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Introduction and motivation

Introduction

Although we will introduce more general examples later, we first define exponential
sums over finite fields in this section as any sum of the type

S =
∑
x∈Fp
g(x) 6=0

exp
(2iπ

p
f(x)/g(x)

)

where p is a prime number, Fp = Z/pZ, and f , g ∈ Fp[X] are polynomials, such that
g 6= 0. Here, f(x)/g(x) is computed in the finite field Fp (and makes sense as such because
x is restricted to be such that g(x) 6= 0). So, for instance, if p = 7 and g(x) = 3 (mod 7),
we have 1/g(x) = 5 (mod 7) since 3 · 5 = 15 ≡ 1 (mod 7).

Moreover, because

exp
(2iπỹ

p

)
is independent of the choice of an integer ỹ representative of y ∈ Fp, these are well-defined
finite sums of complex numbers, and hence S ∈ C is a complex number.

The goals of the theory are, roughly, to understand these sums. This might mean
different things:

(1) Find an “explicit” (“closed-form”) expression for S;
(2) Find an upper bound for |S|, which is “non-trivial”; the meaning of the last

condition is of course that this bound must be better than the obvious estimate
|S| 6 p, when this is possible (which means that the values f(x)/g(x), x ∈ Fp,
are not all constant in Fp), and the improvement is usually required (for the
purpose of applications of the theory) to be of the form

(1) |S| 6 pθ−1
S

where the saving factor satisfies θS > 1; indeed, one often requires that θS be of
a maximal size, as we will see later;

(3) Find a lower bound for |S|, if S 6= 0; this question is not as important in
applications than the previous one, and this is fortunate, since it is in fact much
harder;

(4) When S depends on further parameters t (in an arbitrary set T ), try to under-
stand the variation of S as a function of t ∈ T .

We will see examples of all these soon, but a first remark is that it is because (1) is
most often an impossible target (one should compare this with the well-known fact that
the indefinite integral of certain simple elementary functions – e.g., exp(−x2) – are not
themselves expressible in terms of simple operations and elementary functions) that (2),
(3) and (4) naturally arise. In applications to analytic number theory (which are those
we will mostly consider), Problem (2) is usually the most pressing: proving (1) for certain
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exponential sums, with fairly specific saving factors, is often enough to prove a highly
desirable theorem.

Before going to describe “real” examples, here is the simplest exponential sum; al-
though it is essentially trivial, its importance should not be underestimated, as the com-
putation involved is often implicitly present in other arguments.

Example 1 (Free summation). Consider the sums

Sa =
∑
x∈Fp

e
(ax
p

)
where a ∈ Z, p is prime, and from now on we write

e(z) = exp(2iπz), for z ∈ C.

We can compute these sums explicitly: we have

(2) Sa =

{
p if a ≡ 0 (mod p)

0 otherwise.

Indeed, picking specific representatives of Fp in Z, we have

Sa = 1 + w + w2 + · · ·+ wp−1, where w = e(a/p)

and then we can apply the formula for a finite geometric sum, together with the fact that
w = 1 if and only if a/p ∈ Z, which means a ≡ 0 (mod p).

Motivation

We present, briefly and without complete details, two examples of applications of
exponential sums over finite fields. The sums which occur are very important and will
be considered (after being generalized) many times in this book.

Example 2 (Quadratic Gauss sums). This example is both one of the oldest to have
been considered, and one of the few interesting ones where Problem (1) is solved: there
is an explicit formula.

Consider the quadratic Gauss sum

Gn =
∑

x∈Z/nZ

e
(x2

n

)
,

where we allow any integer n > 1. We then have

Theorem 3 (Gauss). For all odd integers n > 3, we have

(3) Gn =

{√
n if n ≡ 1 (mod 4)

i
√
n if n ≡ 3 (mod 4).

This result may look innocuous, but it is by no means trivial. Before giving references
for its proof (we will also give the proof that |Gn| =

√
n below, but not compute the actual

argument), here is one of the original applications: one of the proofs of the Quadratic
Reciprocity Law (this illustrates the subtlety that must be involved).

Recall first:
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Definition 4. Let p be a prime number. The Legendre symbol modulo p is defined
to be the map Fp → {−1, 0, 1} denoted x 7→

(
x
p

)
which is defined by

(x
p

)
=


0 if x = 0

1 if there exists y ∈ Fp such that y2 = x

−1 if there does not exist y ∈ Fp such that y2 = x.

If n ∈ Z, of course, we write
(
n
p

)
for the Legendre symbol of the reduction of n modulo

p.

We then have the following result:

Theorem 5 (Gauss; the Law of Quadratic Reciprocity). For p 6= q be two odd prime
numbers. We then have (p

q

)(q
p

)
= (−1)

p−1
2
· q−1

2 .

Why is this so remarkable, or surprising? Note that if we think of
(
p
q

)
, as a function

of p, it is periodic of period q, and depends only on the class of p modulo q; in particular,
it seems to completely ignore the fact that p comes or not from a prime (all the more so
that, as is well-known,1 any non-zero class x ∈ Fq can be represented as the reduction of
a prime representative p ≡ x (mod q)). On the other hand, the map p 7→

(
q
p

)
seems to

be of a completely different nature: its value depends on the question whether the fixed
integer q is, or not, a square modulo p, with p varying. At first sight (and even at second,
or third), there is no reason for this map to be periodic. And yet, as a consequence of
Quadratic Reciprocity, it is indeed periodic (with period dividing 4q).

Proof of Theorem 5 from Theorem 3. We need simply observe the following
formula:

(4) Gpq = GpGq

(p
q

)(q
p

)
,

for p, q distinct odd primes, since it follows that(p
q

)(q
p

)
=

Gpq

GpGq

=

{
1 if p ≡ 1 (mod 4) or q ≡ 1 (mod 4)

−1 if p ≡ q ≡ 3 (mod 4),

by applying Theorem 3, which is equivalent with the desired conclusion. And the proof
of (4) is quite easy: by the Chinese Remainder Theorem, and the fact that p 6= q, so that
p is invertible modulo q and conversely, we can write any x ∈ Z/pqZ in a unique way as
x = px1 + qx2, where x1 is well-defined modulo q and x2 modulo p. Thus we get

Gpq =
∑

x∈Z/pqZ

e
(x2

pq

)
=
∑
x1∈Fq

∑
x2∈Fp

e
((px1 + qx2)2

pq

)
=
( ∑
x1∈Fq

e
(px2

1

q

))
×
( ∑
x2∈Fp

e
(qx2

2

p

))
.(5)

1 This is the famous theorem of Dirichlet on primes in arithmetic progressions.

3



But now we observe first that, if p is a square modulo q, say p = y2, necessarily with
y 6= 0 since p 6= q, we have∑

x1∈Fq

e
(px2

1

q

)
=
∑
x1∈Fq

e
((yx1)2

q

)
= Gq =

(p
q

)
Gq

(by the change of variable yx1 7→ x). On the other hand, if p is not a square modulo q, the
elements px2

1 run over all non-squares in Fq, each of them being represented twice (since
(−x)2 = x2), except for x1 = 0 which represents (once) the element 0. So, using (2), we
have ∑

x1∈Fq

e
(px2

1

q

)
= 1 + 2

∑
y∈F×q

y not a square

e
(y
q

)

= 1 + 2
(∑
y∈F×q

e
(y
q

)
−

∑
y∈F×q

y a square

e
(y
q

))

= 1 + 2
(
−1− 1

2

∑
x∈F×q

e
(x2

q

))
= −Gq =

(p
q

)
Gq.

Hence we see that, in all cases, we have∑
x1∈Fq

e
(px2

1

q

)
=
(p
q

)
Gq

and applying this, and the analogue with p and q reversed, to (5), we obtain (4). �

We do not prove Theorem 3 here, since the ideas involved are largely unrelated to our
purposes in this book; see, for instance, [10, ] or [12, ].

A last remark about this example: sums over finite rings Z/nZ, where n is not
necessarily prime, are of course important in many applications; however, because the
use of the Chinese Remainder Theorem mostly reduces their study to the case of n being
a prime power, we will not consider them in this text, except incidentally.

Example 6 (Kloosterman sums). Kloosterman sums were first written down by
Poincaré around 1912, but their first application arose when Kloosterman introduced
them independently in the 1920’s (see [15] for a survey of the story of Kloosterman sums
in analytic number theory). Their definition – we allow arbitrary modulus here – is as
follows:

Definition 7 (Kloosterman sum). Let c > 1 be an integer, m, n ∈ Z. The associated
Kloosterman sum S(m,n; c) is defined by

S(m,n; c) =
∑

x∈Z/cZ
(x,c)=1

e
(mx+ n/x

c

)

were 1/x is the inverse in Z/cZ of the invertible element x ∈ (Z/cZ)×.

The definition is probably un-enlightening when first encountered. But here is the
first application that Kloosterman derived from studying these sums, a beautiful result
which is hopefully of clear arithmetic significance.
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Theorem 8 (Kloosterman). Let a1, . . . , a4 > 1 be positive integers, and let n > 1
be a positive integer. Then, for all n large enough, depending on the ai’s, there exists at
least one integral solution (x1, . . . , x4) ∈ Z4 to the diophantine equation

(6) a1x
2
1 + · · ·+ a4x

2
4 = n,

provided there is no congruence obstruction.

In fact, Kloosterman’s statement is much more precise (it gives for instance an asym-
ptotic formula for the number of integral solutions of (6); see, e.g., [12, ] for a modern
treatment).

Although seemingly unrelated, the most crucial ingredient (not the only one) in the
proof of this theorem was a non-trivial estimate for Kloosterman sums. Precisely, Kloost-
erman proved

Theorem 9. Let p be a prime number and n, m integers coprime with p. We then
have the upper bound

|S(n,m; p)| 6 2p3/4.

This is a first instance of Problem (2) (bounding exponential sums), and it is quite
successful: the saving factor here is of size θS ≈ p1/4 for S = S(m,n; p).

The proof of this theorem will be given in the next chapter (see Section 2.2). The
argument is quite nice and contains ideas that are still of use. However, the result itself
can be improved, and one of the main results of this book, the Riemann Hypothesis for
one-variable sums over finite fields (due to A. Weil), will imply the following improvement:

Theorem 10 (Weil). Let p be a prime number and n, m integers coprime with p. We
then have the upper bound

|S(n,m; p)| 6 2
√
p.

We will also see (as a consequence of the work required for the proof of Theorem 9)
that this is in some sense best possible: for any prime p, Kloosterman showed that there
exists m, n ∈ F×p such that

(7) |S(m,n; p)| >
√

2p− 2

(see again Section 2.2 for a proof).
However, one should not imagine that Kloosterman sums are so well understood.

There are easy-looking questions which remain quite out of reach, e.g.:

Question. Are there infinitely many prime numbers p such that S(1, 1; p) > 0?

Notation

Most notation is very standard, and we only summarize here the most common. We
write |X| for the cardinality of a set, and in particular |X| = +∞ means that X is
infinite, with no indication on the infinite cardinal involved.

As already indicated, we write e(z) = exp(2iπz) for z ∈ C; we then have e(z + w) =
e(z)e(w) for all z, w ∈ C, e(z +m) = e(z) if m ∈ Z, and e(z) = 1 if and only if z ∈ Z.

By f � g for x ∈ X, or f = O(g) for x ∈ X, where X is an arbitrary set on
which f is defined, we mean synonymously that there exists a constant C > 0 such that
|f(x)| 6 Cg(x) for all x ∈ X. The “implied constant” is any admissible value of C. It
may depend on the set X which is always specified or clear in context. The notation
f � g means f � g and g � f . On the other hand f(x) = o(g(x)) as x → x0 is a
topological statement meaning that f(x)/g(x)→ 0 as x→ x0.
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We conclude this introduction with a graphical illustration of the complexity of ex-
ponential sums: Figure 1 shows the path in the complex plane formed by starting from
the origin and connecting with line segments the successive partial sums∑

16x6n

e
(x+ 1/x

p

)
for 1 6 n 6 p− 1, for the specific value p = 10007.

The path of the partial sums of S(1, 1; 10007) = −151.358543 . . .

Acknowledgments. Thanks to T. Browning, K. Gong, M. Einsiedler, M. Balazard,
O. Marfaing, B. Tackmann and others for various corrections to the text.
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CHAPTER 1

Finite fields and characters

This chapter is mostly concerned with introducing material about finite fields and
characters of finite abelian groups, which many readers have probably already encountered
– they may skip to the next chapter without loss in that case.

1.1. Reminders on finite fields

Here are, quite quickly sketched, the fundamental facts about finite fields; it is ex-
pected that there will not be much new here for most readers, but we refer to [10, ] for
a complete account.

(1) For q > 1, there exists a field with order q if and only if q = pν is a power of
a prime p with ν > 1 (note that rumors about the existence of a field with 1
element are much exaggerated). This finite field is unique up to isomorphism,
but not up to unique isomorphism (see Remark 1.1 below). Taking due care to
not claim that there is a field with q elements, we will usually denote by Fq a
chosen field with q elements. Unless specified otherwise, the associated prime
number is denoted p; it can be recovered as the characteristic of Fq, i.e., we have

pZ = {n ∈ Z | nx = 0 for all x ∈ Fq}.

For ν = 1, we have a canonical isomorphism Fp ' Z/pZ (by sending the unit
element 1 to 1); in general, such a field Fq is an Fp-vector space of dimension
ν = [Fq : Fp].

(2) Given a prime number p, all finite fields of characteristic p (i.e., of p-power order)
can be recovered up to isomorphism by fixing an algebraic closure F̄p of the prime
field Fp; then, for each ν > 1, F̄p contains a unique subfield of order q = pν ,
given by

Fq = {x ∈ F̄p | xq = x} ⊂ F̄p ;

this is also the splitting field in F̄p of the polynomial Xq −X ∈ Fp[X].
For each such subfield Fq and any ν > 1, there is a unique extension of Fq of

degree ν contained in F̄p, namely the field Fqν . Moreover, F̄p is also an algebraic
closure of Fq.

We have then inclusions between these fields determined by Fqν ⊂ Fqµ if and
only if ν | µ.

(3) For any finite field Fq with q elements and extension field (finite or infinite) k/Fq,
the map

Frq :

{
k −→ k
x 7→ xq

is a field automorphism of k such that Fq is the fixed field of Frq; it is called the
arithmetic Frobenius of Fq.

(4) Any finite field extension Fqν/Fq of degree ν is a Galois extension, and its Galois
group is cyclic of order ν generated by the Frobenius; in other words, there is a
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canonical isomorphism{
Z/νZ

∼−→ Gal(Fqν/Fq)
1 7→ Frq

;

in particular, by Galois theory, we recover the formula

(1.1) Fq = {x ∈ Fqν | xq = x},
already noted earlier. Note that, as is customary, we will write either xσ or σ(x)
for the image of an element x in any field under an automorphism σ.

(5) (For readers familiar with infinite Galois theory; this will not be of much use
in this book) For any finite field Fq with q elements and choice of an algebraic
closure F̄q, the latter is also a separable closure of Fq, and there is a canonical
isomorphism {

Ẑ
∼−→ Gal(F̄q/Fq)

1 7→ Frq

Among these facts, the formula (1.1) is the key fact that allows algebraic methods to
be useful in the theory of exponential sums over finite fields. The reader will, for instance,
see concretely how it comes into play as a deus ex machina in the Stepanov method.

Remark 1.1. We have remarked above that a finite field with q elements is not
defined canonically if q is not a prime number (in which case, the identification with
Z/qZ is canonical). This is due to the presence of automorphisms of Fq – namely the
Frobenius and its powers. Concretely, this means the following for instance: suppose we
have two number fields K1/Q, K2/Q and a prime number p, unramified for both of them,
and prime ideals p1, p2 above p in K1 and K2 respectively. If Np1 = Np2, we know that
the residue fields k1, k2 at p1, p2 have the same order, hence are isomorphic. It is not
obvious at all how to construct an explicit isomorphism between k1 and k2 (in terms, say,
of polynomials defining K1 and K2).

Besides these foundational facts, we need to know the definition and properties of the
norm and trace maps that related two finite fields, one of which is an extension of the
other.

Definition 1.2 (Norm and trace). Let Fqν/Fq be a finite extension of finite fields
with the indicated orders. The trace map from Fqν to Fq is the Fq-linear map

Tr = TrFqν /Fq :

{
Fqν −→ Fq

x 7→ x+ xq + · · ·+ xq
ν−1

and the norm map is the multiplicative map

N = NFqν /Fq :

{
Fqν −→ Fq

x 7→ x · xq · · ·xqν−1

= x(qν−1)/(q−1)

which restricts to a multiplicative group-homomorphism

N : F×qν −→ F×q .

We will usually avoid spelling out which fields are involved when this is clear from
context.

If we write
Tr(x) =

∑
σ∈Gal(Fqν /Fq)

xσ, N(x) =
∏

σ∈Gal(Fqν /Fq)

xσ,

8



we see clearly that
σ(Tr(x)) = Tr(x), σ(N(x)) = N(x)

for all elements σ of the Galois group, and the implied fact that the trace and norm take
values in Fq follows. We also find similarly that

(1.2) Tr(σ(x)) = Tr(x), N(σ(x)) = N(x),

in particular
Tr(xq) = Tr(x), N(xq) = N(x).

These, it turns out, are the only ways to obtain the same trace or norm.

Lemma 1.3. Let Fqν/Fq be a finite extension of finite fields with the indicated orders.
(1) The trace map is a surjective linear map

Fqν
Tr−→ Fq,

with
Ker(Tr) = {x ∈ Fqν | x = yq − y for some y ∈ Fqν}.

