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CHAPTER 1

Introduction

1. Why is the one-variable theory not sufficient?

In these notes, we give a motivated introduction to the methods first
introduced by Grothendieck and his school for the study of exponential
sums over finite fields. These were developped most crucially by Deligne
(who proved the Riemann Hypothesis over finite fields in an extraordinarily
general setting and established a powerful and flexible formalism to exploit
it), and they were, and are still, applied extremely successfully by N. Katz in
a number of deep works. Besides its own inner motivation and applications
to other fields, this approach based on algebraic geometry and wide-ranging
applications in analytic number theory. It has led to spectacular progress
in extremely concrete arithmetic problems.

These notes are a follow-up to the first part ([21]) and will refer to the
latter when giving references to the “elementary” theory contained there.

As a basic orientation, the first chapters will be concerned with defining
a certain type of exponential sums, which we call “algebraic exponential
sums”, and which generalize quite extensively the one-variable character
sums of the type

S =
∑
x∈Fq

χ(g(x))ψ(f(x))

considered in [21], where χ is a multiplicative character of Fq, ψ is an
additive character and f , g are polynomials in Fq[X]. Algebraic exponential
sums will be of the form ∑

x∈V (Fq)

Λ(x),

where both the possible summation sets and the summands will require a
certain amount of preliminary work and background setup to be defined.

2. Outline of the rest of the book

In the next chapters we will provide background material concerning the
following necessary tools for the development of the theory:

• Algebraic geometry;
• The definition and idea of the construction of the étale fundamental

group;
• The p-adic fields and their basic properties;
• Representation theory (language and elementary results).
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2 1. INTRODUCTION

We do not assume prior expose to any of these; we hope however that
the simple accounts we give will induce readers to read some more mate-
rial. The discussion will also include some basic examples and references to
exponential sums.

Once this is done, we can start the discussion of exponential sums with
basic definitions of “algebraic” exponential sums in many variables, with
summands which may be more general than character values. The heart
of the text is the chapter concerning the statement and the formalism of
the general form of the Riemann Hypothesis over finite fields which was
proved by P. Deligne. The final chapters then explain some basic applica-
tions and illustrate its versatility. In particular, we will emphasize Deligne’s
Equidistribution Theorem.



CHAPTER 2

Background material: algebraic geometry

In this first background section, we present a very concrete introduction
to the language of modern algebraic geometry. The goal is to make it possible
to give full rigorous statements in this book which use the language of the
original literature, without requiring the readers to be familiar with complete
treatments of the foundational material (such as those in [8] or [22]). Of
course, readers who are already knowledgeable about (even quite basic)
scheme theory and arithmetic geometry may skip this chapter (and refer
to its contents later only if needed, say when an example is referred-to
later). The statements that we insert to give hints of the relation of algebraic
geometry to our purpose of exponential sums, will be repeated later in more
precise form.

1. Affine algebraic varieties

Except for isolated examples which will be independent of the main
course of the book, we will restrict our attention, for simplicity, to so-called
affine algebraic varieties. On the other hand, we want a clean and correct
treatment of rationality questions over arbitrary fields and even rings, and
therefore we can not (as is customary) restrict our attention to points with
coordinates in algebraically closed fields.

We start with an informal definition based on “systems of equations”.
Let A be an arbitrary commutative ring, with unit 1 ∈ A. An algebraic
variety X over A is supposed to be related to “solutions of polynomial
equations with coefficients in A”. Consider therefore polynomials

(2.1) f1, f2, . . . ,

in some polynomial ring
A[X1, X2, . . .].

The set of x = (xi) in A with

f1(x) = f2(x) = · · · = 0

is of course well-defined, but is often too ”small” to be thought of as a
real geometric object. In particular, very different equations, that we want
to think as defining different geometric objects, may have the same set
of solutions in A. For instance, think of A = Q, and the two equations
xn + yn = zn and xyzt = 1, in four variables. For all n > 3, there are no
solutions (!), and yet clearly, the geometric objects are not the same, as one
intuitively graphs by graphing the plot of (say) z as a function of real x
and y. This indicates the way out: we can look at the solutions in “bigger”
rings than A, where the equations still make sense, and hope to recover the
geometric object from such sets of points.
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4 2. BACKGROUND MATERIAL: ALGEBRAIC GEOMETRY

Precisely, we can define a set of solutions X(B) of the equations for any
ring B given with a ring-homomorphism f : A → B, or in other words,
for any A-algebra. (Note that the homomorphism f , although it is often
omitted, is part of the structure).

Example 2.1. Let A = Z, let f(X,Y ) = X2 + Y 2 + 1 ∈ Z[X,Y ], and
let X be the corresponding algebraic variety. We have therefore X(Z) = ∅,
and even X(R) = ∅. However, X(Q(i)) is not empty, as it contains (±i, 0).
Here, the rings R and Q(i) are given their (only) Z-algebra structure, the
inclusion Z→ Q(i) or Z→ R. But we can also look at the Z-algebras Z/pZ
for p prime, where Z→ Z/pZ is (of course) the reduction modulo p. Then,
for instance, one checks that

X(Z/5Z) = {(0,±2), (±2, 0)} ⊂ (Z/5Z)2.

