is also pure of weight w.
In other words, f*N is still a lisse sheaf, pure of weight w; in fact, we have

@f*N(xS kn) = @N(f(x)v kn)

But elementary examples show that the crucially important operation of “summing over the
fiber” (see (E.2)) does not always send a single lisse sheaf to a lisse sheaf, and may also not map a
trace function which is pure of some weight to another one.

ExaMmPLE E.3. (1) Let m = d = 1 and f € k[X] a polynomial of degree 2, viewed as a map
from A! to itself. We consider the trace function (t,) with t,(z) = ¥, (), associated to the lisse
sheaf Z,x) (of weight 0), and the trace function (s,) defined by

sn(x) = Z tn(y) = Z Un(y),

yEkn yEkn

fy)== fy)==
for n > 1 and x € ky, which is associated to the coefficient object R fi-Z),x). For most z, the value
of sp(z) is either 0 (if f(y) = = has no solutions in k) or a sum of two roots of unity, but for the
single point xy = f(yo), where yo is the unique zero of the derivative of f, the value s,(xg) is a
single root of unity (note that yp, and hence xg, belongs to k, so it also belongs to k,, for all n, but
the value of s, (zg) does vary with n).

(2) We consider m = 2 and the trace function (t,) defined by t,(z,y) = ¥, (xy?) for (z,y) € k2.
It is associated to the coefficient object £ (xy2), which is pure of weight 0. Let d =1 and f = X.
Then Rfi-Zxy2) has the trace function (s;) such that

su(@) = 3 vnlay?) =

{a quadratic Gauss sum if x # 0,
yEkn

K| if . =0.

Neither of these examples of trace functions are associated to a single punctually pure lisse
sheaf. However, it turns out that the underlying reason is not the same. In Example (1), the issue
is that (s,) is associated to a single constructible sheaf which is “not lisse” at the point zy. In
Example (2), the issue is that (s,) is associated to a “complex” of constructible sheaves, i.e., not
to a single sheaf.

E.3. Weights and purity: constructible sheaves and complexes

In fact, the most general source of trace functions are (bounded) mized complexes of constructible
sheaves. We now try to outline the concrete interpretation of these more general conditions.

The first step goes from a single lisse sheaf to a single constructible sheaf. Such a sheaf is
(punctually) pure of weight w if there is a “stratification”

@=XgCX;C---CX;=A"

of A™, where X; is a closed subvariety of X;i1, so that the restriction of M to each of the
pieces X;+1 — X; is a single lisse sheaf, punctually pure of weight w, and of some rank r; > 0
(which in general depends on ).
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Concretely, for a given = € k", there exists a unique ¢ such that x € X;1; —X;, and then there
exists a unitary matrix Oy(z; ky,) of size r; such that

tn(@) = |kn["/? Tr(On (25 kn)).-
ExaMPLE E.4. Example (1) above is of this kind, with the stratification
@ C {zo} C AL,

and with 7o = 1 and 7 = 2. On {zp}, the unique eigenvalue is s,(z9) = ¥n(yo), viewing z¢ as
belonging to k,. On Al —{z}, the two eigenvalues are either opposite (hence the trace is zero) if
x & f(kyn), or are given by v, (y), for y ranging over the two roots of the quadratic equation f(y) = x.

More generally, Deligne defined a mixed constructible sheaf of weights < w by the condition
that there is a filtration with associated punctually pure quotients M;, each of some weight w; < w.
Concretely, this implies that the trace function t = (¢,,) is given by

ta() =Y tnj(@)
Jj€J
for some finite set J, where each family (%, j)n>1 is the trace function of a constructible sheaf which
is pure of weight w; < w.
Finally, the most general type of trace functions arises from objects M that are complezes
of constructible sheaves. Such a complex gives in particular rise to a sequence (J'(M))iez of
constructible sheaves, with (M) = 0 for all but finitely many ¢, in such a way that

tn(z) = Z(_l)itn,i(x)
1€Z
for all n > 1 and = € k,, where (t,;)n>1 is the system of trace functions for the constructible
sheaf s#*(M). (These sheaves are called the cohomology sheaves of the complex M.)

