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Prime numbers

Prime numbers are natural numbers p ≥ 1 which can not be split
as products of other natural numbers of strictly smaller size.

For instance:

2, 3, 5, 7, . . . , 641, . . . , 10007, . . . , 243112609 − 1, . . .

but not

5007 = 3·1669, 156839 = 2209·71, 8102008 = 8·1012751.
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Factorization

By splitting integers into products of smaller numbers whenever
possible, every integer is seen to be a product of primes, possibly
with repetition

For example:

17179869175 = 5 · 5 · 7 · 7 · 53 · 107 · 2473.

When ordered, the prime factors that appear are uniquely
determined by n, and so are the number of repetitions of each.
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Digression I: why are primes interesting?

Un-historical answer. Constructing primes, and checking that
numbers are primes is now easy (in some sense).

? p1=163473364580925384844313388386509085984178367003309231218111085

2389333100104508151212118167511579;

? isprime(p1)

time = 137 ms.

%1= 1

? p2=19008712816648221131268515739354139754718967899685154936666385

39088027103802104498957191261465571;

time = 0 ms.

? isprime(p2)

time = 136 ms.

%2 = 1

But factoring integers seems to be extremely hard.

? factor(p1*p2)

^C *** factor: user interrupt after 1hr, 53mn, 39,129 ms.

RSA challenge: Factoring p1 · p2 (without knowing p1 and p2 in
advance!) took the equivalent of 30 years of non-stop computation
on a fast personal computer in 2005.
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Communicating trust

This (and other similar problems) is the foundation of much of
today’s computer security protocols.

Say Agency A wants to send Secret Agent B to some hostile
country to meet Contact C. How can they be sure that B is B
and C is C?

One way is to give p1p2 to B (without telling him p1 or p2) and
communicate p1 to C.

When they meet, B gives n = p1p2 to C, who authenticates herself
with almost absolute confidence by immediately returning p1

(which she already knows) and p2 = n/p1.

If C were an impostor, without knowing p1, she would not be able
to factor n and convince B.
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Digression II: why are primes interesting?

A more scientific answer. Primes behave in a fascinating way:
they show a combination of deterministic description and random
answers (“structure” and “randomness”).

Primes are linked with multiplication; as soon as they interact with
addition, strange things may happen.

230 = 2 · 2 · 2 · · · 2 (30 times)

230 + 1 = 5 · 5 · 13 · 41 · 61 · 1321

230 + 2 = 2 · 3 · 59 · 3033169

230 + 3 = 1073741827, 230 + 4 = 2 · 2 · 17 · 15790321

230 + 5 = 3 · 149 · 2402107
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Structure

Prime numbers are deterministically determined, and in fact they
are quite well-distributed when seen from far away, as noticed
already in the 18th Century.

Number of primes up to x

2500000 5000000 7500000 10000000

-200000

200000

400000

600000
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Randomness

But, seen more closely, primes seem to behave chaotically. It seems
that any interesting probability distribution may be found naturally
within the primes.



The normal gaussian distribution

This is for instance the distribution of the position of a random
walker (Brownian motion) at time 1.
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0.2
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0.6

Erdös-Kác theorem:

(nb. of primes dividing n)− log log n√
log log n

is approximately distributed like a normal variable for large n.
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Poisson distribution
This is for instance the distribution of the number of atomic
disintegrations (of a given substance) observed during a fixed time.
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Gaps between primes: the number of primes between x and
x + c log x is (supposed to be) approximately distributed like a
Poisson distribution with parameter c .
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Distribution of spacings of energy levels of large nuclei?

The GUE model for this distribution is conjectured to occur in the
zeros of the Riemann zeta function which “controls” the
distribution of prime numbers.

The continuous line is the
theoretical distribution of
the normalized spacings of
GUE matrices, and the small
circles are the data from the
Riemann zeta function.
(Numerical work and graph
by X. Gourdon)
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Digression III: why are primes interesting?
Experimental psychology answer.
Human beings have been fascinated by prime numbers since the
earliest times in the history of mathematics.

Both amateurs...

C. Goldbach (1742): Any even integer n ≥ 4
should be the sum of two primes;

A. de Polignac (1848): There should exist
infinitely many pairs of primes p, p + 2 (“twin
primes”).

... and some of the most renowned scientists:

(The two questions above are still open.)
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(cont.)

