
PROBABILISTIC NUMBER THEORY

EMMANUEL KOWALSKI

By this art you may contemplate
the variation of the 23 letters

J-L. Borges, “La biblioteca de Babel”

I could be bounded in a nutshell and
count myself a king of infinite space

W. Shakespeare, “Hamlet”

1. Introduction

What is probabilistic number theory? In the widest sense, one could say that it coincides
more or less with analytic number theory (it is maybe for this reason that certain arithmeti-
cians, lest their work be associated with analysis, prefer the term “arithmetic statistics”), but
this survey will approach it from a more restrictive direction, in order to focus on certain
specific aspects (chosen by the author due to his own personal bias): we will consider prob-
abilistic number theory as the study of the asymptotic behavior of sequences (or families)
of arithmetically defined random variables. This is also the spirit of the lecture notes [16],
and readers may consider that these notes form the natural extension and continuation of
this survey. Another excellent recent survey, covering an especially wide variety of the most
recent interactions, is due to Perret-Gentil [20].

To illustrate our intended focus, we start by stating what is usually taken to be the first
great result of probabilistic number theory, the Erdős–Kac Theorem (published in 1940,
see [3]):

Theorem 1.1 (Erdős–Kac). For any integer n > 1, let ω(n) be the number of distinct prime
divisors of n. As N→ +∞, the random variables

n 7→ ω(n)− log log N√
log log N

on the finite probability space ΩN = {1, . . . ,N}, with the uniform probability measure, con-
verge in law to the standard gaussian random variable with expectation 0 and variance 1.

In concrete terms (and as it was first stated), this means that for any real numbers a < b,
we have the following limit (where even the existence of the limit is by no means obvious):

lim
N→+∞

1

N

∣∣∣{n 6 N | a < ω(n)− log log N√
log log N

< b
}∣∣∣ =

1√
2π

∫ b

a

e−t
2/2dt.

Thus, the most fundamental of all probability distributions, the gaussian distribution,
can be realized from extremely simple, and seemingly deterministic, objects: the number of
prime divisors of “random” integers. And we see how considering the intervals {1, . . . ,N}
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with N → +∞ is a natural way to speak of “random” integers – but it is not the only one,
as we will discuss later (see Example 2.3).

Some basic probabilistic notation and terminology, and a few results, will be recalled in
the Appendix, but the notion of convergence in law is so essential that we wish to state it
here formally in a fairly general setting:

Definition 1.2. Let (Xn) be a sequence of random variables, defined on some probability
spaces1 and with values in a fixed metric space M. Let X be a random variable with values
in M. The sequence (Xn) converges in law to X if, for any function f : M → C that is
continuous and bounded, we have

lim
n→+∞

E(f(Xn)) = E(f(X)).

Although the majority of results will involve only M = R or a finite-dimensional vector
space, we will see in Section 4 that probabilistic number theory may also involve functional
limit theorems, where the space M is an infinite-dimensional vector space.

In the next section, we will sketch a proof of Theorem 1.1, but only after explaining
some older results which are also of great interest. In Section 3, we discuss one of the
most important theorems of probabilistic number theory: Selberg’s Theorem on the limiting
distribution of log|ζ(1/2 + it)|, where ζ(s) denotes the Riemann Zeta function. We will be
able to motivate the result, but a full proof is quite delicate. Nevertheless, this is an area
where much of the most recent and most exciting work has been done, with new connections
to sophisticated concepts of “pure” probability theory, such as branching random walks or
gaussian multiplicative chaos. Then in Section 4, we explain a rather different result, due to
W. Sawin and the author, where the limit theorems involve random variables with values in
the space C([0, 1]) of continuous functions on [0, 1], and where moreover the key arithmetic
tools are especially deep – Deligne’s version of the Riemann Hypothesis over finite fields [2]
is the key to the proof.

Acknowledgements. Thanks to J. Fresán for suggesting to me to write this survey, and
for translating it into Spanish.

The section on Selberg’s Theorem is inspired by the lecture I gave in the Betty B. Seminar
in March 2018, in preparation for the talk of A. Harper in the N. Bourbaki Seminar the
following day; I thank N. and B. Bourbaki for the invitation to speak there.

2. Classical probabilistic number theory

2.1. Schoenberg’s Theorem. Although the Erdős–Kac Theorem is, as we mentioned, usu-
ally taken as the starting point of probabilistic number theory, one can argue that earlier
results of Schoenberg probably might well deserve this title rather more. In fact, one can go
further and say that the philosophical origin of probabilistic number theory, is the following
elementary fact, which not only lies at the core of both Schoenberg’s results and the Erdős–
Kac Theorem but also explains why interesting interactions between probability theory and
number theory are possible.

Theorem 2.1. For any positive integer q, let πq be the random variable on ΩN with values
in Z/qZ defined by πq(n) = n (mod q).

1 Which may depend on n.
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Let Q be a finite set of coprime positive integers and let Q be the product of the elements
of Q. Then the family (πq)q∈Q converges in law as N → +∞ to a family of independent
random variables (Uq)q∈Q, where Uq is uniformly distributed in Z/qZ.

In fact, for any function
f :
∏
q∈Q

Z/qZ→ C

we have ∣∣∣ 1

N

∑
n∈ΩN

f((πq(n))q)−
1

Q

∑
x∈

∏
q∈Q Z/qZ

f(x)
∣∣∣ 6 1

N

∑
x

|f(x)|.

Remark 2.2. In other words, this is a case of Definition 1.2 with

M =
∏
q∈Q

Z/qZ, XN(n) = (πq(n))q∈Q, X((aq)q∈Q) = (aq)q∈Q.

It is more or less tautological using the definition of independent families (see Section A.1)
that the components of X are indeed independent and uniformly distributed.