In particular, there exists x0 ∈ Fqν such that Tr(x0) 6= 0.
(2) The norm map is a surjective homomorphism

F×qν
N−→ F×q ,

with

(1.3) Ker(N) = {x ∈ F×qν | x = yq−1 for some y ∈ F×qν}.

There exists x0 ∈ F×qν such that N(x0) 6= 1 if and only if q 6= 2.

Proof. Although these are facts which hold in greater generality (e.g., there are
analogues for all finite cyclic Galois extensions), we give a short proof illustrating how
special features of finite fields can be very useful.

For (1), define

δ :

{
Fqν −→ Fqν

y 7→ yq − y ,

which is an Fq-linear map with

Ker(δ) = {y | yq = y} = Fq,

and hence – in particular – we have dim Im(δ) = ν− 1. We want to show that Ker(Tr) =
Im(δ), and this will be enough to obtain all the results because it follows then that
dim Ker(Tr) = ν − 1, hence dim Im(Tr) = 1, showing the surjectivity of the trace.

We have already observed that Ker Tr ⊃ Im(δ); but on the other hand, we can write1

Ker(Tr) = {x ∈ Fqν | P (x) = 0}
where P is a polynomial of degree qν−1 given by

P = X +Xq + · · ·+Xqν−1

hence, from field theory, we know that

|Ker(Tr)| 6 deg(P ) 6 qν−1,

and by the inclusion already known, there must be equality.

1 This is where the nature of finite fields plays a role; usually the trace is not a uniform polynomial
of the argument.
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The argument for (2) is quite similar; the analogue of δ is the group homomorphism

∆ :

{
F×qν −→ F×qν
y 7→ yq−1 ,

with Ker(∆) = F×q , hence | Im(∆)| = (qν − 1)/(q − 1). We have also Im(∆) ⊂ Ker(N),
and we must show equality, and this follows from the remark that

Ker(N) = {x ∈ F×qν | Q(x) = 0}, Q = X(qν−1)/(q−1) − 1,

so that |Ker(N)| 6 (qν − 1)/(q− 1). Therefore, we have | Im(N)| = (qν − 1)/|Ker(N)| =
q − 1 = |F×q |, proving the surjectivity of the norm.

Finally the last remark is clear, since F×q = {1} if and only if q = 2. �

Remark 1.4. In other words, we have shown that we have the following two exact
sequences of abelian groups:

0→ Fq ↪→ Fqν
δ−→ Fqν

Tr−→ Fq → 0,

and

1→ F×q ↪→ F×qν
∆−→ F×qν

N−→ F×q → 1.

A common way to “write down” an element x in an extension field Fqν of Fq is to
specify a polynomial 0 6= f ∈ Fq[X] of which it is a root. It is quite useful that one can
write down the trace and norm of x in terms of f .

Lemma 1.5. Let Fq be a finite field, let f ∈ Fq[X] be a non-zero irreducible monic
polynomial of degree d > 1. Then, for any x ∈ Fqd such that f(x) = 0, we have

(1.4) TrF
qd
/Fq(x) = −ad−1, NF

qd
/Fq(x) = (−1)da0,

where
f = Xd + ad−1X

d−1 + · · ·+ a1X + a0, ai ∈ Fq.

Proof. Since f is irreducible, the set {xqj}, 0 6 j 6 d− 1, of Galois conjugates of x
is identical with the set of zeros of f . Since f is monic, it follows that we can factor

f =
∏

σ∈Gal(F
qd
/Fq)

(X − σ(x)),

and comparing with the expansion in powers of X, we see that

Tr(x) =
∑

σ∈Gal(F
qd
/Fq)

σ(x)

is the negative of the coefficient of Xd−1, while

N(x) =
∏

σ∈Gal(F
qd
/Fq)

σ(x)

is (−1)d times the value at 0, i.e., times the constant coefficient. �

The last fact we need is another result essentially due to Gauss:

Lemma 1.6. Let Fq be a finite field with q elements. Then the multiplicative group
F×q is cyclic of order q− 1. In particular, there are2 ϕ(q− 1) generators of F×q ; these are
called primitive roots in Fq.

2 Here, ϕ(n) denotes the Euler function, i.e., the number of invertible elements in Z/nZ.

10



Proof. We use the structure theory of finite abelian groups to get a quick result:
there exist integers k > 1 and d1, . . . , dk > 1 such that

F×q ' Z/d1Z× Z/d1d2Z× · · · × Z/d1 · · · dkZ

and we observe that, in the group on the right-hand side, the equation (multiplicatively
written)

xd1 = 1

has dk1 solutions, namely the elements of

Z/d1Z× d2Z/d1d2Z× · · · × (d2 · · · dk)Z/(d1 · · · dk)Z.
On the other hand, this equation is a polynomial equation P (x) = 0 in Fq, with

P = Xd1 − 1, and therefore it has 6 d1 solutions. It follows that dk1 6 d1, which implies
k = 1, and F×q ' Z/d1Z is cyclic. �

Remark 1.7. Using the formula

ϕ(n) = n
∏
`|n

(1− `−1),

(where ` runs over primes dividing n) and the fact that

lim
x→+∞

∏
`6x

(1− `−1) = 0,

it is not difficult to check that

lim inf
q→+∞

ϕ(q − 1)

q − 1
= lim inf

q→+∞

∏
`|q−1

(1− `−1) = 0,

so that the proportion of primitive roots among elements of F×q may be arbitrarily small.
The problem of finding, efficiently, a primitive root in F×q is a difficult one: it is not

known how to do it in polynomial time (with respect to the number of digits of q, or
equivalently with respect to log q).

1.2. Characters of finite abelian groups

The content of this section is, again, likely to be well-known. As in the previous
section, we proceed quickly to prove the main facts, without trying to be economical in
the proofs.

We have used the map x 7→ e(x/p) on Fp to define exponential sums; its main feature,
that leads to generalizations over other finite fields, is that this is a group homomorphism
with complex values. Such homomorphisms are called characters.

Definition 1.8 (Character of a group). Let G be any group. A character of G is a
group homomorphism

χ : G −→ C×.

The following facts are quite obvious:

(1) The set Ĝ of characters of G is a group with the pointwise multiplication

(χ1 · χ2)(x) = χ1(x)χ2(x),

the inverse defined by (χ−1)(x) = χ(x)−1, and the unit the trivial homomorphism
x 7→ 1.

11



(2) If G is a finite group of order n, all characters take values in the set

µn = {z ∈ C | zn = 1},
of n-th roots of unity in C, and the inverse χ−1 of a character is also its complex
conjugate χ̄.

Example 1.9. (1) The map z 7→ e(z) is a character of the additive group of C.
(2) For any fixed n ∈ Z, the map x 7→ e(nx) is a character of the quotient group R/Z;

in fact (under minimal regularity assumptions, such as looking at measurable characters

only) we have R̂/Z ' Z.

The main result concerning characters of finite abelian group is the following:

Proposition 1.10 (Characters of finite abelian groups). Let G be a finite abelian
group. Then the set of characters of G forms an orthonormal basis of the space

C(G) = {f : G −→ C}
of complex-valued functions on G with respect to the inner-product

〈f, g〉 =
1

|G|
∑
x∈G

f(x)g(x).

In particular, one deduces immediately the following facts from this proposition; they
are used constantly (indeed, some have already been implicitly used in the introductory
chapter!).

(1) The dual group Ĝ is of order n; in fact, one can show (or indeed see from the

proof of the proposition) that Ĝ is isomorphic to G, but such isomorphisms are
not canonical and not particularly useful in general.

(2) We have the orthogonality relations :

(1.5)
∑
x∈G

χ1(x)χ2(x) =

{
|G| if χ1 = χ2

0 otherwise,

for all χ1, χ2 ∈ Ĝ, and

(1.6)
∑
χ∈Ĝ

χ(x)χ(y) =

{
|G| if x = y

0 otherwise.

Indeed, the first one is the direct translation of the orthonormality of the charac-
ters, and the second can be seen either as stating that the transpose of a unitary
matrix is unitary, or as the expansion in the basis of characters of δ functions:
fixing y in G, the function

δy : x 7→

{
1 if x = y

0 otherwise,

has the expansion

δy(x) =
∑
χ∈Ĝ

〈δy, χ〉χ(x)

and the coefficients are given by

〈δy, χ〉 =
1

|G|
∑
x∈G

δy(x)χ(x) =
1

|G|
χ(y),

12



so that the expansion corresponds exactly to (1.6). As we will see on numer-
ous occasions, this second orthogonality formula is very useful to “transcribe”
analytically a constraint x = y appearing in a problem.

Proof of Proposition 1.10. To give a quick proof, we use the structure theory
of finite abelian groups; this implies that we have an isomorphism

G ' Z/d1Z× · · · × Z/dkZ,

where k > 1 and the integers d1, . . . , dk are uniquely determined by G. However, for
abelian groups G1 and G2, there is a canonical isomorphism{

Ĝ1 × Ĝ2
∼−→ Ĝ1 ×G2

(χ1, χ2) 7→ (x, y) 7→ χ1(x)χ2(y)

(the only non-obvious thing is the surjectivity, but this follows from

χ(x, y) = χ((x, 1) · (1, y)) = χ((x, 1)) · χ((1, y))

for any χ ∈ Ĝ1 ×G2, where the two factors clearly define characters of G1 and G2,
respectively, forming a pair which maps to χ under the map above). This map, and
the analogue for multiple factors, are compatible with the Hilbert space structure in the
following sense: there is an isomorphism{

C(G1)⊗ C(G2)
∼−→ C(G1 ×G2)

f ⊗ g 7→ (x, y) 7→ f(x)g(y)

such that

〈f ⊗ g, f1 ⊗ g1〉 = 〈f, f1〉〈g, g1〉,
for fi ∈ C(Gi), gi ∈ C(Gi). This implies that if the characters of G1 and G2 form
orthonormal bases of C(G1) and C(G2), the same property holds for those of G1 × G2

and C(G1 × G2). In other words, using the structure theorem, we need only check the
result when G is cyclic, say G = Z/dZ with d > 1.

In that case, since the group can be described as the group generated by a single
element a satisfying the only relation ad = 1, it follows that mapping χ to χ(1) ∈ C×

gives an isomorphism

Ĝ = Hom(G,C×) ' {z ∈ C× | zd = 1} = µd ' Z/dZ,

so that the characters of G are the maps x 7→ ζx where ζ runs over µd. We can write
ζ = e(a/d), for a unique a ∈ Z/dZ, and then the characters take the already familiar
form

ea : x 7→ e
(ax
d

)
, a ∈ Z/dZ.

Then the orthonormality becomes a simple check:

〈ea, eb〉 =
1

d

∑
06x6d−1

ea(x)eb(x)

=
1

d

∑
06x6d−1

e
((a− b)x

d

)
= δ(a, b)

by the same geometric sum argument seen in Example 1. �
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Remark 1.11. The orthonormality can also be proved directly for any group G by
writing

〈χ1, χ2〉 =
1

|G|
∑
x∈G

χ(x), χ = χ1χ̄2,

and observing that, if χ 6= 1 (i.e., χ1 6= χ2), there exists an x0 ∈ G with χ(x0) 6= 1; then
the bijective substitution x = x0y leads to

〈χ1, χ2〉 =
1

|G|
∑
y∈G

χ(x0y) = χ(x0)〈χ1, χ2〉

which then gives 〈χ1, χ2〉 = 0. The case χ1 = χ2 is immediate.

Our interest in characters revolves around finite fields. Given a finite field Fq with q
elements, there are actually two groups – of a quite different nature – to consider: the
additive group (Fq,+), and the multiplicative group (F×q , ·), and it is customary to speak
of additive or multiplicative characters to discuss them.

Example 1.12 (Additive characters of finite fields). If Fq is a finite field with q = pν

elements, we have an isomorphism of groups Fq ' Fν
p ' (Z/pZ)ν . Since the characters

of Z/pZ are very explicitly known (as seen in the proof of Proposition 1.10), it is quite
simple to give a uniform description of additive characters.

Proposition 1.13. Let Fq be a finite field of characteristic p with q elements. Then
there is an isomorphism {

Fq −→ F̂q

a 7→ ψa
where the character ψa is defined by

ψa(x) = e
(TrFq/Fp(ax)

p

)
.

More generally, if ψ is an additive character of Fq and Fqν/Fq is a finite field exten-
sion, the map

x 7→ ψ(TrFqν /Fq(x))

is a character of Fqν .

Example 1.14 (Multiplicative characters of finite fields). Although F×q is a cyclic
group (Lemma 1.6), which might suggest a very simple structure, the group of multi-
plicative characters of a finite field is, in fact, quite a complicated object. The reason
is that, as we already mentioned, it is quite difficult to find an explicit isomorphism
F×q ' Z/(q − 1)Z, as would be required to easily construct the characters of F×q .

Still, one may at least provide some theoretical information; in particular, note that
if χ is a multiplicative character of F×q , its order is a divisor of q − 1. Indeed, if d | q − 1
is a divisor of q − 1, the structure of cyclic groups shows that the characters of order
dividing d form themselves a subgroup of order d.

In particular, if q is odd, we have 2 | q− 1, so that there must be a unique non-trivial
character χ2 of order 2 (the other of order dividing 2 is the trivial one); because its values
lie in µ2 = {−1, 1}, the only group of roots of unity to be included in R, this is also
called a (or “the”) real character of F×q . For q = p > 3 an odd prime, we’ve already met
it: it is the Legendre symbol (definition 4), since we have

χ2(x) =
(x
p

)
, for all x ∈ F×p = (Z/pZ)×.
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Indeed, notice that χ2, being of order 2, must be trivial (equal to 1) on the subgroup
(F×p )2 of all squares x2 with x ∈ F×p ; hence the homomorphism χ2 must factor

F×p → F×p /(F
×
p )2 ' {−1, 1},

(where the last isomorphism is due simply to the fact that the middle group is of order
2; (F×p )2 is of order (p − 1)/2 as the image of the homomorphism x 7→ x2 with kernel
{±1}), and hence χ2 must map non-squares to −1. This is exactly the recipe to compute
the Legendre symbol.

Another useful fact later on will be the analogue of the last part of Proposition 1.13:

Lemma 1.15. Let Fqν/Fq be a finite extension of finite fields. For any character χ of
F×q , the composite

x 7→ χ(NFqν /Fq(x))

is a character of F×qν , of order equal to the order of χ.

The last part is immediate from the surjectivity of the norm map (Lemma 1.3). Note
that, for the non-trivial real character χ2 of F×q , for q odd, it follows (by its unicity) that

χ2(x) =
(NFq/Fp(x)

p

)
.

As an application of (1.6) in this context, we note that the following formula: for any
d dividing q − 1 and x ∈ F×q , we have

(1.7)
∑
χd=1

χ(x) =

{
d if x is a d-th power, x = yd for some y ∈ F×q ,

0 otherwise
,

(the sum running over all characters of order dividing d; this can be used to detect
analytically a condition that an element is a d-th power). Indeed, one notes that the
characters of the quotient group F×q /(F

×
q )d correspond to characters of F×q which are of

order dividing d, by the composites

F×q → F×q /(F
×
q )d

χ−→ C×,

and since x is trivial in this quotient group if and only if it is a d-th power, the formula
is indeed a particular case of (1.6).

A last remark is that, as in the case of the Legendre character, it is often very useful
to define χ(0) = 0 for a non-trivial multiplicative character of F×q , while χ(0) = 1 if χ is
the trivial character. With this convention, the last formula can be generalized to

(1.8)
∑
χd=1

χ(x) = |{y ∈ Fq | yd = x}|,

and it is now valid for all d | q − 1 and x ∈ Fq (each side being equal to 1 for x = 0).
Moreover, we retain the multiplicativity

(1.9) χ(xy) = χ(x)χ(y)

for all x, y ∈ Fq (when x = 0, this translates to χ(0) = χ(0)χ(x), which is always true).

Example 1.16 (“General” character sums). We can now define quite general expo-
nential sums in one variable over a finite field (more general ones will only be mentioned
incidentally in this book). Let Fq be a finite field with q elements; we assume given an
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additive character ψ of Fq, and a multiplicative character χ of F×q , as well as polynomials
f1, g1, f2, g2 ∈ Fq[X], with g1, g2 6= 0. Then we denote

U(Fq) = {x ∈ Fq | f1(x), g1(x), g2(x) 6= 0},
and we define

(1.10) S =
∑

x∈U(Fq)

χ(f1(x)/g1(x))ψ(f2(x)/g2(x)).

Such sums, called “general character sums”, turn out to be fairly ubiquitous in analytic
number theory. Their study – and that of their various generalizations – is one of the
highlights of modern number theory, and in particular of its interactions with algebraic
geometry...
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CHAPTER 2

Elementary examples

In this chapter, we break the monotony of the previous one by giving examples (the
first two of which are related to those used in the first motivation section) of the use of
the orthogonality relations for characters of finite fields in order to evaluate explicitly (or
almost so), or estimate, some particularly important exponential sums. Then, building on
experience, Section 2.5 is a semi-philosophical discussion of the most common heuristics
used to “guess” how exponential sums should behave.

2.1. Gauss sums

The following describes the general Gauss sums over a finite field.

Definition 2.1 (General Gauss sums). Let Fq be a finite field with q elements, ψ an
additive character and χ a multiplicative character of Fq. The Gauss sum associated to
ψ and χ is defined to be

(2.1) τ(χ, ψ) =
∑
x∈F×q

χ(x)ψ(x).

Remark 2.2. In particular, note that τ(χ, 1) = 0 for all non-trivial character χ,
τ(1, ψ) = −1 for all non-trivial character ψ (because of the “missing” term at x = 0) and
τ(1, 1) = q − 1. If χ 6= 1, we can replace the sum over F×q to one over Fq since χ(0) = 0,
but this is not permitted for the trivial character with our convention.

