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(Part I : Introduction to étale cohomology)

1 Introduction

These notes are an attempt to convey some of the ideas, if not the substance or
the details, of the proof of the Weil conjectures by P. Deligne [De1], as far as
I understand them, which is to say somewhat superficially – but after all J.-P.
Serre (see [Ser]) himself acknowledged that he didn’t check everything. . .

What makes this possible is that this proof still contains some crucial steps
which are beautiful in themselves and can be stated and even (almost) proved
independently of the rest. The context of the proof has to be accepted as
given, by analogy with more elementary cases already known (elliptic curves,
for instance). Although it is possible to present various motivations for the
introduction of the étale cohomology which is the main instrument, getting
beyond hand waving is the matter of very serious work, and the only reasonable
hope is that the analogies will carry enough weight. What I wish to emphasize is
how much the classical study of manifolds was a guiding principle throughout the
history of this wonderful episode of mathematical invention – until the Riemann
hypothesis itself, that is, when Deligne found something completely different. . .

2 Statements

The Weil conjectures, as stated in [Wei], are a natural generalization to higher
dimensional algebraic varieties of the case of curves that we have been studying
this semester. So let X0 be a variety of dimension d over a finite field Fq.
Following Deligne’s notations, we write Xn for the variety obtained by looking
at X0 as defined over the extension field Fqn , and X when we consider X0 over
the algebraic closure Fq of Fq, symbolically

Xn = X0 × Fqn

and
X = X0 × Fq.

In general, notions and objects defined over the algebraic closure are called
“geometric”, while those defined over a finite field are “arithmetic”; subscripts
will vary accordingly.
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By definition, the zeta function of X0 is the formal power series with coeffi-
cients in Q given by

Z(X0) = exp
(∑
n>1

|X0(Fqn)|T
n

n

)
. (1)

Looking at the field of definition of points in Fq, it is not hard to rewrite
this as an “Euler product”

Z(X0, q
−s) =

∏
x∈|X0|

(1−N(x)−s)−1 (2)

where N(x) = qdeg(x), and |X0| is the set of closed points of X0, which is the
same as the set of orbits of points on X for the action of the Galois group
of Fq over Fq. This shows the analogy with the Riemann zeta function (the
computation is very similar to that done for the zeta function of the Gauss or
Kloosterman sums; it will be re-done later in section 6).

Examples. (1) If X0 = Pd
Fq

, then we easily find, by exact counting, that

Z(X0) =
1

(1− T )(1− qT ) . . . (1− qdT )
. (3)

While this can be defined in general, Weil made the following conjectures if X0

is smooth and projective:

• Z(X0) is actually a rational function.

• There exists an integer χ and ε = ±1 such that Z(X0) satisfies a functional
equation

Z
(
X0,

1
qdT

)
= εqdχ/2TχZ(X0, T ). (4)

• We can write Z(X0) as a rational function of the form

Z(X0) =
P1 . . . P2d−1

P0 . . . P2d
(5)

where P0,. . . ,P2d are polynomials with integer coefficients, satisfying

P0 = 1− T, P2d = 1− qdT

and all the zeros of Pi, i = 0, . . . , 2d, are of modulus q−i/2.

This last statement, of course, is the analogue of the Riemann hypothe-
sis. Note that this defines Pi uniquely when writing Z(X0) as a rational
function, by looking at poles or zeros of modulus q−i/2.

A few remarks: first, we can check quickly that it works for Pn
Fq

, by looking
at (3). In the functional equation we have χ = d+ 1 and ε = (−1)d.

Moreover, the Riemann hypothesis can not be reduced to simply counting
the number of points on X0(Fq), and not even on X0(Fqn) asymptotically when
n tends to infinity, as was the case for elliptic curves or for curves in general,
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unless all but one of the “non-trivial” Pi (1 6 i 6 2d − 1) are zero. Indeed,
from (5) we get

|X0(Fqn)| =
∑

06i62d

(−1)i
∑
j

αni,j

where Pi =
∏
j(1− αi,jT ), which is

|X0(Fqn)| = qnd + 1 +
∑

16i62d−1

(−1)i
∑
j

αni,j

and the only obvious estimate for the error term from the Riemann hypothesis
is O(qn(d−1/2)).

3 The framework: étale cohomology

3.1 Ordinary cohomology

Imagine that Weil had known nothing about any kind of cohomology theory
(maybe he slept during all the 1920’s and 30’s), and that he had made those
conjectures, based on the evidence of the known, explicitly computable, cases.
Then, I claim, formulae such as (3) above, alone, would have put people on the
track.

To explain, I will recall the definition of the cohomology (with complex coef-
ficients) of a topological space T . There are actually many different definitions,
with various advantages and drawbacks, but maybe the simplest for compu-
tational purposes and the best suited to introduce the generalization to étale
cohomology is what is called Čech cohomology.

The definition is motivated by the important concept of local and global
properties. Given T , we might feel that we understand it well enough locally (as
in the case of differentiable manifold where the local theory is that of differential
calculus on open subsets of Rn), and that some of the most interesting questions
we may ask about T are global versions of those local notions. For instance, an
ordinary differential equation always has a local solution, but when does it have
a global one? The natural idea is to take all local solutions fi, defined on some
open subsets Ui, and compare them on the intersections, hoping that they will
coincide.

This is what the Čech cohomology groups will make precise. They are de-
fined with respect to an open covering U = (Ui)i∈J of T . For any multi-index
I = (i0, . . . , in) of elements of J , we will write UI for the intersection of the
corresponding open subsets:

UI = Ui0 ∩ . . . ∩ Uin

and CI for the vector space of complex valued functions on the set of connected
components of UI (equivalently, locally constant continuous functions on UI).

Then we define the vector space of n-cochains, for n > 0, to be

Cn(U ,C) =
∏

I∈Jn+1

CI .

If f ∈ Cn(U ,C), we will write f(I) for its component at I; as a locally
constant function, it is the map UI → C, which takes x ∈ UI to the complex
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number associated to the connected component it lies in. For instance if every
U in the covering is connected, an element of C0(U ,C) associates a complex
number c(U) to each of the open subsets of the given covering; to compare
those numbers we can take the differences c(U) − c(V ): those are naturally
associated to the intersections U ∩ V . In general, we get a linear map

d0 : C0(U ,C)→ C1(U ,C)

such that d0(f)(i, j) = f(i)−f(j) (as functions on Ui,j , so f(i) really means f(i)
restricted to Ui,j). Then d0(f) = 0 simply means that f is constant: in other
words, we have just one complex number f(T ) which is “globally” associated to
f . This is the kind of things we wanted to study.

But we do not stop with d0: we can clearly generalize it by defining linear
maps dn, for all n > 0

dn : Cn(U ,C)→ Cn+1(U ,C)

by

dn(f)(i0, . . . , in+1) =
∑

06j6n+1

(−1)jf(i0, . . . , ij−1, ij+1, . . . , in+1).

For instance:

d1(f)(i, j, k) = f(i, j)− f(i, k) + f(j, k).

Now comes the most important fact: for any n > 0, we have dn+1◦dn = 0, or
more succinctly d ◦ d = 0. This is the basic equation of all cohomology theories.

There is no mystery in this: take for instance d1 ◦ d0, then by the formulae
above

d1 ◦ d0(f)(i, j, k) = d0(f)(i, j)− d0(f)(i, k) + d0(f)(j, k)
= f(i)− f(j)− f(i) + f(k) + f(j)− f(k)
= 0

voilà!
Armed with the formula dn+1 ◦dn = 0 we can define the space of n-cocycles,

Zn(U ,C), and the space of n-coboundaries, Bn(U ,C):

Zn(U ,C) = Ker(dn : Cn(U ,C)→ Cn+1(U ,C))

Bn(U ,C) = Im(dn−1 : Cn−1(U ,C)→ Cn(U ,C))

with the effect that
Bn(U ,C) ⊂ Zn(U ,C).

This means that we can finally define the n-th Čech cohomology space (or
group) of T (with respect to the covering U) as

Hn(U ,C) = Zn(U ,C)/Bn(U ,C).

(As a matter of convention, we define C−1 = 0 and d−1 = 0, so this definition
applies equally well to H0.)
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Of course, those spaces depend on the covering U ; however, given two cov-
erings U and V, there is a third W refining both (take the intersections), and
this gives maps

Hn(U ,C)→ Hn(W,C)

and
Hn(V,C)→ Hn(W,C)

which allows us to think of the “union” of the cohomology groups over all
coverings, which is then independent of any particular one. Or, more simply, if
you think of local-global problems as above, you may take a covering by open
subsets on which the local problem is known and argue with it. Actually, both
ways are more or less the same in many cases: for instance, in the case of
manifolds, it can be shown that for any covering with contractible open subsets
(or subsets homeomorphic to convex subsets of Rn), the cohomology spaces are
the same. In any case, we will write Hn(T,C) for the resulting cohomology
groups, which are intrinsic invariants of the space T only.

Once you take this for granted, the Čech cohomology groups have many
advantages. First, they can be actually computed in many cases: if the covering
happens to be finite for instance, each Cn is finite dimensional, which makes it
obvious that Hn is then also finite dimensional.