This is in some sense “obvious”, and indeed it is used without comments or explanation in
many treatments of classical probabilistic number theory. In fact, it follows (qualitatively)
from the Chinese Remainder Theorem, which shows that the product of Z/qZ for q ∈ Q can
be identified with Z/QZ, together with the elementary limit

lim
N→+∞

1

N
|{n ∈ ΩN | n ≡ a (mod Q)}| = 1

Q

for any a modulo Q.
However, almost any attempt to generalize non-trivially the Erdős–Kac Theorem is likely

to face the fact that it is necessary to generalize Theorem 2.1, and that this might involve
very deep mathematics indeed. We illustrate this with two examples:

Example 2.3. (1) Replace the integers from 1 to N by the values p− 1, where p runs over
primes from 1 to N (again with the uniform probability measure on this finite set of primes);
then the analogue of Theorem 2.1 is immediately connected to questions about primes in
arithmetic progressions which are closely related to the Generalized Riemann Hypothesis.

(2) Fix an integer m > 2. Replace the integers from 1 to N by the integers Tr(g), where
g runs uniformly over all matrices in SLm(Z) with all coefficients 6 N. Then the analogue
of Theorem 2.1 is intimately related to the issue of spectral gaps for congruence subgroups
of SLm(Z) (see for instance the discussion in [15]), and thus linked to topics like expander
graphs, automorphic forms, Kazhdan’s Property (T), etc.

Theorem 2.1 is often applied with Q a set of primes, so that the coprimality condition
between distinct elements of Q is satisfied. What is crucial from the probabilistic point of
view is that we see sequences of independent random variables appear. Since independence
is one of the most fundamental of all concepts in probability theory (one of the first things
that distinguishes probability from integration theory), it cannot be surprising to think that
interesting interactions should exist between number theory and probability.

Using Theorem 2.1, we will be able now to motivate the following very nice statement due
to Schoenberg [23]; in fact, a full proof doesn’t require any more arithmetic information, and
only quite basic probability theory, as our sketch will show.
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We recall that Euler’s function ϕ is defined so that ϕ(n) is the number of invertible residue
classes modulo n for all positive integers n. Equivalently, it is the number of integers a such
that 0 6 a < n and a is coprime to n, so that for instance ϕ(n) = n − 1 is equivalent to
saying that n is prime.

The size of ϕ(n) is always “relatively close” to n in some sense, but the ratio2 ϕ(n)/n does
not have a limit when n is large, and indeed experiments show quickly that it varies quite
erratically in [0, 1] – if you write down a large integer (say with 50 digits) and try to guess
what ϕ(n)/n will be, you might well be very puzzled by what happens. This is explained by
Schoenberg’s Theorem.

Theorem 2.4 (Schoenberg). For N > 1, let FN be the random variable n 7→ ϕ(n)/n on ΩN.
As N→ +∞, the random variables (FN) converge in law to a random variable F, which can
be described as the infinite product over prime numbers

(1) F =
∏
p

(
1− Bp

p

)
where (Bp) is a sequence of independent Bernoulli random variables, indexed by primes, such
that for any p, we have

P(Bp = 1) =
1

p
, P(Bp = 0) = 1− 1

p
.

This infinite product converges almost surely.

Sketch of proof. The starting point is the well-known formula

(2)
ϕ(n)

n
=
∏
p|n

(
1− 1

p

)
for the normalized Euler function. This reflects the fact that ϕ(n) = |(Z/nZ)×| (the number
of invertible elements in the ring Z/nZ), and that the Chinese Remainder Theorem provides
an isomorphism of groups

(Z/nZ)× '
∏
p|n

(Z/pvp(n)Z)×

where vp(n) is the exponent of the prime p in the factorization of n; the formula then follows
from the fact that

ϕ(pv) = pv − pv−1 so
ϕ(pv)

pv
= 1− 1

p
for any prime number p and any integer v > 1.

Now we rewrite (2) cleverly as an infinite product over primes

(3)
ϕ(n)

n
=
∏
p

(
1− bp(n)

p

)
where bp(n) is simply equal to 1 if p divides n and to 0 otherwise.

Next we observe that, if we restrict n to ΩN, and view bp as a random variable, then by
definition and by Theorem 2.1, we deduce that these random variables converge as N→ +∞

2 Which also has a probabilistic interpretation, as the probability, for the uniform measure, that a residue
class nodulo n is invertible.
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to the Bernoulli random variable Bp with “success probability” equal to 1/p. (Intuitively, we
are just saying that a “random integer” has probability 1/p of being divisible by p, which
certainly makes sense!). Furthermore, applying again Theorem 2.1, it follows that for any
finite family of distinct primes (pi)16i6k, the tuples (bp1(n), . . . , bpk(n)) for n ∈ ΩN converge
in law to the tuple (Bp1 , . . . ,Bpk), where the Bernoulli random variables are independent.

At this point, if we look at (3), knowing that the family (bp) restricted to ΩN converges in
law to (Bp) when N → +∞, we are naturally led to expect that there should be a limiting
random variable, given by the infinite product (1): we are just passing to the limit in each
term of (3).

We sketch an elementary approach to obtain a rigorous proof. It is based on the prob-
abilistic Lemma A.2 in the Appendix, and roughly speaking amounts to finding successive
approximations of the random variables, for each N, which each converge in law, and are
such that the difference in small on average. Here the natural choice of approximation is the
finite product ∏

p6M

(
1− bp(n)

p

)
,

where M > 1 is a parameter determining the quality of the approximation (also viewed as
random variables on ΩN). Since the product is finite, it is a straightforward consequence of
Theorem 2.1 that these approximations, restricted to ΩN converge in law as N→∞ to∏

p6M

(
1− Bp

p

)
.

To check the quality of the approximation, we note simply that∣∣∣ 1

N

(∑
n6N

ϕ(n)

n
−
∑
n6N

∏
p6M

(
1− 1

p

))∣∣∣ 6 1

N

∑
n6N

∣∣∣∏
p|n
p>M

(
1− 1

p

)
− 1
∣∣∣

6
1

N

∑
n6N

∑
d∈Dn

1

d

where Dn is the set of integers d > 2 dividing n which only have prime factors p > M. In
particular, all elements d of Dn satisfy M < d 6 N, and if we exchange the order of the sums
over n and d, we obtain

1

N

∑
n6N

∑
d∈Dn

1

d
6

∑
M<d6N

1

d
× 1

N

∑
n6N
d|n

1 6
∑
d>M

1

d2
.