ExaMpLE E.5. Example (2) above is obtained from a complex of constructible sheaves M,
where there are two non-zero pieces, namely (M) and 5#2(M).

The sheaf 571 (M) is constructible for the stratification
@ c {0} c Al

with the piece on {0} of rank 0, and the piece on A’ — {0} of rank 1, pure of weight 1, with the
corresponding unique eigenvalue equal to the quadratic Gauss sum

> tn(zy?)
yEkn
for x € k, —{0}.
The sheaf ##2?(M) is also constructible, for the same stratification (but this is not a general
feature), with the lisse sheaf of rank 0 on A — {0}, and a piece of rank 1 of weight 2 at {0}, with
eigenvalue |ky,|.

However, for a complex M, the definition of what it means that M is pure of weight w is much
more subtle than for a single sheaf. In particular, it does not mean that each piece J#¢(M) is
itself a punctually pure sheaf of weight w. More precisely, one defines first the mized complexes of
weights < w, which are those such that #(M) is a mixed constructible sheaf of weights < w + i
for any ¢ € Z. There is then furthermore defined another complex D(M), called the Verdier dual
of M, and M is said to be pure of weight w if M is mixed of weights < w and D(M) is mixed of
weights < —w.
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REMARK E.6. (1) For a single lisse sheaf M which is punctually pure of weight 0, the corre-
sponding complex has #°(M) = M and #*(M) = 0 for all i # 0. One can prove that the Verdier
dual is a complex D(M) such that 2 ~2™(D(M)) is a lisse sheaf which is pure of weight —2m and all
the other cohomology sheaves vanish, so that the two definitions of purity coincide for lisse sheaves.
In fact, the trace function of D(M) is in this case the complex conjugate of the trace function of M.

(2) In practice, if an analytic number theorist is interested in a single trace function (e.g., one
that represents a concrete family of exponential sums which one is interested in estimating) and
one is not applying further operations like Rfi, then one can quite often reduce to the case of a
single lisse sheaf. This is for example the case for the hyper-Kloosterman sums in two variables

LS ulatbto),

= ?
’ n| a,b,cek)
abc=x

K13 (x; kn)

or the famous sums
Fl(x,y;kn) = Y Kla(w2; kn) Kla(y2; kn)tbn(2)
z€kR
which arose in the work of Friedlander and Iwaniec on the ternary divisor function [45], and
reappeared in the work of Zhang [128].

Indeed, if the exponential sum is mixed, this will often be clear from the definition, or from a
preliminary analysis, and one can “isolate” the part of most interest (of highest weight usually),
which will be associated to a punctually pure constructible sheaf. Then by restricting the set of
definition according to a suitable stratification, one will ensure that one handles a lisse sheaf.

For m = 1, this second step means avoiding finitely many values of x where the sheaf has
unusual behavior; for m > 2, this means avoiding those that satisfy some non-trivial polynomial
equation g(z1,...,zy) = 0. These special parameters can then be handled separately—giving rise
to a kind of inductive process which reflects exactly the algebraic stratification of the corresponding
coefficient M.

One good explanation for the focus on mixed objects with bounded weights can be found (a
posteriori) from the statement of Deligne’s most general form of the Riemann hypothesis. In our
context, it can be stated as follows:

THEOREM E.7 (Deligne). Let (t,) be a trace function on A™ associated to a complex M which
is mized of weights < w. Let f = (fi,..., fa) be a tuple of polynomials in k[Xi,...,X]. The
complex RfIM is mixed of weights < w , and so its trace functions

sn(y) = Z tn()

xek)?
@)=y

are also mized of weights < w.

REMARK E.8. On the other hand, even if M is a single lisse sheaf, punctually pure of weight w,
it is not always the case that R fiM is pure.

A benefit of introducing these more general definitions is that all operations now respect the
property of being mixed for any trace function, with a good understanding of how the weights
may change:

— The lisse sheaf M = Q; is pure of weight 0.

— If My and My have weights < w; and < ws, respectively, then M; @& My has weights
< max(wy, wz) and M; ® Mg has weights < wy + wa.