Example 2.3. Assume q is odd, and let χ = χ2 be the non-trivial character of order
2 of F×q . If ψ is non-trivial, using (1.8), we find

τ(χ2, ψ) =
∑
x∈Fq

χ2(x)ψ(x)

=
∑
x∈Fq

(∑
y2=x

1− 1
)
ψ(x) =

∑
x∈Fq

ψ(x2).

Since, for q = p prime, we have noted that χ2(x) =
(
x
p

)
, this shows that this Gauss

sum is equal to the quadratic Gauss sum already introduced, if ψ(x) = e(x/p).

It is not possible in general to compute τ(χ, ψ), generalizing Theorem 3 for quadratic
Gauss sums. However, the variation with respect to ψ is easy to understand: if ψ0 is
a fixed non-trivial character of Fq, and ψ is another non-trivial character, we can find
a ∈ F×q such that ψ(x) = ψ0(ax) for all x (Proposition 1.13), and we then have

(2.2) τ(χ, ψ) = χ(a)τ(χ, ψ0)

since ∑
x∈F×q

χ(x)ψ0(ax) =
∑
y∈F×q

χ(a−1y)ψ0(y) = χ(a)τ(χ, ψ0).

Equally importantly, the modulus of Gauss sums is known:
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Proposition 2.4. Let Fq be a finite field with q elements, ψ a non-trivial additive
character and χ a non-trivial multiplicative character of Fq. Then we have

|τ(χ, ψ)| = √q.
Proof. Let τ = τ(χ, ψ). Since the idea of getting a square root from a sum like this

may seem strange, we try to compute |τ |2 instead. For this, we can expand the product
of the Gauss sum and its conjugate, and doing so we get

|τ |2 =
∑

x,y∈F×q

χ(x)χ(y)ψ(x)ψ(y)

=
∑

x,y∈F×q

χ(xy−1)ψ(x− y).

We can write u = xy−1, which ranges freely over F×q for all fixed y, and we can
therefore rearrange the sum as

|τ |2 =
∑
u∈F×q

χ(u)
∑
y∈F×q

ψ(y(u− 1))

where we have now isolated a pure additive inner sum. From the description of all additive
characters of Fq, this inner sum is of the type∑

α

α(u− 1)− 1 =

{
−1 if u 6= 1

q − 1 if u = 1,

(by orthogonality, α running over all additive characters). Hence we obtain

|τ |2 = −
∑
u∈F×q

χ(u) + q = q,

by orthogonality again. �

This property of Gauss sums is quite remarkable: indeed, it is an algebraic integer
(as a sum of roots of unity!) of modulus exactly

√
q. In fact, a further property holds:

for any field automorphism σ of C, we have

σ(τ(χ, ψ)) = τ(σ ◦ χ, σ ◦ ψ),

because, by general algebra, the composites σ ◦ χ and σ ◦ ψ are, respectively, non-trivial
multiplicative and additive characters of Fq. So the proposition shows that Gauss sums
give examples of Weil numbers :

Definition 2.5 (Weil number). Let q be a power of a prime and m ∈ Z an integer.
A q-Weil number of weight m is an algebraic number α with either of the following
equivalent properties:

(1) Any root β ∈ C of the minimal polynomial of α, including β = α, is such that
|β| = qm/2.

(2) For any embedding ι : Q(α) ↪→ C, we have |ι(α)| = qm/2.

In this language, the Gauss sum τ(χ, ψ) associated to non-trivial characters of Fq is a
q-Weil number of weight 1. These, together with the even simpler roots of unity (q-Weil
numbers of weight 0 for any q) are the simplest Weil numbers. However there are many
others. For instance, let q be a power of a prime and let a be any integer with |a| < 2

√
q;

the roots of the quadratic polynomial

X2 − aX + q
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are then q-Weil numbers of weight 1. Indeed, since the discriminant is < 0, the roots are
complex conjugates of each other, say (α, ᾱ), and therefore

|α|2 = αᾱ = q.

Remark 2.6. From Gauss’s result (Theorem 3), we know how to compute also the
argument of quadratic Gauss sums. What about the argument of more complicated ones?
It turns out that those arguments behave quite unpredictably in general. In fact, if we
consider all the arguments θp(χ) ∈ [0, 1[ of the Gauss sums

τ(χ, ψ0) =
√
pe(θp(χ))

for all non-trivial multiplicative characters χ of F×p , with the fixed additive character

ψ0 : x 7→ e
(x
p

)
,

we obtain a collection of p− 2 angles which become equidistributed in [0, 1] as p→ +∞.
We recall the definition of this important concept, which is crucial to understanding the
variation of exponential sums in families (this result is indeed a first case of Problem (4)
of the introduction).

Definition 2.7 (Equidistribution). Let X be a compact topological space and µ a
Borel probability measure on X. Let (Yn) be a sequence of non-empty finite sets with
maps

θn : Yn −→ X.

Then the points {θn(y)}y∈Yn become equidistributed with respect to µ as n → +∞ if
and only if, for any continuous function f : X → C, we have

1

|Yn|
∑
y∈Yn

f(θn(y)) −→
∫
X

f(x)dµ(x),

as n→ +∞.

It is not too difficult to show that this is equivalent with

1

|Yn|
|{y ∈ Yn | θn(y) ∈ U}| −→ µ(U),

for any open set U ⊂ X with boundary ∂U of µ-measure 0.
We then have the following remarkable result of Deligne:

Theorem 2.8 (Deligne). As p→ +∞, the angles {θp(χ)}χ 6=1 in [0, 1] become equidis-
tributed with respect to Haar measure.

The proof of this result is quite deep, as it involves the Riemann Hypothesis for
exponential sums in an arbitrarily large number of variables (see, e.g. [12, §11.11] for a
description of the proof, or the second part [14, ] of this course). This illustrates the fact
that issues concerning the variation of exponential sums in families are very deep, even
for the Gauss sums which are among the simplest ones.

2.2. Kloosterman’s bound

We can now describe the very nice proof of Theorem 9. First of all, we generalize the
definition of Kloosterman sums as follows:

19



Definition 2.9 (Kloosterman sums over finite fields). Let Fq be a finite field with
q elements, and let ψ, η be two additive characters of Fq. The associated Kloosterman
sum S(ψ, η) is defined by

(2.3) S(ψ, η) =
∑
x∈F×q

ψ(x)η(x−1).

For q = p, we can take the characters

ψ(x) = e(mx/p), η(x) = e(n−1x/p),

for any m, n ∈ F×q , and then we we recover the sums of Definition 7:

S(m,n; p) = S(ψ, η).

As first easy remarks, we note that S(ψ, η) is always a real number, since

S(ψ, η) =
∑
x∈F×q

ψ(x)η(x−1) =
∑
x∈F×q

ψ(−x)η(−x−1)

=
∑
y∈F×q

ψ(y)η(y−1) = S(ψ, η),

by using the change of variable y = −x.
We also note the simple relation

(2.4) S(ψ, η) = S(ψb, ηb−1)

for any additive characters and b ∈ F×q , where ψb(x) = ψ(bx) and ηb−1(x) = η(b−1x) (by
the bijective change of variable x = by in the sum).

Kloosterman’s idea to estimate Kloosterman sums is based on trying to understand
all of them globally, and not individually. More precisely, the idea is to use the following
fact: if we can prove an average bound1

(2.5)
∑∗

ψ,η

|S(ψ, η)|2k 6M

for some k > 1 and M > 0, then for any fixed ψ0, η0, we can deduce from (2.4) that

(2.6) (q − 1)|S(ψ, η)|2k =
∑
b6=1

|S(ψb, ηb−1)|2k 6M,

and hence

|S(ψ, η)| 6
( M

q − 1

)1/(2k)

,

for every fixed ψ and η.
The left-hand side of (2.5) is called the k-th moment of |S(ψ, η)|2, and is a well-known

quantity from the probabilistic point of view, which suggests that it is natural to study
it if we feel that the mapping

(ψ, η) 7→ S(ψ, η)

associated to Kloosterman sums is quite “random” (which is a fairly reasonable thing to
say).

Kloosterman proved the following formulas for the moments of small order:

1 Using the shorthand notation
∑∗

ψ

to indicate a sum restricted to non-trivial additive characters.
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Proposition 2.10. Let Fq be a finite field with q elements, and for k > 0, let

Mk = Mk,q =
1

(q − 1)2

∑∗

ψ,η

|S(ψ, η)|2k.

Then we have

M0 = 1, M1 =
q2 − q − 1

q − 1
, M2 =

2q3 − 3q2 − 3q − 1

q − 1
.

From the last formula, we immediately derive, using (2.6), that

|S(ψ, η)| 6 ((q − 1)M2)1/4 < 2q3/4

for any pair of non-trivial characters, which – in particular – proves Theorem 9. Morever,
we can also write the inequality

M2 6
(

max
ψ,η
|S(ψ, η)|2

)
×M1,

and thefore there exists some pair (ψ, η) of non-trivial characters for which

|S(ψ, η)|2 > M2

M1

=
2q3 − 3q2 − 3q − 1

q2 − q − 1
> 2q − 2,

which gives a generalization of (7). (Using (2.4), one can even assume that ψ be fixed).

Proof. The case of M0 is of course trivial, and to prove Proposition 2.10 in the other
cases, we start with a general formula: for any k > 1, we claim that

(2.7) Mk =
q2

(q − 1)2
|Ak(Fq)| − 2(q − 1)−1 − (q − 1)2k−2,

where

(2.8) Ak(Fq) =
{

(x, y) ∈ (F×q )k+k |
∑

16i6k

xi =
∑

16i6k

yi, and

∑
16i6k

x−1
i =

∑
16i6k

y−1
i

}
.

This reduces the proof of the proposition to a counting problem over Fq: we need to
know the number of solutions of certain polynomial equations (possibly in many variables,
if k is large) over Fq.

To prove (2.7) is not difficult: we first add the contributions of the trivial characters
to be able to apply orthogonality more efficiently, and subtract them2 using the simple
formulas

S(1, η) =
∑
x∈F×q

η(x−1) =
∑
y∈F×q

η(y) = −1,

if η 6= 1, the analogue S(ψ, 1) = −1 if ψ 6= 1, and

S(1, 1) = q − 1.

We have then

(q − 1)2Mk =
∑
ψ,η

|S(ψ, η)|2k − 2(q − 1)− (q − 1)2k.

2 It may be instructive to check that, if one tries to do this at the next stage of the computation,
there appear some serious complications.
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Then by expanding the definition of the Kloosterman sums and their conjugates, we
obtain that

(q − 1)2Mk =
∑
ψ,η

∑
· · ·
∑

x=(x1,...,xk)∈(F×q )k

y=(y1,...,yk)∈(F×q )k

ψ(x1 + · · ·+ xk − y1 − · · · − yk)

× η(x−1
1 + · · ·+ x−1

k − y
−1
1 − · · · − y−1

k )− 2(q − 1)− (q − 1)2k,

and appealing to orthogonality of additive characters, we deduce that

(q − 1)2Mk =
∑
x,y

(∑
ψ

ψ(T (x)− T (y))
)

×
(∑

η

η(U(x)− U(y))
)
− 2(q − 1)− (q − 1)2k

= q2|Ak(Fq)| − 2(q − 1)− (q − 1)2k,

where we have writen T (x) = x1 + · · ·+ xk, U(x) = x−1
1 + · · ·+ x−1

k for x ∈ (F×q )k. This
gives (2.8).

We must now compute |A1(Fq)| and |A2(Fq)|. For the former, we have

A1(Fq) = {(x, y) ∈ F×q × F×q | x = y, x−1 = y−1}
= {(x, x) | x ∈ F×q }

so that |A1(Fq)| = q − 1. Thus

(q − 1)2M1 = q2(q − 1)− 2(q − 1)− (q − 1)2,

so that

M1 =
q2 − q − 1

q − 1
.

The case of k = 2 requires a bit more care. The equations to solve are now given byx1 + x2 = y1 + y2

1

x1

+
1

x2

=
1

y1

+
1

y2

.

There are obvious solutions, given by taking y = (y1, y2) to be a permutation of
(x1, x2):

(x, y) = (x1, x2, x1, x2), or (x1, x2, x2, x1) ;

taking account repetition, there are 2(q − 1)2 − (q − 1) such solutions.
Having found these, we are tempted to try to find the (possible) others by attempt-

ing to see under which conditions the quantities (x1 + x2, x
−1
1 + x−1

2 ) determine the pair
(x1, x2) ∈ (F×q )2 up to permutation – for values of this type, the only solutions corre-
sponding to (x1, x2) will precisely be the ones above.

Now, from the theory of symmetric functions, we know that the pair up to permutation
is determined exactly by the elementary symmetric functions (x1 +x2, x1x2). We already
have the first function, and for the other, we simply observe that

x−1
1 + x−1

2 =
x1 + x2

x1x2

,

and therefore we can indeed recover (x1 + x2, x1x2) provided we have

x−1
1 + x−1

2 6= 0,
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which translates to x1 + x2 6= 0. And indeed, we have another family of solutions given
by

(x1,−x1, y1,−y1), (x1, y1) ∈ (F×q )2.

There are (q − 1)2 of these but among these, the 2(q − 1) solutions given by

(x1,−x1, x1,−x1), (x1,−x1,−x1, x1)

have already been counted above. Therefore, we derive

|A2(Fq)| = 2(q − 1)2 − (q − 1) + (q − 1)2 − 2(q − 1)

= 3(q − 2)(q − 1),

and from this, we get

M2 =
2q3 − 3q2 − 3q − 1

q − 1
,

as we had claimed! �

Remark 2.11. As already mentioned in the previous chapter, the result proved by
Kloosterman is not best possible. We will prove later that

|S(ψ, η)| 6 2
√
q

for any non-trivial characters ψ and η over Fq, generalizing Weil’s bound (Theorem 10).
In fact, this will follow immediately from the possibility of writing

S(ψ, η) = α(ψ, η) + β(ψ, η),

where α(ψ, η), β(ψ, η) are q-Weil numbers of weight 1. This expression as a combination
of two Weil numbers is the analogue for Kloosterman sums of the simpler fact that Gauss
sums are q-Weil numbers.

2.3. Jacobi sums

Jacobi sums form another class of exponential sums which are of great importance
in algebraic number theory. We introduce them partly for purely aesthetic reasons, and
partly as a way to point out some interesting analogies with some classical functions
defined by integrals...

Definition 2.12 (Jacobi sums). Let Fq be a finite field with q elements, and let χ,
φ be multiplicative characters of Fq. The Jacobi sum associated to χ and φ is given by

J(χ, φ) =
∑
x∈Fq

χ(x)φ(1− x) =
∑
x+y=1

χ(x)φ(y).

These sums turn out, rather surprisingly, to be expressible in terms of general Gauss
sums.

Proposition 2.13. Let Fq be a finite field with q elements, let χ and φ be non-
trivial multiplicative characters such that χφ is also non-trivial. Fix a non-trivial additive
character ψ of Fq. We then have

J(χ, φ) =
τ(χ, ψ)τ(φ, ψ)

τ(χφ, ψ)
.

In particular, we have then
|J(χ, φ)| = √q.

Note that, by Proposition 2.4, the denominator in the formula is non-zero.

23



Proof. Once the formula for the Jacobi sum is established, we obtain its modulus
immediately by applying Proposition 2.4 to the Gauss sums that occur.

Now, for the proof, it is natural to try to compute

J(χ, φ)τ(χφ, ψ)

since otherwise it seems difficult to envision how to perform a division by a Gauss sum.
Expanding the definitions of the two sums, we get

J(χ, φ)τ(χφ, ψ) =
∑
x∈Fq

∑
y∈F×q

χ(x)φ(1− x)χ(y)φ(y)ψ(y).

The sum may be restricted to x /∈ {0, 1}, since χ and φ are non-trivial. Then we
can define u = xy and v = y − xy, and we obtain a bijective change of variable from
(x, y) ∈ (Fq − {0, 1})× F×q to

{(u, v) ∈ F×q × F×q | u+ v 6= 0}

since we can recover x and y by y = v + u, x = u/(u+ v). We derive

J(χ, φ)τ(χφ, ψ) =
∑∑
u,v∈F×q
u+v 6=0

χ(u)φ(v)ψ(u+ v)

= τ(χ, ψ)τ(φ, ψ)−
∑
u∈F×q

χ(u)φ(−u)

= τ(χ, ψ)τ(φ, ψ)

since χφ is also non-trivial. �

Remark 2.14. It is immediate that if σ is a field automorphism of C, we have

σ(J(χ, φ)) = J(σ ◦ χ, σ ◦ φ),

and therefore the proposition also proves that J(χ, φ), under the conditions there, is a
q-Weil number of weight 1 (see Definition 2.5).

Despite appearances, the Jacobi sums have rather different properties than Gauss
sums, coming from their definition in terms of multiplicative characters. For instance, we
derive quickly a proof of a well-known theorem of Fermat:

Theorem 2.15 (Fermat). Let p be a prime number such that p ≡ 1 (mod 4). Then
there are integers a, b such that

p = a2 + b2.

Proof. Because p ≡ 1 (mod 4), there exists a character χ of order 4 of F×p . Let χ2

denote the Legendre character of order 2, and consider the Jacobi sum J = J(χ, χ2). By
Proposition 2.13, we have then |J |2 = p. But J is a sum of terms of the type

χ(x)χ2(y),

and χ2(y) ∈ {−1, 0, 1}, while χ(x) ∈ {−i,−1, 0, 1, i}, since χ(x)4 = 1. Thus J can be
written J = a+ bi with a, b ∈ Z. Then

p = |J |2 = a2 + b2.