The right-hand side is a function f(N,M) of N and M which tends to 0 as M → +∞
uniformly with respect to N (since N doesn’t appear). This means that the conditions of
Lemma A.2 are satisfied.

Schoenberg’s Theorem now follows, except for the statement of convergence almost surely
of the infinite product (1); this is, however, a simple consequence of Kolmogorov’s Three
Series Theorem (for instance), see Theorem A.3. �

The random variable F that occurs in this theorem is quite interesting. First of all, it
certainly doesn’t seem to be a “standard” random variable (Gaussian, Poisson, exponential,
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Figure 1. Empirical plot of the distribution function of ϕ(n)/n for n 6 106.

uniform, etc). In fact, it belongs to the class of real-valued random variables whose prob-
ability law are singular with respect to Lebesgue measure, a kind of “pathological” object
that is usually encountered in the theory of integration, and constructed using Cantor-type
sets. We thus see how wild and unpredictable number theory can be... Precisely, define a
function f by f(x) = P(F 6 x) for all x ∈ R (the function f is the probability distribution
function of the random variable F). We then have the following:

Proposition 2.5 (Erdős). The function f is continuous on R, strictly increasing on [0, 1],
differentiable almost everywhere on R, with respect to Lebesgue measure, and moreover
f ′(x) = 0 for almost all x, with respect to Lebesgue measure.

We illustrate this proposition (whose proof, due to Erdős, is quite elegant, see e.g. [16,
Exercise 1.4.4]) with an approximation of the graph of the function f(x) for 0 6 x 6 1
(coming from the values F(n) for n 6 106).

2.2. The Erdős–Kac Theorem. The method of proof of Schoenberg’s Theorem can be
extended to apply to many arithmetic functions replacing the Euler function. In fact, it is
in general easier to deal with additive functions f , defined for positive integers n and which
satisfy

f(nm) = f(n) + f(m)

when n and m are coprime. An example of such a function is f(n) = log(ϕ(n)/n), and there
exist general distribution results for additive functions which recover Schoenberg’s Theorem.
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One of the simplest additive functions is the function ω that counts the number of distinct
prime divisors of n. Understanding its distribution when n is taken uniformly at random in
ΩN = {1, . . . ,N} is precisely what the Erdős–Kac Theorem does.

If we use the notation bp of the previous section for the random variable on ΩN that
indicates whether n is divisible by p or not, we can write

ω(n) =
∑
p

bp(n).

We might therefore expect an asymptotic behavior similar to that of the sum∑
p

Bp.

We then see that the issue is more complicated than in Theorem 2.4: without some trun-
cation, this sum diverges almost surely, by the (non-trivial direction of the) Borel–Cantelli
Lemma and the fact that ∑

p

P(Bp = 1) =
∑
p

1

p

diverges (a well-known fact about the distribution of primes, going back to Euler, which we
will also recall in the next section). But observing that any prime dividing n 6 N is also
6 N, we can consider the finite sum

WN =
∑
p6N

Bp

and expect that this is a possible approximation to the distribution of the function ω(n)
on ΩN when N is large. This is indeed the case, but the approximation is not straightforward
like convergence in law – indeed, the sequence (WN) does not converge in law as N →
+∞. However, because the (Bp) are independent Bernoulli random variables, it is a simple
probability exercise to check that the renormalized random variables

WN − E(WN)√
V(WN)

(which have expectation 0 and variance 1) converge in law to a standard gaussian. Here we
have

E(WN) =
∑
p6N

1

p
∼ log log N

V(WN) =
∑
p6N

1

p

(
1− 1

p

)
∼ log log N,

where the asymptotics for the sum of inverses of primes is known as the Mertens formula
(see also (8) below for an explanation of where this comes from).

Although this is a somewhat unusual approach to the Erdős–Kac Theorem, it can be made
rigorous, for instance by computing asymptocially the moments

1

N

∑
n6N

(∑
p6Q

bp(n)
)k
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for all integers k > 1, and a suitable choice of Q < N, small enough to make the computation
feasible, and large enough that the number of prime factors of n 6 N which are > Q is small
enough to be negligible. When arguing in this manner, the key arithmetic fact is, once again,
the elementary Theorem 2.1.

Another very probabilistic approach to the Erdős–Kac Theorem, based on Stein’s method
for Poisson and Gaussian approximation, is due to Harper [7]. One can also avoid the trunca-
tion step involving the parameter Q and compute asymptotically the characteristic functions
of WN and of ω(n) on ΩN. This was first done by Rényi and Turán, and elaborating the
precise form of the result, one is led to the so-called “mod-Poisson convergence” introduced
by the author and Nikeghbali [17], which highlights intriguing connections with random per-
mutations and random polynomials over finite fields. (An entertaining account of these is
found in the nice survey [5] of A. Granville; his comic book with J. Granville [6] – somewhat
flawed, in the opinion of this author – may also appeal to some readers.)

Example 2.6. Erdős observed the following very nice application of the fact that integers
n 6 N have usually about log log N prime factors.3 This is often called the “multiplication
table problem”. Consider the multiplication table of integers 1 6 n 6 N, as can be found for
N = 10 or so in many schoolrooms. How many integers appear on the multiplication table?
In other words, how many integers m 6 N2 can be expressed as a product m = ab where
1 6 a, b 6 N? If we call this number m(N), then the first basic result is that we have

lim
N→+∞

m(N)

N2
= 0,

or in other words, “most” integers do not appear in the multiplication table. The reason,
intuitively, is that since most integers n 6 N have about log log N prime factors, most
products ab have about 2 log log N prime factors. This is however very atypical for integers
m 6 N2, which again should have about log log N2 ∼ log log N prime factors.

The (surprising) order of magnitude of m(N) was determined by Ford [4], after works of
a number of authors, especially Tenenbaum; his arguments rely on quite subtle probabilistic
results.