204



— If M has weights < w, then for any k € Z, the shifted complex M[k] has weights < w — k.
— If M has weights <w—2r.

~If f=(f1,..., f1): A™ — A% is a tuple of polynomials in k[X1,...,X,,], and s = (s,,) is
a trace function on A? associated to a mixed complex N of weights < w, then f*N has
weights < w.

~If f = (f1,..., f1): A™ — A% is a tuple of polynomials in k[Xi,...,X,,], and if M has
weights < w, then R fiM has weights < w (this is again Deligne’s Theorem E.7).

N A

w, then for any r € Z, the twisted complex M(r) has weights

All objects that occur in practice in analytic number theory? are mixed complexes. This means
that any trace function (¢,) has a decomposition

tp, = Z tn,w

a<w<b

for some a and b (independent of n), where (t, ,)n>1 is a trace function associated to a complex
which is pure of weight w.

E.4. Perverse sheaves

There remains the task of attempting to explain a further fundamental subclass of trace func-
tions (hence of complexes), those associated to perverse sheaves. This is a distinguished class of
complexes with remarkable geometric and arithmetic properties. For analytic purposes, the most
important of these is maybe that the simple perverse sheaves provide a canonical basis of the
abelian group of trace functions, and that if we restrict to pure perverse sheaves, then this is in a
natural sense a quasi-orthogonal basis for the trace functions of pure complexes of weight 0. We
will now explain these properties.

The rigorous definition of perverse sheaves is of a similar nature to that of pure complexes:
it is the combination for both the complex M and its Verdier dual D(M) of a relatively simple
condition, called semiperversity.® The condition of semiperversity concerns the size of the support
of the cohomology sheaves #*(M) (which are intuitively the points x where #¢(M) does not
vanish; in the stratification in terms of lisse sheaves, this is where these sheaves have non-zero
rank): for any i € Z, the support of #(M) should be of dimension at most —i. (In particular, if
i > 1, then the support should be empty, so (M) should be zero then.)

Remarkably, this condition can be recovered intuitively from basic analytic intuition (which
highlights that it is extremely natural).

Thus consider a trace function ¢ = (¢,) associated to a complex M on A™ and assume that it
is mixed of weights < 0. From the analytic point of view, we are often in the situation where the
mean-square of the values of the trace function ¢, are bounded (after some normalization maybe),
and bounded away from zero, i.e., for n large enough, we have

(E.3) D fta(@)]? < 1.

rekm

For i € Z, the cohomology sheaf /(M) should be “essentially” pure of weight i (rigorously,
we only know that it is mixed of weights < i). So the contribution to the sum above of the z in
the support S; of (M) should be expected to be of order of magnitude

2.i/2 - i+d;
[ 472 5 (S (k)| & [ |7F%
2 And indeed more generally in algebraic geometry.
3 The complication is that the Verdier dual is often difficult to compute.
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if S; has dimension d;. Hence the estimate (E.3) only has a chance to hold if i + d; < 0 for all ¢,
and this is precisely the semiperversity condition.

ExaMPLE E.9. Consider a family of exponential sums of type

1
Tenl™ Z Un(f(y) + 191 -+ + TmYm)
" yekpy
with parameters (z1,...,2,,) € k" (these functions of z are the trace functions of a complex M

which is a normalized form of Deligne’s Fourier transform of the lisse sheaf .2 f)).

We expect “generic” square-root cancellation, so as n varies, for “most” choices of z € £]*, this
sum should be of size about |k,|~™/2. Since /(M) is of weight < i, and hence contributes terms
of size typically expected to be |k,|"/2, this expectation corresponds to the fact that .#*(M) should
be “generically” zero unless i = m, while 5" (M) contributes a fixed number of complex numbers
of modulus < |k,|~"/2.

But for special values of xz, those satisfying some non-trivial polynomial equation g(z) = 0,
one may obtain a larger sum than square-root cancellation. Experience teaches that usually this
size only jumps by one factor |k,|"/2 (so the sum is about |k,|~"/2*1/2) if only this one condition
is imposed; if it is bigger (say of size |k,|~™/2%1), this should mean that a second (independent)
equation h(x) = 0 holds, and so on.