As another example, take the covering of a space T by its connected com-
ponents (Ui)i∈π0(T ). Then U(i,j) = ∅ for i 6= j so d0 = 0 and Z0 = C0; as
d−1 = 0, we get (abusing notation: this particular covering is sufficient in this
case, though not in all, of course)

H0(T,C) = Cπ0(T )

namely a C-vector space of dimension equal to the number of connected com-
ponents of T . This shows already that the cohomology groups carry some
information on the topology of T (although this might seem too obvious to be
of any use, Hartshorne [Har], III-11-3, contains a proof of an important theorem
of algebraic geometry based on such a result about another H0).

Another very important remark is that there is nothing sacred here about
C in the definition of Cn: we might replace it by R, Q, Z, or even by more
general vector spaces associated to the covering. For differential equations, it
would be easier to compare local solutions if we could take instead of CI the
space of solutions defined on UI ; similarly for C1 we can take the solutions on
the intersection (0 if it’s empty), so that we give a meaning to d0(f)(i, j) =
f(i)− f(j) simply by taking the solutions over Ui and Uj and restricting them
to Ui ∩ Uj before computing the difference.

This simple idea has had enormous consequences: the abstraction of the
principle gives the notion of a sheaf on T (another French invention associated
with the happy effects of jails on mathematical creativity, since faisceaux were
invented by Jean Leray during World War II when he was prisoner in Germany).
This is a rule F associating a vector space F(U) to every open subset U ⊂ T
so that

• F(∅) = 0.

• A restriction map F(U)→ F(V ) is defined for any V ⊂ U , and is transi-
tive: restricting to W ⊂ V ⊂ U directly from U or going through V has
the same result.
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• F satisfies a locality axiom, meaning that an element of F(U) is deter-
mined uniquely by its restrictions to a covering of U , and conversely, given
elements of F(Ui) for a covering (Ui) of U , which coincide on the inter-
sections, there is an element in F(U) which restricts to those. This is of
course true for functions and anything related to functions with the usual
restriction.1

With a sheaf F we then obtain the cohomology spaces of T with coefficients in
F , denoted by Hn(T,F). Computing H0(T,F) is still an easy thing: by the
definition of the local nature of elements of F(U) (called sections of F over U),
an element of H0(U ,F) gives sections si ∈ F(Ui) whose restrictions coincide on
the intersections Ui ∩Uj , and therefore must patch together to give an element
of F(T ) (a “global” section), so that

H0(T,F) = F(T ).

But let us come back to the Weil conjectures. Where has this digression
brought us? The point is that as people were defining and getting to know
cohomology, they computed the cohomology groups of many classically defined
topological spaces, and one of the first was n-dimensional projective space over
C. Here is the answer in this case (which is not difficult to get with the help
of Čech cohomology, using the standard covering of Pn

C with n + 1 subsets
homeomorphic to Cn, see [Har] III, 5, for similar computations): one finds
first that Hk(Pn

C,C) = 0 for all k > 2n, which reflects the general result that
Hk(T,C) = 0 if T is a real manifold and k > dim(T ), and then in the interesting
range

H2i(Pn
C,C) = C, if 0 6 i 6 n.

H2i+1(Pn
C,C) = 0, if 0 6 i < n. (6)

And now, as Hamlet would say, “Look here, upon this picture (3), and on
this (6)”. Comparing with the conjectural form of Z(Pd

Fq
) (5), we see that

there is a factor of degree 1 for each index 2i such that H2i = C, and no
odd index factors where H2i+1 = 0. This coincidence, extended to other cases
where X0 appeared as the “reduction mod p” of a well-known variety XC over
C, and where computations of both Z(X0) and Hi(XC,C) were available, is
actually the motivation behind this precise expression of Z(X0) as a rational
function: Weil already added the precision that Pi would be a polynomial of
degree dimHi(XC,C) in this case.

As another confirmation of this, consider the case of curves. We will see
by Bombieri’s adaptation of Stepanov’s method that for C0/Fq smooth and
projective there exists a polynomial P1 ∈ Z[T ] of degree 2g, g being the genus
of C, such that

Z(C0) =
P1

(1− T )(1− qT )
while it was known since the beginning of the century that the cohomology of
a Riemann surface C is given by

H0(C,C) = C
H1(C,C) = C2g

H2(C,C) = C
(7)

1This locality axiom explains the intervention of connected components in the definition
of the “constant sheaf C” which gave the first definition: “constant” means in fact “locally
constant”.
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(and the others vanish).
This provides a hint that some cohomological explanation of the Weil con-

jectures exists. But the analogy actually goes well beyond what could be a
coincidence, to give very convincing evidence that it should be the key to a
proof.

Indeed, algebraic topologists had established the following fundamental facts
about the cohomology of (say) compact, connected, and oriented manifolds of
dimension d over C:

• “Cohomological dimension”: if X is of dimension d, then Hi(X,C) = 0
for all i > 2d.

• Finiteness: for any i > 0, Hi(X,C) is a finite dimensional C-vector space.

• “Functoriality in X”: if f : X → Y is a continuous map then there are
associated maps in cohomology for all i > 0

f? : Hi(Y,C)→ Hi(X,C).

In particular, a map X → X induces endomorphisms of the finite dimen-
sional C-vector spaces Hi(X,C).

• Poincaré duality: there is an isomorphism (depending on the choice of an
orientation of X)

tr : H2d(X,C) ' C

and for all i 6 d natural bilinear forms (“cup product”)

Hi(X,C)×H2d−i(X,C)→ H2d(X,C) ' C

which are perfect pairings of finite dimensional vector spaces; in particular,
Hi is dual to H2d−i, and they have the same dimension.

• Künneth theorem: for any i > 0, there are canonical isomorphisms

Hi(X × Y,C) =
⊕
j+k=i

Hj(X,C)⊗Hk(X,C).

• Lefschetz trace formula: let f : X → X be a differentiable map with
isolated fixed points, and L(f) the algebraic number of those (i.e. they are
counted with multiplicity, positive if f induces an orientation preserving
map on the tangent space, negative if it induces an orientation reversing
map). Then we have the equality

L(f) =
2d∑
i=0

(−1)iTr(f? |Hi(X,C)). (8)

Remarks. Of these, the first and second are not too hard in Čech coho-
mology, the third is a simple exercise since a covering U of Y gives a covering
f?(U) = (f−1(Ui)) of X. Poincaré duality is deeper. The Lefschetz trace for-
mula, arguably the most surprising among those properties since it gives a very
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concrete link between properties of the space X and its cohomology2, is actu-
ally a formal consequence of the others (including some which are omitted here).
You might get some feeling by checking for a zero-dimensional space, namely a
finite set of points.

All the above, in any case, are much simpler than their analogues below for
étale cohomology, and it is important to stress that all were known and available
at the time Weil made his conjectures, and it was not necessary to rediscover
them.

This Lefschetz trace formula however springs to our attention for the problem
of counting points on varieties over finite fields: we know that the points of X0

with coordinates in Fqn are just the fixed points of the n-th power Fn of the
Frobenius morphism F : X → X. Therefore let us be formal and apply (8):

|X0(Fqn)| =
2d∑
i=0

(−1)dTr((Fn)? |Hi(X))

gives ∑
n>1

|X0(Fqn)|T
n

n
=

2d∑
i=0

(−1)i
∑
n>1

Tr((Fn)? |Hi(X))
Tn

n

but it is merely a linear algebra computation to check that any endomorphism
f of a finite dimensional vector space V satisfies the formal power series identity∑

n>1

Tr(fn |V )
Tn

n
= − log det(1− fT )

(if dimV = 1, that’s just the power series of the logarithm), so that we get

Z(X0) =
2d∏
i=0

det(1− F ?T |Hi(X))(−1)i+1
. (9)

This is exactly of the conjectured form (5) with polynomials

Pi = det(1− F ?T |Hi(X))

in particular the degree of Pi is indeed the dimension of Hi(X)!

But here arises the complication: the astute reader will have noticed the
absence of the coefficient of the cohomology in the computation above: Hi(X, ?),
that is the question. For this was not for mere notational brevity: it is the crux
of the matter.

Indeed, the proof of the properties that we have stated depends crucially on
the fact that X is a manifold; similar results fail for more general topological
spaces, when using the Čech cohomology with coefficients in C. And we are
now dealing with algebraic varieties, defined over a field of characteristic p. A
cohomology theory of those varieties is required, and during the 50’s and 60’s,
much thought was given to the matter.

2It easily implies, for instance, such results as Brouwer’s fixed point theorem: every con-
tinuous map from the unit ball in Rn to itself has a fixed point.
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3.2 Enter étale cohomology

The first idea, simply to use the Zariski topology, fails: this is a rather coarse
topology, and although it is possible to define groups Hi(X,C) by the for-
mal definition above, it doesn’t give anything useful (you might want to try
some computation to discover that the spaces obtained do not coincide with the
classical ones, especially for the dimension). Serre, however, showed that this
topology was good enough provided one took as coefficients some objects better
suited to its nature: those are sheaves, as defined above, satisfying a further
condition called “coherence”. For instance, the basic sheaf on a variety X/k is
the so-called structural sheaf OX defined by OX(U) = k[U ], the ring of regular
functions on the open set U ⊂ X. This theory has a life of its own ([Har], III),
but has limited usefulness for the Weil conjectures: indeed, if X0 is defined over
Fq, all coherent sheaves on X0 will be characteristic p objects and their coho-
mology will give at best vector spaces over Fq: traces of operators acting on
cohomology, for instance, will be elements of Fq, and couldn’t give an expression
for the Zeta function which belongs to Q[[T ]].