3. Selberg’s Theorem

We will discuss in this section the second most famous theorem in probabilistic number
theory, and the starting point of what is today probably the deepest area of research in this
area. This is a theorem of Selberg [24] concerning the limiting behavior of the logarithm of
the Riemann zeta function on the so-called critical line.

3.1. The Riemann zeta function. The Riemann zeta function is the meromorphic func-
tion on C which is obtained by analytic continuation from the function defined by the
Dirichlet series

ζ(s) =
∑
n>1

1

ns

on the open set of complex numbers s ∈ C such that Re(s) > 1, where the series converges
absolutely and uniformly on compact subsets. This implies that ζ is holomorphic in this

3 The required information can be proved more easily than the full Erdős–Kac Theorem.
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domain. There are multiple approaches to obtain its analytic continuation and identify its
poles (the classical book [25, Ch. II] of Titchmarsh lists seven).

One of the most intrinsic method (because of its links with modular forms, in this case
theta functions) is to use the expression

π−s/2Γ(s/2)ζ(s) =
1

s(s− 1)
+

1

2

∫ +∞

1

(θ(x)− 1)(xs/2 + x(1−s)/2)
dx

x
,

where
θ(x) =

∑
n∈Z

e−πn
2x

for any x > 0. This formula follows relatively simply from the definition

Γ(s) =

∫ +∞

0

e−tts
dt

t

of the Gamma function, combined with the Poisson summation formula. One sees easily
(using the rapid decay of the theta function when x→ +∞) that the right-hand side (hence
the Riemann zeta function) is a meromorphic function on C with a unique simple pole
at s = 1 with residue 1.

For the purpose of understanding Selberg’s theorem, it is sufficient to know that ζ(s)
can be defined for Re(s) > 0 (except at s = 1), and one can establish this using very
elementary means. For instance, the following “summation by parts” suffices: let {t} denote
the fractional part of a real number t > 0, so that {t} = t − n where n > 0 is the largest
integers n 6 t. For Re(s) > 1 first, we compute∑

n>1

1

ns
= s

∫ +∞

1

( ∑
16n6t

1
)
t−s−1dt

= s

∫ +∞

1

(t− {t})t−s−1dt

= s

∫ +∞

1

t−sdt− s
∫ +∞

1

{t}t−s−1dt

=
s

s− 1
+ (holomorphic function for Re(s) > 0),

which provides the desired analytic continuation.
The reason number theorists are interested in the properties of the Riemann zeta function

is that it gives access to many properties of prime numbers. This is due to the remarkable
Euler product formula, which states that for Re(s) > 1, we have the relation

(4) ζ(s) =
∏
p

(1− p−s)−1,

where the infinite product over primes is absolutely convergent. This fact is rather elemen-
tary, and yet essential, so we explain the proof (where we will see that the arithmetic content
of the formula is the existence and uniqueness of prime factorization): first, for any fixed
real number P > 2, we expand the geometric series for (1−p−s)−1 and multiply the resulting

9



series over primes p 6 P to derive∏
p6P

(1− p−s)−1 =
∏
p6P

∑
k>0

p−ks =
∑
n∈NP

n−s,

where NP is the set of integers n > 1 only divisible by primes6 P. Note that the uniqueness of
prime factorization implies that each integer appears with multiplicity at most one, whereas
the existence of prime factorization shows that every integer n 6 P belongs to NP. Letting
P→ +∞, one then deduces the Euler formula for Re(s) > 1.

Remark 3.1. The simplest applications of the Euler product are proofs that there are infin-
itely many primes:

• (Euler) Otherwise, ζ(σ) would be bounded for all σ > 1, which is not true.
• (Hacks) Otherwise, ζ(2) = π2/6 (Euler) would be a rational number, which is not
true (Lambert).

3.2. The Prime Number Theorem. Riemann [22] discovered how to exploit systemati-
cally the Euler product in order to obtain asymptotic formulas for the number π(x) of prime
numbers p 6 x. Again, because of the importance of this idea, we discuss it briefly before
coming to Selberg’s Theorem.

The intuition can be presented relatively easily. First, it is better to consider the function

ψ(x) =
∑

p premier, k>1
pk6x

log p =
∑
n6x

Λ(n),

where Λ is the so-called von Mangoldt function, which is supported on (non-trivial) prime
powers, and satisfies Λ(pk) = log p for all k > 1. One can easily compare π(x) and ψ(x), but
the function ψ is easier to handle, essentially because of the formula∑

n>1

Λ(n)n−s = −ζ
′(s)

ζ(s)
,

which directly relates the von Mangoldt function with the oppposite of the logarithmic
derivative of the Riemann zeta function (this follows from the Euler product by termwise
differentiation). From the properties of the Riemann zeta function, we see that this is also a
meromorphic function, and moreover its poles are all simple poles, and are located as follows:

• There is a unique simple pole with residue 1 at s = 1;
• There are simple poles at the points s = % for any % ∈ C such that ζ(%) = 0, with
residue equal to the opposite of the multiplicity of % as a zero of the Riemann zeta
function.

Using a computation based on the Perron formula, which is a form of the Fourier inversion
formula, one can obtain (essentially as Riemann did) the formula

ψ(x) =
1

2iπ

∫
(3)

−ζ
′(s)

ζ(s)
xs
ds

s
,

where the integral is performed on the vertical line with real part 3, oriented from the negative
imaginary part to the positive; here, the number 3 can be replaced by any number > 1.