As it turns out, the collection of sets (X(B))B, B running over all A-
algebras, enscapsulates all geometric information one might need, provided
one remembers the following obvious piece of extra data: for any A-algebras
B and C given with a map

g : B → C

of A-algebras, there is an associated way, denoted g∗ = g∗,B,C , to map
solutions of the equations with coefficients in B to those with coefficients in
C, i.e., a (set) map

g∗ : X(B)→ X(C).
These maps have some obvious properties:
– If B = C and g is the identity, then g∗ is also the identity on the set

of solutions.
– If B, C, D are A-algebras with maps

B
g−→ C

h−→ D, B
h◦g−→ C,

mapping the solutions “from B to D” can be done by passing through C,
or in other words the map

(h ◦ g)∗ : X(B)→ X(D)

is the composite

(2.2) (h ◦ g)∗ = h∗ ◦ g∗ : X(B)
g∗−→ X(C) h∗−→ X(D).

Then one can say that the geometric object defined by the equations f1,
f2, . . . , is entirely characterized by the all collection of data

(X(B), g∗ : X(B)→ X(C))B,g :B→C .

And, more importantly maybe, if A is a ring of “arithmetic” nature (e.g,
Z or Z/pZ), the whole arithmetic of the object is contained in this data.

This language of solution sets is very convenient. Its major conceptual
difficulty is that it is quite tricky to give conditions which ensure that an
arbitrarily given such collection of data (i.e., sets X(B) for every A-algebra
B, and maps g∗ : X(B) → X(C) for all B → C, satisfying the two condi-
tions above) amounts to giving sets of solutions of some (fixed) equations.
For our purposes this is not very problematic because we will typically have
equations at our disposal for applications. We give an example however to
indicate that the maps g∗ are certainly of importance.
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Example 2.2 (Not an algebraic variety). Consider the base ring A = Z
again. A Z-algebra B is just a ring B, since there is a unique map Z→ B.
Define

N(B) = {b ∈ B | there does not exist c ∈ B with c2 = b},

the set of non-squares in B. This might sound algebraic enough to be an
algebraic variety. However that is not the case: there is no way to define
the associated maps g∗! Indeed, assume those existed; consider then the
composite maps

R
g−→ C h−→ C[T ],

and the hypothetical induced maps: these would be

]−∞, 0[= N(R) −→ ∅ = N(C) −→ N(C[T ]) 6= ∅

(the last because, e.g., T ∈ N(C[T ])). But this is absurd, because there is
no map from a non-empty set to ∅...

The related example

�(B) = {b ∈ B | there does exist c ∈ B with c2 = b},

which is the complement of N(B) in B, is more subtle, because there are
obvious maps g∗ in the case: given g : B → C is a ring-homomorphism, we
can define g∗(b) = g(b), and this is a map

g∗ : �(B)→ �(C).

Moreover, the “functoriality” condition (2.2) is obviously valid! How-
ever, we will explain quickly that the “complement” of an algebraic variety
is also one, and hence if there existed (an arbitrary system of) equations
defining exactly the squares in a ring, there would also exist one defining
the sets N(B), which we have checked is impossible.

We have not yet given a proper definition. We will do so in a third
way, bypassing equations and sets of solutions but easily related to both.
The point is that we want to be able to define functions on our algebraic
varieties (e.g., to provide arguments for exponential sums, or coordinates).
Given equations (2.1), there are obvious functions on the set(s) of solutions,
namely, the restriction to X(B) of all the polynomials in A[X1, X2, . . .],
mapped to B[X1, X2, . . .] using the given morphism A → B. Two polyno-
mial functions differing by any polynomial combination of the equations fi
obviously induce the same maps on all sets X(B). In other words, there is
an obvious ring of functions, given by the quotient ring

O(X) = A[X1, X2, . . .]/(f1, f2, . . .).

Note that this ring is itself an A-algebra. The third definition is then
based on the fact that ring of functions O(X), as an abstract A-algebra,
characterizes completely the geometric (and arithmetic) object X. Hence,
because it is very easy to define and play around with A-algebras, one can
simply say that an affine algebraic variety over A “is” a A-algebra.

To check this claim of characterization, we need only observe the follow-
ing lemma:
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Lemma 2.3. Let O(X) be defined as above for given equations fi. Then,
for any A-algebra B, we have a bijection

X(B) ' HomA(O(X), B)

given by mapping x to the A-algebra homomorphism

ϕx :
{

O(X) −→ B
f 7→ f(x) ,

and for any A-algebra morphism g : B → C, the map

g∗ : X(B)→ X(C)

can be defined by

g∗(ϕ) = g ◦ ϕ : O(X)→ C, for all ϕ ∈ HomA(O(X), B) ' X(B).

Intuitively, the map ϕx : O(X)→ B associated to a point x ∈ X(B) is
the map of evaluation of a function defined on X at the point x. One recovers
the point x from the evaluation map by noting that its coordinates are,
simply, the results of evaluating at x (using ϕx) the “coordinate functions”...
We now formalize this.

Proof. Consider

HomA(O(X), B) = HomA(A[X1, X2, . . .]/(f1, f2, . . .), B).