So the search was extended further, and the solution was found by Alexander
Grothendieck around 1960: he invented étale cohomology, and was thus able to
justify the formal reasoning above leading to the rationality of the Zeta func-
tion by means of a Lefschetz trace formula. The complete treatment required
years of work in the form of yearly Séminaires de Géométrie Algébrique held
in Orsay, ultimately producing the infamous S.G.A notes (about 4000 pages)
which contained all necessary details and much more.

The idea is simply brilliant. Looking back at Čech cohomology, remember
what the motivation was: we felt that we knew enough about the local structure
of our manifolds (since they are locally the same as Cd) to assume we can
solve our problems restricted to some sufficiently small covering and use Čech
cohomology with respect to this covering in order to compare our various results
and deduce global statements. But Zariski topology, even taking coverings by
affine varieties, simply doesn’t look locally any simpler than it does globally for
arithmetic problems, such as counting points in our preferred field, be it Q or
Fq (what good will it do to remove a point from a curve?).

Is there then a process which produces from X/k a variety which we may
fairly call arithmetically simpler, and consider as a “localization” of X? Gro-
thendieck’s idea is that looking at X over extension fields of k, and especially
over the separable closure of k, is such a process. This can create points on the
variety, and as we know from many examples, most problems get really easier:
for example, quadratic forms are classified by one invariant only, their rank,
all polynomials have roots. . . There is a real feeling that we can consider those
problems over k̄ as known.

So we will change the idea of localizing to mean just something like that; in
other words, we replace the notion of open subset by something more general,
which still satisfies some formal properties sufficient to introduce Čech cohomol-
ogy in a way analogous to the classical definition. This is called a Grothendieck
topology; in our case, we are introducing the étale topology on a variety X/k
defined over a field k. 3

3Here the language of schemes [Har] is almost indispensable, since it makes it possible to
talk of a variety over a field without any reference to points in an algebraic closure, and to
define maps between such objects, even if there are no points in the variety with coefficients
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A last way of thinking of this might be the following: considering an open
subset Uf = {x ∈ X | f(x) 6= 0} in the Zariski topology means algebraically
that we allow ourselves to use the inverse of a function f , which wasn’t defined
before. In the étale case, we further allow ourselves the use of solutions of
(separable) polynomial equations in f : its square root, for instance.

Formally, the notion of an étale morphism f : X → Y between varieties is
introduced first. The precise definition (f is flat and unramified, if you really
must know), we leave aside. Such a map is however always open, so U = f(X) is
a Zariski open subset of Y and X is then more or less a finite unramified covering
of U . In particular, if k′/k is a separable field extension, then extending scalars
from k to k′ always gives an étale morphism X × k′ → X. This adds solutions
of algebraic equations in the base field. Of course not all étale maps are of
this type. Others (as mentioned) give roots of equations whose coefficients are
functions on U : they have Y of the form

Y = {(x, y) ∈ U × k | yd + a1(x)yd−1 + . . .+ ad(x) = 0}

with Y → X the projection; here the ai are regular functions on U , and the
equation has to be separable.

In particular, f is not injective in general, although its fibers are finite, so
that in particular dimX = dimY .

Étale morphisms will be considered then as “open” subsets in the étale
topology. To justify this, we need to be able to take unions and intersections of
them, and this is not very hard.

First, the union of any family (Xi → X) is just the obvious map from the
disjoint union of the Xi’s to X.

Second, if f1 : X1 → X and f2 : X2 → X are two étale maps, then let
Z = {(x1, x2) ∈ X1 ×X2 | f1(x1) = f2(x2) ∈ X}, and f : Z → X be given by
f(x1, x2) = f1(x1) = f2(x2): we call Z the “intersection” of X1 and X2. You
can check that if f1 and f2 are the injections of some open subsets into X, then
this coincides with the usual notion.

Moreover, the notion of étale maps is transitive, which makes it possible to
speak of the restriction of an étale map: if Z → Y → X are two étale maps,
the composite is still étale, and we say that it is the restriction to Z of the
“open subset” Y → X. For instance, there are as usual two restrictions from
the intersection Z defined above to X1 and X2.

And finally an étale covering of X is just a family (Xi → X) of étale maps
to X such that their images cover X:

X =
⋃
i

fi(Xi).

This is now enough to rewrite verbatim the notion of a sheaf (of abelian
groups) over X for the étale topology: it is a rule F associating an abelian
group F(Y ) to each étale map Y → X, which is compatible with restriction,
and which is local, where local is meant with respect to étale coverings and étale
intersections.

With a sheaf F and a covering U , we can then define the Čech cohomology
groups Hi(U ,F). Again, locality will imply

H0(U ,F) = F(X)

in the base field.
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(id : X → X is étale, so it is defined).
Yet again, general results show that it is possible to take the “union” over

all étale coverings, getting cohomology groups associated to the variety X/k,
written

Hi
ét(X,F).

Some examples are in order here. The only obvious sheaves in this topology
are the constant ones, similar to C in the original definition of Čech cohomology;
as before, constant means locally constant, so if M is an abelian group, the
constant sheaf M is defined by

M(Y ) = Map(Y,M),

the group of continuous maps Y → M , where M has the discrete topology, so
any f ∈M(Y ) is constant on each connected component of Y . In this case, the
cohomology groups are simply denoted by Hi

ét(X,M). In particular, if n is any
positive integer there is the constant sheaf Z/nZ on X/k, which will be very
important.

Another important sheaf is the “multiplicative group” Gm, where Gm(Y ),
for any étale map Y → X, is the group of invertible regular functions on Y . For
any n prime to the characteristic of k, there is a subgroup µn of Gm consisting
of regular functions which are n-th roots of unity. Notice that by extending k
to k[ξ], where ξ ∈ k̄ is a primitive n-th root of unity, which means restricting to
the “open” subset X × k[ξ] → X, µn becomes constant, isomorphic to Z/nZ.
We thus see a case of a sheaf which is locally constant for the étale topology,
whereas it certainly isn’t, in general, in the Zariski topology. Also, n is assumed
prime to the characteristic so that the polynomial Xn − 1 is separable over k.

We have not proved that Gm, or µn, is a sheaf: indeed, because étale mor-
phisms are not just injections, this is by no means obvious (see [Mil], chapter
2).

We can see what it involves in the simplest circumstance, where X is just a
one point space, but defined over k. This means that although X is as trivial as
you can get as a topological space, it isn’t in the étale topology: you get many
étale maps Y → X by taking Y to be a one point space defined over k′, where
k′ is a finite separable extension of k. In this case, we have µn(Y ) = µn(k′), the
group of n-th roots of unity in k′.

Any such Y → X gives a covering of X since there is just one point in
both spaces. However, the subtlety is that although there is just one map in
the covering, the intersection of Y with itself is not Y ! This is because Y has
non-trivial automorphisms, namely (assuming k′/k to be Galois) the elements
of the Galois group Gal(k′/k). Translating correctly the definitions one indeed
shows that the condition for µn (or Gm) to be a sheaf over k is equivalent to
the fundamental result of Galois theory: x ∈ k′ is in k if and only if xσ = x for
all σ ∈ Gal(k′/k).

This gives the first connection between this étale business and number theory,
and the whole theory might be viewed as a generalization of Galois theory to
higher dimensions. Indeed, pursuing the investigation of sheaves over a one
point space over k shows that such an object is equivalent to an abelian group
M with an action of the Galois group Gal(ks/k) of a separable closure of k, and
the cohomology groups of the corresponding sheaf are the same as the Galois
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cohomology groups Hi(k,M), which had been defined and extensively studied
already, independently of any work on the Weil conjectures.

3.3 A concrete example: elliptic curves

There is yet another nice example, where we can actually compute a non-trivial
étale cohomology group and so get a better feeling, and it involves the usual
suspects: elliptic curves (see [Sil] for facts about elliptic curves). To simplify we
consider elliptic curves over an algebraically closed field.

We have to consider all étale coverings U of E, compute the associated
Čech cohomology groups and take the “union”. The reason it is possible to
do so explicitly in this case is that because E is an elliptic curves, all its étale
coverings will be given by isogenies E′ → E, E′ being another elliptic curve,
and the theory of those is well-known.

Let f : Y → E be an étale map. Then Y is a curve over k, and it is
smooth (this is a general property of étale morphisms). Because we are dealing
with curves, it’s not hard to reduce to Y projective. Assume first that it is
connected. Then since E is an elliptic curve, it has genus one, and f is étale,
therefore unramified, so the Hurwitz formula ([Sil], II 5.9)

2− 2g(Y ) = deg(f)(2− 2g(E)) = 0

implies that the genus of Y is again one: this is the special property of elliptic
curves which is the main point. After choosing a suitable base point on Y , f
is an isogeny between elliptic curves. We will write E′ instead of Y for this
elliptic curve. Since f is non-constant and therefore surjective, it defines an
étale covering U = (E′ → E).