This “stratification” of bounds getting steadily worse only on smaller subsets corresponds to
cohomology sheaves (M) (contributing terms of size |k,|”/?) vanishing outside of subvarieties of
dimension at most —i.

In the extreme case, the exponential sum is of size 1 (i.e., there is no cancellation at all) at
worse for finitely many values of the parameters, corresponding to ##°(M) being supported on
finitely many points.

This particular example is at the root of the results of Katz, Laumon and Fouvry on strat-
ification for additive exponential sums [38, 77, 39]. It should suggest to analytic readers that
semiperversity is a relatively easy condition to check, and that it should be natural and ubiquitous
in analytic number theory.

The following statement provides a concrete illustration of the advantages of perverse sheaves.

THEOREM E.10. The Z-module of trace functions on A™ over k is generated by the trace
functions of perverse sheaves, and the trace functions of simple perverse sheaves form a basis.

The first statement is in fact very explicit. Indeed, if ¢ = (¢,) is an arbitrary trace function,
associated to a complex M, one can define (in addition to its “usual” cohomology sheaves #¢(M))
its perverse cohomology sheaves P.*(M), which are perverse sheaves, zero for |i| > m, such that
their trace functions (*¢;,)n,>1 satisfy the equation

th=> (=1)" Ptin
i1€Z
for all n > 1. Furthermore, a complex M is mixed of weights < w if and only if each PJ#Z*(M) is
also mixed of weights < w + ¢ (similarly to the cohomology sheaves; see [8, Th.5.4.1]).

REMARK E.11. To say that a complex M is perverse is to say that its perverse cohomology
sheaves are M = P#9(M) and *27*(M) = 0 for all i # 0.

Up to the terminology and notation, the second statement of Theorem E.10 is proved by Laumon
in [98, Th. 1.1.2] (it was already mentioned by Deligne in his letter to Kazhdan; see Appendix D).
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To understand it, one must explain what are the simple perverse sheaves which are mentioned
there. We will content ourselves with stating the quasi-orthonormality property which holds for
a simple perverse sheaf that is pure of weight 0. It is another consequence of Deligne’s Riemann
Hypothesis, proved by Katz, that if t = (¢,,) is the trace function of a perverse sheaf M, then

(E.4) lim sup Z ta(x)]? =1

n—-+0o0o cekm
if and only if M is simple.

REMARK E.12. One of the fundamental results of Beilinson, Bernstein, Deligne and Gabber
[8, Cor. 5.3.4] is that a simple perverse sheaf which is mixed, as a complex, is in fact pure of some
weight; since non-mixed complexes do not appear in practice, this means that simple perverse
sheaves in analytic number theory are always pure of some weight, and the quasi-orthonormality
characterization can be extended to all simple perverse sheaves, up to normalization.

ExaMpPLE E.13. We can illustrate how useful this quasi-orthonormality statement can be to
guess or understand some properties of perverse sheaves by noting that it strongly suggests a non-
trivial property of simple perverse sheaves. Namely, let M be a simple perverse sheaf, pure of
weight 0, and generically non-zero (i.e., the support of M is all of A™). If we repeat the argument
leading to the guess of the semiperversity condition, we see that we expect that the contribution to

Y lta()?

ek
of each non-zero cohomology sheaf 7#¢(M) should be of size
o ‘ kn |i+di

for some integer o; > 1, and comparison with (E.4) indicates that i + d; will be < 0 except for one
single value of i. Moreover, one knows that the cohomology sheaf .72~ (M) is generically non-zero,
so this value must be ¢ = —m, so that we expect that

di <—1—1 for i# —m,

which is stronger than the condition d; < —i derived from semiperversity only. This is indeed true
(it is the improved support condition of Proposition A.13).