�

24



Remark 2.16. The appearance of the formula for Jacobi sums may remind the reader
of a well-known formula of Euler for his beta function:

B(a, b) =

∫ 1

0

xa(1− x)bdx =
Γ(a)Γ(b)

Γ(a+ b)
,

were the gamma function

(2.9) Γ(s) =

∫ +∞

0

e−xxs
dx

x

plays the role of the Gauss sums. This analogy is not fortuitous: note that x 7→ e−x

is a character of the additive group R, while x 7→ xs, for s ∈ C, is a character of the
multiplicative group (R+)×, and the measure x−1dx has the property of being invariant
under (multiplicative) translation∫ +∞

0

f(ax)
dx

x
=

∫ +∞

0

f(x)
dx

x

for any a > 0 (provided the integrals converge). Thus (2.9) is wholly similar to (2.1),
and the definition of the Beta function also reflects this analogy. It turns out that most
of the identities satisfied by the gamma function have analogues in the context of Gauss
sums.

In particular, recall the duplication formula

Γ(s)Γ(s+ 1
2
) =
√
π21−2sΓ(2s) = 21−2sΓ(1

2
)Γ(2s),

(usually attributed to Gauss and Legendre); its analogue is a relation between τ(χ, ψ),
τ(χχ2, ψ) and τ(χ2, ψ) (for q odd) where the character χ2 of order 2 replaces the shift by
1/2. Precisely, a special case of the so-called Hasse-Davenport product relation states:3

Proposition 2.17. Let q be odd, let Fq be a field with q elements and χ2 the non-
trivial multiplicative character of order 2 of Fq. Then, for any multiplicative character χ
and any non-trivial additive character ψ of Fq, we have

(2.10) τ(χ2, ψ)τ(χ2, ψ) = χ(4)τ(χ, ψ)τ(χχ2, ψ),

Proof. This is quite simple using the relations between Gauss sums and Jacobi sums.
First, note that it is a tautology for χ = 1 or χ = χ2 (the latter because χ2(4) = 1), and
otherwise, we have

(2.11)
τ(χ, ψ)2

τ(χ2, ψ)
= J(χ, χ) =

∑
x∈Fq

χ(x(1− x)),

using (1.9) and Proposition 2.13. We now write∑
x∈Fq

χ(x(1− x)) =
∑
y∈Fq

χ(y)
∑

x−x2=y

1

=
∑
y∈Fq

χ(y)× (1 + χ2(1− 4y))

since the quadratic equation x− x2 = y has, in Fq, the same number of solutions of the
discriminant equation ∆2 = 1 − 4y, which is given by using (1.8) with d = 2 (recall q is
odd here).

3 There is another formula known as the Hasse-Davenport relation, which we will consider in the
next chapter.

25



Expanding and using the fact that χ 6= 1, we find

J(χ, χ) =
∑
y∈Fq

χ(y)χ2(1− 4y) = χ(4)J(χ, χ2) = χ(4)
τ(χ, ψ)τ(χ2, ψ)

τ(χχ2, ψ)

by Proposition 2.13 again. Comparing with (2.11), we see that (2.10) is proved. �

2.4. Salié sums

Our last example is meant to illustrate once more some of the points already presented
up to now. It is also a very important type of sums, playing a crucial role in a number
of deep arithmetic problems.

Definition 2.18 (Salié sums). Let Fq be a finite field with q elements, with q odd.
Let χ2 denote the unique non-trivial multiplicative character of order 2 of F×q , and let ψ,
η be additive characters of Fq. The associated Salié sum is defined by

T (ψ, η) =
∑
x∈F×q

χ2(x)ψ(x)η(x−1).

This looks much like the Kloosterman sum (2.3), and one may expect similar proper-
ties. This is the case, with one major surprise: the Salié sums turns out to be expressible
elementarily and (almost) explicitly as a sum of two q-Weil numbers of weight 1!

Theorem 2.19 (Salié). Let Fq be a finite field with q elements, q odd, and let ψ, η
be non-trivial additive characters of Fq. Then we have

(2.12) T (ψ, η) = τ(χ2, ψ)
∑
y2=4a

ψ(y),

where a ∈ F×q is such that η(x) = ψ(ax) for all x ∈ Fq.
In particular, T (ψ, η) is a sum of two q-Weil numbers of weight 1, and we have

(2.13) |T (ψ, η)| 6 2
√
q.

Proof. The idea is to study the variation with respect to b ∈ F×q of

ϕ(b) = T (ψb, η) =
∑
x∈F×q

χ2(x)ψ(bx+ ax−1).

More precisely, we endeavor to represent this function by a discrete multiplicative
Fourier expansion, namely by Proposition 1.10 applied to F×q , we have

(2.14) ϕ(b) =
∑
χ

ϕ̂(χ)χ(b),

where χ runs over all multiplicative characters of F×q and

ϕ̂(χ) =
1

q − 1

∑
b∈F×q

ϕ(b)χ(b).
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We now compute the Fourier coefficients: by the definition of Salié sums, we have

ϕ̂(χ) =
1

q − 1

∑
b∈F×q

ϕ(b)χ(b) =
1

q − 1

∑
b∈F×q

χ(b)
∑
x∈F×q

χ2(x)ψ
(
bx+

a

x

)
=

1

q − 1

∑
x∈F×q

χ2(x)ψ(ax−1)
∑
b∈F×q

χ(b)ψ(bx)

=
τ(χ̄, ψ)

q − 1

∑
x∈F×q

χ2(x)χ(x)ψ(ax−1)

so that

(2.15) ϕ̂(χ) =
χ(a)χ2(a)τ(χ̄, ψ)τ(χ̄χ2, ψ)

q − 1
,

after applying (2.2) twice. We see that we can now appeal to the Hasse-Davenport
formula (2.10) – which is valid for all characters – to derive further that

(2.16) ϕ̂(χ) =
χ2(a)τ(χ2, ψ)

q − 1
χ(4a)τ(χ̄2, ψ)

(observe how, if the “twisting” factor χ2 had been absent, or had been replaced with
another character, we would not have been able to proceed with this step). And finally,
using the expansion (2.14), we get

T (ψ, η) = ϕ(1) =
∑
χ

ϕ̂(χ)

=
χ2(a)τ(χ2, ψ)

q − 1

∑
χ

χ(4a)τ(χ̄2, ψ)

=
χ2(a)τ(χ2, ψ)

q − 1

∑
χ

∑
x∈Fq

χ(4ax−2)ψ(x)

=
χ2(a)τ(χ2, ψ)

q − 1

∑
x∈Fq

ψ(x)
∑
χ

χ(4ax−2)

= χ2(a)τ(χ2, ψ)
∑
y2=4a

ψ(y),

by orthogonality of the multiplicative characters. We can remove the factor χ2(a), because
if it is −1, then a is not a square in Fq, and the inner sum is zero anyway.

Since a 6= 0, the equation y2 = 4a has, in Fq, either 0 or 2 solutions. In the first
case, of course, T (ψ, η) = 0 (and can be written as

√
q − √q as a combination of Weil

numbers); otherwise, if y is one solution, we get T (ψ, η) has a sum of two terms, each
of which is a root of unity multiplied with the q-Weil number τ(χ2, ψ), hence is itself a
q-Weil number of weight 1. The bound (2.13) is then, of course, clear. �

Remark 2.20. This is not the simplest proof, which is probably one due to P. Sarnak,
which is reproduced for instance in [12, Lemma 12.4], and where the idea is to analyze
by additive Fourier transform the function

ϕ̃(b) = T (ψb2 , η),

which can be done without appealing to the Hasse-Davenport relation or anything more
involved than the orthogonality relations for characters. In fact, using this proof, and
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comparing (2.15) with the expansion in multiplicative characters of the resulting formula
for our function ϕ(b), one would derive another proof of (2.10).

Remark 2.21. An analogy quite similar to the one that we pointed out between
Gauss sums and the gamma function (Remark 2.16) may help understand why the Salié
sum could be simpler to handle than the Kloosterman sum.

Indeed, natural analogues of the more general exponential sums given by

Sχ(ψ, η) =
∑
x∈F×q

χ(x)ψ(x)η(x−1)

are the K-Bessel functions defined by the integrals

Kν(x) =
1

2

∫ +∞

0

t−ν exp
(
−x

2

(
t+

1

t

))dt
t
,

where we recognize, as in Remark 2.16, the exponentials replacing additive characters
and power functions replacing the multiplicative ones, and the invariant measure t−1dt
(the normalization and the choice of t−ν instead of tν is due to historical reasons). The
K-Bessel functions satisfy the differential equation

x2y′′ + xy′ − (x2 + ν2)y = 0

(and can be characterized among those solutions as the unique one such that Kν(x) ∼
( π

2x
)−1/2e−x as x→ +∞).
One may think of K0 or K1 as an analogue of the standard Kloosterman sums, and

of K1/2 as an analogue of Salié sums; corresponding to the formula (2.12) is the fact that
K1/2 (and more generally all functions Kn+1/2, where n > 0 is an integer) is an elementary
function, whereas K0 and K1 are not: we have indeed

(2.17) K1/2(x) =
( π

2x

)1/2

e−x

(and one can show using differential Galois theory that K1 can not be expressed as a
finite combination of elementary functions). The formula

J1/2(x) =
( π

2x

)1/2

sin(x) =
( π

2x

)1/2 eix − e−ix

2
,

is even closer in appearance to (2.12); it applies to the J-Bessel function defined by

Jν(x) =
1

2iπ

∫
C

t−ν exp
(x

2

(
t− 1

t

))dt
t

where C is an arbitrary contour in the complex plane enclosing once the origin (in coun-
terclockwise direction), e.g., the unit circle.

In this respect, our computation leading to (2.16) corresponds, roughly, to the fol-
lowing fact: the Mellin transform of the exponential appearing in (2.17) is given by the
gamma function. The idea of the proof itself can be guessed if one knows4 the Mellin
transform of a K-Bessel function, namely∫ +∞

0

Kν(x)xs
dx

x
= 2s−2Γ

(s+ ν

2

)
Γ
(s− ν

2

)
a product of two gamma functions, which corresponds to (2.15). If ν = 1/2 (and only
then), this is of the form Γ(u)Γ(u+ 1/2) (for u = s/2−1/4), in which case one can apply

4 This is a very classical fact, but of course Bessel functions are not necessarily part of the standard
curriculum nowadays.
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the duplication formula to reduce it to a single gamma factor Γ(2u) = Γ(s − 1/2) – as
we did with the Hasse-Davenport formula. The inverse Mellin transform of this leads to
the formula for K1/2(x).

The best understanding of this type of analogies depends on the deeper analysis
of variations of Kloosterman sums and Salié sums; from there, it results that there is
some kind of “Galois group” attached to this variation, which is also analogous to the
differential Galois group associated to the differential equations solved by Bessel functions.
It turns out that these Galois groups are solvable in the case of Salié sums and Bessel
functions of half-integral order, but non-solvable in the case of Kloosterman sums or
generic Bessel functions. Being solvable, in the Bessel case, means exactly that the latter
can be representated elementarily.

2.5. What to expect when you’re estimating?

The computations in this section (Gauss sums, Jacobi sums and Salié sums partic-
ularly) have the following common feature: an exponential sum of oscillatory nature
involving roughly q terms, turns out to be of modulus equal to, or bounded by,

√
q, up to

some multiplicative constant. This is in fact a very general principle, which can be prop-
erly understood using probabilistic heuristics: a “random” sum of n complex numbers
of modulus 1 is, unless very special circumstances apply, usually of size roughly

√
n. A

convincing rigorous formulation can be given in probabilistic language using the funda-
mental limit theorem (also called “central” limit theorem) of probability: let (Xn) be a
sequence of independent random variables, defined on some probability space (Ω,Σ,P),
each of which takes complex values which are uniformly distributed on the unit circle (in
other words,

Xn = e(Un),

where the (Un) are also independent, and are uniformly distributed on [0, 1]). Then we
can form the sums

(2.18) SN = X1 + · · ·+XN =
∑
n6N

e(Un),

which are models of random exponential sums of length N . We ask about the size of
these sums, and one finds that they are typically of size

√
N , in the sense that N−1/2SN

has a well-defined limiting distribution:

Proposition 2.22 (Fundamental limit theorem). With notation as above, for any
fixed real numbers a < b, we have

lim
N→+∞

P
(
a <

SN√
N
< b
)

=
1√
2π

∫ b

a

e−t
2/2dt.

Note that this suggests not only that sums of length N should be of size at most N ,
but also indicates that they can not be of significantly smaller size. This may be a very
useful heuristic aid when trying to devise a strategy to prove certain statements: if one
finds that a certain course of action requires better than “square-root cancellation”, then
it must be examined very critically. It is not inconceivable that the sums involved may be
of such special nature that something like this holds, but there has to be special features
involved.

Of course, the exponential sums we consider form a very special subset of the general
random sums (2.18). But one can easily find many ways to confirm the heuristic principle
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for more reasonable families. For instance, suppose that p is a fixed prime and look at
the set Ωp of all functions

f : Fp → Fp,

and the corresponding sums

S(f) =
∑
x∈Fp

e
(f(x)

p

)
which we view as “random” exponential sums over the field Fp by looking at all possibil-
ities for f , uniformly chosen. Then we claim that

1

|Ωp|
∑
f∈Ωp

|S(f)|2 = p,

(which again confirms that, this time in mean-square average, the sums S(f) are typically
of size

√
p). To prove this, expand the modulus square on the left-hand side using the

definition, and exchange the sum over f , to get

1

|Ωp|
∑
f∈Ωp

|S(f)|2 =
∑
x,y∈Fp

1

|Ωp|
∑
f∈Ωp

e
(f(x)− f(y)

p

)
.

Now we claim that the inner sum is zero unless x = y (the “diagonal terms”), in
which case it is equal to 1. Clearly this implies the mean-square statement.

To see the claim, note that it is obvious if x = y; otherwise, for any a ∈ Fp, the
number of f ∈ Ωp with

f(x)− f(y) = a

is the same (i.e., it is |Ωp|/p); indeed, the map

f 7→ f(x)− f(y)

can be viewed as a linear form on the Fp-vector space Ωp ' Fp
p, and if it is non-zero

(which is the case when x 6= y, as one can take for f the characteristic function of the
singleton {x} which maps to 1), it is surjective and each equation f(x)−f(y) = a defines
a hyperplane in Ωp.

Consequently
1

|Ωp|
∑
f∈Ωp

e
(f(x)− f(y)

p

)
=

1

p

∑
a∈Fp

e
(a
p

)
= 0

by orthogonality.
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CHAPTER 3

The Riemann hypothesis for sums in one variable: introduction

In this brief chapter, we introduce briefly one of the two main topics of this book: a
proof of the Riemann Hypothesis for exponential sums in one variable over a finite field
– one of the finest achievements of A. Weil. The actual proofs are found in the next two
chapters: first in the case of multiplicative character sums, then in the case of additive
characters, where we also consider mixed sums.

3.1. What is the Riemann Hypothesis?

We start with an introductory section that will both state the main theorems to
be proved in this chapter, and explain why those results are analogues of the classical
Riemann Hypothesis for the Riemann zeta function, and for Dirichlet L-functions. This
will provide helpful motivation for the strategy of the proof, which is described afterwards
(even though the Riemann Hypothesis is far from proved, it turns out that some of the
techniques used to prove intermediate results in its direction – such as the Prime Number
Theorem – are very relevant to the situation over finite fields).

We will prove the following two general results for multiplicative and additive char-
acter sums (an analogue result for “mixed” sums, for instance Salié, will appear as a
sequence of exercises). We start with the multiplicative case:1

Theorem 3.1 (A. Weil; Riemann Hypothesis for one-variable multiplicative sums).
Let Fq be a finite field with q elements. Fix a polynomial g ∈ Fq[X], an integer d | q− 1,
d 6= 1, and a multiplicative character χ of Fq of order d, in particular non-trivial.

Let m, 1 6 m 6 deg(g) be the number of distinct zeros of g in F̄q. Then, provided
there is no polynomial h ∈ F̄q[X] such that g = hd, we have

(3.1)
∣∣∣∑
x∈Fq

χ(g(x))
∣∣∣ 6 (m− 1)

√
q.

The additive case is as follows:

Theorem 3.2 (A. Weil; Riemann Hypothesis for one-variable additive sums). Let Fq

be a finite field with q elements. Fix a polynomial f ∈ Fq[X] of degree d and a non-trivial
additive character ψ of Fq.

Then, provided

(3.2) d < q and (d, q) = 1,

we have

(3.3)
∣∣∣∑
x∈Fq

ψ(f(x))
∣∣∣ 6 (d− 1)

√
q.

1 We will explain in detail how the multiplicative case is different, and in many sense easier, than
the additive one.
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Note that the condition d < q in this last result is redundant: the estimate (3.3) is
trivial if d > q; however the proof will provide a more general statement (over extension
fields) where the condition is necessary.

Here are direct corollaries which illustrate the generality which is achieved; both are
important results in their own right in applications to analytic number theory.

Corollary 3.3 (Hasse). Let g ∈ Z[X] be a cubic polynomial with no multiple root
in C, or in other words, such that the discriminant of f is non-zero; for instance, take

g = X3 + aX + b

where ∆ = a3 − 27b2 6= 0. Then we have∣∣∣ ∑
06x6p−1

(g(x)

p

)∣∣∣� √p,
for all primes p, where the implied constant depends only on g.