We now proceed to compute the Čech cochains for this étale covering and
coefficient sheaf M , for any abelian group M at this stage. Since E′ is connected,
we have

C0(U ,M) = M.

Next let E1 be the intersection of E′ → E with itself; as was the case with
fields, this is not just E′. Let’s compute:

E1 = {(x, y) ∈ E′ × E′ | f(x) = f(y)} (10)

but f is an isogeny, therefore also a group morphism, and denoting E′[f ] =
Ker(f) (it is a finite subgroup of E of order deg f since f is separable) we get
an isomorphism {

E′ × E′[f ] → E1

(x, σ) 7→ (x, x− σ) (11)

(with inverse (x, y) 7→ (x, x− y).)
Thus E1 is not connected, and we get

C1(U ,M) = Map(E1,M) = Map(E′[f ],M) (12)

the last Map being simply the set theoretic applications E′[f ] → M , and the
last equality is actually the bijection induced by the isomorphism (11), so if
c ∈ Map(E1,M), it corresponds to c̃ which has

c̃(σ) = f(0, σ).

12



Similarly, we compute E2, the “triple intersection”:

E2 = {(x, y, z) ∈ E′ × E′ × E′ | f(x) = f(y) = f(z)}

and E2 ' E′ × E′[f ]× E′[f ] through the map

(x, σ, τ) 7→ (x, x− σ, x− τ) (13)

so that
C2(U ,M) = Map(E2,M) = Map(E′[f ]× E′[f ],M) (14)

and this time c ∈ Map(E2,M) corresponds to c̃ with

c̃(σ, τ) = c(0, σ, τ).

To compute H0(U ,M) and H1(U ,M) we have the sequence

0→ C0(U ,M) d0→ C1(U ,M) d1→ C2(U ,M)

which is therefore of the form

0→M
d0→ Map(E′[f ],M) d1→ Map(E′[f ]× E′[f ],M) (15)

and it remains to determine d0 and d1.
For d0, it’s easy: if r1, r2 are the two restrictions E1

→→E, namely the two
projections in (10), and c ∈ C0(U ,M), then c is constant on E and d0(c) ∈
C1(U ,M) is

d0(f)(x, y) = f ◦ r1(x, y)− f ◦ r2(x, y) = f(x)− f(y) = 0

i.e. d0 = 0, and
H0(U ,M) = M.

For d1, we have the three restrictions si (1 6 i 6 3) from E2 to E1, which
are, in the two descriptions of E2 and E1

s1 : (x, y, z) 7→ (x, y) or s1 : (x, σ, τ) 7→ (x, σ)
s2 : (x, y, z) 7→ (x, z) or s2 : (x, σ, τ) 7→ (x, τ)
s3 : (x, y, z) 7→ (y, z) or s3 : (x, σ, τ) 7→ (x− σ, τ − σ)

(16)

which now gives the formula for d1 in (15): for c̃ ∈ Map(E′[f ],M)

d1(c̃)(σ, τ) = c̃ ◦ s1(σ, τ)− c̃ ◦ s2(σ, τ) + c̃ ◦ s3(σ, τ)
= c̃(σ)− c̃(τ) + c̃(τ − σ).

Because d0 = 0, we have H1(U ,M) = Ker(d1), and so we conclude exactly
from this formula that

H1(U ,M) = Hom(E′[f ],M) (17)

the group of group homomorphisms from E′[f ] to M .
Now for the real H∗ét(E,M): any general covering (Ui → E) must contain a

Ui as above, and so has a refinement by one of this form. Since the H0 found
above doesn’t depend on U , we conclude in every case that

H0
ét(E,M) = M

13



(which is really a general property of cohomology and has nothing to do with
E.)

On the other hand, for H1, we can notice some non-obvious phenomena
which throw much light on the general theory. First, since E′[f ] is a finite
group, we have H1(U ,M) = 0 if M is without torsion, for instance M = Z,
so H1

ét(E,Z) = 0. This is anomalous if we compare with the situation over C,
so shows that we are forced to consider torsion sheaves, such as Z/mZ, if we
want to get a good theory, and H1

ét(E,M) will be necessarily a torsion group.
This might seem a big step backwards in our quest for a good theory for the
Weil conjectures, but the point is that the torsion here is related to M and
not to p: in a way similar to the construction of the p-adic fields, which are of
characteristic zero, from the consideration of all Z/pnZ, n > 1, we will be able
to find a way out.

Indeed, assume now that M = Z/`nZ for ` 6= p a prime number. Then

Hom(E′[f ],Z/`nZ) = Hom(E′[f ]`,Z/`nZ)

and the `-part E′[f ]` of E′[f ] is the kernel of another étale cover E′′ → E, so in
computing H1

ét(E,Z/`
nZ) we can restrict our attention to the coverings f with

degree a power of `, say `m.
Now the theory of the dual isogeny ([Sil], III 6) furnishes another isogeny

f̂ : E → E′

such that the composite

E
f̂→ E′

f→ E

is the map [`m] : E → E. This is also étale, showing that [`m] refines U , and
we only have to consider those [`m]. Then we know ([Sil], III 6-4) that

E[`m] ' Z/`mZ× Z/`mZ

and consequently

H1(U ,Z/`nZ) = Hom(Z/`mZ× Z/`mZ,Z/`nZ)

=
{

Z/`mZ× Z/`mZ, if m 6 n.
Z/`nZ× Z/`nZ, if m > n.

and taking all m’s together gives finally

H1
ét(E,Z/`

nZ) = Z/`nZ× Z/`nZ

which is this time exactly the analogue of the classical result

H1(EC,C) = C×C.

This is the general pattern: only cohomology with coefficients in torsion
sheaves, with order prime to the characteristic of the field, will behave as ex-
pected, but taking all Z/`nZ, n > 1, the corresponding groups Hi

ét(X,Z/`
nZ)

will come together correctly so a theory with coefficients in the ring of `-adic
integers will be obtained by defining

Hi
ét(X,Z`) = lim

←
Hi

ét(X,Z/`
nZ)
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(which are Z`-modules) and one over the `-adic field by

Hi
ét(X,Q`) = Hi

ét(X,Z`)⊗Q`

(and this is extended to a certain category of étale sheaves on X, called `-adic
constructible sheaves.)

For elliptic curves, our calculation shows that

H1
ét(E,Z`) = Z2

`

and even more precisely gives an isomorphism

H1
ét(E,Z`) ' Hom(T`(E),Z`)

so H1
ét is simply the dual of the Tate module of E at `. You can now compare

the proof of the rationality of the zeta function of an elliptic curve in [Sil] with
the one derived from the Lefschetz trace formula for `-adic étale cohomology.

3.4 The fundamental results of étale cohomology

Working hard, Grothendieck and his collaborators succeeded in establishing the
fundamental properties of this étale cohomology theory, for smooth projective
varieties over an algebraically closed field of characteristic p (possibly p = 0)
and any prime ` 6= p:

• “Cohomological dimension”: if X is of dimension d, then Hi
ét(X,Q`) = 0

for all i > 2d.

• Finiteness: for any i > 0, Hi
ét(X,Q`) is a finite dimensional Q`-vector

space.

• “Functoriality in X”: if f : X → Y is a morphism then there are associ-
ated maps in cohomology for all i > 0

f? : Hi
ét(Y,Q`)→ Hi

ét(X,Q`).

In particular, a map X → X induces endomorphisms of the finite dimen-
sional Q`-vector spaces Hi(X,Q`).

• Poincaré duality: there is an isomorphism

tr : H2d
ét (X,Q`) ' Q`

and for all i 6 d natural bilinear forms (“cup product”)

Hi
ét(X,Q`)×H2d−i

ét (X,Q`)→ H2d
ét (X,Q`) ' Q`

which are perfect pairings of finite dimensional vector spaces; in particular,
Hi

ét is dual to H2d−i
ét , and they have the same dimension.

• Künneth theorem: for any i > 0, there are canonical isomorphisms

Hi
ét(X × Y,Q`) =

⊕
j+k=i

Hj
ét(X,Q`)⊗Hk

ét(X,Q`).
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• Lefschetz trace formula: let f : X → X be a morphism map with isolated
fixed points, satisfying a certain separability assumption on 1− df acting
on the tangent spaces at the fixed points, and L(f) the number of those.
Then we have the equality

L(f) =
2d∑
i=0

(−1)iTr(f? |Hi
ét(X,Q`)). (18)

• Comparison theorem: if X is smooth and projective over C, then

Hi
ét(X,Q`)⊗Q`

C ' Hi(XC,C).

This shows that the results for ordinary cohomology translate beautifully,
and from those results most of the formal computations of cohomology groups
can be adapted.

