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Prime numbers

Prime numbers are natural numbers p > 1 which can not be split
as products of other natural numbers of strictly smaller size.

For instance:

Ok 3, 5.4, b (U7 B OFEEO00
but not

5007 = 3-1669, 156839 = 2209-71, 8102008 = 8-1012751.

(The number 243112609 __ 1 ¢ known to be prime since August 2008.)
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Factorization

By splitting integers into products of smaller numbers whenever
possible, every integer is seen to be a product of primes, possibly
with repetition

For example:
17179869175 =5-5-7-7-53 - 107 - 2473.

When ordered, the prime factors that appear are uniquely
determined by n, and so are the number of repetitions of each.
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Digression |: why are primes interesting?

Un-historical answer. Constructing primes, and checking that
numbers are primes is now easy (in some sense).

7 p1=163473364580925384844313388386509085984178367003309231218111085
2389333100104508151212118167511579;

? isprime(pl)

time = 137 ms.

=1

7 p2=19008712816648221131268515739354139754718967899685154936666385
39088027103802104498957191261465571 ;

time = 0 ms.

? isprime(p2)

time = 136 ms.

%2 =1

But factoring integers seems to be extremely hard.

? factor(pl*p2)
“C **x factor: user interrupt after 1hr, 53mn, 39,129 ms.

RSA challenge: Factoring p; - p» (without knowing p; and p; in
advance!) took the equivalent of 30 years of non-stop computation
on a fast personal computer in 2005.
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Communicating trust

This (and other similar problems) is the foundation of much of
today's computer security protocols.

Say Agency A wants to send Secret Agent B to some hostile
country to meet Contact C. How can they be sure that B is B
and C is C?

One way is to give pypz to B (without telling him p; or py) and
communicate p; to C.

When they meet, B gives n = pip> to C, who authenticates herself
with almost absolute confidence by immediately returning p;
(which she already knows) and p> = n/p;.

If C were an impostor, without knowing p;, she would not be able
to factor n and convince B.
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Digression |lI: why are primes interesting?

A more scientific answer. Primes behave in a fascinating way:
they show a combination of deterministic description and random
answers (“structure” and “randomness”).

Primes are linked with multiplication; as soon as they interact with
addition, strange things may happen.

230=2.2.2...2 (30 times)
20 41 1=5.5.13-41-61-1321
230 12 =2.3.59-3033169
230 4+ 3 =1073741827, 23 +4=2.2.17-15790321
230 | 5 = 3.149 - 2402107
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Prime numbers are deterministically determined, and in fact they
are quite well-distributed when seen from far away, as noticed
already in the 18th Century.

600000

T

400000

T

200000

T

L L L !
2500000 5000000 7500000 10000000

Number of primes up to =
-200000

T




Randomness

But, seen more closely, primes seem to behave chaotically. It seems
that any interesting probability distribution may be found naturally
within the primes.
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ERDOS-KAC theorem:

(nb. of primes dividing n) — log log n

Vloglogn

is approximately distributed like a normal variable for large n.
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The GUE model for this distribution is conjectured to occur in the
zeros of the Riemann zeta function which “controls” the

distribution of prime numbers.
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The continuous line is the
theoretical distribution of
the normalized spacings of
GUE matrices, and the small
circles are the data from the
Riemann zeta function.
(Numerical work and graph
by X. GOURDON)
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Experimental psychology answer.
Human beings have been fascinated by prime numbers since the
earliest times in the history of mathematics.

Both amateurs...

C. GOLDBACH (1742): Any even integer n > 4
should be the sum of two primes;

A. DE POLIGNAC (1848): There should exist
infinitely many pairs of primes p, p + 2 (“twin
primes”).

. and some of the most renowned scientists:

(The two questions above are still open.)
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EucLip (“there are infinitely many primes”),

P. DE FERMAT (‘if nis an integer, 22" 4 1 is prime"),

(contrary to Fermat's opinion, 232 + 1 is

L. EULER ;
not prime),

(the probability that a large integer N be

C.F. GAUSS prime is about one chance in log N, which

is about three times the number of digits
of N).
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Enter the sieve

The sieve is a way, both practical and theoretical, to investigate
prime numbers, and in particular to count how many there may be
in some finite set. The first sieve was used by ERATOSTHENES to
make lists of prime numbers.
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Enter the sieve

The sieve is a way, both practical and theoretical, to investigate
prime numbers, and in particular to count how many there may be
in some finite set. The first sieve was used by ERATOSTHENES to
make lists of prime numbers.
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Enter the sieve
The sieve is a way, both practical and theoretical, to investigate
prime numbers, and in particular to count how many there may be
in some finite set. The first sieve was used by ERATOSTHENES to
make lists of prime numbers.
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Enter the sieve
The sieve is a way, both practical and theoretical, to investigate
prime numbers, and in particular to count how many there may be
in some finite set. The first sieve was used by ERATOSTHENES to
make lists of prime numbers.