Now suppose that we knew the existence of a real number 0 < c < 1 with the property
that all zeros of the zeta function have real part < c (and moreover assume that we know
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that the zeta function does not grow “too fast” when the imaginary part is large). Then
by applying the Cauchy integral formula along a rectangle with sides parallel to the axes,
with horizontal parts at heights ±T, and vertical parts having real parts c and 3, and letting
T→ +∞, we obtain

(5) ψ(x) = x+
1

2iπ

∫
(c)

−ζ
′(s)

ζ(s)
xs
ds

s
= x+ O(xc)

for any x > 2, at least if the integral on the line with real part c converges. Now we see
that if c < 1, this formula determines the asymptotic behavior of ψ(x). The Prime Number
Theorem then follows easily: we have

(6) lim
x→+∞

π(x)

x/ log(x)
= 1,

but the formula (5) is much more precise.
Riemann then considers the possibility that all zeros within the region 0 < Re(s) < 1 have

real part 1/2,4 which is the best possible result because there are indeed zeros with real part
1/2 (Riemann himself had computed numerical approximations of the first ones). Then this
sketch would establish the fact that

π(x) =

∫ x

2

dt

log t
+ O(x1/2+ε)

for any x > 2 and any ε > 0, where the implied constant depends only of ε.
However, this hypothesis of Riemann remains unproved, and it is also unknown if this

straightforward approach is applicable: one doesn’t know any allowable value c < 1. It was
therefore a major progress when Hadamard and de la Vallée Poussin proved independently
in 1896 that the Riemann zeta function does not vanish for Re(s) > 1, and succeeded in
deriving the validity of the Prime Number Theorem (6), although not in a precise form of
the shape (5).

3.3. Why should one consider the zeta function probabilistically? One might at
first consider a holomorphic or meromorphic function, such as the zeta function, to be a very
regular and deterministic object. However, the behavior of the Riemann zeta function on
the part of the complex plane which is most relevant for number theory (namely when 0 6
Re(s) 6 1) is extremely complex.

For instance, Riemann had already correctly stated that the number of zeros % = β + iγ
of ζ such that 0 6 β 6 1 and |γ| 6 T is, as T → +∞, asymptotic to π−1T log(T). In
particular, in a box of height 1 where the imaginary part belongs to [T,T + 1], the number
of zeros is on average approximately equal to π−1 log(T), and thus increases as T increases.
If we assume for the moment the Riemann Hypothesis in order to simplify the discussion,
this means that the function t 7→ ζ(1/2 + it) must be highly oscillatory. Since it is also
known that it is unbounded (for instance, because it is known since the work of Hardy and
Littlewood that

1

2T

∫ T

−T

|ζ(1
2

+ it)|2dt ∼ log T

4 “es ist sehr wahrscheinlich”.
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Figure 2. Plot of |ζ(1
2

+ it)| for 100 6 t 6 200.

as T→ +∞), it follows that it is practically impossible to “guess” the value of ζ(1/2+it) when
t is a large “random” real number, unless one actually computes the value approximately.
Figure 2 illustrates this point: it plots the modulus |ζ(1

2
+ it)| for t ∈ [100, 200].

It is then understandable, and one can highly recommend, to consider the variations of the
values of the zeta function in a probabilistic manner, to attempt to understand its “average”
behavior. This is also quite natural from the point of view of arithmetic applications, since
it is rather rare that an individual value of ζ plays a deciding factor. It will usually be a
question of some integral involving the zeta function, or of the location of a whole set of
zeros, and not just one. Indeed, in many cases, one can work around the lack of proof of
the Riemann Hypothesis by exploiting this feature. (The first spectacular instance of this is
the proof by Hoheisel that there exists c < 1 such that there is always a prime between x
and x+ xc for all large enough values of x; a straighforward attempt would seem to require
that all zeros of zeta have real part 6 c, but it was realized that “sufficiently few” potential
exceptions could be accommodated for such a result; see, e.g. [11, Ch. 10]).

The most important probabilistic result concerning the Riemann zeta function is due to
Selberg [24] in 1946.5 For simplicity we only consider the modulus of zeta, although Selberg
proved a similar result (of equal importance) for the argument.

Theorem 3.2 (Selberg). For any real number T > 1, define a random variable on the
interval [−T,T], with the normalized Lebesgue measure 1

2T
dt, by the formula

t 7→

{
log |ζ(1/2 + it)|/

√
1
2

log log T if ζ(1/2 + it) 6= 0

0 otherwise.

Then these random variables converge in law to a standard gaussian as t→ +∞.

5 It is not the first: here, the previous work of Bohr and Jessen and others on the values ζ(σ + it) for
σ > 1

2 takes precedence.
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Concretely, denoting by λ the Lebesgue measure, this means that for all real numbers a <
b, the following limit exists and takes the stated value:

(7) lim
T→+∞

1

2T
λ
({
t ∈ [−T,T] | a < log |ζ(1/2 + it)|√

1
2

log log T
< b
})

=
1√
2π

∫ b

a

e−t
2/2dt.

Selberg proved this result by computing asymptotically the moments of the logarithm of
the Riemann zeta function on the critical line, i.e., by showing that for any integer k > 0,
we have

lim
T→+∞

1

2T

∫ T

−T

( log |ζ(1/2 + it)|√
1
2

log log T

)k
dt =

{
k!

2k/2(k/2)!
if k is even,

0 if k is odd,

where the right-hand side is well-known to equal E(Nk) for a standard gaussian random
variable N, i.e.

E(Nk) =
1√
2π

∫
R

tke−t
2/2dt.

Theorem 3.2 then follows from the method of moments. At that time, it doesn’t seem that
Selberg was aware of the probabilistic interpretation of his result.

Modern proofs (such as that of Radziwiłł and Soundararajan [21]) emphasize the proba-
bilistic nature of the result by identifying an approximation of the zeta function by an object
which is naturally close to a gaussian, as we will now explain intuitively. But it should
be emphasized that this theorem is quite a bit deeper and more difficult to prove than the
Erdős–Kac Theorem, for instance.

Theorem 3.2 is the fundamental statement that justifies the use of certain heuristic argu-
ments concerning the distribution of values of the Riemann zeta function on the critical line.
For instance, since the normalizing factor

√
1
2

log log T tends to infinity as T does, we see that
most values of ζ(1/2+it) are either very large, or very small: taking, for instance, a = −1/10
and b = 1/10 in (7), it follows that for at least 92% of the real numbers t ∈ [−T,T], we have
either

|ζ(1/2 + it)| > exp( 1
10

√
1
2

log log T),

or
|ζ(1/2 + it)| 6 exp(− 1

10

√
1
2

log log T).

In the first case, the zeta function is “very large”, and in the second, it is “very small”, since
these values also tend to +∞ or to 0 as T→ +∞.