Even over C, there is an important advantage in using étale cohomology
groups instead of the usual ones: if a variety is defined over a subfield k of
C, then the automorphisms of C over k will act naturally on the étale groups,
but not on the complex ones. This is easy to see in the description with Čech
cohomology. For elliptic curves, this action is (dual to) the usual action of
Gal(Q/Q) on the Tate module, whose importance is well-known.

Remarks. I don’t know much about the details of the proofs. Every state-
ment here is a hard theorem. Looking at the explanations in [De3], it seems
that the strategy is consistently to find a proof of the classical statements which
is sufficiently intrinsic to translate to the algebraic case in principle. Then
every step is usually much harder, and after many (sometimes sophisticated)
reductions, the proof is reduced to an arithmetic statement (which sometimes
happens to have been already considered independently), which is proved more
or less directly.

Another remark is that we have here introduced an auxiliary prime `, with
the outcome that we get infinitely many different cohomology theories, and
tough questions of dependence, or independence, on ` will appear. It would
be so much nicer to be able to do the same with ` = p, but you can check
with elliptic curves that it doesn’t work: this is similar to the fact that the
Tate module at p is not Z2

p, but sometimes Zp and sometimes even 0 (for the
“supersingular” elliptic curves).

This being done, we can come back to the formal proof of the rationality of
the zeta function of X0, for X0 smooth and projective over Fq, and see that is
becomes perfectly justified. We obtain the formula

Z(X0) =
2d∏
i=0

det(1− F ?T |Hi
ét(X,Q`))(−1)i+1

. (19)

discovering how the right hand side which seems to be a rational function in
Q`(T ) is actually one in Q(T ), independent of ` (one needs a small lemma, to
the effect that Q[[T ]] ∩Q`(T ) = Q(T ).)

The functional equation (4) follows also quite easily from Poincaré duality,
with the extra information that the map F ? induced by the Frobenius map
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respects the duality pairings, and on H2d
ét (X,Q`) ' Q` is simply multiplication

by qn (see [Har], Appendix C, for the lemma from linear algebra which verifies
this).

And the Riemann hypothesis, one suddenly wonders?
There was no obvious classical analogue to it, and the statements above

do not seem to contain a clue. Grothendieck, however, identified a theorem
of Hodge and Lefschetz whose analogue, if it could be proved, would nicely
imply the Riemann hypothesis. This became known as one of the “standard
conjectures”, and it looked so much harder than the rest that a solution seemed
as far away in 1970 as ten years before. Then Deligne found his proof which had
nothing to do with this approach, giving a nice illustration of the irreducible
unexpectedness of life.

So we have come all this long way to begin the real subject of these notes.
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(Part II : Summary of the proof)

Summary of part I (if you missed the first episode). By a somber winter night

in 1949, André Weil, reading dusty manuscripts of C.-F. Gauss, discovers the existence

of a spectacular treasure lying somewhere in the deep jungles of arithmetic geometry.

He manages to sketch a map to reach it but is unable to mount an expedition to

embark on the perilous journey. . . Ten years later, the audacious explorator Alexander

Grothendieck finds the secret passage that may lead to the spot marked with an ×,

and advancing fearlessly with his small group of indefatigable geometers, attains the

first points marked on Weil’s map. However the trove where lies the priceless jewel

stands behind a towering mountain which seems to defy hope. The clever Belgian,

Deligne, then goes out on his own by a circuitous route. . .

4 Outline of the proof

We have now come to the point where we can think of the Riemann Hypothesis.
Recall its statement: let X0 be a smooth projective variety of dimension d
defined over a finite field Fq of characteristic p > 0, and Z(X0) its zeta function

Z(X0) = exp
(∑
n>1

|X0(Fqn)|T
n

n

)
which we know to be actually a rational function.4 Then there should exist
polynomials Pi(X0) with integer coefficients such that

Z(X0) =
P1(X0) . . . P2d−1(X0)
P0(X0) . . . P2d(X0)

and all the complex zeros of Pi have modulus q−i/2, in other words they can be
written as

Pi =
∏
j

(1− αi,jT )

with |αi,j | = pi/2.
Now Grothendieck’s theory of `-adic étale cohomology gives an expression

of this shape, for any choice of a prime ` 6= p, with polynomials given explicitly
by

Pi(X0, `) = det(1− F ?T |Hi
ét(X,Q`)) (20)

namely (almost) the characteristic polynomial of the endomorphism of the `-adic
étale cohomology spaces of X = X0 × Fq induced by the Frobenius morphism
F : X → X.

Those polynomials, however, are seemingly in Q`[T ], not in Z[T ], and might
conceivably not be the ones whose existence is surmised in the Riemann Hy-
pothesis. The following conjecture is therefore a refinement of the original one:

4This was actually proved by Dwork before Grothendieck completed his program to show
it with étale cohomology; Dwork’s proof was basically direct, but didn’t seem to give any hope
for the Riemann Hypothesis.
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Conjecture 1 The polynomials Pi(X0, `) have integral coefficients which do not
depend on the choice of `, and all their complex roots have absolute value q−i/2

(equivalently, from (20), the eigenvalues of F ? on Hi
ét(X,Q`) all have modulus

qi/2.)

This is the statement that was proved by Deligne. However, because the state-
ment about the modulus of the roots distinguishes uniquely the roots of Pi
among the zeros or poles of the zeta function, independently of `, it is easy to
prove that this conjecture is equivalent to the following result:

Theorem 1 (Deligne, [De1]).
For all i and all ` 6= p, the eigenvalues of F ? on Hi

ét(X,Q`) are algebraic
numbers all complex conjugates of which have modulus qi/2.

The remainder of these notes will try to summarize the proof of this theorem.
Let us ponder how this might be approached. We know (or will know) that

this is true for curves, as was proved by Weil himself. Moreover, one of the basic
properties of étale cohomology, the Künneth theorem, describes the cohomology
of a product X × Y in terms of that of X and Y

Hi
ét(X × Y,Q`) '

⊕
j+k=i

Hj
ét(X,Q`)⊗Hk

ét(X,Q`)

and this isomorphism is compatible with the action of the Frobenius, which
implies that if the theorem is true for X and Y , it is also for X × Y (in terms
of zeta functions, the Künneth theorem says that Z(X0 × Y0) is the “Rankin-
Selberg convolution” of Z(X0) and Z(Y0), in the sense that its zeros (resp.
poles) are all possible products of one of the first factor and one of the second).
If any variety could be written as a product of a curve and another variety, we
could therefore argue by induction on the dimension and call it a day.

It is of course not so, but the proof will take a cue from this and work by
induction (although in the end it will not require the use of the previously known
result for curves), and by trying to make the induction work by finding a map
f : X → P1 which looks as much as possible like the first projection would if
X were isomorphic to P1× Y . This, in a sense, will fail only at a finite number
of points, and a careful analysis (motivated, once again, by a classical approach
developed by Lefschetz to compute the cohomology of complex varieties) of the
relations between the cohomologies of the fibers of f at those points and the
global cohomology of X will bring a dramatic reduction to a last irreducible
case, where Deligne’s reading of the paper of Rankin introducing the Rankin-
Selberg convolution will contribute the spark which ultimately connects the last
strands (block that metaphor!).

Until the moment comes for this crucial ingredient, the argument will be
mostly geometric. Arithmetic enters the stage as a classical deus ex machina,
which seems adequate to conclude this tale worthy of the greatest Greek trage-
dies.

5 Geometric reductions

As a matter of notation when discussing these reduction steps, it will be con-
venient to use the shorthand RH to allude to the full theorem 1, but also
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RH(X0) to mean its restriction to the single variety X0, or RHi(X0) for the
further restriction to the eigenvalues of F ? to the single étale cohomology group
Hi

ét(X,Q`), and even, if V ⊂ Hi
ét(X,Q`) is stable by the action of F ?, RH(V )

for the restriction to the eigenvalues of F ? restricted to V .
The following lemma is elementary but nevertheless repeatedly used during

the reduction steps.

Lemma 1 Given two subspaces V ⊂ Hi
ét(X,Q`) and W ⊂ Hj

ét(Y,Q`) stable by
F ?, and a Q`-linear map ϕ : V →W which satisfies for all v ∈ V

ϕ(F ?v) = q(i−j)/2F ?ϕ(v)

(such maps will be called compatible with F ?) the following implications hold:
(i) If ϕ is injective, then RH(W ) implies RH(V ).
(ii) If ϕ is surjective, then RH(V ) implies RH(W ).

The geometric reductions that will now be put into effect are based on the idea
of studying the cohomology of a projective variety XC ⊂ Pn

C by relating it
to that of its hyperplane sections Y = H ∩ X, for hyperplanes H ⊂ Pn, and
using induction on the dimension. The first step in this direction goes back
to the classical italian geometers. Bertini proved (over C) that for H generic,
the hyperplane section Y is a smooth projective variety, of dimension d − 1.
Over a finite field, this remains true, possibly after making a field extension
Fqn/Fq. But as in the proof of Weil’s estimate for Kloosterman sums, such
finite extensions do not matter for proving the Riemann Hypothesis, so we will
assume that they are done without mentioned the need to.