2| 3[4]5]|6]7]8]9o]1]12]13]14{15[16[17]18[19]20] / 30
[21]2723[24 29262 728]2939]31]3233]34]35 )36]37[38]39]4d) [47]48]49) 53[5

[#1]a2]43]a4a5]ala7]a8]ad5d51]52[53]54l55]56l5 7[5 85 b

B E 5 @

9] [17]
= H [37 813008
E 5

(vl (W]
N

l_l- I I
II-I



Enter the sieve

The sieve is a way, both practical and theoretical, to investigate
prime numbers, and in particular to count how many there may be
in some finite set. The first sieve was used by ERATOSTHENES to
make lists of prime numbers.
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The sieve is a way, both practical and theoretical, to investigate
prime numbers, and in particular to count how many there may be
in some finite set. The first sieve was used by ERATOSTHENES to
make lists of prime numbers.
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Enter the sieve

The sieve is a way, both practical and theoretical, to investigate
prime numbers, and in particular to count how many there may be
in some finite set. The first sieve was used by ERATOSTHENES to
make lists of prime numbers.
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The primes up to 60 are
2,3,5,7,11,13,17,23,29,31,37,41,43,47,53, 59.
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General sieve

The most general case is when there is a set X, and a subset Y of
objects of particular interest, which is defined by removing from X
all elements which do not satisfy any of certain conditions (7, G,

G, C.
— If there is a “probability” §; that the i-th condition holds,
—and if the conditions C;, C; are nearly independent for i # j,

— then one expects that the probability of Y is about

(1—(51)(1—52)'--(1—(5[():1—2(5;+Z(5;5j—...
i {iJ}

This general “sieve” procedure is based on inclusion-exclusion.
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Example 1

XER O I
C1 = (n is divisible by 2) “probability” 1/2
C, = (n is divisible by 3) “probability” 1/3

Cx = (n is divisible by the k-th prime) “probability” 1/px

If an integer with 2 < n < N is not divisible by a prime number

¢ < /N, then n must itself be a prime, and conversely if n > V/N.
This is the sieve description with the conditions Cy, ..., Cx (up to
Pk, With py closest to \/N)
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So the probability that n < N be prime should be about

E=3)6-3(-2)- T a-e»
(<V'N

£ prime

This is not a bad guess, but it is wrong: on the one hand we have
the MERTENS formula (1874):

2

[] -6~ =5, c=0561450483566885.. ..
log N

1<VN

£ prime

but on the other hand

(Number of primes p < N) ~

log N

(J. HADAMARD and C. DE LA VALLEE-POUSSIN: Prime Number
Theorem, 1896, confirming the intuition of GAUSS).
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Example 2: the twin primes

XE. ... N}
Ci = (nor n+ 2 is divisible by 2)  “probability” 1/2
G = (nor n+ 2 is divisible by 3)  “probability” 2/3

Cx = (n or n+ 2 is divisible by the k-prime)  “probability” 2/py

The “sifted set” is now the set of twin primes vVN < p < N such
that p + 2 is also prime.
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(Cont.)

So the probability that n < N be prime and n + 2 also should be

about
§2)0-2)-0-2)=3 1T a-2)

3<0<v/N
£ prime

No one knows if this is correct or not!
It is expected that

52N

(Number of primes p < N such that p + 2 is prime) ~ (log )2

with
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Some classical results

Here are some highlights of the classical sieve methods.

- .M. VINOGRADOV (1937):
For all sufficiently large odd integer n, there are three prime
numbers such that n = p; + p» + p3;

— J.R. CHEN (1966-73):

There are infinitely many prime numbers p
such that p + 2 is either prime or a product
of two primes;

—-H. IwaNIEC & J. FRIEDLANDER (1998):
There are infinitely many pairs of integers (x, y) such that
x? 4 y* is prime.
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The small and large sieves

In the previous examples, the probability of the conditions C;
become small when more and more conditions are involved. This is
what is called a “small” sieve.

In other problems, one encounters conditions where the
probabilities are always roughly similar, for instance each C; could
have probability 1/2. This is a large sieve.

This was first developed by LINNIK in 1941, and after many
developments, it is now very useful in many (sometimes surprising)
applications.
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Classical “euclidean” counting

Counting the number of integers in a segment or inside a disc is
“easy” because boundaries do not matter much.

The number of points at the
boundary of a large interval is
quite small.

The boundary of a large disc has length
much smaller than the area: wR? is much
larger than 27 R if R is large.
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In hyperbolic geometry, the length of the boundary of a disc is
comparable with the area. Counting discrete points in the interior
is much more difficult.

48 vertices among the 94 are on
the “boundary”.
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Diophantine properties of apollonian packings

P. SARNAK (2007), following the methods of
Bourgain-Gamburd-Sarnak: for some constant C, in any such
packing, there exist infinitely many quadruples of tangent circles,
all curvatures of which are product of at most C primes.
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Tools for hyperbolic sieving

To study these “hyperbolic” sieves, one needs deep tools related to
arithmetic and to harmonic analysis.

Harmonic analysis is used to de-

i compose the binary signal that

orsh W H [7 says that a condition holds into a

steady “main term” (which corre-

023 J\‘ . ‘H J sponds to the probability) and a
10 45— 20

B sum of further oscillating contribu-

tions of other harmonics.

The oscillating harmonics must be shown to be negligible in some
sense. This often involves very deep results, and most of the work
lies here.
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Arithmetic Quantum Chaos

We end with a problem that seems to have nothing to do with
sieve, but where it turns out to be applicable.

This shows the density of a “wave
function” on a hyperbolic surface. It
is expected that for certain surfaces,
the wave functions with high energy
will be uniformly distributed. (Picture
by R. AURICH and F. STEINER.)
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Arithmetic Quantum Unique Ergodicity

K. SOUNDARARAJAN and R. HOLOWINSKY have recently proved
this, using sieve arguments (and other tools), if a certain widely
believed conjecture holds.

For a similar but slightly different problem, they
are able to prove completely the analogue result,
because the corresponding conjecture is known.
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