3.4. Justifiying Selberg’s Theorem. We can provide a heuristic for Selberg’s Theorem
which is very natural from the probabilistic point of view.
Step 1. Although the Euler product (4) diverges on the line Re(s) = 1

2
, one can still hope

to preserve an approximation of some kind of ζ(1
2

+ it) by a partial product

ζ(1/2 + it) ≈
∏
p6P

(1− p−1/2−it)−1,

for |t| 6 T and some suitable value of P; such an approximation is quite delicate, and can only
hold in a probabilistic sense, and the value of P should be roughly such that log P ∼ log T.

13



Step 2. Using the Taylor series of log(1 − z) around z = 0, we then expect an approxi-
mation of the kind

log |ζ(1/2 + it)| ≈ Re
(∑
p6P

p−1/2−it
)
,

because the contributions of higher order (involving p−1−it, p−3/2−it, etc) are negligible; this
is because the corresponding series are either absolutely convergent or almost so.
Step 3. We can then use the following result, which provides in this case the crucial

connection between arithmetic and probability (it plays roughly the same role as Theorem 2.1
in the Erdős–Kac Theorem):

Theorem 3.3. Let T be the infinite product of copies of the unit circle in C, indexed by
primes. For any real number T > 1, define a random variable XT on the interval [−T,T],
given with the normalized Lebesgue measure 1

2T
λ, taking values in T, by the formula

XT(t) = (2−it, 3−it, . . .) = (p−it)p ∈ T.

Then the random variables XT converge in law as T→ +∞ to a random variable U = (Up)
where the components Up are all independent and uniformly distributed on the unit circle.

Remark. Another way of stating this is to observe that T is a compact abelian group, and
then the limit in the theorem is also the probability Haar meassure on this group.

This result is again fairly elementary: first, one can check that it suffices to prove the
formula

lim
T→+∞

1

2T

∫ T

−T

ϕ(XT(t))dt = E(ϕ(U))

when ϕ is a function on T of the type

ϕ((xp)) =
∏
p

xmp
p

where mp ∈ Z for all primes, and all but finitely many of them are zero (this is a case of the
“Weyl Criterion”). We then have ϕ(XT(t)) = r−it, where r is the rational number

r =
∏
p

pmp ,

and a straightforward integration shows that

lim
T→+∞

1

2T

∫ T

−T

ϕ(XT(t))dt =

{
1 if mp = 0 for all p
0 otherwise,

because r = 1 if and only if all mp are zero, by the uniqueness of prime factorization, which
turns out again to be the key arithmetic fact here. Another simple computation shows that
this coincides indeed with E(ϕ(U)).
Step 4. Based on this result and on Step 2, it is natural to expect that, probabilistically

speaking, log |ζ(1/2 + it)| will be, for |t| 6 T, “close” to Re(YP), where

YP =
∑
p6P

Up√
p
,

14



and the random variables (Up) are, as in Step 3, independent and uniformly distributed on
the unit circle.
Step 5. The question of the behavior of the random variable YP belongs to standard

probability theory: the theory of sums of independent random variables, the realm of the
Central Limit Theorem. The expectation of YP is zero, since each Up has expectation zero.
The variance σP = E(Y2

P) of YP satisfies

σ2
P =

∑
p6P

1

p

by independence. We have already stated that

(8) σ2
P =

∑
p6P

1

p
∼ log log P

as P→ +∞, since this was an important fact in the proof of the Erdős–Kac Theorem. We
can now observe that this follows easily6 from the the Prime Number Theorem7.

Since the variance tends to +∞ as P→ +∞, a suitable version (e.g., Lyapunov’s) of the
Central Limit Theorem implies that YP/σP converges in law to a standard complex gaussian.
Hence the real part of YP/σP converges in law to the real part of such a random variable,
which is a centered (real) gaussian random variable with variance 1/2. This means that
Re(YP/

1√
2
σP) converges to a standard gaussian. Hence, assuming that the approximations

we did in the previous steps can be justified, we obtain Selberg’s Theorem.

3.5. Other links between the zeta function and probability theory. We will fin-
ish this section with a few additional illustrations of probabilistic aspects of the Riemann
zeta function. We also wish to indicate that the Riemann zeta function is by now well-
understood to be one example (the simplest) of an important class of similar functions
known as L-functions, which are associated to a variety of important arithmetic objects
(number fields, algebraic varieties, automorphic forms, etc), and whose properties, be they
known or conjectural, encode some of the deepest and most fascinating aspects of modern
number theory.
Bagchi’s Theorem and Voronin’s Theorem. Selberg’s Theorem deals with the prob-

abilistic study of the Riemann zeta function on the “critical line” Re(s) = 1
2
; it is of course

of some interest to study what happens in other regions, and Bagchi proved a rather beau-
tiful statement (which, however, is much easier than Selberg’s). Consider a closed disc
D ⊂ C centered at 3/4 and with radius r < 1/4, so that D is contained in the vertical
strip {s ∈ C | 1/2 < Re(s) < 1}. Let H(D) denote the Banach space of complex-valued
functions f defined on D which are holomorphic in the interior of D, with the norm defined
by ‖f‖ = supd∈D |f(z)|.

Now for T > 1, define an H(D)-valued random variable on [−T,T], by sending t ∈ [−T,T]
to the function obtained by translating the zeta function by t, i.e., the function associated
to t is the holomorphic function s 7→ ζ(s+ it) on D.

6 By “summation by parts”.
7 Although this is a simpler result, which was proved by Mertens using elementary methods, well before

the proof of the Prime Number Theorem.
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Bagchi’s Theorem is that these random variables converge in law as T → +∞ to the
random Dirichlet series ∑

n>1

Un

ns
=
∏
p

(1− Upp
−s)−1,

whose coefficients Un are defined by multiplicativity starting from a sequence (Up) with the
properties of Theorem 3.3, namely

Un =
∏
p

Unp
p for n =

∏
p

pnp .