Given such a smooth hyperplane section Y , Lefschetz showed first that Y
“contained” all the information about the cohomology of X, except for the
middle dimensional group Hd(X,C). This is the weak Lefschetz theorem, which
extended to étale cohomology says the following

Theorem 2 For all i > 2 there are maps

Hi−2
ét (Y,Q`)→ Hi

ét(X,Q`)

compatible with F ?, and we have:
(i) For i = d+ 1, Hd−1

ét (Y,Q`)→ Hd+1
ét (X,Q`) is surjective.

(ii) For i > d+ 1, Hi−2
ét (Y,Q`)→ Hi

ét(X,Q`) is an isomorphism.
(In geometric terms over C, those maps are “cup-product with the cohomol-

ogy class of the hyperplane”).

With this we can reduce RH to RHd, the corresponding statement limited to
the middle-dimensional cohomology group Hd

ét. Indeed, argue by induction on
the dimension, starting from dimension 0 which is trivial. Assuming RH(Y0) for
all Y0 of dimension 6 d− 1, and given X0 of dimension d, we first use Poincaré
duality to show that RH2d−i(X0) is equivalent to RHi(X0). Then we take a
smooth hyperplane section Y0 of X0 and apply the theorem (and the lemma): it
follows that RHd+1(X0) is implied by RHd−1(Y0) (the middle-dimensional case
for Y0), and that for i > d+ 1, RHi(X0) is equivalent to RHi−2(Y0). But both
are true by the induction hypothesis.

One advantage of this reduction is that we are left with only one cohomology
group to consider for a given X0. In a sense, this is the kind of situation where
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“analytic methods” may apply, in the same way as counting points could prove
the Riemann Hypothesis for curves because only H1

ét was non-trivial. In this
spirit, we now show that RHd, which asserts that the eigenvalues have a precise
modulus, is a consequence of a weaker result asserting only an inequality.

More precisely, let rhd stand for this statement:
For any smooth projective and even dimensional variety X0, all eigenvalues of
F ? acting on Hd

ét(X,Q`) are algebraic numbers, and if α is a complex conjugate
of one, then

q
d
2−

1
2 6 |α| 6 q

d
2 + 1

2 .

Proposition 1 RH is implied by rhd.

Proof.
Let α be an eigenvalue of F ? acting of Hd

ét(X0,Q`), β a complex conjugate of
α. From the Künneth formula it follows that for any k > 1, αk is an eigenvalue
of F ? on Hkd

ét (Xk,Q`). If k is even, by rhd applied to Xk
0 we have

q
kd
2 −

1
2 6 |αk| 6 q

kd
2 + 1

2

and therefore
q
d
2−

1
2k 6 |α| 6 q

d
2 + 1

2k

which gives RHd(X0) when letting k go to infinity.
Then RH is a corollary of the previous reduction.
�

Notations rhd(X0). . . will now be used as we proceed. Notice that lemma 1
is also valid with rhd replacing RH, provided i and j are as required by the
statement.

We now take an even dimensional X0 as required. We have to investigate
Hd

ét(X,Q`). In the complex case, Lefschetz continued his use of hyperplane
sections, but this time it is not enough to consider one only.

Choose an embedding X → Pn for some n > 1. The nice geometric con-
struction of Lefschetz is to take a linear subspace A ⊂ Pn of codimension 2, and
consider together all the hyperplane sections H ∩X where H contains A. The
space D parametrizing those hyperplanes is isomorphic to P1, and we consider

X̃ = {(x,H) ∈ X ×D |x ∈ H}.

This is again an algebraic variety and it comes with two natural maps

X
π←− X̃

↓ f
D

Moreover, all this can be done over Fq by choosing A itself defined over Fq,
and we get corresponding X̃0, D0,. . .

If A is chosen so that X 6⊂ A, then A∩X is a proper closed subset of X. For
x ∈ X \A, the conditions x ∈ H and H ⊃ A then determine H uniquely as the
linear space spanned by x and A. Therefore π is an isomorphism over this open
subset of X, showing that X̃ is birational to X. It is actually isomorphic to the
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blow-up of X ∩A in X̃. From this, one can prove that there are injections (for
all i > 0)

Hi
ét(X,Q`)→ Hi

ét(X̃,Q`)

and from lemma 1, we can restrict our attention to X̃0. The main benefit from
this operation is that we now have at our disposal the map

f0 : X̃0 → D0 ' P1
0

which tries to approximate X̃0 as the product of a curve (namely, P1
0) and a

smaller dimensional variety.
This map f is called a Lefschetz pencil. The name comes from the (obvious)

fact that the fiber X̃t = f−1(t) of f over a point t ∈ P1 corresponding to a
hyperplane Ht ⊂ Pn is simply the section Ht ∩X.

We want the map f to be as nice as possible. From a picture, it is fairly clear
that in general there will be points where f is singular: its differential vanishes.
This corresponds to the fibers X̃s which are singular varieties. However, by
geometric arguments, it is possible to establish the existence of a Lefschetz
pencil f : X̃ → D which has only a finite number of singular fibers, each
having only one singular point which is an ordinary double point. (Over C, this
would mean that X̃s could be described in an affine neighborhood of xs by a
non-singular quadratic polynomial.)

The set of s for which X̃s is singular is denoted by S, and xs, for s ∈ S, is
the singular point in the fiber. Of course, U = D \ S is an open subset of D.

The goal is now to understand the cohomology of X̃ with the help of f . At
this point, the use of coefficient sheaves for étale cohomology, more general than
Q`, becomes essential. The reason is that, as might be intuitively expected, the
cohomology groups of X̃ will be related to the cohomology of the fibers of f
(which are hyperplane sections of X, after all, so this goes well with the weak
Lefschetz theorem), but in a way which takes into account the variation of those
fibers, especially the presence of the singular ones (all the others being more or
less the same). Thus there will be sheaves, called the higher direct images of f ,
denoted Rif∗Q`, which describe this variation.

The precise relationship we seek is then expressed by means of a very techni-
cal algebraic device called the Leray spectral sequence of f . This is an iterative
process, which – in this case – starts from the cohomology groups

Ep,q2 = Hp
ét(D,R

qf∗Q`)

(p, q > 0) and produces ultimately the sought-after

Hp+q
ét (X̃,Q`).

The main property of this process, which I have no intention to describe, is
that it is also entirely compatible with the action of the Frobenius F ?, which has
the practical consequence that the eigenvalues of F ? at the end of the spectral
sequence (on Hd

ét(X̃,Q`)) will satisfy rhd if all those at the start on Ep,q2 (with
p+ q = d) do, basically because of lemma 1 again.

Now, because D is a curve, for all “good” sheaves F , and it can be proved
that those higher direct images are good, the cohomology groups Hi

ét(D,F)
vanish for i > 2. So as far as Hd

ét(X̃,Q`) is concerned, we have to investigate
three terms only:

E0,d
2 = H0

ét(D,R
df∗Q`)
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Figure 1: A vanishing cycle

E2,d−2
2 = H2

ét(D,R
d−2f∗Q`)

E1,d−1
2 = H1

ét(D,R
d−1f∗Q`).

As might be expected, the last one will be the troublesome one, since H0

and H2 of curves are much easier to deal with than H1 in general. Notice also
that d− 1 is the dimension of the fibers of f .

Indeed, the analysis of those sheaves brings first the following proposition:

Proposition 2 (i) For i 6= d−1, the sheaves Rif∗Q` are constant, and they are
isomorphic to the constant sheaf associated to the Q`- vector space Hi

ét(Xu,Q`),
where u is any point in U .

(ii) For i = d−1, the sheaf Rd−1f∗Q` is determined by its restriction to U (in
sheaf-theoretic notations, if j : U → D is the injection, we have Rd−1f∗Q` =
j∗j
∗Rif∗Q`).

The first point now takes care easily of the first two terms of the spectral se-
quence that we had to consider: for E0,d

2 , for instance, because H0
ét of a constant

sheaf is the just the associated vector space, we deduce that

H0
ét(D,R

df∗Q`) = Hd
ét(Xu,Q`)

but Xu is smooth and therefore admits a smooth hyperplane section Y ; by the
weak Lefschetz theorem 2, we have a surjection

Hd−2
ét (Y,Q`)→ Hd

ét(Xu,Q`)

compatible with F ? and we can apply an induction hypothesis to Y which is of
even dimension d− 2. The second term is dual to this one.

It remains to treat the third term E1,d−1
2 . Fix one u ∈ U ; we now study

the “fiber” of Rd−1f∗Q` at u, which is simply the cohomology of the fiber,
Hd−1

ét (Xu,Q`). For s ∈ S, there is a map from the cohomology of the singular
fiber Xs to that of Xu:

Hd−1
ét (Xs,Q`)→ Hd−1

ét (Xu,Q`).

This map is injective; in other words (Figure 1 tries to show it somehow – in
the classical case –, but you need to know the other interpretation of cohomology
as group of classes of “cycles”, such as the circle in the figure, which disappears
when the good fiber degenerates to the singular one), when we move from the
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“generic” fiber Xu to the “special” fiber Xs, some of the cohomology of Xu

vanishes. The point is that it is possible to describe and study this vanishing
part quite precisely, and it will prove to give enough information to complete
the proof.