Proof. Of course we want to apply Theorem 3.1 to Fq = Z/pZ and the reduction
of g modulo p with the character χ given by the Legendre character. Now we claim that
there exists a prime p0 such that the theorem does apply for p > p0 with m = 3. Indeed,
χ is non-trivial as soon as p > 3. Moreover, since deg(g) = 3, the reduction of g is itself
of degree 3 for p not dividing the leading coefficient a3 of g; as such, g (mod p) is not a
second power for such primes. Finally, since the discriminant ∆ of g is non-zero in Z, it
follows that if p does not divide the discriminant of g, its reduction has also three distinct
roots. Thus we have ∣∣∣ ∑

06x6p−1

(g(x)

p

)∣∣∣ 6 2
√
p,

for all primes p > p0 = max(3, p1, p2), where p1 is the largest prime divisor of a3, and p2

that of ∆.
We can now incorporate the “small” primes by a well-known trick:∣∣∣ ∑

06x6p−1

(g(x)

p

)∣∣∣ 6 2
√
p0
√
p

for all primes. �

Corollary 3.4 (Weil). Let f ∈ Z[X] be a non-constant polynomial of degree d.
Then we have ∣∣∣ ∑

06x6p−1

e
(f(x)

p

)∣∣∣� √p,
for all primes p, where the implied constant depends only on f .

Proof. We apply the same trick as before with Theorem 3.2: for p large enough, the
degree of f is also d, and we have (3.2) if p > d. Thus we get∣∣∣ ∑

06x6p−1

e
(f(x)

p

)∣∣∣ 6 (d− 1)
√
p

for p > p0 for some p0, and obtain the final result by replacing the constant d − 1 by
max(d− 1,

√
p0). �
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We now recall the statement, and the arithmetic significance, of the classical Riemann
Hypothesis. In fact, for reasons which we be clear very soon, we consider the Generalized
Riemann Hypothesis for Dirichet L-functions. We won’t give proofs here, but refer to
standard textbooks, such as [12, §5].

Fix some integer m > 1; a Dirichlet character χ modulo m is a map

Z
χ−→ C

defined by

χ(n) =

{
0 if (n,m) 6= 1

χr(n) if (n,m) = 1,

for some multiplicative character

χr : (Z/mZ)× → C×.

Associated with χ is its L-function defined by

L(s, χ) =
∑
n>1

χ(n)

ns

for all complex numbers with Re(s) > 1 (since |χ(n)| 6 1 for all n, this is absolutely
convergent in this region, and defines a holomorphic function there).

For the special case m = 1, χ(n) = 1 for all n, we obtain the Riemann zeta function,
denoted ζ(s). In general, these functions were introduced by Dirichlet to prove that there
exist infinitely many primes in any arithmetic progression p ≡ a (modm) if (a,m) =
1. Two of the main ingredients for that purpose were the orthogonality relations for
characters modulo m, used to write∑

n>1
n≡a (modm)

Λ(n)n−s =
1

ϕ(m)

∑
χ (modm)

χ(a)
∑
n>1

χ(n)Λ(n)n−s

(for suitable weights Λ(n) used to detect the primes), and the Euler product expansion

L(s, χ) =
∏
p

(1− χ(p)p−s)−1,

which leads to a link between the L-functions and the distribution of primes. This is
most commonly expressed by taking the logarithmic derivative of this product, which –
in the region of holomorphy – leads to

−L
′

L
(s, χ) =

∑
n>1

Λ(n)χ(n)n−s

where the von Mangoldt function Λ is defined by

Λ(n) =

{
0 if n is not a power of a prime

log p if n = pm with p prime, m > 1

(in particular, it detects primes, up to higher powers thereof). Combining with the
orthogonality relation, we obtain∑

n>1
n≡a (modm)

Λ(n)n−s = − 1

ϕ(m)

∑
x (modm)

χ(a)
L′

L
(s, χ).
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A further step in Dirichlet’s proof is the fact that L(s, χ) has a meromorphic contin-
uation to C, and is in fact entire if χr 6= 1. This continuation is particularly clear in the
case when χ is primitive. This means that, in parallel to the prime factorization

m =
∏
p|m

pvp

of m and the decomposition

(Z/mZ)× '
∏
p|m

(Z/pvpZ)×

given by the Chinese Remainder Theorem, χr factors as a product

χr =
∏
p|m

χr,p

where each of the character χr,p of (Z/pvpZ)× is itself non-trivial. Then L(s, χ) satisfies
a functional equation:

(3.4) Λ(s, χ) = ia(χ)τ(χ)m−sΛ(1− s, χ̄),

where a(χ) = 0 if χ(−1) = 1, and a(χ) = 1 otherwise, while

Λ(s, χ) = π−s/2Γ
(s+ a(χ)

2

)
L(s, χ),

τ(χ) =
∑

x∈(Z/mZ)×

χ(x)e
( x
m

)
,

the latter being of course a Gauss sum for the finite ring Z/mZ. (This analytic function
Λ should not be confused with the von Mangoldt function.)

Now the Generalized Riemann Hypothesis of L(s, χ) is the following conjectural state-
ment: if χ is primitive, then any zero ρ = β + iγ of L(s, χ) such that 0 < β < 1 satisfies

β = Re(ρ) = 1/2.

Taking the logarithmic derivative, we see that −L′/L has then, in the critical strip

0 6 Re(s) 6 1

only (i) simple poles at the zeros of L(s, χ), with residue giving by minus the multiplicity
of the zeros; (ii) if χ is trivial, a simple pole with residue −1 at s = 1. The most
immediate arithmetic significance of this is obtained by a well-known contour integration
(already known to Riemann): it would follow that∑

n6x
n≡a (modm)

Λ(n) =
x

ϕ(q)
+O(x1/2(log qx)2)

with an absolute implied constant.
In fact, using an easy summation by parts, one can check that the upper bounds∑

n6x
n≡a (modm)

Λ(n) =
x

ϕ(q)
+O(xθ+ε)

for some θ ∈ [1/2, 1[, all ε > 0 and (a,m) = 1 is equivalent with the assertion that all
non-trivial zeros of Dirichlet L-functions L(s, χ) of modulus m satisfy Re(s) = 1/2.

Because of the well-known analogy between integers and polynomials over a finite
field, it seems natural to look at what the analogue of Dirichlet characters are in that
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context. This, it turns out, is one key tool in the study of exponential sums, although it
works well only for purely multiplicative sums.
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CHAPTER 4

Multiplicative character sums

4.1. Characters and L-functions for multiplicative exponential sums

Consider a finite field Fq with q elements and the ring Fq[X] of polynomials in one
variable with coefficients in Fq. It is a principal ideal domain, so to build an analogue
of Dirichlet characters, it is natural fo fix a non-zero monic polynomial g ∈ Fq[X] and
consider maps

η : Fq[X]→ C

defined by

η(f) =

{
0 if (f, g) 6= 1,

ηr(f (mod g)) if (f, g) = 1,

(where the gcd is computed in Fq[X]) and ηr is a group homomorphism

(Fq[X]/gFq[X])× → C×.

Note that, as in the case of the usual Dirichlet characters, we have the multiplicativity
relation

η(f1f2) = η(f1)η(f2),

for all polynomials f1, f2.
As we will see, a more geometric language quickly becomes useful, based on the

fact that elements of Fq[X] can be seen naturally as functions on Fq and its extensions
(including F̄q). The condition that f and g are coprime can be phrased in this language
as saying that they do not have a common zero in F̄q.

The link with exponential sums is given by the following simple lemma:

Proposition 4.1. Let Fq be a finite field, g ∈ Fq[X] a non-constant monic polyno-
mial. Given a non-trivial multiplicative character χ of Fq, there exists a character ηr of
(Fq[X]/gFq[X])× such that the corresponding Dirichlet character satisfies

η(X − t) = χ((−1)deg(g))χ(g(t)),

for any t ∈ Fq. In fact, there exists a unique such character η such that, for any ν > 1
and t ∈ Fqν , we have

(4.1) χ(NFqν /Fq(g(t))) = χ(−1)ν deg(g)η(πt)
ν/d

where πt is the monic irreducible minimal polynomial of t, and d = deg πt is its degree.

Thus the exponential sum ∑
x∈Fq

χ(g(x))

becomes inextricably linked with the Dirichlet character η modulo g.
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Proof. We first factor

(4.2) g =
∏
π|g

πkπ ,

where kπ > 1 and the product runs over monic irreducible polynomials dividing g. The
ideals generated by πkπ are of course coprime, and hence by the Chinese Remainder
Theorem, we have a group isomorphism

(4.3)

{
(Fq[X]/(g))× −→

∏
(Fq[X]/(πkπ))×

f 7→ (f (mod πkπ))π|g
.

Moreover, for all π | g, the quotient ring Fq[X]/(π) is a finite field since π is irreducible.
Every polynomial, by euclidean division, has a unique representative of degree 6 νπ =
deg(π), and hence this field is of order qνπ . Indeed, fixing arbitrarily some root απ ∈ F̄q

of π, we have an isomorphism

(4.4) φπ

{
Fq[X]/(π) −→ Fq(απ) ' Fqνπ

f 7→ f(απ)
.

Now any character ηr of (Fq[X]/(g))×, by (4.3), can be described as the product of
a tuple of characters (ηr,π)π|g of (Fq[X]/(πkπ))×. Among these, we look at characters
defined by

ηr,π(f) = χπ(φπ(f))kπ ,

where χπ is now a multiplicative character of the finite field

Fq[X]/(π) ' Fqνπ .

Applying the character η constructed in this manner to f = X − t we find first that

η(X − t) = 0

if X − t is not coprime with g. That condition is equivalent with t being a zero of g, and
in that case we also have

χ(g(t)) = 0

by our usual convention. So we assume (X − t, g) = 1. In that case, following up on the
definition of η using (4.3) and (4.4), we find

η(X − t) =
∏
π|g

ηr,π(X − t (mod π))

=
∏
π|g

χπ(φπ(X − t))kπ

=
∏
π|g

χπ((απ − t)kπ).

This is getting close to the target; in fact, if we remark that the choice of απ leaves
undesirable room for ambiguity, we are naturally led to assume that χπ is of the type

χπ(x) = χ̃π(NFqνπ /Fq(x)),

so that χπ(x) depends only on the norm, and is therefore independent of the choice of
an isomorphism Fq[X]/(π) ' Fqνπ (this is a consequence of the computation (1.3) of the
kernel of the norm).

Using this, and the formula for the norm

N(απ − t) =
∏

16k6νπ

(απ − t)q
k

=
∏

16k6νπ

(αq
k

π − t)
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for t ∈ Fq, we are led to

η(X − t) =
∏
π|g

χ̃π

( ∏
16k6νπ

(αq
k

π − t)kπ
)
.

And now we see that if χ̃π = χ for all π | g, we have exactly

η(X − t) = χ((−1)deg(g))χ(g(t)),

in view of the factorizations of g and of the irreducible monic polynomial π, namely

π =
∏

16k6νk

(X − αqkπ ).

There remains to prove the more general formula (4.1). For this, we first rewrite the
definition based on our choice of ηr:

(4.5) η(f) =
∏
π|g

χ(NFqνπ /Fq(f(απ)))kπ .

Let $ = πt be the minimal polynomial of t ∈ Fqν , d = deg($). We first note the
factorizations

$ =
d∏
i=1

(X − tqi), π =
νπ∏
k=1

(X − αqkπ ) for π | g,

and notice that the first one also gives

(4.6) $ν/d =
ν∏
i=1

(X − tqi).

We start with Nk/Fqg(t) and develop it as a product using the factorizations of g and
its factors π:

Nk/Fqg(t) =
ν∏
i=1

g(tq
i

) =
∏
π|g

ν∏
i=1

π(tq
i

)kπ

=
∏
π|g

ν∏
i=1

νπ∏
k=1

(tq
i − αqkπ )kπ ,

and now we go backwards after exchanging the two innermost products and apply-
ing (4.6):

Nk/Fqg(t) =
∏
π|g

νπ∏
k=1

(−1)νkπ
ν∏
i=1

(αq
k

π − tq
i

)kπ

= (−1)ν deg(g)
(∏
π|g

NFqνπ /Fq($(απ)kπ)
)ν/d

,

and the definition (4.5) gives precisely (4.1).
Finally the unicity of η follows because, specializing (4.1) to any root of any irreducible

polynomial π of degree ν > 1 (with d = ν), we find that this formula determines the
values of η for any monic irreducible polynomial. Using unique factorization and the
multiplicativity of η, we can deduce uniquely the values of η(f) for any monic f . But
to deduce the general case, by multiplicativity, it is enough to know η(α) for α ∈ F×q a
constant, which we can compute by selecting an arbitrary monic polynomial congruent
to α modulo g (for instance α + g will do, since deg(g) > 1). �
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Remark 4.2. Using the recipe above, one can see that, in fact, we have

(4.7) η(α) =
∏
π|g

χ(ανπkπ) = χ(α)deg(g),

for any α ∈ Fq.

We will say that η is the character associated with the data (g, χ) defining the multi-
plicative character sum.

Corollary 4.3. Let Fq be a finite field, g and χ as above, and let η be the associated
Dirichlet character.

(1) The character η is defined modulo the polynomial g[ which is the product of the
irreducible factors of g, without multiplicity.

(2) If χ is of order d and g is not a d-th power in F̄[x], the associated Dirichlet
character η is such that ηr is non-trivial.

Proof. (1) is clear from the definition (4.5) that we used, since the irreducibles π
appearing are exactly the irreducible factors of g[.

(2) We use the notation in the proof above. If g is not a d-th power in F̄q[X], then
for some π0 | g, of degree ν0 = νπ, the multiplicity k = kπ0 , is not divisible by d, and
therefore the character χk of F×q is non-trivial. Hence, if f ∈ Fq[X] is such that

f(απ) = 1 if π 6= π0, f(απ0) = γ ∈ Fqν0 ,

where
NFqν0 /Fq

(γ) = β,

for β 6= 0 such that χ(β)k 6= 1, we have η(f) 6= 1. Such a polynomial exists: first, γ
exists, given β, by Lemma 1.3, and then the Chinese Remainder Theorem is applicable
since the above argument allows us to rephrase the conditions in the form of congruences

f ≡ 1 (modπ), π 6= π0, f ≡ pγ (mod π0),

where pγ is a polynomial in Fq[X] with pγ(απ0) = β (given by the isomorphism (4.4)). �

Having obtained this, it is very natural to look at the L-functions of such characters.
These turn out to be expressible in three different ways (one more than the Dirichlet
series and Euler products of the usual L-functions).

Definition 4.4 (L-functions over finite fields). Let Fq be a finite field with q elements,
g a non-zero monic polynomial in Fq[X], η a character of Fq[X] modulo g obtained from
a multiplicative character ηr of Fq[X]/(g). The L-function attached to η is defined either
as the Dirichlet series

L(η, s) =
∑
f

η(f)|f |−s,

in its region of convergence, or as the formal power series

L(η, T ) =
∑
f

η(f)T deg(f),

where in both cases the variable f ranges over all non-zero monic polynomials in Fq[X].

Note that the two definitions are related by the formal substitution T = q−s. We will
now see that the series converges for Re(s) > 1, and has an analytic continuation to all
of C as a meromorphic function. If ηr is non-trivial, the L-function is entire, and indeed
this can be proved much more simply than the corresponding fact for the integers!
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Proposition 4.5. Let Fq be a finite field with q elements, g a non-zero monic polyno-
mial in Fq[X], η a character of Fq[X] modulo g obtained from a multiplicative character
ηr of Fq[X]/(g).

(1) The L-function attached to η satisfies the Euler product formula(s)

L(η, s) =
∏
π

(1− η(π)|π|−s)−1, L(η, T ) =
∏
π

(1− η(π)T deg(π))−1,

where π runs over monic irreducible polynomials in Fq[X].
(2) If ηr is not trivial, the L-function L(η, T ) is a polynomial in T of degree 6

deg(g)− 1, with constant coefficient 1.

For the type of L-functions we consider, Part (2) was essentially first proved by F.K.
Schmidt. This can be generalized considerably, though not without becoming a much
harder result.

Proof. Part (1) is a simple computation which parallels the case of classical Euler
products. The point is that we have

η(f1f2)T deg(f1f2) = η(f1)T deg(f1) × η(f2)T deg(f2)

for all non-zero f1 and f2 so, at least formally, we can expand∏
π

(1− η(π)T deg(π))−1 =
∏
π

∑
d>0

η(πd)T d deg(π)

=
∑
f

∑
π
d1
1 ···π

dm
m =f

η(f)T deg(f)

= L(η, T )

since, by unique factorization, the inner sum contains a single term for all f monic in
Fq[X].

For Part (2), according to the definition, the coefficient of T d in the formal power-series
expansion of L(η, T ) is given by the sum∑

deg(f)=d

η(f),

where f runs over monic polynomials of degree d. There are, obviously, qd such polyno-
mials. For each, the value η(f) depends, by definition, only on f (mod g).

Now we have the following fact: if d > deg(g), then for every residue class f̄ in
Fq[X]/(g), there are exactly qd−deg(g) monic polynomials of degree d in Fq[X] congruent
to f̄ modulo g. Indeed, if f is the unique representative of the class f̄ which is of degree
< deg(g), the required polynomials are exactly those of the type

f1 = f + gh

where deg(h) = d − deg(g) (they have to be of the form f + gh, by definition, and the
condition that the degree be equal to d > deg(g) > deg(f) implies that this degree be
d = deg(gh) = deg(g) + h), and there are qd−deg(g) such polynomials.
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Hence we can easily compute the coefficient of T d in L(η, T ) for all d > deg(g):∑
deg(f)=d

η(f) =
∑

f̄∈Fq [X]/(g)

ηr(f̄)
∑

deg(f)=d
f≡f̄ (mod g)

1

= qd−deg(g)
∑

f̄∈(Fq [X]/(g))×

ηr(f̄)

= 0

by orthogonality, since ηr 6= 1. It follows that L(η, T ) must be a polynomial of degree
< deg(g). �

Remark 4.6. (1) There is not necessarily equality degL(η, T ) = deg(g), for reasons
having to do with “primitivity” (which is quite analogue to what happens for classi-
cal Dirichlet characters). For instance, for the characters associated with multiplicative
character sums, since η is defined modulo g[, the degree of the L-function is at most
deg(g[) − 1. But, although we will see in Proposition 4.8 that in some cases there is
equality, this is definitely not always the case. For example, consider g = gd1g2 with g1,
g2 non-constant. Then of course χ(Ng(x)) = χ(Ng2(x)) for any x ∈ Fqν (with g(x) 6= 0),
so the character η can be associated to g2 only.