Moreover, by computing the support of this random Dirichlet series, Bagchi recovered the
so-called “universality theorem” of Voronin: for any function f ∈ H(D) which does not vanish
in the interior of D, and for all ε > 0, we have

lim inf
T→+∞

1

2T
λ({t ∈ [−T,T] | ‖ζ(·+ it)− f(·)‖ < ε}) > 0.

Conjectural links with Random Matrix Theory. Besides the probabilistic model
suggested by Theorem 3.2 (namely, for ζ(1

2
+ it) when |t| 6 T, and at least for the modulus

of ζ(s), a centered gaussian with variance 1
2

log log T), there is a remarkable body of evidence
(including numerical evidence) that relates the distribution and properties ζ(1

2
+it) to random

unitary matrices of large size N, elements of the unitary group UN(C) distributed according
to the probability Haar measure on this compact group, where N ∼ log T. The nature of
this approximation (if it is true) remains very mysterious, but it leads for instance (due to
work of Keating and Snaith) to very precise conjectures for the moments

1

2T

∫ T

−T

|ζ(1/2 + it)|kdt,

for k > 0 real (or even k ∈ C with Re(k) > 0). The Bourbaki seminar of Ph. Michel [19] is
an excellent survey of these conjectural relations.
Links with gaussian multiplicative chaos (and other probabilistic objects). Some

of the deepest works of probabilistic number theory in recent years have been devoted to
studies of finer aspects of the distribution of the Riemann Zeta function on the critical line.
A particular focus has been a conjecture of Fedorov, Hiary and Keating that addresses the
distribution of the maximum of ζ(1/2+ it) when t varies over an interval of length 1 (and t is
viewed as taken uniformly at random in [−T,T] or [T, 2T] with T→ +∞). This leads to links
with objects like log-correlated fields, branching random walks, or gaussian multiplicative
chaos. We refer to the Bourbaki seminar survey of Harper [8] for a discussion of the work
of Najnudel and Arguin–Belius–Bourgade–Radziwiłł–Soundararajan, and to Harper’s recent
preprint [9] for the latest developpments.

4. Kloosterman paths

Our last example of probabilistic number theory is a recent result due to W. Sawin and the
author [18], which concerns very different arithmetic and probabilistic objects, and whose
proof also involves fascinating connections with deep aspects of arithmetic geometry, in the
form of Deligne’s strongest form of the Riemann Hypothesis over finite fields [2], and its
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subsequent and equally remarkable elaborations in the works of Katz. Moreover, this result
leads to intriguing figures like those in Figures 3 and 4.

The arithmetic objects we consider are finite exponential sums, precisely the Kloosterman
sums Kl(a, b; p) modulo primes. To define them, we first introduce the notation e(z) =
exp(2iπz) for any complex number z. Fix a prime p, and integers a and b coprime to p. For
any integer x coprime to p, denote by x̄ the inverse of x modulo p, i.e., the residue class
modulo p such that xx̄ ≡ 1 (mod p). Observe that e(x̄/p) is well-defined, since changing the
representative of x̄ in Z changes the exponential by a factor e(k) = 1 for some integer k ∈ Z.
Then let

(9) Kl(a, b; p) =
1
√
p

∑
16x6p−1

e
(ax+ bx̄

p

)
(where the presence of the normalizing factor 1/

√
p will soon be explained).

The importance of these exponential sums in analytic number theory (whether solving
diophantine equations, or studying prime numbers in arithmetic progressions, or automorphic
forms) cannot be overstated. We refer to [14, 10] for surveys that present many of the
remarkable applications of these sums; we can however also quite simply motivate them (to
some extent) by observing that the integral∫ +∞

0

exp(−ax− b/x)dx

which is a natural “continuous” analogue of (9), is none other than a Bessel function, whose
importance in physics and applied mathematics is well-known.

The Kloosterman sum is a simple-looking object – a finite sum of roots of unity. Never-
theless, as Figure 3 shows, the summation process is extremely complicated: this shows, for
a = b = 1 and p = 10007, the “path” taken when summing the terms

e
(x+ x̄

10007

)
(normalized by 1/

√
10007) over x from x = 1 to x = 10006. Precisely, the vertices of the

“polygon” are the successive partial sums
1√

10007

∑
16x6y

e
(x+ x̄

10007

)
,

for 0 6 y 6 10006, joined by line segments.
This picture obviously evokes some random happenings, and the paper [18] describes

precisely in what sense this is indeed a random process. To state it, we first define for each p
and a, b invertible modulo p a continuous function

Kp(a, b) : [0, 1]→ C

such that, for all integers 0 6 y 6 p, we have

Kp(a, b)
(y
p

)
=

1
√
p

∑
16x6y

e
(ax+ bx̄

p

)
,

and such that the values in an interval y/p 6 t 6 (y+ 1)/p are obtained by linear interpola-
tion. Thus the image of Kp(a, b) is the path represented on pictures like Figure 3. We view
the map (a, b) 7→ Kp(a, b) as a random variable, defined on the (finite) probability space
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Figure 3. The Kloosterman path for p = 10007 and a = b = 1.

F×p × F×p (with uniform probability measure) and with values in the Banach space C([0, 1])
of continuous complex-valued functions on the interval [0, 1].

Theorem 4.1 (Kowalski–Sawin). Let (Sh)h∈Z be a sequence of independent random variables
with values in [−2, 2] and distributed according to the so-called Sato–Tate measure

1

π

√
1− x2

4
dx.

Define the random Fourier series

(10) X(t) = tS0 +
∑
h∈Z
h6=0

e(ht)− 1

2iπh
Sh,

where the sum over h is understood in the sense of the limit as H → +∞ of the symmetric
partial sums over |h| 6 H.

Then X defines a C([0, 1])-valued random variable8 and the random variables Kp converge
in law to X as p→ +∞.

To illustrate the behavior of the random Fourier series X, Figure 4 presents an approxi-
mation to a sample of this series (obtained by computing the partial sum over |h| 6 10000,
with random coefficients simulating the sequence (Sh)).