Namely, remember that because d − 1 is the middle dimension for the
cohomology of the fibers, Poincaré duality gives actually a bilinear form on
Hd−1

ét (X,Q`):
Hd−1

ét (X,Q`)×Hd−1
ét (X,Q`)→ Q`

which is non-degenerate and, because d− 1 is odd, is shown to be alternating.
We can therefore define the space of vanishing cycles at s to be the subspace

Vs = Hd−1
ét (Xs,Q`)⊥ ⊂ Hd−1

ét (Xu,Q`).

However, because the singularities of Xs are controlled, one proves that the
vanishing part is small: actually, Vs is of dimension 1 exactly.

This is the local Lefschetz theory, for s ∈ S fixed. Now considering all of S,
we define the space of vanishing cycles (“cycles évanescents” in French) to be
the subspace E of Hd−1

ét (Xu,Q`) spanned by the Vs, s ∈ S.
We now want to extend this to all of U to get a subsheaf E over U describing

the variation of the vanishing cycles, as Rd−1f∗Q` describes that of the full
cohomology group. This is not automatic; it depends on the action of a certain
group, called the algebraic fundamental group of U and denoted π1(U, u), whose
main property here is that to give a sheaf on U is the same as to give an abelian
group on which π1(U, u) acts. This π1 is to be thought of as a generalization of
the absolute Galois group of a field. Indeed, for a smooth curve C, it is shown
to be a quotient of the Galois group of the function field of C.

The abelian group here is E, and the theory of the fundamental group shows
that it is generated by some subgroups Is, one for each s ∈ S. Part of the local
Lefschetz theory then studies the action of Is on Hd−1

ét (Xu,Q`) (the action
of π1 for which the associated sheaf is simply Rd−1f∗Q`.) The result is the
Picard-Lefschetz formula:

Theorem 3 One can choose a generator δs of Vs such that for all σ ∈ Is and
γ ∈ Hd−1

ét (Xu,Q`)
σ(γ) = γ ± εs(σ) < δs, γ > δs

where εs is a character of Is and < ·, · > is the pairing defined above.

Since δs is a generator of Vs ⊂ E, we immediately deduce that E is indeed
stable by the action of π1(U, u). Moreover, it is part of the basic theory that
this action respects the alternating form < ·, · >, so the orthogonal E⊥ of E in
Hd−1

ét (Xu,Q`) is also stable, and we get two subsheaves E and E⊥ of Rd−1f∗Q`.
Once again, all those constructions can be done over Fq (after possibly a

finite extension), and there are also sheaves E0,. . .
But the Picard-Lefschetz formula also implies immediately that the orthog-

onal of E has another description as the subspace of Hd−1
ét (Xu,Q`) invariant

under π1(U, u): for σ ∈ Is,
σ(γ) = γ

is equivalent to
< δs, γ >= 0.
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The outcome of this is that E⊥ is a constant sheaf.5 But as E ⊕ E⊥ =
Hd−1

ét (Xu,Q`), we also have

E ⊕ E⊥ = Rd−1f∗Q`

(on U). Now if we go from U to D, using the fact that

Rd−1f∗Q` = j∗j
∗Rd−1f∗Q`

and because the first cohomology group of a constant sheaf on P1 vanishes (!6),
rh will be satisfied for X0 if we can prove the corresponding inequality for the
eigenvalues of F ? acting on H1(D, j∗E) (here we use the fact that E comes from
a sheaf E0 on U0 to get this action of the Frobenius).

This is now (almost) the irreducible case. A last use of (a generalization
of) Poincaré duality and another lemma show that it is enough to prove the
one-sided inequality

|α| 6 q
d
2 + 1

2

for the eigenvalues of F ? acting this time on another cohomology groupH1
c (D, E)

(cohomology with compact support on U ; this is necessary because U is not
projective).

6 The crucial step

Now we will do some arithmetic, at last. To make this section more understand-
able, it is necessary to provide a better explanation of the way we can associate
L-functions to sheaves, which will be to the zeta function (associated with the
constant sheaf Q`) as Artin L-functions are to the zeta function in algebraic
number theory. A clarification of the Euler product form of the zeta function is
also in order.

Let U0 be an affine curve over Fq which is the complement in P1
0 of a finite

set of points S, and A = Fq[U0] the algebra of regular functions on U0, over
Fq: this means that A is just the subring of Fq(T ) formed by rational functions
which are defined outside S. If U0 = A1

0, for instance, we have A = Fq[T ]. The
set of “closed points” of U0, written |U0|, is by definition the set of maximal
ideals in A. Since A is principal they correspond to irreducible elements in A,
for instance to irreducible polynomials in Fq[T ] in the case of the affine line.

Then the Euler product for Z(U0) is

Z(U0) =
∏

x∈|U0|

1
1− T deg(x)

.

Let us repeat the proof in the case of the affine line: taking the logarithmic
derivative of the left-hand side we get

−T−1
∑
x∈|A1

0|

− deg(x)T deg(x)

1− T deg(x)
= T−1

∑
x

∑
n>1

deg(x)Tn deg(x)

= T−1
∑
n>1

|X0(Fqn)|Tn

5In the correspondence between sheaves and abelian groups with action of π(U, u), the
constant sheaf M corresponds, as seems natural, to the group M with the trivial action.

6Maybe the only case where an H1 on a curve is simpler than even H0 and H2. . .
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since every x of degree deg(x) | n defines as many conjugates, all in Fqn , by
factoring into linear factors. This is the same expression as obtained from

Z(A1
0) = exp

(∑
n>1

|A1
0(Fqn)|T

n

n

)
by taking the same logarithmic derivative.

We now have a sheaf E0 on a curve U0 and we want to define its L-function
by an Euler product. The easiest way is to consider the equivalent formulation
as a finite dimensional Q`-vector space E0 on which π1(U0, u) acts continuously.
Indeed, π1(U0, u), as we mentioned, is related to the Galois group of the field
of rational functions on U0, which is simply Fq(T ). Since x ∈ |U0| is a maxi-
mal ideal, we can consider the decomposition group at x, Dx, and the inertia
subgroup Ix ⊂ Dx. It happens that π1 has the property that the image of Ix
inside is trivial. In other words, when we restrict to Dx the action on E0, the
group Dx/Ix acts, and as in ordinary algebraic number theory, this is just the
Galois group of the finite residue field extension Fqdeg(x)/Fq. It is generated by
the Frobenius morphisms Fx and the local factor is

det(1− FxT deg(x) |E0)

(as expected from the case of Artin L-functions), giving the following L function
for E0 (or E0):

L(E0) =
∏

x∈|U0|

det(1− FxT deg(x) |E0)−1. (21)

For sheaves, Grothendieck developed a generalization of his trace formula∑
x∈U0(Fqn )

Tr(Fnx |E0) =
∑

06i62d

(−1)iTr(F ? |Hi
ét(U, E))

which implies as before the rationality of the L-function and gives a cohomo-
logical formula

L(E0) =
∏

06i62d

det(1− F ?T |Hi
ét(U, E))(−1)i+1

. (22)

It now makes sense to ask about the eigenvalues of Frobenius at x, and
about the poles of the local L-factor, which are of course the inverse of those
eigenvalues. We say that a sheaf E0 is of weight β if for all x ∈ |U0|, all those
eigenvalues at x are algebraic numbers and all their conjugates are of absolute
value qdeg(x)β/2.

From the elementary property that an absolutely convergent Euler product
doesn’t vanish, we then get

Lemma 2 Let E0 be a sheaf on E0 of weight β such that H0
ét(U, E) and H2

ét(U, E)
are zero. Then all eigenvalues of F ? acting on H1

ét(U, E) are algebraic numbers
and all their complex conjugates α satisfy

|α| 6 q
β
2 +1.
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Proof. The formula (22) is simply here

L(E0) = det(1− F ?T |H1
ét(U, E))

which from the hypothesis on E0 is a polynomial in Q[T ], so the eigenvalues are
algebraic.

We now look at the Euler product (21) (putting maybe T = q−s this time
to get a more familiar picture), the assumption on the weight implies that the
product converges absolutely for Re(s − β/2) > 1, namely Re(s) > β/2 + 1,
which means for

|T | < q−
β
2−1

and so L(E0) has no zeros in this region, which gives the result.
�

We abstract the situation where we were left at the end of the previous
section. We have a smooth affine curve U0 = P1

0 \ S over Fq, a sheaf E0
(equivalently, a Q`-vector space E0 of finite dimension on which π1(U0, u) acts),
and moreover there is an alternating non-degenerate bilinear form

E0 × E0 → Q`

(here we cheat: < ·, · > might not be non-degenerate on E, namely we could
have E∩E⊥ 6= 0; that this is so is known as the hard Lefschetz theorem, and was
actually only proved by Deligne from the Riemann Hypothesis; however, one
can proceed – as he did –, in the same way, with some more minor headaches,
by replacing E by E/E ∩ E⊥.)