(2) For completeness, lets us describe what happens if ηr is trivial (though this is not
a case of interest for us). We can then compute directly the L-function by

L(η, T ) =
∑

f monic
(f,g)=1

T deg(f)

=
∏
π|g

(1− T deg(π))
∑

f monic

T deg(f)

=
∏
π|g

(1− T deg(π))
∑
ν>0

qνT ν

=

∏
π|g (1− T deg(π))

1− qT
.

Thus, although this is not a polynomial, this L-function remains a rational function;
its only pole is located at T = 1/q, and in terms of the complex variable s with T = q−s

this corresponds to poles on the line Re(s) = 1.
Of course, a character η with ηr trivial is only primitive when g = 1, in which case

the L-function is simply 1/(1− qT ).

At this point, it is natural to look more precisely at the L-function associated to a
multiplicative character sum.

Proposition 4.7. Let Fq be a finite field with q elements, g a non-zero monic poly-
nomial in Fq[X] and χ a non-trivial multiplicative character of order d > 1.

Then the L-function of the associated Dirichlet character η satisfies the exponential
generating series identity

(4.8) L(η, T ) = exp
(∑
ν>1

Sν(η)

ν
T ν
)
,
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where

(4.9) Sν(η) = χ(−1)ν deg(g)
∑
x∈Fqν

χ(NFqν /Fq(g(x)))

for ν > 1.

From this, we see in particular that, given g and χ, we can reconstruct the L-function
of the associated character η of Fq[X]/(g) by means of the “companion” sums

S̃ν =
∑
x∈Fqν

χ(NFqν /Fq(g(x)))

for ν > 1, for which

(4.10) exp
(∑
ν>1

S̃ν
ν
T ν
)

= exp
(∑
ν>1

Sν(η)

ν
(ε(χ)T )ν

)
= L(η, ε(χ)T ),

where ε(χ) = χ(−1)deg(g). In doing this, we do not need to formally introduce η and its
L-function. We will often use this shortcut and denote by Z(g, χ;T ) the left-hand side
of (4.10).

Proof. We start with the Euler product expansion of L(η, T ), computing TL′/L as
a formal power series:

T
L′

L
(η, T ) = T

∑
π

deg(π)
η(π)T deg(π)−1

1− η(π)T deg(π)

=
∑
π

deg(π)
∑
r>1

η(πr)T r deg(π) =
∑
ν>1

SνT
ν

where
Sν =

∑
rd=ν

d
∑

deg(π)=d

η(π)r.

Comparing with the generating series, we see that we must show that Sν = Sν(η) as
defined in (4.9). Note already that for ν = 1, we have

S1 =
∑

deg(π)=1

η(π) =
∑
t∈Fq

η(X − t) = χ(−1)deg(g)
∑
x∈Fq

χ(g(x))

by assumption. The general case uses (4.1) in a similar way: abbreviating N instead of
NFqν /Fq , and writing πx the minimal polynomial of an element x, we can write∑

x∈Fqν

χ(Ng(x)) = χ(−1)ν deg(g)
∑
x∈Fqν

η(πx)
ν/ deg(x)

= χ(−1)ν deg(g)
∑
π irred.
deg(π)|ν

dη(π)ν/ deg(π)

= χ(−1)ν deg(g)Sν ,

since an irreducible (monic) polynomial π of degree dividing ν appears as the minimal
polynomial of exactly d elements in Fqν – its roots. �

By Proposition 4.5, for a character χ of order d such that g is not a d-th power, the
L-function is a polynomial of degree 6 m− 1, m = deg(g[) being the number of distinct
roots of g in F̄q. In fact, this is the exact degree under a slightly stronger condition, as
follows from the following result:
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Proposition 4.8. Let Fq be a finite field with q elements. Let g be a non-constant
monic polynomial in Fq[X] and let η be a Dirichlet character of Fq[X] modulo g, which
is primitive, in particular has ηr 6= 1. Then the L-function L(η, T ) is a polynomial of
degree deg(g)− 1, of the form

L(η, T ) = 1 + c1(η)T + · · ·+ cd−1(η)T d−1

with leading coefficient of modulus given by

|cd−1(η)| =

{
q(deg(g)−1)/2, if η | F×q is non-trivial

qdeg(g)/2−1, otherwise,

where the restriction of η to F×q is defined as the restriction to non-zero constant polyno-
mials, i.e., as the composite

F×q → Fq[X]
η−→ C×,

which is a multiplicative character of Fq.

Note that although it may very well be the case that η | F×q = 1 even though η is
not globally trivial (e.g., take q = 2; then there is non-trivial multiplicative character of
F×2 , but of course there are many Dirichlet characters of F2[X]); in that case, it should
be pointed out that we have defined η(0) = 0 because the zero polynomial is not coprime
with g, although the trivial character maps 0 to 1 by our convention. So one must be a
little bit careful, but we will avoid evaluating η | F×q at 0.

Proof. We will in fact give a precise “formula” for the coefficient of degree deg(g)−1
of the L-function, in terms of Gauss sums (slightly more general than those of Section 2.1),
and the value of the modulus will follow from this. Below in Proposition 4.11, we will show
that this is also a special case of the analogue for L(η, T ) of the functional equation (3.4)
for classical Dirichlet L-functions.

For clarity, denote by R the finite ring R = Fq[X]/(g), and R× its group of units.
The ring R is an Fq-vector space of dimension d = deg(g), with canonical basis given by
(1, X, . . . , Xd−1). We denote by `i(f), for 0 6 i 6 d− 1, the coefficients of f ∈ R in this
basis:

f =
∑

06i6d−1

`i(f)X i, for f ∈ R.

Now fix a non-trivial additive character ψ of Fq, and let ψ1 denote the (obviously
non-trivial) additive character {

R −→ C×

f 7→ ψ(`d−1(f)).

We can now start the computation. By Definition 4.4, the coefficient cd−1(η) of T d−1

in L(η, T ) (which could be zero) is given by

cd−1(η) =
∑

f monic
deg(f)=d−1

η(f),

and since the degree involved is < deg(g), so that the reduction modulo g is injective on
the polynomials involved, this can be rewritten as a sum over a subset of R:

cd−1(η) =
∑
f∈R

`d−1(f)=1

η(f).
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We now detect the second condition in the sum using the characters ψ and ψ1, which
are perfectly suited for this purpose:

cd−1(η) =
∑
r∈R

`d−1(f)=1

η(f) =
∑
f∈R

η(f)× 1

q

∑
α∈Fq

ψ(α(`d−1(f)− 1))

=
1

q

∑
α∈Fq

ψ(−α)
∑
f∈R

η(f)ψ1(αf)

=
1

q

∑
α∈F×q

ψ(−α)
∑
f∈R×

η(f)ψ1(αf),

since, on the one hand, the contribution of α = 0 is the average of the non-trivial character
η on R, and on the other-hand η(f) = 0 if f /∈ R×.

The inner sum over f is quite recognizably a Gauss sum, over the finite ring R instead
of a finite field. It satisfies similar properties as the Gauss sums we saw in Section 2.1,
and to begin with, we have∑

f∈R×
η(f)ψ1(αf) = η̄(α)

∑
f∈R×

η(f)ψ1(f)

for α ∈ F×q , by a simple change of variable.
Thus we find the formula

cd−1(η) =
1

q

(∑
f∈R×

η(f)ψ1(f)
)(∑

α∈F×q

ψ(−α)η̄(α)
)

=
τ(η, ψ1)τ(η̄ | F×q , ψ̄)

q
.(4.11)

with the obvious notation for the Gauss sum over R.
The Gauss sum for the restriction of η to F×q satisfies

|τ(η̄ | F×q , ψ̄)| =

{
1 if η | F×q = 1,
√
q otherwise,

by Proposition 2.4. As for the Gauss sum over R, we claim that, for η primitive, as we
assumed, we have

(4.12) |τ(η, ψ1)|2 = |R| = qd.

Granting this, we obtain

|cd−1(η)| =

{
q(d−1)/2 if η | F×q 6= 1,

qd/2−1 otherwise,

as desired.
To prove (4.12), let us assume first that g is squarefree, in which case the primitivity

assumption is more transparent. The easiest way to proceed is to use once more the
isomorphism

R '
∏
π|g

Fq[X]/(π),
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from which it follows that η factors as

η(f) =
∏
π|g

ηπ(f),

where ηπ is a character of the multiplicative group (Fq[X]/π)× (of a finite field with
qdeg(π) elements); then primitivity means that none of the ηπ is trivial. Using the above
isomorphism again, we derive by the Chinese Remainder Theorem the product formula

τ(η, ψ1) =
∏
π|g

τ(ηπ, ψπ),

where ψπ is the π-component of the additive character ψ1 of R. Once we show that
ψπ is also non-trivial for all π, this product formula leads to the claim after applying
Proposition 2.4 once more. But indeed, for x ∈ Fqdeg(π) , we compute ψπ(x) as ψ1(f)
where f is a polynomial in Fq[X] mapping a root (denoted απ) of π to x and mapping
the roots of the other irreducible factors to 0. Observe that any of the monic polynomials
f given by

f =
g

π
h

where deg(h) = deg(π)−1 > 0 satisfy the latter condition. We then have ψ1(f) = 1, and
more generally for such a polynomial and any x ∈ F×q , we get

ψπ(xf(απ)) = ψ1(xf) = ψ(x).

Now, since ψ is non-trivial, we can find α for which this is not = 1. �

Corollary 4.9. Let Fq be a finite field with q elements, let g be a non-constant
monic polynomial and χ a character of order d such that d - deg(g) and there is no
irreducible factor π of g of multiplicity divisible by d.

(1) The zeta function Z(g, χ;T ) is a polynomial of degree m − 1, taking value 1 at
T = 0, and with leading coefficient of modulus q(m−1)/2, where m is the number of distinct
zeros of g in F̄q.

(2) Factor the polynomial as

Z(g, χ;T ) =
∏

16j6m−1

(1− ΩjT ),

with Ωj ∈ C. Then for any ν > 1, we have

(4.13) S̃ν =
∑
x∈Fqν

χ(NFqν /Fq(g(x))) = −
{

Ων
1 + · · ·+ Ων

m−1

}
,

and moreover |Ω1 · · ·Ωm−1| = q(m−1)/2.

Proof. For (1), we apply Proposition 4.8 to the character η associated to the data
(g, χ). The assumption that deg(g) 6≡ 0 (mod d) implies that χdeg(g) 6= 1, so that g is not
a d-th power in F̄q[X]. Also, η restricted to the non-zero constants is the same as χdeg(g)

by (4.7), hence is non-trivial.
We know that η is defined modulo g[ (defined in Corollary 4.3), which has degree m.

To check that it is indeed primitive modulo g[, we argue as in the proof of this corollary
that, for π dividing g, the π-component ηπ is the character of (Fq[X]/π)× given by

ηπ(x) = χ(NF
qdeg(π)

/Fqf(απ)kπ)

for x ∈ (Fq[X]/π)× and f a polynomial in Fq[X] mapping the root απ of π to x and roots
of the other irreducible factors to 1. Thus, the proof in Corollary 4.3 exactly shows that
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one can find x with ηπ(x) 6= 1 for all those π where the multiplicity kπ is not divisible by
d, which we assumed were all irreducible factors.

(2) We now consider the identity

exp
(∑
ν>1

S̃ν
ν
T ν
)

= Z(g, χ;T ) =
∏

16j6m−1

(1− ΩjT ),

and proceed to apply the operator TZ ′/Z on both sides; applying the geometric series
expansion, we obtain ∑

ν>1

S̃νT
ν = T

∑
16j6m−1

(−Ωj)
∑
ν>0

Ων
jT

ν

= −
∑
ν>1

( ∑
16j6m−1

Ων
j

)
T ν ,

hence the result after comparing.
As to the product of the Ωj’s, up to sign, this is the same as the leading term of the

zeta function, hence its modulus is given by Proposition 4.8. �

Remark 4.10. (1) We have already noticed, taking examples like g = gd1g2 with gi
non-constant, that the restrictions in this corollary are not artificial.

(2) In terms of the L-function L(η, T ), if we factor the latter as

L(η, T ) =
∏

16j6m−1

(1− ωjT ),

as we can since L(η, 0) = 1, we get∑
x∈Fqν

χ(NFqν /Fq(g(x))) = −ε(χ)ν
{
ων1 + · · ·+ ωνm−1

}
.

(3) If g does not satisfy the assumption of this corollary, but still is associated with a
non-trivial η, we can still use Proposition 4.5 to deduce a representation

(4.14)
∑
x∈Fqν

χ(NFqν /Fq(g(x))) = −ε(χ)ν
{
ων1 + · · ·+ ωνδ

}
,

for all ν, where δ 6 m− 1 is the degree of the L-function L(η, T ) as polynomial, and the
ωj 6= 0 are such that

L(η, T ) = (1− ω1T ) · · · (1− ωδT ).

It will be often convenient to define ωj = 0 for δ+ 1 6 j 6 m− 1, so that the formula
becomes the same as the one before, but some of the inverse roots ωj can be zero.

(4) Examples of situations where this corollary applies are given by χ of order 2 and
g squarefree of odd degree.

For the purpose of proving Theorems 3.1, we do not need more than Proposition 4.5
(even the knowledge of the leading term is only useful to give additional information).
However, it is of some interest to go deeper, especially by analogy with classical Dirichlet
characters and their functional equation (3.4). This has, indeed, an analogue, which we
prove in the simplest case:

Proposition 4.11. Let Fq be a finite field with q elements. Let g be a non-constant
monic polynomial of degree d in Fq[X] and let η be a Dirichlet character of Fq[X] modulo
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g, which is primitive and has η | F×q 6= 1. Then the L-function L(η, T ) satisfies the
functional equation

L(η, T ) = W (η)T d−1L(η̄, (qT )−1),

or equivalently

L(η, q−s) = W (η)Q−sL(η̄, q−(1−s)), Q = qd−1,

where

W (η) =
τ(η, ψ1)τ(η̄ | F×q , ψ̄)

q
.

Proof. The argument is an elaboration of that of Proposition 4.8, which follows
indeed from the functional equation by comparing the leading terms on both sides. So
we use notation like in the proof above, in particular we consider R = Fq[X]/(g). Since η̄
is itself clearly a primitive Dirichlet character with η̄|F×q 6= 1, we can write the functional
equation as a polynomial identity

(4.15) 1 + c1(η)T + · · ·+ cd−1(η)T d−1 =

W (η)T d−1
(

1 +
c1(η̄)

qT
+ · · ·+ cd−1(η̄)

(qT )d−1

)
,

where

cj(η) =
∑

f monic
deg(f)=j

η(f),

and similarly for η̄. In particular, Proposition 4.8 shows that the coefficients of T d−1 on
both sides coincide.

Fix j with 1 6 j 6 d− 1. The reduction map Fq[X]→ R is injective on polynomials
of degree 6 j 6 d − 1. We express cj(η) as a sum over R, and then R×, by detecting
with additive characters the d− j conditions

`j(f) = 1, `j+1(f) = · · · = `d−1(f) = 0,

which characterize the image of monic polynomials of degree j in R. Doing this, we find
that cj−1(η) is equal to

1

qd−j

∑
f∈R

η(f)
∑

α=(αj ,...,αd−1)∈Fd−jq

ψ(αj(`j(f)− 1) + αj+1`j+1(f) + · · · )

which we write as
1

qd−j

∑
α

ψ(−αj)S(η,α),

with

S(η,α) =
∑
f∈R

η(f)ψ
(d−1∑
k=j

αk`k(f)
)

=
∑
f∈R×

η(f)ψ
(d−1∑
k=j

αk`k(f)
)
.

Now we observe that, in R, we have

d−1∑
k=j

αk`k(f) = `d−1(fhα)

for the polynomial (where the coefficients of α are coded in descending order) given by

hα = αjX
d−1−j + · · ·+ αd−2X + αd−1.
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We can therefore interpret S(η,α) as another Gauss sum over R using the characters
ψh(f) = ψ(`d−1(fh)) = ψ1(fh), namely

S(η,α) = τ(η, ψhα).

We now claim that, as in (2.2), we have

(4.16) τ(η, ψh) = η̄(h)τ(η, ψ1)

for any h ∈ R (not necessarily in R×). Taking this for granted, we get

cj(η) =
τ(η, ψ1)

qd−j

∑
α

η(hα)ψ(−αj)

=
τ(η, ψ1)

qd−j

∑
h∈Fq [X]

deg(h)6d−1−j

η(h)ψXj(−h)

after identifying polynomials of degree 6 d− 1− j 6 d− 1 with the polynomials hα via
their coefficients.

For the final step, we write∑
g∈Fq [X]

deg(h)6d−1−j

η(h)ψXj(−h) =
∑

h∈Fq [X]
deg(h)6d−2−j

η(h) +
∑

deg(h)=d−1−j

η(h)ψXj(−h),

and we notice first that∑
deg(h)=d−1−j

η(h)ψXj(−h) =
∑
α∈F×q

ψ(−α)
∑

deg(h)=d−1−j
`d−1−j(h)=α

η(h)

=
∑
α∈F×q

ψ(−α)η̄(α)
∑

deg(h)=d−1−j
h monic

η(h)

(by a substitution h 7→ α−1h)

= τ(η̄ | F×q , ψ̄)cd−1−j(η̄).