Euclid (“there are infinitely many primes”),

P. de Fermat (“if n is an integer, 22n

+ 1 is prime”),

L. Euler
(contrary to Fermat’s opinion, 232 + 1 is
not prime),

C.F. Gauß

(the probability that a large integer N be
prime is about one chance in log N, which
is about three times the number of digits
of N).
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Enter the sieve

The sieve is a way, both practical and theoretical, to investigate
prime numbers, and in particular to count how many there may be
in some finite set.

The first sieve was used by Eratosthenes to
make lists of prime numbers.

The primes up to 60 are

2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, 41, 43, 47, 53, 59.
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General sieve

The most general case is when there is a set X , and a subset Y of
objects of particular interest, which is defined by removing from X
all elements which do not satisfy any of certain conditions C1, C2,
C3, ..., Ck .

– If there is a “probability” δi that the i-th condition holds,

– and if the conditions Ci , Cj are nearly independent for i 6= j ,

– then one expects that the probability of Y is about

(1− δ1)(1− δ2) · · · (1− δk) = 1−
∑

i

δi +
∑
{i ,j}

δiδj − . . .

This general “sieve” procedure is based on inclusion-exclusion.
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Example 1

X = {1, 2, . . . ,N}

C1 = (n is divisible by 2) “probability” 1/2

C2 = (n is divisible by 3) “probability” 1/3

. . .

Ck = (n is divisible by the k-th prime) “probability” 1/pk

If an integer with 2 ≤ n ≤ N is not divisible by a prime number
` ≤ √N, then n must itself be a prime, and conversely if n >

√
N.

This is the sieve description with the conditions C1, . . . , Ck (up to
pk , with pk closest to

√
N).
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(Cont.)
So the probability that n ≤ N be prime should be about(

1− 1

2

)(
1− 1

3

)
· · ·
(

1− 1

pk

)
=

∏
`≤√N
` prime

(1− `−1).

This is not a bad guess, but it is wrong: on the one hand we have
the Mertens formula (1874):∏

`≤√N
` prime

(1− `−1) ∼ 2c

log N
, c = 0.561459483566885 . . .

but on the other hand

(Number of primes p ≤ N) ∼ N

log N

(J. Hadamard and C. de la Vallée-Poussin: Prime Number
Theorem, 1896, confirming the intuition of Gauss).
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Example 2: the twin primes

X = {1, 2, . . . ,N}

C1 = (n or n + 2 is divisible by 2) “probability” 1/2

C2 = (n or n + 2 is divisible by 3) “probability” 2/3

. . .

Ck = (n or n + 2 is divisible by the k-prime) “probability” 2/pk

The “sifted set” is now the set of twin primes
√

N < p ≤ N such
that p + 2 is also prime.
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(Cont.)

So the probability that n ≤ N be prime and n + 2 also should be
about(

1− 1

2

)(
1− 2

3

)
· · ·
(

1− 2

pk

)
=

1

2

∏
3≤`≤√N
` prime

(1− 2`−1).

No one knows if this is correct or not!

It is expected that

(Number of primes p ≤ N such that p + 2 is prime) ∼ s2N

(log N)2

with

s2 =
1

2

∏
`≥3

` prime

1− 2`−1

(1− `−1)2
= 1.32032469 . . .
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Some classical results

Here are some highlights of the classical sieve methods.

– I.M. Vinogradov (1937):
For all sufficiently large odd integer n, there are three prime

numbers such that n = p1 + p2 + p3;

– J.R. Chen (1966–73):
There are infinitely many prime numbers p

such that p + 2 is either prime or a product
of two primes;

–H. Iwaniec & J. Friedlander (1998):
There are infinitely many pairs of integers (x , y) such that

x2 + y4 is prime.
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The small and large sieves

In the previous examples, the probability of the conditions Ci

become small when more and more conditions are involved. This is
what is called a “small” sieve.

In other problems, one encounters conditions where the
probabilities are always roughly similar, for instance each Ci could
have probability 1/2. This is a large sieve.