By the very definition of quotient rings, to give an element ϕ in this set
is the same as giving the elements bi in B to which ϕ maps, and these can
be chosen arbitrarily, provided all the relations that the Xi satisfy are also
satisfied by the bi. But this is the same as saying that fj(b1, b2, . . .) = 0
for all j, i.e., that b = (b1, b2, . . .) is in X(B). This shows that we have our
bijection. The description of g∗ is then also clear: since g∗(b) = (g(b)), the
corresponding mapping ψ ∈ HomA(O(X), C) satisfies

ψ(Xi) = g(bi) = g(ϕ(Xi)),

for all i, and hence ψ = g ◦ ϕ. �

Remark 2.4. Of course, the ring O(X) does not allow us to recover the
exact equations – whatever they where – that were used to define X. But
that is as it should be, since specific equations are insubstantial things, and
any number of changes of variables, substitutions, etc, can change them,
whereas the intrinsic geometric nature of the object is not, and should not
be, altered.

We can summarize as follows:

Definition 2.5 (Affine algebraic variety, regular functions). Let A be a
ring, commutative with unit. An affine algebraic variety X defined over A
(the base ring is often incorporated in the notation by writing X/A) is the
equivalent data of any of the following three descriptions (where only the
third is entirely unambiguous):

– The data of a number of polynomial equations with coefficients in A;
– The data of the sets of points X(B), for B any A-algebra, together with

all induced maps X(B)
g∗−→ X(C) for any A-algebra morphism B

g−→ C.
– The data of the ring O(X), which is an arbitrary A-algebra.
The A-algebra O(X) is called the ring of (regular) functions on X.
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In essence – and in greater generality, rigor, and context – this definition
is due to Grothendieck. The next section will give some indications of how
remarkably flexible it is, compared with more näıve approaches. One may
already note that there is no condition on the base ring, and no condition
on the ring O(X).

Remark 2.6. To adhere with standard notation, although we do not
attempt to motivate the terminology, we will write X = Spec(R) for the
algebraic variety which has O(X) = R, which is called the “spectrum” of R.
By definition, its points “with coordinates in B” are given by

Spec(R)(B) = HomA(R,B).

2. First examples

3. Computing with algebraic varieties



CHAPTER 3

Summands for algebraic exponential sums

The target of this chapter is the definition of a suitably large collec-
tion of summands for algebraic exponential sums. The final definition is in
Section 5. Readers who wish to go straight to the heart of the Riemann Hy-
pothesis in the next chapter (and who are familiar already with the fields of
`-adic numbers) can skip to that section with little loss of continuity, going
back to Section 4 as (and if) needed later on. The goal of the first sections,
however, is to attempt to motivate the definition and to link it with other
basic ideas of number theory.

1. From Dirichlet characters to Galois characters

In the first part of this book, we succeeded in expressing exponential
sums in one variable, either additive or multiplicative, as sums related to
Dirichlet (or generalized) characters of the field Fq(T ) of rational functions
(see Sections 4.1 and 5.3 in [21]).

However, this approach does not readily extend to more than one vari-
able (or to more complicated summands). The cohomological methods are
based, instead, on an alternate representation, which involves Galois char-
acters of some kind, instead of Dirichlet characters. There is nothing out-
landish in this shift; in classical algebraic number theory, it has been a fun-
damental theme, which is intimately related to the topic of reciprocity laws.
Indeed, one version of the classical Kronecker-Weber theorem takes the fol-
lowing form: there is a bijection, preserving L-functions, between primitive
Dirichlet characters (of Z) and Galois characters of Q, i.e., homomorphisms

ρ : Gal(Q̄/Q)→ C×,

with finite image, where the L-function of such a character is defined as the
analytic continuation (to the maximal extent possible) of the Euler product

L(ρ, s) =
∏

p unramified

(1− ρ(Frp)p−s)−1,

which is absolutely convergent for Re(s) > 1 (because ρ has finite image,
hence image contained in the roots of unity of some order). The factors
ρ(Frp), and the set of p being used, are defined as follows: first of all, since
ρ has finite image, its kernel has finite index, and if k is the fixed field of
the latter, ρ can be considered as a homomorphism

Gal(k/Q) −→ C×,

where the left-hand Galois group is abelian. Let Zk be the ring of integers
in k. As usual, for every prime p which is unramified in Zk, after fixing a

8
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prime ideal p dividing pZk, and defining

q = |Zk/p|,

there exists a unique element Frp ∈ Gal(k/Q) such that

σ(x) ≡ xq (mod p)

for all x ∈ ZK . (This is unique as element of the group, and depends only
on p, because the Galois group is abelian here.) Thus ρ(Frp) is well-defined,
and so is the L-function L(ρ, s).

In this case, and much of the time for number fields, the statement that
each such Artin L-function L(ρ, s) is also an L-function of a Dirichlet char-
acter χ(ρ), is considered mostly as information concerning ρ. For instance,
this is the only known way to prove that these L-functions have analytic
continuation – using the corresponding fact for Dirichlet L-functions, which
is fairly elementary (using the Poisson formula).

Over finite fields, the situation is completely changed! It turns out –
this will be taken up in the next chapter – that it is possible to prove the
analytic continuation (in fact, rationality, and many other properties) of
all L-functions of Galois origin,1 over (almost) arbitrary algebraic varieties.
Thus, they become extremely powerful tools. And especially, they become
useful for the study of exponential sums, because those can be – quite easily
and generally – represented as sums related to Galois-like objects.

The “right” notion will be introduced in Section 3.2 Here we will first
check directly, for additive character sums (of arbitrarily many variables),
that there is such a representation in terms of a Galois character.