The remaining term is

R =
∑

h∈Fq [X]
deg(h)6d−2−j

η(h),

and it follows by substituting h by αh with α ∈ F×q that

R = η(α)R

for every such α. Since we assumed that η̄ | F×q 6= 1, this implies that R = 0, and the
final relations

cj(η) =
τ(η, ψ1)τ(η̄ | F×q , ψ)

qd−j
cd−1−j(η̄),

valid for 1 6 j 6 d − 1, are precisely those that are needed to check the functional
equation (4.15) by comparison of coefficients.

We must still check (4.16). If h ∈ R× (i.e., if h is coprime with g in Fq[X]), this
is obvious by the usual change of variable. If h /∈ R×, the right-hand side is zero, and
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we must show that τ(η, ψh) is also zero. But assuming first that g is squarefree, we can
factor the Gauss sum as

τ(η, ψh) =
∏
π|g

τ(ηπ, ψπ,h)

with ψπ,h(x) = ψπ(h(απ)x) for x ∈ Fq(απ) (with notation as in the proof of Proposi-
tion 4.8). If h is not coprime with g, one of the irreducible factors π divides h, and then
ψπ,h is the trivial additive character. Since τ(ηπ, 1) = 0 (because ηπ is non-trivial by
primitivity), we obtain the desired conclusion. �

Example 4.12. In some cases, the leading term (i.e., the constant W (η)) of Proposi-
tion 4.8 can be computed more explicitly. We give one important example, corresponding
to the case of Corollary 3.3. Let q be odd, let g ∈ Fq[X] be a cubic polynomial of the
form

g = X3 + aX + b

which is squarefree in Fq[X], and let χ be the non-trivial quadratic character of Fq. Since
m = d = 3, the L-function for the corresponding Dirichlet character is of the form

L(η, T ) = 1 + c1(η)T + c2(η)T 2,

for some c1(η) ∈ Z (indeed, we have

c1(η) =
∑
t∈Fq

η(X − t) = χ(−1)
∑
t∈Fq

χ(g(t))

and the values of χ are integers), and a leading term with |c2(η)| = q. Moreover, this
leading term is an integer, since we have again the expression

c2(η) = χ(−1)
∑

a0,a1∈Fq

η(X2 + a1X + a0),

where, denoting α1, α2, α3 the three roots of g in F̄q, we have

η(X2 + a1X + a0) = χ
( ∏

16i63

(α2
i + a1αi + a0)

)
by (4.5). Therefore, c2(η) is either q or −q, and we have the question of determining the
sign (a variant of the question of computing the sign of a quadratic Gauss sum).

4.2. The Riemann hypothesis for multiplicative character sums

We consider the data (g, χ) over a finite field Fq, for which we have the associated
multiplicative character sum. Comparing (4.14) with the statement of Theorem 3.1, we
see that the latter would follow immediately if we knew suitable bounds for the moduli
of the Ωj’s, or equivalently of the ωj’s. This is indeed the “right” version of the Riemann
Hypothesis.

Theorem 4.13 (A. Weil). Let Fq be a finite field, g a non-constant monic polynomial
in Fq[X].

(1) If η is a primitive Dirichlet character modulo g, non-trivial on the subgroup of
constants, then writing

L(η, T ) =
∏

16j6deg(g)−1

(1− ωjT ),

every ωj is a q-Weil number of weight 1. In particular, every zero ρ of L(η, q−s) satisfies
Re(ρ) = 1/2.
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(2) More generally, for any non-trivial η, if its L-function is a polynomial of degree
δ 6 deg(g)− 1 written as

L(η, T ) =
∏

16j6δ

(1− ωjT ),

we have
|ωj| 6

√
q

for all j.

We will not prove this in full generality here but restrict our attention for the moment
to those η coming from multiplicative exponential sums.

Proposition 4.14 (A. Weil). Let Fq be a finite field, g a non-constant monic poly-
nomial in Fq[X], χ a multiplicative character of order d > 1.

(1) If d - deg(g) and no irreducible factor of g is of multiplicity divisible by d, then

Z(g, χ;T ) =
∏

16j6deg(g[)−1

(1− ΩjT ),

every Ωj is a q-Weil number of weight 1.
(2) More generally, if g is not a d-th power in F̄q[X], then if its zeta function is a

polynomial of degree δ 6 deg(g[)− 1 written as∏
16j6δ

(1− ΩjT ),

we have

(4.17) |Ωj| 6
√
q

for all j.

Using the formula (4.14) for the exponential sums in terms of the Ωj’s, we see that
this proposition immediately implies Theorem 3.1.

Before proving this, we first observe that it is enough to prove Part (2); indeed, in
the situation of Part (1), we know that δ = deg(g[)− 1 and that

|Ω1 · · ·Ωδ| = q(δ−1)/2

by Proposition 4.8, so that, for any j, we have

|Ωj| >
q(δ−1)/2∏
k 6=j |Ωk|

> q1/2

by (4.17). Hence, in fact, we have |Ωj| =
√
q exactly. There remains to check that Ωj

is a Weil number, i.e., that all its conjugates are also of modulus
√
q. More generally, if

η is a primitive Dirichlet character modulo g, non-trivial on the constants, and σ is an
automorphism of C (or of the field generated by the roots of the L-function of η), then
we have

L(η, T )σ =
∑

f monic

(σ ◦ η)(f)T deg(f) = L(σ ◦ η, T ),

and since σ ◦ η is again easily seen to be a primitive character modulo g, non-trivial on
the constants, we see the conjugates under σ of the inverse roots ωj of L(η, T ) are inverse
roots of L(σ ◦ η, T ). Hence in our case, applying the argument above to σ ◦ η ensures
that the image under σ of Ωj is of modulus

√
q, for any σ.

Now, we will use the following nice trick (with B =
√
q) in order to prove (4.17)

without having to deal with the individual ωj’s:
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Lemma 4.15. Let δ > 1 be an integer, and ω1, . . . , ωδ complex numbers such that,
for some constant A > 0, we have

|ων1 + · · ·+ ωνδ | 6 ABν

for all ν > 1. Then in fact

|ωj| 6 B

for all j.

Proof. Although this is not necessary, and a bit wasteful, we use the “slick” proof:
first, we can assume all ωj 6= 0; we then consider the generating series

f(z) =
∑
ν>1

(ων1 + · · ·+ ωνδ )zν

as a function of z ∈ C. The assumption shows that f is an absolutely convergent power
series, hence a holomorphic function, in the open disc |z| < B−1. On the other hand, we
can write

f(z) =
δ∑
j=1

∑
ν>1

ωνj z
ν =

δ∑
j=1

ωjz

1− ωjz

at least in the open disc

|z| < min
j
|ωj|−1.

By the principle of analytic continuation, the rational function on the right-hand side
must have radius of convergence equal to that of f , i.e., at least 1/B. Hence |ωj|−1 > B−1,
which gives the result. �

The next step before embarking on the difficult part of the work, is to exploit this
lemma and averaging over characters to reduce to some point-counting. This will be
crucial, as it allows us to use positivity arguments.

Lemma 4.16 (Reduction to point counting). Let Fq be a finite field, g a non-constant
monic polynomial in Fq[X], d | q − 1 an integer. For all ν > 1, we have∑

χd=1
χ 6=1

∑
x∈Fqν

χ(NFqν /Fqg(x)) = |{(x, y) ∈ Fqν × Fqν | yd = g(x)}| − qν ,

where χ runs over non-trivial multiplicative characters of Fq of order dividing d.

Proof. This is immediate by the formula (1.7), after subtracting the contribution of
the trivial character, once we note that for any ν > 1, the multiplicative characters

χ ◦N : x 7→ χ(NFqν /Fqx)

of Fqν are all the characters of order dividing d (which divides qν − 1) of the extension
field. It is clear that

χ 7→ χ ◦N
is a homomorphism from the group of characters of order dividing d of Fq to that for
Fqν . Since each of these groups is cyclic of order d, it is enough to show that if χ 6= 1,
then χ◦N 6= 1. However, this follows immediately from the surjectivity of the norm map
(Lemma 1.3). �

The main theorem will then be the following:
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Theorem 4.17 (Stepanov, Bombieri). Let Fq be a finite field where q = p2ν for some
ν > 1, g ∈ Fq[X] a non-constant polynomial, d | q−1 an integer such that (deg(g), d) = 1.
Then there exists a constant C > 0, depending only on d and the degree of g, such that

||{(x, y) ∈ Fq × Fq | yd = g(x)}| − q| 6 Cq1/2.

Here is how all these ingredients combine, in the case where g has degree coprime
with d and is squarefree: applying (4.14) to all the data (g, χ) where χ is non-trivial and
of order dividing d, we find a finite collection of complex numbers containing all ωj’s for
such a χ, with the property that ∣∣∣∑

i

ω2ν
i

∣∣∣ 6 Cqν

for all ν (by Theorem 4.17 applied to g over Fq2ν , using the fact that C is independent
of q). By Lemma 4.15, each of the ωi’s satisfy |ωi|2 6 q, hence |ωi| 6

√
q, as we wanted

to prove.

4.3. Stepanov’s method

We now finally attack the proof of Theorem 4.17, using notation as in the statement.
The original basic idea of Stepanov is so simple that it is quite surprising that it should
work: he constructed an auxiliary polynomial A ∈ Fq[X], and a parameter m > 1, such
that (i) A 6= 0; (ii) for any x such that g(x) is a d-th power in Fq, A vanishes at x to
order at least m, i.e., the polynomial (X − x)m divides A. Since the number of solutions
to any equation yd = β, β ∈ Fq, is at most d, it follows by looking at the degree of A
that

(4.18) |{(x, y) ∈ Fq × Fq | yd = g(x)}| 6 d deg(A)

m
.

This seems to be only half (and maybe the easier half!) of the work, as it provides
only an upper bound for the point-counting. However, a well-known trick shows this is
enough. We phrase it as a lemma:

Lemma 4.18 (From upper bound to lower bound). Let Fq be a finite field. For any
d | q− 1 and g ∈ Fq[X] non-constant of degree coprime with d, let a(g) ∈ Z be defined by
the equality

|{(x, y) ∈ Fq × Fq | yd = g(x)}| = q + a(g).

Then we have

|{(x, y) ∈ Fq × Fq | yd = g(x)}| > q − (d− 1) max
ε∈F×q

|a(εg)|.

Proof. The idea is simply to cover all of Fq with d sets corresponding to the x-
coordinates of solution sets for various polynomials of the same degree as g. This is
possible because, for every x ∈ Fq, f(x) is, if not a d-th power, at least one up to
multiplication by a coset representative of the finite cyclic group

F×q /(F
×
q )d.

To be precise, fix representatives {1, ε2, . . . , εd} of this group, and for any of them ε,
let

hε = ε−1g,

which has same degree as g, and let

C∗ε = {(x, y) ∈ Fq × F×q | yd = hε(x)} ;
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observe that y is taken to be non-zero here so that, by definition, the cardinality of this
set can be written

|C∗ε| = q + a(hε)− z(g),

where 0 6 z(g) 6 deg(g) is the number of zeros of g in Fq.
Then, since g(x) is of the form εyd for a unique coset representative ε and for d values

of y, provided g(x) 6= 0, we have∑
ε

|C∗ε| =
∑
ε

∑
yd=ε−1g

1 =
∑
x∈Fq
g(x) 6=0

d = d(q − z(g)).

Comparing, this means that

d(q − z(g)) +
∑
ε

a(hε) = d(q − z(g)),

hence

a(g) > −(d− 1) max
ε 6=1
|a(gε)|,

which is the claim of the lemma. �

This lemma shows that it will be enough to prove the upper bound

(4.19) |{(x, y) ∈ Fq × Fq | yd = g(x)}| 6 q + Cq1/2.

(for q a square and some constant C depending only on d and deg(g)) in order to finally
prove Theorem 4.17: applied to an arbitrary h = εg with ε ∈ F×q , we obtain a(h) 6 Cq1/2,
and hence

|{(x, y) ∈ Fq × Fq | yd = g(x)}| > q − (d− 1)Cq1/2,

which together with (4.19) gives Theorem 4.17.
However, implementing this strategy leads an annoying technical issue: how should

one detect zeros of high order of polynomials in positive characteristic p? Over Q, one
would of course say that P ∈ Z[X] is divisibly by (X − x)m if and only if

P (x) = P ′(x) = · · · = P (m−1)(x) = 0.

However, this fails for zeros of order m > p in characteristic p: indeed, the polynomial
P = Xp ∈ Fp[X] is such that P (j)(0) = 0 for all j > 0 – because the p-th derivative
is equal to the constant p! = 0 in Fp (though not in Q). Since, as it turns out, the
parameter m in the proof of Theorem 4.17 will often be larger than the characteristic p,
Stepanov required another tool, the Hasse derivatives.

E. Bombieri, in his Bourbaki report on Stepanov’s work [1], gave a proof of a gen-
eralized version of Stepanov’s result, using a simpler construction avoiding the use of
Hasse derivatives. We give this argument, specialized to the situation at hand. This has
the further advantage of bringing in, quite naturally and elementarily, some notions of
algebraic geometry.

Bombieri’s idea depends on considering the set of solutions of the equation as a geo-
metric object (an algebraic curve); thus, let

(4.20) C = {(x, y) ∈ F̄2
q | yd = g(x)}

be this set of solutions, with coordinates in a fixed algebraic closure of Fq. This is an
infinite set, and one denotes

C(Fq) = {(x, y) ∈ F2
q | yd = g(x)} = {x ∈ C | Fr(x) = x},
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where the Frobenius automorphism Fr acts on C in the obvious way, namely:

Fr(x, y) = (xq, yq)

Note that, to obtain the last crucial identity

C(Fq) = {x ∈ C | Fr(x) = x},

we used the fact that g ∈ Fq[X], so that Fr(g(x)) = g(Fr(x)).
Instead of polynomials, we consider functions on C, and more precisely, restrictions

to C of polynomials in Fq[X, Y ]. The ring of such functions can be identified with the
quotient ring

O(C) = Fq[X, Y ]/(Y d − g(X)),

(which is easily seen to be an integral domain). Any element f ∈ O(C) can be expressed
uniquely as

(4.21) f =
d−1∑
i=0

gi(X)Y i,

where gi ∈ Fq[X]. The auxiliary function will be constructed as an element of O(C). A
suitable analogue of (4.18) is obtained by looking at functions 0 6= f ∈ O(C) which vanish
to some larger order > m at all points x ∈ C(Fq), and yet have a small enough “degree”.
One of the main points is indeed to define this degree for these functions which are more
complicated than mere polynomials. A suitable definition is as follows, at least in the
case (d, deg(g)) = 1, which we now assume:

Definition 4.19 (Degree “at infinity” of a function on C). Let Fq, d | q − 1 and
g ∈ Fq[X] be as above, with (d, deg(g)) = 1. Then for 0 6= f ∈ O(C), expressed as (4.21),
we define

deg(f) = max{d deg(gi) + i deg(g) | 0 6 i 6 d− 1} > 0,

with the convention that deg(0) = −∞, so the index ranges implicitly only over those i
such that gi 6= 0.

The geometric idea is the following: on the curve C, if the point x ∈ C “goes to
infinity”, the function f has a pole of order deg(f) at infinity. For instance, we have

deg(X) = d, deg(Y ) = deg(g).

Here are the basic properties of this degree, which confirm the intuitive ideas above:

Proposition 4.20 (Degree and zeros of functions). Let Fq be a finite field with q
elements, d | q − 1 with d > 1 an integer, g ∈ Fq[X] a non-constant polynomial with
(deg(g), d) = 1 and g squarefree. Let C be the curve (4.20).

(1) For all f1, f2, both non-zero, in O(C), we have

(4.22) deg(f1f2) = deg(f1) + deg(f2),

and if f1 + f2 6= 0, then

(4.23) deg(f1 + f2) 6 max(deg(f1), deg(f2)).

(2) For any 0 6= f ∈ O(C), let deg0(f) denote the number of zeros of f on C, counted
with multiplicity; then we have

deg0(f) 6 deg(f).
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In particular, if all zeros of f , with at most m0 exceptions, have multiplicity > m, we
have

(4.24) |{x ∈ C | f(x) = 0}| 6 deg(f)

m
+m0.

For the second part, we must provide the definition of zeros of f and their multiplicity.
Of course, the former is clear: x ∈ C is a zero of f if f(x) = 0. The multiplicity can be
defined in great generality, but we take the following convenient concrete description.

Definition 4.21 (Multiplicity of a zero). Let x = (x, y) ∈ C be any point.
(1) If y 6= 0, x is a zero of f with multiplicity > m if and only if the element

f

(X − x)m

of the fraction field of O(C) is defined at x, i.e., can be written f1/f2 with f1, f2 ∈ O(C)
and f2(x, y) 6= 0.

(2) If y = 0, x = (x, 0) is a zero of f with multiplicity > m if and only if

f

Y m

is defined at x, in the same sense.

Note that clearly f(x) = 0 if x is a zero of multiplicity > 1. It is important for us to
know that the converse holds, and this is not entirely obvious.

Lemma 4.22. With notation and assumption as above, if x = (x, y) ∈ C is a zero of
f ∈ O(C), then the multiplicity of f at x is > 1.