E.5. Tannakian categories

The results of this book also rely in an essential way on another tool that is most likely unfamiliar
to analytic number theorists: the formalism of tannakian categories. In very rough terms, this refers
to a method to construct or define a group (which in our case will be the “symmetry group” that
governs the equidistribution properties of a trace function), by recovering it from the way it acts
on finite-dimensional K-vector spaces, for some algebraically closed field K of characteristic zero
(which can be considered to be C). That this is possible is indicated by the following result:

THEOREM E.14 (Tannaka). Let G be a compact group. Assume that for every finite-dimensional
complex vector space V on which the group G acts linearly, via a continuous homomorphism o: G —
GL(V), we are given an invertible linear transformation a(p): V. — V, and suppose that these data
satisfy the following conditions:

“Whenever G acts by o on 'V and by m on W, we have
a(l) =Idc,  ale®m)=a(e) ®a(r);
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whenever G acts by o0 on V, we have

a(g) = a(o),
where ¢ is the same action as o but viewed as a representation on the conjugate vector space; and
whenever we have a linear map w: V. — W such that

u(o(g)v) = m(g)u(v)
for all g € G and v € V, then we have
uoa(p) =a(m)ou
as linear maps from V to W.”
Then there exists a unique element g € G such that a(o) = o(g) for all actions ¢ of G.

More generally, note that the “set” of all data of all «(p) of the type considered in this theorem
can naturally be used to form a group (with (af)(e) = a(e) o B(0)), and then the result identifies
the group G with these data.

In a converse direction, the main theorem of the theory of tannakian categories establishes a
list of conditions on a suitable category which guarantees that it is “equivalent” to the category of
representations of a group G (although the context is that of algebraic groups, such as GL,(C),
instead of compact groups). A key property to apply the “reconstruction theorem” is that one
must be able to associate to each object M a finite-dimensional vector space w(M) (corresponding
to the abstract space on which the group acts), and one needs to have defined a bilinear operation
on these objects, say M x N, in such a way that w(M * N) = w(M) ® w(N). Such an “assignment”
w is called a fiber functor; it is not unique, and its construction may be a delicate matter.

In the applications in this book (following the idea of Katz in [74]), the objects that will
correspond in this abstract way to the actions of G on vector spaces are certain perverse sheaves,
and the operation % is a form of algebraic convolution which respects the corresponding usual
convolution operation on trace functions.

For the classical form of Tannaka duality for compact groups, we refer to the presentation by
Joyal and Street [67, §1]. For an accessible treatment of tannakian categories, emphasizing the
natural evolution from Galois theory, we refer to the book [124] of Szamuely.

E.6. Frequently asked questions

We conclude by trying to answer some natural questions that an analytically-minded reader of
little faith may raise:

— Is it possible to describe trace functions (or the underlying algebraic objects) “by generators
and relations”, by listing a number of basic examples and a list of operations preserving
trace functions, so that all trace functions are obtained from these basic data in finitely
many steps?

It is true that in many applications to analytic number theory, the sheaves or trace
functions which occur are constructed precisely in such a way (e.g., starting from an addi-
tive character, replacing the variable by a polynomials, taking the Fourier transform, etc).

However, it seems extremely unlikely that one could provide a satisfactory and rigorous
version of such an idea, for instance because it is known that there are g geometrically
irreducible middle extension sheaves of rank 2 on the projective line over F, with 4 singular
points and principal tame local monodromy at each point (see for instance [31, Prop. 7.1];
the proof of this fact relies on automorphic methods). All these sheaves have bounded
complexity as g varies. However, only six such sheaves are explicitly known (they are
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associated to certain elliptic curves over Fy(t) with four singular fibers), as shown by
Beauville [4].

Since operations on sheaves tend to increase the complexity in general (although in
a controllable manner), it seems very difficult to imagine how one could construct the
“other” ¢ — 6 sheaves in a straighforward way.

Why are perverse sheaves essential to the results of this book? Why can one not (even in
the simplest cases, such as exponential sums parameterized by multiplicative characters)
work around the requirement to use such objects in a way similar to the previous papers
of Fouvry, Kowalski and Michel?

The simplest reason for this (not the only one) is that the use of tannakian methods
(which is the only way we know to produce the symmetry group for arithmetic Fourier
transforms) depends on applying many times a number of operations which will have
uncontrollable effect on the type of complex we work with, even when starting with a
single lisse sheaf.