2. From Galois groups to fundamental groups

As a second preliminary step towards the general case, we will explain
here the definition of the étale algebraic fundamental group of a variety,
which will be used (instead of the Galois group of the function field, which
is usually too big and unwieldy to be of use) in the next section.

3. Lisse `-adic sheaves

Example 3.1 (Tate sheaves). We now give a very basic example for
varieties over a finite field Fq, the Tate sheaves. Although they are extremely
simple, they play a fundamental supporting role in the theory.

4. Formalism of `-adic sheaves

A fundamental feature of `-adic sheaves is that they are objects of linear
algebra, in some sense. Hence, they are subject to all the classical operations
of linear algebra, and this gives a rich formalism that can be used to great
effect. We summarize this quickly.

Example 3.2 (Homomorphisms). We first discuss the analogue of lin-
ear maps between vector spaces. Given two `-adic sheaves ρ1, ρ2 (on the

1 Whereas, over Q, most Artin l-functions remain completely shrouded in mystery.
2 Though for this book we will not in fact treat the most general possible cases.



10 3. SUMMANDS FOR ALGEBRAIC EXPONENTIAL SUMS

same variety V , and with the same `), acting on E1 and E2, respectively, a
homomorphism

Φ : ρ1 −→ ρ2

is a Q`-linear map
Φ : E1 → E2,

such that the commutation rule

Φ ◦ ρ1(σ) = ρ2(σ) ◦ Φ,

holds for all σ ∈ π1(V ). In other words, writing linear actions on E1 and E2

with a simple dot, we have

Φ(σ · v) = σ · Φ(v)

for all v ∈ E1.
Of particular importance are injective and surjective morphisms, and

isomorphisms: those are defined by asking that Φ, as a linear map, has the
corresponding property.

Examples of injective morphisms are of course inclusions of subsheaves
(i.e., subrepresentations of ρ): if E2 ⊂ E1 is a Q`-linear subspace stable
under the action of π1(V ), then the restriction of ρ1(σ) ot E2 defines a lisse
sheaf ρ2 acting on E2, and the inclusion defines an injective morphism ρ2 →
ρ1. Also, there is then an induced action on the quotient space E3 = E1/E2,
and this gives a lisse `-adic sheaf ρ3 with a surjective morphism ρ1 → ρ3.

In particular, if ρ1
Φ−→ ρ2 is given, one checks immediately that Ker Φ ⊂

E1 is stable under π1(V ), and hence gives a subsheaf, and that Im(Φ) ⊂ E2

is also a subsheaf of ρ2. Moreover, the classical isomorphism

Im(Φ) ' E1/Ker(Φ)

is an isomorphism of π1(V )-representations. We see that one can speak of
morphisms, kernels, cokernels, exact sequences, etc, of `-adic sheaves on V
(for a given `). It is in fact an abelian category.

As a further example, given a lisse sheaf ρ acting on E, one can define
the invariant subsheaf ρπ1(V ) by the (trivial) action of π1(V ) on the subspace

Eπ1(V ) = {v ∈ E | ρ(σ)v = v for all σ ∈ π1(V )} ⊂ E.
One can also define the coinvariant space

(3.1) Eπ1(V ) = E/E1

where E1 is the space spanned by vectors of the form

(3.2) ρ(σ)v − v
for σ ∈ π1(V ), v ∈ E (it is easy to check that this is a subsheaf of ρ).
From the definition of the induced action on E/E1, note that Eπ1(V ) carries
also a trivial action of π1(V ). Intuitively, the invariant space is the largest
subspace of ρ on which π1(V ) acts trivially, while the coinvariant space is
the largest quotient on which the group acts trivially.

Example 3.3 (Direct sums). For instance, one can define easily direct
sums of sheaves: given ρ1, . . . , ρk which are all `-adic sheaves on V/A, with
the same ` as usual, one can form

ρ = ρ1 ⊕ · · · ⊕ ρk
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which is defined by the obvious action on the direct sum

E = E1 ⊕ · · · ⊕ Ek
of the spaces Ei on which ρi acts:

ρ(σ)(v1 + · · ·+ vk) =
k∑
i=1

ρi(σ)vi

for all vi ∈ Ei. Note, for each i, the obvious morphisms of `-adic sheaves

ρ→ ρi, ρi → ρ,

where the first is surjective and the second injective.

Example 3.4 (Tensors, dual, hom-spaces). An additional structure, also
usual for vector spaces, is the tensor product. Given two `-adic sheaves ρ1

and ρ2, acting on E1 and E2 respectively, one can form

ρ3 = ρ1 ⊗ ρ2,

acting on the tensor product E1 ⊗ E2 by

ρ3(σ) = ρ1(σ)⊗ ρ2(σ) : E1 ⊗ E2 → E1 ⊗ E2.

This can be repeated with multiple factors, and the subspaces of tensor
powers giving the symmetric powers and alternating powers also exist and
are (sub)sheaves on V . The usual decompositions, such as

ρ⊗ ρ ' Sym2(ρ)⊕ ∧2(ρ),

where Sym2 is the symmetric square and ∧2 is the alternating square, hold.
There is also a notion of dual, or contragredient, sheaf:

Definition 3.5. Let V/A be an algebraic variety, let ` be a prime num-
ber invertible in O(V ) and let ρ be a lisse `-adic sheaf on V acting on E.
The dual of ρ, denoted ρ̌, is the π1(V )-action on the space Ě = Hom(E,Q`)
of linear forms on E defined by

〈ρ̌)(σ)λ, v〉 = 〈λ, ρ(σ)v〉

for σ ∈ π1(V ), λ ∈ Ě, v ∈ E, in terms of the duality bracket.