This was first developed by Linnik in 1941, and after many
developments, it is now very useful in many (sometimes surprising)
applications.
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Recent results

During the last few years sieve methods have been applied to many
different types of problems. Among these, the most interesting
may be those of “hyperbolic” nature.

J. Bourgain, A. Gamburd, P. Sarnak:

Sieving, expanders and sum product,

(2006–2008);

SIEVING, EXPANDERS, AND SUM-PRODUCT

JEAN BOURGAIN, ALEX GAMBURD, AND PETER SARNAK

1. Introduction

This paper is concerned with the following general problem. For j =
1, 2, . . . , ν let Aj be invertible integer coefficient polynomial maps of Zn to
Zn (here n ≥ 1 and of Aj’s is assumed to be of the same type). Let Λ be
the group generated by A1, . . . , Aν and let O = Ob = b · Λ be the orbit
of some b ∈ Zn under Λ. Given a polynomial f ∈ Z[x1, . . . , xn] we seek
many points x ∈ O at which f(x) has few or even the least possible number
of prime factors. We say that r ∈ N is admissible for the pair (O, f) if
the set of x ∈ O for which f(x) is a product of at most r primes (often
called an r-almost prime) is Zariski dense in the Zariski closure Zcl(O) of O.
Unless indicated otherwise the Zariski closure is in affine pace An. The pair
(O, f) is called factor finite, or just finite, if it has an admissible finite r and
in this case we let r0(O, f) be the minimal such r. Many classical results
and Conjectures are concerned with this problem in the case that Λ is a
subgroup of Zn acting by translations, that is Aj(x) = x + bj. For example
if Λ = qZ, O = b+Λ and f(x) = x one checks that Dirichlet’s Theorem [14]
is equivalent to r0(O, f) = 1 + ν

(
(b, q)

)
, where ν(m) is the number of prime

divisors of m. Another example is Λ = Z,O = Z and f(x) = x(x+2). Brun
[ ] invented the combinatorial sieve to show that this pair (O, f) is finite.
The twin prime conjecture is equivalent to r0(O, f) = 2. One can use the
classical combinatorial sieve in Zn along the lines of Section 3 below, to show
that any pair (O, f) with Λ ⊂ Zn acting by translations, is factor finite. One
of the main goals of this paper is to study the case that Λ acts by affine
linear transformations

(
Aj(x) = ajx + bj

)
. By increasing the dimension of

the underlying space we can assume without loss of generality that Λ ⊂
GLn(Z). We develop tools to attack the problem of (O, f) finiteness at
least if the radical of G, the Zariski closure of Λ in GLn, contains no tori.∗
It turns out that in this context multiplication is much more complicated
than addition and in extending the elementary combinatorial sieve to this
linear setting a number of novel problems present themselves. The most
interesting and difficult being the proof that certain graphs (see Section 4)

The first author was supported in part by the NSF. The second author was supported
in part by DARPA and the NSF. The third author was supported in part by Oscar Veblen
Fund (IAS) and the NSF.

∗The difficulties with tori are discussed in Section 2. It is possible that (O, f) finiteness
is true for any affine linear orbit.
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MATRICES, POLYNOMIALS, AND SURFACE AND

FREE GROUP AUTOMORPHISMS
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Abstract

We prove sharp limit theorems on random walks on graphs with values in finite groups.

We then apply these results (together with some elementary algebraic geometry, num-

ber theory, and representation theory) to finite quotients of lattices in semisimple Lie

groups (specifically, SL(n, Z) and Sp(2n, Z)) to show that a random element in one

of these lattices has irreducible characteristic polynomials (over Z). The term random

can be defined in at least two ways: first, in terms of height; second, in terms of word

length in terms of a generating set. We show the result using both definitions.

We use these results to show that a random (in terms of word length) element of

the mapping class group of a surface is pseudo-Anosov and that a random free group

automorphism is irreducible with irreducible powers (or fully irreducible∗).