As we have done before, we will attempt to motivate this result. We begin by the expla-
nation of the normalizing factor: it is already a deep result, proved by A. Weil in 1948 as
consequence of the Riemann Hypothesis for curves over finite fields, that individual Kloost-
erman sums satisfy |Kl(a, b; p)| 6 2 (furthermore, they are real-valued, which is easy to
prove by computing the complex conjugate), and that one cannot replace the constant 2
by any function of p that tends to 0. Thus the Kloosterman sums may also be studied
probabilistically.

8 I.e., the series converges almost surely uniformly on [0, 1].
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Figure 4. A sample of the random Fourier series.

We look at the partial sum over 1 6 x 6 y, and apply a standard principle of harmonic
analysis, the completion method. This means that we expand the characteristic function ϕy
of the summation interval in discrete Fourier series modulo p:

ϕy(x) =
∑

−p/2<h6p/2

αy(h; p)e
(hx
p

)
,

where
αy(h; p) =

1

p

∑
16x6y

e
(
−hx
p

)
,

and then input this expression in the partial sum, obtaining
1
√
p

∑
16x6y

e
(ax+ bx̄

p

)
=

1
√
p

∑
−p/2<h6p/2

αy(h; p)
∑

16x6p−1

e
((a+ h)x+ bx̄

p

)
=

∑
−p/2<h6p/2

αy(h; p) Kl(a+ h, b; p).(11)

By a simple interpretation as Riemann sums, we see easily that αy(0; p) = y/p and

lim
p→+∞

αy(h; p) =

∫ y/p

0

e(ht)dt =
e(hy/p)− 1

2iπh

for h 6= 0. This means that the right-hand side of (11) is reminiscent of the right-hand side
of (10), evaluated at t = y/p, with the random variables Sh replaced by the random variables
on F×p × F×p defined by

(a, b) 7→ Kl(a+ h, b; p).

Theorem 4.1 is then quite understandable from a result which is essentially a consequence
of the deep work of Katz [12] on the distribution of Kloosterman sums, and which we
state somewhat imprecisely: the family (Kl(a + h, b; p))h “converges in law” to a family of
independent Sato–Tate distributed random variables. Precisely, the fact that, for fixed h,
the random variables Kl(a + h, b; p) converge in law to the Sato–Tate measure was proved
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by Katz [12], and in another work [13], he developed the basic principles to derive that the
different shifted Kloosterman sums are asymptotically independent.

5. Conclusion

We hope that this survey will have illustrated the beautiful connections that exist between
number theory and probability theory. As we mentioned at the beginning, this is currently
a subject in great expansion, and it is especially remarkable to see how the links between
the two subjects are becoming tighter and the interactions richer. One may expect that a
lot of beautiful mathematics will arise from these links in the coming years!

Appendix A. Probabilistic notions

A.1. Probability spaces, random variables, independence. A probability space is a
triple (Ω,Σ,P) where Ω is a set, Σ is a σ-algebra on Ω and P is a probability measure on Σ
(i.e., a positive measure such that P(Ω) = 1).

Given a topological space T, a random variable X on Ω with values in T is a map X: Ω→ T
which is measurable, when T is equiped with the Borel σ-algebra: for any open set U in T,
the inverse image X−1(U) is in Σ. The law of X is the probability measure µX on T image
of P by X. We typically write P(X ∈ A) for µX(A). If a set A satisfies P(X ∈ A) = 1, then
one says that the event that A represents holds almost surely.

We denote by E(X) the expectation and V(X) the variance for a complex-valued random
variable, when it exists:

E(X) =

∫
Ω

XdP, V(X) = E(|X− E(X)|2).

The precise nature of the “sample space” Ω is frequently left unspecified – what matters is
that one can define suitable families of random variables with various properties, especially
independence, whose meaning we now recall.

Definition A.1. Given an arbitrary, possibly infinite, set I, a family (Xi)i∈I of T-valued
random variables is independent if for any finite subset J ⊂ I, and any open sets Uj ⊂ T
for j ∈ J, we have

P(Xj ∈ Aj for j ∈ J) =
∏
j∈J

P(Xj ∈ Aj).

A basic existence theorem that suffices for many applications of probability theory is then
that given any sequence (µn) of probability measures on R, say, there exists a probability
space (Ω,Σ,P) and a family (Xn) of real-valued random variables on Ω such that the law
of Xn is µn and the (Xn) are independent.

A.2. Special random variables. Let p be a real number such that 0 6 p 6 1. A Bernoulli
random variable with success probability p is a real-valued random variable such that

P(B = 1) = p, P(B = 0) = 1− 1

p

(in other words, the map B: Ω → {0, 1} is the characteristic function of a set which has
measure p).
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A real-valued random variable X is a gaussian random variable with expectation m ∈ R
and variance σ2 > 0 if

P(X ∈ U) =
1√

2πσ2

∫
A

e−(x−m)2/2σ2

dx

for all open sets U. If m = 0, then we say that X is centered.

A.3. Some useful statements. We use the following lemma in Section 2.1.

Lemma A.2. Let M be a finite-dimensional Banach space. Let (Xn)n>1 and (Xn,m)n>m>1

be M-valued random variables. Define En,m = Xn − Xn,m. Assume that
(1) For each m > 1, the random variables (Xn,m)n>m converge in law to a random vari-

able Ym.
(2) There exists a function f(n,m) such that

E(‖En,m‖) 6 f(n,m)

and f(n,m)→ 0 as m tends to +∞ uniformly for n > m.
Then the sequences (Xn) and (Ym) converge in law as n→ +∞, and have the same limit

distribution.

See [1, Th. 3.2] (which assumes that one knows beforehand that (Ym) converges in law)
or [16, Prop. B.4.4] for the proof.

We also referred to Kolmogorov’s Three Series Theorem (see, e.g. [1, Th. 22.8]):

Theorem A.3. Let (Xn)n > 0 be a sequence of independent real-valued random variables
on Ω. Define

X̃n =

{
Xn if |Xn| 6 1

0 otherwise.

The series ∑
n>0

Xn

converges almost surely if and only if the three series∑
n>0

E(X̃n),
∑
n>0

V(X̃2
n),

∑
n>0

P(|Xn| > 1)

are convergent.
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