The classical isomorphism of vector spaces

Hom(E1, E2) ' E2 ⊗ Ě1

(where the pure tensors w⊗λ correspond to the rank-1 linear maps Ψ(v) =
λ(v)w) shows that one can also give the space of linear maps the structure of
an `-adic sheaf. It is easy to check that the corresponding action is described
by

(σ ·Ψ)(v) = σ ·Ψ(σ−1 · v)
for Ψ ∈ Hom(E1, E2) a linear map and v ∈ E1. In particular, note that the
invariant sheaf of Hom(E1, E2) is given by

{Ψ : E1 → E2 | σ ·Ψ(σ−1 · v) = v for all σ ∈ π1(V )},

which is the group of sheaf-homomorphisms (not only Q`-linear) between
E1 and E2.



12 3. SUMMANDS FOR ALGEBRAIC EXPONENTIAL SUMS

Another useful fact is the isomorphism

(3.3) (ρ̌)π1(V ) ' (ρπ1(V ))
∨,

(or in other words, the dual of the invariant space is the coinvariant of
the dual.) Indeed, by definition of the coinvariant quotient space (3.1) as
quotient of E, its dual is the subspace of Ě of linear forms λ such that all
vectors (3.2) are in the kernel of λ. But since

〈λ, σ · v − v〉 = 〈λ, σ · v〉 − 〈λ, v〉 = 〈σ−1 · λ, v〉 − 〈λ, v〉,
we see that this is equivalent with λ being invariant in the dual sheaf.

Example 3.6 (Irreducibility, semisimplicity). Proceeding as in the rep-
resentation theory of finite groups, one defines irreducible and semisimple
sheaves:

Definition 3.7. Let V/A be an algebraic variety, let ` be a prime num-
ber invertible in O(V ).

(1) A lisse `-adic sheaf ρ on V is irreducible if the only subsheaves of ρ
are the zero space 0 ⊂ ρ and ρ itself.

(2) A lisse `-adic sheaf ρ on V is semisimple if there exist irreducible
sheaves ρ1, . . . , ρk on V such that

ρ ' ρ1 ⊕ · · · ⊕ ρk,
i.e., ρ is a direct sum of irreducible sheaves.

For instance, any sheaf of rank 1 is necessarily irreducible. The most
important property of irreducible sheaves, in general, is the famous Schur
lemma:

Lemma 3.8 (Schur’s lemma). Let ρ be an irreducible lisse `-adic sheaf
on V/A, and τ another lisse `-adic sheaf. A homomorphism Φ : ρ → τ is
either zero or injective. In the second case, one says that ρ occurs in τ .

Proof. This is the same proof as the standard case: the kernel Ker Φ
is a subsheaf of ρ, hence – by definition of irreducibility – either it is 0, in
which case Φ is injective, or it is ρ itself, in which case Φ = 0. �

However, one feature one is used to from the case of representations of
finite groups does not extend to general `-adic sheaves: not all of them are
semisimple. Concretely, this means there exist examples of sheaves ρ with
a subsheaf ρ1 which is neither 0 nor ρ itself, for which there does not exist
ρ2 such that

ρ ' ρ1 ⊕ ρ2.

We will give an example in the next section.

We have now given examples essentially similar to linear algebra. In
these, the base variety, and the prime `, were fixed (indeed, only π1(V )
played a role, and any other group would have done as well!). We now
discuss what can be said about changing V , or changing `.

Example 3.9 (Varying the base variety). We consider here only the
simplest cases of relations between `-adic sheaves on two varieties, when we
are given W and V over the base ring A, ` invertible in A (hence both in
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O(W ) and O(V )), and a morphism W → V of algebraic varieties, namely we
assume that W → V is a finite étale covering. In that case, we know that
π1(W ) can be identified with a finite-index subgroup of π1(V ), the index
being the degree [W : V ] of the covering.

It follows immediately that we have a restriction operation ResWV that
associates, to any `-adic sheaf ρ on V , a sheaf ResWV (ρ) on W , which is
simply the restriction to this finite index subgroup. Note that the rank of
the restriction is the same as that of the original sheaf.

In the opposite direction, there is a well-known construction in repre-
sentation theory, namely the induction IndVW : starting from a lisse `-adic
sheaf ρ on W , say

ρ : π1(W )→ GL(E),

with dim(E) = r, we construct as follows a sheaf ρ̃ of rank r[W : V ] on V :
let

(3.4) F = {ϕ : π1(V )→ E | ϕ is continuous and

ϕ(σ1σ2) = ρ(σ1)(ϕ(σ2)) for σ1 ∈ π1(W ), σ2 ∈ π1(V )}

(where the elements ϕ are just arbitrary continuous functions) and define

ρ̃(σ)ϕ(x) = ϕ(xσ)

for all ϕ ∈ F (the so-called regular representation of π1(V )).
It is essentially immediate that ρ̃ does indeed defined a representation

on F . We need to check that dimF = r[W : V ] and that ρ̃ is continuous.
Both are quite easy, the point being that the transformation property of
functions in F implies that if C is any fixed set of coset representatives of
π1(V )/π1(V ), the restriction map{