More technically, the same tannakian idea requires the construction of an abelian
category (which will “be” the category of representations of the symmetry group); general
complexes do not form an abelian category, whereas perverse sheaves form one—certainly
the best known abelian category beyond that of lisse sheaves.

Conversely, if perverse sheaves are so natural and have such remarkable properties, and
suffice to describe all trace functions, why not dispense with general complexes then?

Here the issue is that, although perverse sheaves and their trace functions are individ-
ually wonderful things, they are not in toto stable by all the operations that one might
want to apply. In particular, if M, M;, My and N are perverse sheaves, then it is not
true in general that M; ® My, or f*N, or R fiM, are perverse sheaves (on their respective
affine spaces). (A significant and highly non-trivial exception, however, is that if M is
perverse on A™, then its Fourier transform in the sense of Deligne is still perverse.) In the
case of our applications, the problem appears in the definition of the algebraic convolution
that is used to apply the tannakian formalism—a priori, even for M and N perverse, their
algebraic convolution is simply a complex of constructible sheaves.

Why is there no normalization by the size of the sum in a formula like (E.4) ?

It is a useful property of perverse sheaves, although surprising at first sight, that the
definition itself implies a normalization for these sums. If M is a perverse sheaf with
support A™ which is pure of weight 0, then the local eigenvalues at a “generic” point
x of k" are of weight —m, i.e., they are typically of size |k|~™/2. So the sum (E.4) is
naturally expected to be of bounded size, without normalizing.
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27 lines of a smooth cubic surface, 172
A-number, 56

a-symmetric Sidon set, 125
f—function, 95

i-symmetric Sidon morphism, 125
g-Weil number of weight w, 182
r-Sidon set, 125

“forget support” morphism, 22

Albanese variety of the Fano variety, 169
Albanese morphism, 169
algebraic group, 12

algebraic variety, 12

almost simple group, 30
alteration, 38

alteration topology, 45
arithmetic fiber functor, 61
arithmetic Fourier transform, 27
arithmetic tannakian group, 64
Artin L-function, 167
Artin—Schreier sheaf, 60
automorphic representation, 177

Cesaro mean, 79

character codimension, 28

character sheaf, 24

Chebotarev density theorem, 84, 172
classical group, 124

coefficient object, 199

coevaluation map, 23
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convolution, 22

convolution category, 57

convolution with compact support, 22

Deligne’s equidistribution theorem, 5, 75
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Diophantine group theory, 10
diophantine irreducibility criterion, 121
discrete Plancherel formula, 176

disjoint tuples of characters, 189

dual homomorphism, 25
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equidistribution on average, 75
evaluation map, 23
exceptional group Eg, 132

faithful representation, 32

Fano variety of lines, 169
Fermat curve and threefold, 174
finite Heisenberg groups, 134
Fourier L-function, 95

Fourier sheaf, 139

Fourier inversion formula, 27
Fourier transform, 36

Fourier-Mellin transform on semi-abelian variety, 30

Frobenius reciprocity, 99

Frobenius automorphism of M associated to x, 66
Frobenius conjugacy class of M associated to x, 66

Frobenius—Schur indicator, 121
Frobenius-unramified character, 67
functional equation, 97, 191

Gabber’s torus trick, 131

Gauss sum, 13, 190

generalized jacobian, 129, 138

generic Fourier invertibility, 113

generic set of characters, 28

generic vanishing theorem, 6

generically unramified, 61

generically unramified perverse sheaf, 61
geometric Frobenius automorphism, 24, 66
geometric tannakian group, 60, 64
gonality, 128