On the E0 side this means that the corresponding bilinear form

E0 × E0 → Q`

is invariant by the action of π1(U0, u). Moreover the Frobenius at x acts by a
transformation of determinant qd−1, which means precisely that the determinant
of the representation on E0 (a character), is associated to a sheaf of weight
n(d− 1), n being the dimension of E0 as Q`-vector space (this is because E0 is
a subsheaf of Rd−1f0∗Q`.)

So the image Ga of π1(U0, u) in the group of linear transformations of E is
contained in the symplectic group of this bilinear form; its closure in the Zariski
topology of the symplectic group is called the arithmetic monodromy group and
has considerable importance. It contains as a subgroup the geometric mon-
odromy group Gg which is the closure of the image of π1(U, u) in the symplectic
group.

To these facts, Deligne adds the following ingredients:

Proposition 3 (i) The monodromy group Gg is equal to the symplectic group
(i.e., it is as big as it possibly can.)

(ii) For any closed point x of U0, the local factor at x of the L-function of
E0, det(1− FxT deg(x) |E0), is a polynomial with rational coefficients.

The first part (due to Kazhdan-Margulis) is deduced from the Lefschetz theory,
and in particular from the Picard-Lefschetz formula (used to show that the
representation of π1(U, u) on E is absolutely irreducible), and a result concerning
the representations of the symplectic group.
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The second part comes from rather intricate (but not very difficult) manip-
ulations with the zeta function of the fibers of the Lefschetz pencil (which as a
zeta function has coefficients in Q) and its expression given by Grothendieck’s
theory.

We now start from these data, that is a curve U0, a sheaf E0, with a non-
degenerate alternating form, whose determinant has weight n(β), which all to-
gether satisfy the conditions (i) and (ii) of the proposition and deduce. . .

Theorem 4 (Deligne).
In this situation, all eigenvalues of F ? acting on H1

c (U, E) are algebraic
numbers and all their complex conjugates α satisfy

|α| 6 q
β+1
2 + 1

2 .

Since β = d− 1 in the case under consideration, this will, at long last, conclude
the proof of the Riemann Hypothesis for smooth projective varieties over finite
fields.

Proof.
If we can deduce from the assumptions that E0 itself has weight β, we will

be able to apply the lemma (the vanishing of H0
ét and H2

ét here is easy from the
general theory; remember – well, I didn’t mention it – that those Hi

ét for the non-
projective U0 are cohomology groups with compact support, which accounts for
the different behavior; H0

c being 0, for instance, means that there are no sections
supported on a finite set of points, which is pretty obvious).

So we need to prove that the local factors

det(1− FxT deg(x) |E0) =
∏
j

(1− αj(x)T deg(x))

have algebraic eigenvalues αj(x) of modulus qβ deg(x)/2.
The analogy here is with modular forms: if those were the local factors of the

L-function of a modular form f , and the corresponding problem that of proving
the Ramanujan conjecture, we would get a non-trivial estimate by using the
Rankin-Selberg method. And we can do exactly the same here: the Rankin-
Selberg convolution of E with itself is simply the L-function whose local factors
are ∏

i,j

(1− αi(x)αj(x)T deg(x))

and they are just the local factors associated to the tensor product E0 ⊗ E0 (or
E0 ⊗ E0 with the natural action of the fundamental group).

By hypothesis the local factors of E0 have rational coefficients and this im-
plies quickly that those of the tensor product are power series in T with positive
(in the French sense) rational coefficients.

On the other hand the expression as a rational function is

Z(E0 ⊗ E0) =
det(1− F ?T |H1

ét(U, E ⊗ E))
(1− qβ+1T )n

(where n is the dimension of E0 as Q`-vector space). The precise form of the
denominator is obtained by applying the general formulas giving H0

ét and H2
ét

in this situation:
H0

ét(U, E) = Eπ1(U,u)
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and (by Poincaré duality from this)

H2
ét(U, E) = (E∗)π1(U,u)

(the coinvariants of the action, namely the largest quotient of E∗ on which π1

acts trivially). One gets H0
ét = 0 because the action is irreducible, and H2

ét is
determined using the theory of the invariants of the symplectic group, and the
fact that the determinant has weight nβ.

In particular, Z(E0 ⊗ E0) has poles only at T = q−β−1. On the other hand,
αj(x)2/ deg(x) is a pole of the local factor at x. Since we know that we are dealing
with a power series with positive coefficients, the usual lemma implies

q−β−1 6 |αj(x)|2/ deg(x)

or equivalently
|αj(x)| 6 qdeg(x)( β2 + 1

2 )

which is a first result.
Must we stop here? Of course not, as with modular forms we want to study

higher convolutions of E0. But the point here is that whereas we can’t go very
far with modular forms because the poles of those higher powers are not known,
here Grothendieck’s theory, by an argument similar to that for the poles of the
first convolution, permits the complete determination of the poles of

L(E⊗2k
0 )

for any k > 1. The crucial point is that we know the monodromy group Gg to
be the full symplectic group, which shows that the identification of those poles is
simply a question in the theory of the symplectic group and its representations,
quite independently from any arithmetical problem.

By the same reasoning it shows that

L(E⊗2k
0 ) =

det(1− F ?T |H1
ét(U, E⊗2k))

(1− qkβ+1T )n

whence as before
q−kβ−1 6 |αj(x)|2k/ deg(x)

or
|αj(x)| 6 qdeg(x)( β2 + 1

2k ).

Letting k tend to infinity gives |αj(x)| 6 qdeg(x)β/2, and then Poincaré duality
again reverses the inequality, thereby concluding the proof.
�

It is strangely comforting to think that the decisive steps in the proof of such
a deep and important theorem can be understood quite easily.

7 Epilogue and further references

The proof of the Weil conjectures is not just a monument to itself. It is also
one of the most powerful results in number theory and has many applications.
I will mention some that I know.
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Deligne himself had already proved that they implied the Ramanujan-Peters-
son conjecture about the Fourier coefficients of holomorphic modular forms of
weight at least 2 on congruence subgroups of SL(2,Z).

He also generalized in [De1] the estimate of Weil for Kloosterman sums,
to treat some families of more general exponential sums in many variables:
let Q ∈ Fq[X1, . . . , Xn] a polynomial of degree d prime to p such that the
homogeneous component of degree d of Q defines a smooth hypersurface in
Pn−1

Fq
. Then for any non-trivial character ψ of Fq∣∣∣ ∑

x1,...,xn∈Fq

ψ(Q(x1, . . . , xn))
∣∣∣ 6 (d− 1)nqn/2.

Deducing this from the Riemann hypothesis was actually rather difficult and
involved some non-trivial geometric considerations. Such techniques were then
superseded by Deligne’s further results [De2] which are the basis of the works of
Katz on exponential sums which have produced ever deeper results, with many
applications to concrete problems of analytic number theory.

I will now list some references the Weil conjectures and their proof.

• [De1] is Deligne’s original paper, which I’ve tried to explain. It is very
readable, with very good background summaries of the various theories
involved.

• [De2], Deligne’s second article about the Weil conjecture, contains another
proof, subsumed in a much more general statement about the weight of
higher direct images of pure or mixed constructible `-adic sheaves, which
is apparently considerably more flexible and useful for applications, in
particular for exponential sums (this is the basis of the works of Katz).

• [Har] is the classical introduction to schemes in algebraic geometry, and
contains the background of all non-elementary work in this area, although
it doesn’t treat étale cohomology or the Weil conjectures, except for stating
the theorems in an appendix.

• [Mil] is one of the rare books about étale cohomology outside the SGA
bunker (hence the title), with probably enough details to qualify as com-
plete proofs of the basic statements. It has the Lefschetz theory for sur-
faces, for instance. Recommended if only because of the epigraph.

• [De3], a.k.a SGA 4 1/2, has summaries with sketches of proof of most
of the theory; it’s very useful as a kind of road-map if, by a fine spring
morning, you feel that you would like to know how the proper base change
theorem is proved. Again, Deligne takes great care to relate the methods
and results to their classical analogues.

• [Wei], of course, is the original paper proposing the conjectures; the com-
mentaries in the collected works of Weil (if you can find them in the
library) are very interesting, and you may also see there how the possible
interpretation in terms of some mysterious cohomology theory was already
highlighted by Weil.
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I’m afraid there’s too much French in all that; Katz [Kat] has a survey of the
proof in English, and there is a book called ‘Étale Cohomology and the Weil
Conjectures’ by Freitag and Kiehl, but I haven’t really gone into it.

References

[De1] Deligne, P.: La conjecture de Weil, I, Pub. Math. I.H.E.S 43, 273-307
(1974).

[De2] Deligne, P.: La conjecture de Weil, II, Pub. Math. I.H.E.S 52, 137-252
(1980).

[De3] Deligne, P.: Cohomologie étale, Lecture Notes in Mathematics 569,
Springer Verlag 1977.

[Har] Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics
52, Springer 1990.

[Kat] Katz, N.: An overview of Deligne’s proof of the Riemann hypothesis for
varieties over finite fields, Proc. of Symposia in Pure Math. 28, 275-305,
Am. Math. Soc. 1976.

[Mil] Milne, J.: Étale cohomology, Princeton University Press, 1980.

[Ser] Serre, J.-P.: Valeurs propres des endomorphismes de Frobenius (d’après
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