F −→ E[W :V ]

ϕ 7→ (ϕ(x))x∈C

is first obviously a Q`-linear injection (because ϕ(σ) is determined, for every
σ, by the element x ∈ C to which it is equivalent under π1(W )), and in
fact bijective because one can fix any (αx)x∈C in EC and define a function
unambiguously by

ϕ(σx) = ρ(σ)(αx)

for σ ∈ π1(W ), x ∈ C. This function is easily checked to be in F : we have

ϕ(σ1σ2) = ϕ(σ1σ
′x) = ρ(σ1σ

′)(αx) = ρ(σ1)ϕ(σ2)

for σ1 ∈ π1(W ), σ2 = σ′x ∈ π1(V ).

Example 3.10 (Variation of `). This is the least understood phenom-
enon. Although, a priori, the definition of a lisse `-adic sheaf certainly
depends on `, it turns out that to a large extent, in applications, one ends
up with results which are independent of `, in some sense.

Finally, in the case of most interest for us, when the base ring A is a finite
field Fq of characteristic p, a final piece of formalism relates the “arithmetic”
theory with its “geometric” counterpart, when V is replaced by V̄ over an
algebraic closure of Fq.
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Example 3.11 (Arithmetic versus geometric). Recall that when V/Fq

is an algebraic variety, we have a base change

V̄ = V × Fq −→ V

and an associated short exact sequence of fundamental groups

1→ π1(V̄ )→ π1(V )→ Gal(Fq/Fq)→ 1.

In particular (this could be considered as an instance of Example 3.9),
for any lisse `-adic sheaf ρ on V/Fq, we obtain one by restriction on V̄ :

ρ̄ = ρ |π1(V̄ ) .

For any property P of sheaves, it is customary to say that ρ has P geo-
metrically if ρ̄ satisfies the property. To emphasize this, one also sometimes
says that ρ has P arithmetically when it holds for ρ itself.

For instance, one may speak of a geometrically irreducible sheaf, or of
a geometrically semisimple sheaf, or one might say that ρ1 and ρ2 are geo-
metrically isomorphic. The Tate sheaves Q`(n) on V/Fq (Example 3.1), to
give a concrete example, are all geometrically isomorphic, and geometrically
trivial.

5. Algebraic exponential sums and examples

To summarize the discussion in this chapter and the previous one, we
have defined a certain type of summation sets (rational points of algebraic
varieties) and a certain type of summands (trace functions of lisse `-adic
sheaves, ` prime to the characteristic) over such sets. This allows us to give
a complete definition of what is meant by an algebraic exponential sum in
this book.

Definition 3.12 (Algebraic exponential sum). Let V/Fq be an alge-
braic variety over a finite field Fq of characteristic p, with O(V ) an integral
domain. Let ` 6= p be a prime number and

ρ : π1(V, η) −→ GL(E)

be a lisse `-adic sheaf of rank r > 0 on V , where E is a Q`-vector space.
(1) The algebraic exponential sum associated to (V, ρ) is the sequence of

sums (Sν(V ; ρ))ν>1 given by

Sν(V ; ρ) =
∑

x∈V (Fqν )

Tr(ρ(Frx,qν )),

which are elements of Q`. We will often denote

Λρ(x) = Tr(ρ(Frx,qν ))

for x ∈ V (Fqν ).
(2) The L-function of the algebraic exponential sum associated to (V, ρ)

is the formal power series with coefficients in Q` defined by

L(V ; ρ) = exp
(∑
ν>1

Sν(V ; ρ)
ν

T ν
)
∈ Q`[[T ]].
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Note that, a priori, these sums are here defined to take values in the
`-adic field Q`, and not in the field of complex numbers. However, in all
applications of these sums to analytic number theory (to the author’s knowl-
edge), this apparent behavior is to a large extent illusory. To be precise, in
these applications, the starting point is some finite sum

S =
∑

x∈V (Fp)

Λ(x)

of complex numbers Λ(x) over points of an algebraic variety over a finite
field, typically Z/pZ (these numbers are algebraic, but not necessarily roots
of unity, as the example of average behavior of Kloosterman sums shows),
which one wants to understand. Then, by some means or other (often by
quoting a general theorem to that effect), it is known that for any ` 6= p (or
possibly just for some of them), there exists a lisse `-adic sheaf ρ over the
underlying variety V such that

S1(V ; ρ)=S,

where the3 “fat equal” sign means that for some field map Q`
ι−→ C, we

have
S = ι(S1(V ; ρ)).

Example 3.13 (Point counting). The most elementary example (and
the only one to which the original conjectures of Weil explicitly referred!) is
to take ρ = Q`; we then have, obviously, the formula

Sν(V ; Q`) = |V (Fqν )|,
where the right-hand side, as an integer, is well and unambiguously defined
independently of it being in Q` or any other ring containing Z.

The next examples explain how this works for the basic examples of
additive and multiplicative character sums.

Example 3.14 (Additive character sums). Let V/Fq be as in the defi-
nition, and let f ∈ O(V ) be a non-constant function on V . In Section 2, we
saw how to express the character sums∑

x∈V (Fqν )

ψ(Tr(f(x)))

as sums of local traces ∑
x∈V (Fqν )

Tr(Lψ(f)(Frx,qν ))

for the corresponding complex-valued character

Lψ(f) : π1(V ) −→ C×

(we insert the trace here, although it is superfluous, in order to facilitate
comparison).