Goursat—Kolchin—Ribet criterion, 146

half-spin representation, 133
hyper-Kloosterman sums, 5, 190
hyperelliptic curve, 128
hypergeometric sheaf, 188
hypergeometric complex, 188
hyperplane sections, 172

intermediate jacobian, 169
internal convolution, 57
internal convolution category, 57

jacobian of a curve, 128



Kloosterman sums, 5, 136 square-root cancellation, 206

Kloosterman—Salié sums, 136 standard representation, 84
Kummer sheaf, 60, 187 stratification, 13
stratified vanishing theorem, 6
Lang torsor, 24 summation method, 80
Langlands correspondence, 164, 177 Swan conductor, 192, 193
Larsen’s alternative, 124 symmetry group, 207
Legendre elliptic curve, 160
local epsilon factor, 143, 191 tac, 29
local monodromy representation, 159 tame monodromy representation, 71
tannakian reconstruction theorem, 60
middle extension sheaf, 71, 181 tannakian determinant, 143
mixed complex of weights < w, 183 theta divisor, 170
moments of a representation, 122 thick subcategory, 56
monodromy group, 5
monoidal category, 57 unipotent Jordan blocks, 71
unit object, 57
negligible object, 55 unitary Frobenius conjugacy class associated to x, 66
neutral tannakian category, 58 unitary Frobenius conjugacy class of M associated
norm map, 23 to x, 66

unramified character, 61
permutation representation, 172

perverse amplitude, 13 virtually central subgroup, 125
perverse convolution category, 57 von Mangoldt function, 158
Peter—Weyl theorem, 66, 78

Picard group, 129

Picard variety of the Fano variety, 169
Plancherel formula, 27

primitive characters, 95

punctual weight, 183

punctually pure sheaf, 183

pure complex of weight w, 183

weakly generic set of characters, 29
weakly unramified character, 54
Weil number, 13

Weyl criterion, 11, 85

Weyl dimension formula, 133

Weyl group, 133, 172

zero-one law, 117

quasi-orthogonality, 21
quasi-projective scheme, 12
quasi-projective variety, 12
quasi-unipotent object, 98

reductive algebraic group, 12
representation

of symplectic type, 121

of orthogonal type, 121
Riemann Hypothesis, 21
rigid monoidal category, 58

Salié sums, 136

Sato—Tate law, 5

Sato—Tate measure, 5, 82, 136
Schur’s Lemma, 79, 121
semicontinuity of monodromy, 174
Serre dual, 35

Serre subcategory, 56

set containing most characters, 29
sheaf tame and constructible along 27, 13
Sidon morphism, 125

Sidon set, 125

Sidon subvariety, 125

skyscraper sheaf, 23

smooth cubic threefold, 169
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Glossary

1 skyscraper sheaf, unit for convolution, 23

A(X) Albanese variety of F(X), 169

D(M) Verdier dual, 14

D(G) subcategory of D2(Gj) of objects defined over a finite field, 54
D(G) convolution category, 57

Db(X) = DE(X, Q) category of bounded constructible complexes of Q,-sheaves on X, 13
A diagonal embedding G,, — G,,, X G,, 136

FM, Fourier-Mellin transform with compact support, 30
FM., Fourier-Mellin transform, 30

Frv g, (x) Frobenius action on H2(Gy, x), 66

Fra (x) Fra k (x), 66

Fry, geometric Frobenius automorphism of k,, 66
Fry k., (X) Frobenius conjugacy class in G3%i, 66

Fry(x) Fra,k(x), 66

FTy Fourier transform on a unipotent group, 36

F(X) Fano variety of lines, 169

[G] primitive characters modulo Galois action, 95

G disjoint union of G(k,), 23

é(kn) characters of G(k,), 23

G primitive elements of (A}, 95

G® f-adic characters, 115

Gy arithmetic tannakian group of M, 64

G§[° geometric tannakian group of M, 60

H;,..(T) hypergeometric group of Gabber and Loeser, 74
Hyp(l, ¢, x; 0) hypergeometric sheaf, 188

K(X) =K(X,Q,) Grothendieck group, 14

K? space of conjugacy classes in K, 77

Khieg(G) subgroup of K(G) generated by negligible objects, 55
Ay von Mangoldt function of M, 158

L(M,T) L-function of M, 95

L(G) group of isomorphism classes of objects of rank 1, 73
22, sheaf A\, (L ® 7% ZLy(ay)), 136