0. Introduction

This article was inspired by the following question, first brought to the author’s

attention by I. Kapovich [20]: is it true that a random element of the mapping class

group of a surface is pseudo-Anosov?†

The definition of random in this question is not explicitly given, but a reasonable

way to define it is to fix a generating set of the mapping class group and look at

all the words of bounded length.∗∗ Kapovich [20] has suggested that a reasonable

way to attack this question is to study the action of the mapping class group Mg on

homology, which gives a symplectic representation of Mg. Results of A. J. Casson and
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Vol. 142, No. 2, c© 2008 DOI 10.1215/00127094-2008-009
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∗Terminology due to L. Mosher [28].
†This question was also resolved by J. Maher [25]. Maher’s approach is completely different. His methods apply

to a broader class of subgroups of the mapping class group (e.g., the Torelli subgroup) but do not get effective

estimates on the probability that an element is not pseudo-Anosov. The methods in the current article can be

sharpened to give such bounds (see [32], [22] for two different, if philosophically related, approaches).
∗∗Another way is to look at a combinatorial ball of radius N around identity; results of this article are extended

to this case in an upcoming work of the author.
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in this case we let r0(O, f) be the minimal such r. Many classical results
and Conjectures are concerned with this problem in the case that Λ is a
subgroup of Zn acting by translations, that is Aj(x) = x + bj. For example
if Λ = qZ, O = b+Λ and f(x) = x one checks that Dirichlet’s Theorem [14]
is equivalent to r0(O, f) = 1 + ν

(
(b, q)

)
, where ν(m) is the number of prime

divisors of m. Another example is Λ = Z,O = Z and f(x) = x(x+2). Brun
[ ] invented the combinatorial sieve to show that this pair (O, f) is finite.
The twin prime conjecture is equivalent to r0(O, f) = 2. One can use the
classical combinatorial sieve in Zn along the lines of Section 3 below, to show
that any pair (O, f) with Λ ⊂ Zn acting by translations, is factor finite. One
of the main goals of this paper is to study the case that Λ acts by affine
linear transformations

(
Aj(x) = ajx + bj

)
. By increasing the dimension of

the underlying space we can assume without loss of generality that Λ ⊂
GLn(Z). We develop tools to attack the problem of (O, f) finiteness at
least if the radical of G, the Zariski closure of Λ in GLn, contains no tori.∗
It turns out that in this context multiplication is much more complicated
than addition and in extending the elementary combinatorial sieve to this
linear setting a number of novel problems present themselves. The most
interesting and difficult being the proof that certain graphs (see Section 4)
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Classical “euclidean” counting

Counting the number of integers in a segment or inside a disc is
“easy” because boundaries do not matter much.

The number of points at the
boundary of a large interval is
quite small.

The boundary of a large disc has length
much smaller than the area: πR2 is much
larger than 2πR if R is large.
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Apollonian circle packings

The curvature of a circle is the inverse of its radius.

There exist sets of four circles with integral
curvature which are mutually tangent. Such
configurations go back to Apollonius
and were studied also by Descartes.

Inserting more and more circles “as large as
possible” leads to packings where all circles
have integral curvature. Those have many
arithmetic properties, and are of a hyperbolic
nature.
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Diophantine properties of apollonian packings

P. Sarnak (2007), following the methods of
Bourgain-Gamburd-Sarnak: for some constant C , in any such
packing, there exist infinitely many quadruples of tangent circles,
all curvatures of which are product of at most C primes.



Tools for hyperbolic sieving

To study these “hyperbolic” sieves, one needs deep tools related to
arithmetic and to harmonic analysis.

Harmonic analysis is used to de-

compose the binary signal that

says that a condition holds

into a

steady “main term” (which corre-

sponds to the probability)

and a

sum of further oscillating contribu-

tions of other harmonics.

The oscillating harmonics must be shown to be negligible in some
sense. This often involves very deep results, and most of the work
lies here.
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Arithmetic Quantum Chaos

We end with a problem that seems to have nothing to do with
sieve, but where it turns out to be applicable.

This shows the density of a “wave

function” on a hyperbolic surface.

It

is expected that for certain surfaces,

the wave functions with high energy

will be uniformly distributed. (Picture

by R. Aurich and F. Steiner.)
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Arithmetic Quantum Unique Ergodicity

K. Soundararajan and R. Holowinsky have recently proved
this, using sieve arguments (and other tools),

if a certain widely
believed conjecture holds.

For a similar but slightly different problem, they
are able to prove completely the analogue result,
because the corresponding conjecture is known.
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