We can bring this to the form in Definition 3.12 quite easily, because
we now that this character has finite image, in fact it takes values in the
subgroup µp of p-th roots of unity in C×. This group “exists” in Q` for any

3 Non-standard.
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prime ` 6= p (indeed, in a finite extension of Q`, and even in Q` itself if ` is
chosen so that ` ≡ 1 (mod p)), and is isomorphic to µp (since they are both
cyclic of order p), although this isomorphism is not canonical if p 6= 2.

Thus let µp(Q`) be the group of p-th roots of unity in Q`. There exists
an isomorphism

µp(Q`)
ι−→ µp

and an additive character

ψ` : Fq → µp(Q`) ⊂ Q×`

of Fq with values in µp(Q`) such that

ψ(Tr f(x)) = ι
(
ψ`(Tr f(x))

)
for all x ∈ V (Fqν ). Composing with the map

π1(V )→ Gal(Vf/V )→ Fq

already considered in Section 2, we obtain a lisse `-adic sheaf Lψ`(f) of rank
1 on V (it is continuous, as before, because the image is finite). The group
isomorphism ι extends uniquely to an isomorphism of the corresponding
cyclotomic fields

Q`(µp(Q`)) ' Q(µp) ⊂ C,

and we find that ∑
x∈V (Fqν )

ψ(Tr(f(x))) = ι
(
Sν(V ; Lψ`(f))

)
for every ν > 1.

We will now use the formalism of `-adic sheaves to “reconstruct” these
Lψ`(f) from scratch; this will provide an example of the induction operation
from Example 3.9. Fix a prime ` 6= p and a character

ψ : Fq → Q×` ,

which of course takes values in µp(Q`) (we have changed notation a bit).
Now consider, as in Section 2, the Artin-Schreier covering

W → V

where W is given by the equation

yq − y = f(x)

over V . We have the homomorphism

Lf : π1(W )→ Gal(W/V )→ Fq

given by sending σ to σ(y0) − y0 for any fixed solution y0 of the equation.
Consider then the trivial `-adic sheaf Q` on W , and form the induced sheaf

ρ = IndVW (Q`)

on V , which is of rank q = [W : V ] according to Example 3.9. We can then
look, in the description (3.4), at the (ψ ◦ Lf )-isotypic component:

ρψ = {ϕ : π1(V )→ Q` | ϕ(σ1σ2) = ψ(Lf (σ1))ϕ(σ2) for all σ1 ∈ π1(W )}.
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It is again easy to see that ρψ is a subsheaf of ρ, and indeed that

(3.5) IndVW (Q`) = ρ =
⊕
ψ

ρψ

where each ρψ is of rank 1 (and hence irreducible). Given a field isomorphism
Q`(µp(Q`))

ι−→ Q(µp), we have

ι(Sν(V ; ρψ)) =
∑

x∈V (Fνq )

ι ◦ Tr(ψ(f(x)))

(where again the trace could be dispensed with), and the ι ◦ ψ are all the
complex-valued additive characters of Fq. In other words, the complex-
valued characters Lψ(f) are the same as the ι ◦ ρψ.

Example 3.15 (Multiplicative character sums). The same argument ap-
plies of course to multiplicative character sums. Thus for V/Fq as in the
definition, f ∈ O(V )× an invertible function on V , χ a multiplicative char-
acter of order d of F×q , we find that there exists, for each prime ` 6= p, a lisse
`-adic sheaf of rank 1 on V , denoted Lχ`(g), and a field isomorphism

ι : Q`(µd(Q`)) ' Q(µd) ⊂ C

such that ∑
x∈V (Fqν )

χ(Ng(x)) = ι
(
Sν(V ; Lχ`(g))

)
for every ν > 1. We also leave as an exercise for the reader to find a
description of the corresponding sheaves as subsheaves of one constructed
by induction from the trivial sheaf on the covering with equation yd = g(x).

Example 3.16 (Operations on algebraic exponential sums). Because of
the extended formalism of `-adic sheaves, and the elementary properties of
the trace operation, there are many operations on exponential sums which
reflect corresponding operations at the level of the associated sheaves. For
instance:

– If ρ = ρ1 ⊕ ρ2, we have

Sν(V ; ρ1 ⊕ ρ2) = Sν(V ; ρ1) + Sν(V ; ρ2)

for all ν > 1. In terms of L-functions, this amounts to

L(V ; ρ1 ⊕ ρ2) = L(V ; ρ1)L(V ; ρ2)

(product of formal power series).
Note that a moment’s thought shows that one does not need a direct

sum decomposition: if instead we have a subsheaf ρ1 of ρ, and denote by ρ2

the quotient sheaf, so that there is a short exact sequence

0→ ρ1 → ρ→ ρ2 → 0,

the trace under ρ of any σ ∈ π1(V ) remains the sum

Tr(ρ1(σ)) + Tr(ρ2(σ)),

and therefore we still have

Sν(V ; ρ) = Sν(V ; ρ1) + Sν(V ; ρ2), L(V ; ρ) = L(V ; ρ1)L(V ; ρ2).
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In other words, the algebraic exponential sums, as invariants of the `-
adic sheaves, do not “see” the difference between a semisimple sheaf and
one built by non-trivial “extensions”.