Z Qg-sheaf associated to cang, 30

Loy lisse sheaf on U x UV, 36

L uv bi-extension, 35

2y character sheaf, 24

Mx*, N convolution, 22

M x N convolution with compact support, 22

M ;e N internal convolution, 57

MXN external tensor product, 14

MY tannakian dual of M, 23

Mo, (G) Mo, (G, Std), 122
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Mo (G, V) 2m-th absolute moment of the representation V of G, 122

M, twist of M by .7, 25

Mint quasi-inverse of Py, (G) — P(G), 57

Negp (G) negligible complexes of D(G), 55

Negp (G) negligible objects of P(G), 55

Negi'(G) arithmetic negligible objects, 64

P(G) arithmetic internal convolution category, 64

A (M) characters x with H*(Gg, M,) = H:(Gg, M, ) =0, 55
Ny, /k norm map, 23

O(B) orthogonal group of B, 124

Qa completed group algebra of 7¢(Gy)e, 30

Perv(X) = Perv(X, Q,) category of perverse sheaves, 14

II(G) disjoint union of II(G),, 28

II(G), Q,-scheme whose Q,-points are II(G, Q,)e, 28
(G, Q) continuous tame f-adic characters, 28

(G, Q,)w torsion characters of order prime to £, 28

(G, Q,), characters factoring through the pro-£-quotient, 28
P(G) subcategory of Perv(Gz) of objects defined over a finite field, 54
P(G) perverse convolution category, 57

P G) subtannakian category generated by rank 1 objects, 73
P(G) arithmetic convolution category, 64

PL.(G) subtannakian category generated by rank 1 objects, 73
P category of perverse sheaves on Gy, 60

i (Gy) tame étale fundamental group, 28

RepQZ(G) category of representations of G, 59

S(M, x) arithmetic Fourier transform, 27

SO(B) special orthogonal group of B, 124

Sp(B) symplectic group of B, 124

oO(X) theta divisor, 170

Ok, (X) unitary conjugacy class for Fry g, (x), 66

Om(x) Om,k(X), 66 _

Ok, (X) unitary Frobenius conjugacy class in G}}', 66
Owm(x) On,k(x), 66

Unip(n) unipotent Jordan block of size n, 163

U* Serre dual, as group scheme, 35

uv algebraic group model of the Serre dual, 35

[X] set of closed points of X, 191

27(N) @i (o), 67

2Zr(N)m Frobenius-unramified characters for N € (M), 67
Zr(0) Frobenius-unramified characters for o, 67

Z (M) set of unramified characters, 61

Zw(M) set of weakly unramified characters for M, 54

[s] the set {1,...,s}, 30

FS(o) Frobenius—Schur indicator of a representation, 122
(M) subcategory tensor-generated by M, 58

(M) tannakian category generated by M, 14

(M)™ subcategory of P21(G) tensor-generated by M, 64
(M)&° subcategory of Piy(G) tensor-generated by Mg, 64
a(T,M) local exponent, 192

a(T,M,w) local exponent, 192

ades geometrically trivial lisse sheaf, 14
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ccodim(S)

(x,a)
coev

c(M)

cu (M)
deg(x)
drop,, (M)

WDel

(2

swan,, (M)

tm(z) = tm(xi k)
tM (x; kn)

(&%)

tautological character, 30

character codimension, 28

character on G,, x G, 135
coevaluation map, 23

complexity on projective space, 19
complexity on quasi-projective variety, 19
degree of a primitive character, 95
drop of a complex at z, 193

neutral element of a group, 22
evaluation map, 23

exp(2inz), 12

local epsilon factor, 192

dual homomorphism, 25

dual homomorphism, 25

asymptotic notation, 12

asymptotic notation, 12

asymptotic notation, 12

inverse map on a group, 22

group law, 22

image of Haar measure of K on K*, 85
image of Haar measure on K on the space of conjugacy classes in U, (C)*, 77
fiber functor defined by y, 61

Deligne’s fiber functor, 187

character associated to z € UV, 35
Swan conductor of a complex at x, 193
trace function of M on X(k), 14

trace function of M on X(k,), 14
Gauss sum, 13
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