– If ρ = ρ1 ⊗ ρ2, we have

Sν(V ; ρ1 ⊗ ρ2) =
∑

x∈V (Fqν )

Tr(ρ1(Frx,qν )) Tr(ρ2(Frx,qν )),

for all ν > 1. Thus the summands are multiplied. There is no simple relation
between the L-functions in that case.

– Some other relations are somewhat deeper; for instance, (3.5) corre-
sponds to the formula that expresses the point counting on an Artin-Schreier
covering as function of the additive characters of Fq: given V/Fq, f ∈ O(V )
and W the covering

yq − y = f(x),

we have
|W (Fqν )| = Sν(W,Q`) =

∑
ψ

Sν(V ; ρψ),

where the sum extends over all characters ψ : Fq → µp(Q`). This is exactly
the same as the formula in Lemma 5.1 in [21]! And note that although we
can obtain it from the description (3.5) of the induced representation, its
elementary direct proof can be taken as motivation for guessing that the
latter is correct.

– To give another example, one may wonder about creating an algebraic
exponential sum corresponding to the product of sums

Sν(V ; ρ1)Sν(V ; ρ2)

(instead of multiplying the summands, as was done using ρ1 ⊗ ρ2).
If we expand the product, we find

Sν(V ; ρ1)Sν(V ; ρ2) =
∑∑

x,y∈V (Fqν )

Λρ1(x)Λρ2(y),

which looks reasonably like a sum over the Fqν -rational points of the product
V × V .

Thus the natural question is: does there exist, on the variety W = V ×V ,
a lisse `-adic sheaf ρ1 � ρ2, such that

Λρ1�ρ2(x, y) = Λρ1(x)Λρ2(y)

for all (x, y) ∈ W (Fqν ), ν > 1? The answer is, unsurprisingly, yes. Indeed,
more generally, let ρ1 and ρ2 be lisse `-adic sheaves on V1/Fq and V2/Fq,
respectively. There is then a natural homomorphism

(3.6) π : π1(V1 × V2)→ π1(V1)× π1(V2),

and it is elementary to check that the composite

ρ1 � ρ2 : π1(V1 × V2)→ π1(V1)× π1(V2)
ρ1⊗ρ2−→ GL(E1 ⊗ E2)

has the desired property

Λρ1�ρ2(x, y) = Λρ1(x)Λρ2(y),
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using the fact that the Frobenius conjugacy class Fr(x,y),qν maps under π to
the pair

(Frx,qν ,Fry,qν ).
This operation � is called the external tensor product ; note that the

rank of ρ1 � ρ2 is the product of the ranks of the factors. We emphasize
that it is not the same as the tensor product itself!

(As a final remark, the projection (3.6) can be shown to be surjective;
however – and this is in contrast with the usual topological fundamental
group – it is not always an isomorphism for V1, V2/Fq: there are typically
many more finite étale coverings of V1 × V2 than those which can be con-
structed by the analogue of the external tensor product on the factors, the
basic examples being given by the – many – Artin-Schreier coverings of
V1 × V2 which are not reducible to this type.)

Example 3.17 (Non-semisimple sheaf). We give here a very simple ex-
ample of a non-semisimple lisse sheaf over a finite field. Indeed, our base
variety will be V = Spec(Fp), a single point with coefficients in a prime field
with p > 3. We know then that π1(V ) ' Gal(Fq/Fq). Now fix a prime
` 6= p and consider the splitting field k` in Fp of the polynomial

X` − 2 ∈ Fp[X].

This is a Kummer equation, and hence there exists a homomorphism

Gal(k`/Fp) −→ F×` o F`

where the semi-direct product on the right can be injected in GL2(F`) by
the homomorphism

(ξ,m) 7→
(
ξ m
0 1

)
.

Hence we obtain a homomorphism

ρ : Gal(Fp/Fp) −→ GL2(F`).

As an F`-adic lisse sheaf acting on an F`-vector space E of rank 2 on
Spec(Fp), we claim that ρ is not semisimple whenever

` - p− 1 and X` − 2 has no root in Fp.

Indeed, from the form of the matrices above, we have an exact sequence

0→ F`(1)→ E → F` → 0

where the first map is the injection of the span of the first basis vector,
the Tate twist corresponding to the fact that the arithmetic Frobenius
Gal(Fp/Fp) acts on it (as on `-th roots of unity) by multiplication by q,
while it acts trivially on the quotient. Indeed, if E were semisimple, there
would be a fixed vector (corresponding to the trivial quotient F`). However,
this is not possible under the conditions above (e.g., if (a, b) is the fixed
vector, we would need

ξa+mb = a

for all matrices in the image of ρ; since the `-th roots of unity are not in
Fp, this is not possible with b = 0, and since X` − 2 has not root in Fp, the
matrices with ξ = 1 and m ∈ F` arbitrary are in the image, and exclude the
possibility b 6= 0).
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Although this is not an example at the level of Q`-sheaves, it is possible
to “boost” it to such a situation by considering the equations

X`m − 2 = 0

for m > 1 and putting them all together (in the spirit of the Tate modules
of elliptic curves).



CHAPTER 4

The Riemann Hypothesis over finite fields

1. The trace formula and L-functions

2. The Riemann Hypothesis
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