Proof. Assume first that y 6= 0. Then we write

gi = (X − x)hi + gi(x), 0 6 i 6 d− 1, hi ∈ Fq[X],

(which is Euclidean division), to get

f

X − x
=

d−1∑
i=0

hiY
i +

∑d−1
i=0 gi(x)Y i

X − x
,

and then further we write

Y i = yi + (Y − y)h̃i(Y ), h̃i ∈ Fq[Y ],

to obtain

f

X − x
=

d−1∑
i=0

hiY
i +

f(x, y)

X − x
+
(d−1∑
i=0

h̃i(Y )
) Y − y
X − x

=
d−1∑
i=0

hiY
i +
(d−1∑
i=0

h̃i(Y )
) Y − y
X − x

since f(x, y) = 0 by assumption. Finally, using the fact that yd = g(x), we use the
relation

Y d − yd = g(X)− g(x)

to derive

(Y − y)(Y d−1 + yY d−2 + · · ·+ yd−1) = (X − x)g̃(X), g̃ ∈ Fq[X],
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and hence

f

X − x
=

d−1∑
i=0

hiY
i +
(d−1∑
i=0

h̃i(Y )
) g̃(X)

Y d−1 + yY d−2 + · · ·+ yd−1
,

and this is of the desired type since, at (x, y), the last denominator standing is dyd−1 6= 0
(remember d | q − 1 and we are in the case y 6= 0).

In the remaining case y = 0, we have similarly

f

Y
=
g0

Y
+
∑
j>1

giY
i−1,

and
g0

Y
=
g0(x)

Y
+
X − x
Y

g̃0(X) =
X − x
Y

g̃0, g̃0 ∈ Fq[X],

and as above
X − x
Y

=
Y d−1

g̃(X)
,

in the fraction field of O(C). This is well-defined at x since g̃(x) = g′(x) and we assume
g is squarefree. �

As an immediate corollary, we see the intuitively obvious fact that

(4.25) deg0(fg) = deg0(f) + deg0(g).

Remark 4.23. The case where y = 0 accounts for at most d points in C(Fq). In
addition, dealing with it properly in Proposition 4.20 is the only reason to impose the
condition that g be squarefree (this, as we will clarify in an Appendix, has to do with
issues of existence of singularities on the curve). For the purpose of proving Theorem 4.17,
it is therefore possible to proceed without this assumption, and following the argument
below, one will arrive at an upper bound

|C(Fq)| 6 q + C
√
q + |{x ∈ Fq | g(x) = 0}|

6 q + C
√
q + d 6 q + C ′

√
q

where C ′ = d+C still depends only on d and deg(g). This is of course still sufficient for
the Riemann Hypothesis.

Proof of Proposition 4.20. (1) The second inequality is clear since, with obvious
notation, we have

f1 + f2 =
d−1∑
i=0

(gi,1 + gi,2)Y i

and

d deg(gi,1 + gi,2) + i deg(g) 6 max(d deg(gi,1)

+ i deg(g), d deg(gi2) + i deg(g)).

For the multiplicativity, fix indices i1 and i2 with

deg(f1) = d deg(gi1,1) + i1 deg(g), deg(f2) = d deg(gi2,2) + i2 deg(g).

In the product f1f2, there occurs a term

gi1,1gi2,2Y
i1+i2 ,
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and two cases arise: either i1 + i2 6 d− 1, in which case the degree of this term is

d(deg(gi1,1) + deg(gi2,2)) + (i1 + i2) deg(g) = deg(f1) + deg(f2),

or d − 1 < i1 + i2 < 2d, in which case one rewrites the product, using the equation
Y d = g(X), as

gi1,1gi2,2Y
i1+i2 = ggi1,1gi2,2Y

i1+i2−d,

with degree

d(deg(g) + deg(gi1,1) + deg(gi2,2)) + (i1 + i2 − d) deg(g) = deg(f1) + deg(f2).

Hence we have deg(f1f2) > deg(f1) + deg(f2). But since it is easily checked that all
the other products of terms in f1 and f2 have strictly smaller degree, equality holds.

(2) First of all, let us see why the inequality holds when f is a “single term” f = giY
i,

0 6 i 6 d− 1. In that case, the zeros of f are obtained by solving the equations{
gi(x)yi = 0

yd = g(x),

of which the solutions are
(α, 0) where g(α) = 0,

which counts for 6 deg(g) distinct solutions (or, clearly, 6 i deg(g) when multiplicity is
taken into account), together with

{(x, y) ∈ F̄q × F̄q | gi(x) = 0, yd = g(x)},
which has 6 d deg(gi) solutions (each root of gi giving rise to at most d solutions). Thus
the total number is 6 d deg(gi) + i deg(g) = deg(f).

We now come to the general case, and we must be careful to take multiplicity into
account (since the essence of the method will be to apply this result to functions with
zeros of high multiplicity). The idea is to reduce to the corresponding statement for
polynomials: a non-zero f ∈ Fq[X] has at most deg(f) zeros, counted with multiplicity.
To do this, denote first by K the fraction field of O(C). We first define

(ξ · f)(x, y) = f(x, ξy)

for any f ∈ K and ξ ∈ Fq which is a d-th root of unity. Since d | q − 1, all d-th roots of
unity are in Fq, and we construct the norm map

(4.26) NC :


K× −→ Fq(X)×

f 7→
∏
ξd=1

(ξ · f) ,

where the fact that NC(f) depends only on the variable X is due to the fact that all
(x, y) ∈ C for a given x are of the form (x, ξy), ξ running over d-th roots of unity, and by
rearranging the product, the value of NC(f) at (x, ξy) is the same as that at (x, y).

We now claim the following two facts:

(1) We have degFq [X] NC(f) = deg(f), where the degree of NC(f) is computed in the
polynomial ring Fq[X];

(2) if x ∈ F̄q and y0 is such that (x, y0) ∈ C, then assuming that for all d-th roots
of unity ξ, the point (x, ξy0) is a zero of f with multiplicity > mξ(x), then x is
a zero of the polynonial NC(f) with multiplicity at least

m =
∑
ξd=1

mξ(x).
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If we assume these two properties, then we obtain

deg0(f) =
∑
x

∑
ξd=1

mξ(x) 6 degFq [X](NC(f)) = deg(f).

To check property (1), note that deg(ξ · f) = deg(f) for all ξ, and hence by (4.22),
we have

degNC(f) = d deg(f),

if the degree on the left is computed in O(C); since a polynomial f ∈ Fq[X] ⊂ O(C)
satisfies

deg(f) = d degFq [X](f),

we obtain the equality which was claimed.
To check property (2), observe that the definition of multiplicity implies that ξ ·f has

a zero of multiplicity > mξ(x) at the point (x, y0). Hence

(ξ · f)

(X − x)mξ(x)
=
f1,ξ

f2,ξ

with f2,ξ(x, y0) 6= 0. We take the product over ξ, and we find that

NC(f)

(X − x)m
=
∏
ξd=1

f1,ξ

f2,ξ

is a rational function in Fq(X) defined defined at x, which implies the result. �

With this done, we can come to Bombieri’s construction of a suitable auxiliary func-
tion. For k > 0, let

H(k) = {f ∈ O(C) | deg(f) 6 k} ∪ {0},
which is an Fq-vector space, by (4.23). These spaces are analogues of the vector spaces
of polynomials with a bound for the degree. The next crucial lemma shows that they
behave quite similarly as k varies.

Lemma 4.24 (Riemann-Roch properties). We have:
(1) The space H(0) is reduced to the constant functions, and for all k, we have

dimH(k) 6 dimH(k + 1) 6 dimH(k) + 1.

(2) For all k > 0, we have

k + 1− (d− 1)(deg(g)− 1) 6 dimH(k) 6 k + 1,

and there exists γ > 0 and k0, depending only on d and deg(g), such that

dimH(k) = k + 1− γ
for all k > k0. If γ = 0, then also k0 = 0, and in any case one can take

k0 = (d− 1)(deg(g)− 1).

We will explain in an Appendix below why this is a special case of the Riemann-Roch
theorem, and describe briefly the latter in general.

The main property we need to prove these facts is the following very simple lemma:

Lemma 4.25. Let m > 1, d > 1 be coprime integers. Then, for a given k > 0, there
exists at most one pair (δ, i) of non-negative integers with 0 6 i 6 d− 1 such that

(4.27) k = dδ + im.

Moreover, if k > (d− 1)(m− 1), then such a pair (δ, i) exists.
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Proof. First, if dδ1 + i1m = dδ2 + i2m, reducing modulo d we find

(i2 − i1)m ≡ 0 (mod d),

hence i2 ≡ i1 (mod d) since (m, d) = 1 by assumption. But then we have in fact i1 = i2
since −d < i2 − i1 < d.

To show the existence of δ and i, we argue similarly: reducing modulo d, the integer i
is determined as the lift in {0, . . . , d−1} of mk ∈ Z/dZ, where m is the inverse computed
in this ring. For this index i, we have by definition

im− k ≡ 0 (mod d),

hence we can find δ ∈ Z such that dδ + im = k. The only issue is that δ might be
negative. But note that if that is the case, it follows that

k = im+ dδ 6 im− d 6 (d− 1)m− d < (d− 1)(m− 1),

hence the result by contraposition. �

Proof of Lemma 4.24. That H(0) is the space of constant functions is clear, and
obviously H(k) ⊂ H(k + 1) so the dimensions are non-decreasing. Now consider two
elements f1, f2 ∈ H(k + 1), neither of which is in H(k). Writing

f1 =
d−1∑
i=0

gi,1Y
i, f2 =

d−1∑
i=0

gi,2Y
i,

if follows from Lemma 4.25 applied with m = deg(g) that there is a single index i such
that

k + 1 = deg(f1) = d deg(gi,1) + i deg(g),

k + 1 = deg(f2) = d deg(gi,2) + i deg(g).

In particular, gi,1, gi,2 have the same degree, say δ, and hence there exist α, β ∈ Fq

such that
deg(αgi,1 + βgi,2) < δ,

and it follows that
deg(αf1 + βf2) < deg(f1) = k + 1,

so that we have shown that dimH(k + 1)/H(k) 6 1.
From this last inequality and dimH(0) = 1, the upper bound

dimH(k) 6 k + 1

is clear by induction. For the lower bound, we will show that for all

k > k0 = (d− 1)(deg(g)− 1),

there exists an element 0 6= f ∈ O(C) of degree exactly k in H(k). This will clearly show
that

dimH(k) > k − k0 + dimH(0) = k + 1− (d− 1)(deg(g)− 1),

and in fact, using (1), that for k > k0 we have

dimH(k) = dimH(k0) + (k − k0) = k + 1− γ
with

(4.28) γ = k0 − dimH(k0) + 1 6 k0 + 1.

Note that γ = 0 means that dimH(k0) = k0 + 1, which is only possible if dimH(k) =
k + 1 also for k 6 k0, i.e., if one can take k0 = 0.
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Now, to construct f of degree k, it is enough to show that we can find integers (δ, i)
with 0 6 δ, 0 6 i 6 d− 1, such that

dδ + i deg(g) = k,

since we can then take f = XδY i. Thus the second part of Lemma 4.25 gives the
result. �

Finally, we can describe Bombieri’s construction. First let

0 = d0 < d1 < · · · < dn < · · ·

be the increasing sequence of indices such that

dimH(dj + 1) > dimH(dj),

and let sj ∈ H(dj) be an element not in the previous space H(dj − 1) (these are, in some
sense, analogues of the basis Xj of a polynomial ring K[X], where dj would be j).

Now denote

Sj = sj ◦ Fr,

which is still an element of O(C). We look for auxiliary functions of the type

f =
∑
j

fmj Sj,

where the sum is of course assumed to be finite and where m = pa for some a, 0 6 a 6
[Fq : Fp]. Our first remark is quite easy:

Lemma 4.26. For κ > 0, the set of functions

(4.29) f =
∑
j

fmj Sj,

where j runs over integers such that 0 6 dj 6 κ and where fj ∈ H(k), is an Fq-vector

space, denoted H̃(m, k, κ), which is equal to the vector space spanned by products of the
type fm1 · (f2 ◦ Fr) where f1 ∈ H(k) and f2 ∈ H(κ).

Proof. Let first H̃(m, k, κ) denote the vector space generated by the products de-

scribed. Clearly any function f of the form (4.29) is in H̃(m, k, κ), and it is enough to

show conversely that any f ∈ H̃(m, k, κ) can be written in this form.
We first do this for f = fm1 · (f2 ◦ Fr). The functions sj, where dj 6 κ, form a basis

of H(κ), and hence we can write

f2 =
∑
j

αjsj, f2 ◦ Fr =
∑
j

αjSj,

for some αj ∈ Fq. Since αj = αqj = (α
q/m
j )m (recall that m | q), we can also write

fm1 (f2 ◦ Fr) =
∑
j

(α
q/m
j f1)mSj,

which is indeed of type (4.29).
Now given α, β ∈ Fq, and

f =
∑
j

fmj Sj, h =
∑
j

hmj Sj
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we write again α = (αq/m)m, β = (βq/m)m as above, so that

αf + βh =
∑
j

(αq/mfj + βq/mhj)
mSj,

using the additivity of the p-th power operation in characteristic p. �

This type of auxiliary functions is potentially useful because of the following other
simple fact:

Lemma 4.27. Let f be any function of the type (4.29). Then, if

(4.30)
∑
j

fmj sj = 0 ∈ O(C),

it follows that for any x ∈ C(Fq), we have f(x) = 0, and in fact f vanishes to order at
least m = pa at x.

Proof. First of all, we compute f(x) for x ∈ C(Fq): we have

f(x) =
∑
j

fmj (x)Sj(x)

=
∑
j

fmj (x)sj(Fr(x))

=
∑
j

fmj (x)sj(x) = 0,

by (4.30) and the crucial identity Fr(x) = x for x ∈ C(Fq). Furthermore, by definition
of the Frobenius, we have

Sj = sj ◦ Fr = sqj ,

which is an m-th power in O(C) since m = pa with pa | q, and fmj is also an m-th power.
Hence (again because m is a power of p), the function f is an m-th power in O(C), and
it follows that each of its zero has multiplicity > m. �

The question is now to construct a specific auxiliary function of small degree; in
particular, it must be non-zero. For this, which is really the fundamental step, we have
the following lemma:

Lemma 4.28. Let f be an auxiliary function of the type

f =
∑
j

fmj Sj,

with fj ∈ H(k) for all j and m = pa | q. Then, provided

km < q

we have f = 0 if and only if fj = 0 for all j. In other words, for any κ > 0, the

representation (4.29) of a function f ∈ H̃(m, k, κ) is unique.

Proof. Suppose the (fj) are not all zero but f is zero. Let then i > 0 be such that
fi 6= 0 but fj = 0 for j > i, so that we have

fmi Si = −
∑
j<i

fmj Sj.

The degree of the left-hand side is given (by (4.22)) by

m deg(fi) + q deg(si) = m deg(fi) + qdi,
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while, by (4.23), we have

deg
(∑
j>i

fmj Sj

)
6 max{m deg(fj) + qdj | j < i} 6 mk + qdi−1

since the sequence of indices dj is increasing. Thus the equality means that

q(di − di−1) 6 m(k − deg(fi)) 6 mk,

and since di > di−1, we get

q 6 mk.

The lemma is thus proved by contraposition. �

Now, in addition to having f 6= 0, we must ensure the condition (4.30) for f with
small degree. But if we restrict to f of the type (4.29) with dj 6 κ, this condition can
be written ∆(f) = 0 for the Fp-linear map

∆ :

 H̃(m, k, κ) −→ H(mk + κ)∑
j

fmj Sj 7→
∑
j

fmj sj .

The fact that ∆ is well-defined (and its Fp-linearity; note it is not Fq-linear) follows
from Lemma 4.28, and from the fact that

deg(fmj sj) 6 mk + κ.

Now by the last part of Lemma 4.24, we have

dimFp Ker(∆) > dimFp H̃(m, k, κ)− dimFp H(mk + κ)

= [Fq : Fp]{(dimH(k))(dimH(κ))− dimH(mk + κ)}
= [Fq : Fp]{(k + 1− γ)(κ+ 1− γ)− (mk + κ+ 1− γ)},

for k, m > k0 = (d− 1)(deg(g)− 1), where γ 6 (d− 1)(deg(g)− 1) also (by (4.28)), and

we used again Lemma 4.28 to compute the dimension of H̃(m, k, κ).
The inescapable conclusion is the following: provided

km < q, k > k0, m > k0,

(k + 1− γ)(κ+ 1− γ)− (mk + κ+ 1− γ) > 0,(4.31)

we can find f 6= 0 in Ker(∆), and then we know that

|C(Fq)| 6
deg(f)

m
6
mk + qκ

m
= k +

qκ

m
.

We must now optimize these parameters. If we compare the upper bound with the
goal of Theorem 4.17, we must clearly take κ and m very nearly equal, say

κ+ 1− γ = m+ C

for some C > 0. The upper bound becomes

|C(Fq)| 6 q + k +
(C − 1 + γ)q

m

and to minimize the “error term”, k and m should also be very close, and indeed close to√
q. Since m is a power of a prime, this explains why we assumed that q = p2ν for some

ν > 1, as it allows us to take m = pν =
√
q.
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Now the last constraint (4.31) (which ensures the existence of the auxiliary function)
translates easily to

k >
(

1 +
m

C

)
γ

and the condition km = k
√
q < q shows that C should be > γ. We take in fact C = γ+1,

so that
κ =
√
q + 2γ,

and then the condition on k is
k >

γ

γ + 1
m+ γ,

which is true for
k =

⌊ γ

γ + 1
m
⌋

+ γ + 1.

The condition km = k
√
q < q is then satisfied if

m
( γ

γ + 1
m+ γ + 1

)
< q ⇔ q > (γ + 1)4,

and k > k0, m > k0 will be satisfied (at least) for q > (2k0)2 (to check this, the case
γ = 0 must be treated separately by noticing that we have k0 = 0 in that case). Hence,
for q > q0 = max((γ + 1)4, k2

0), we obtain

|C(Fq)| 6 q + 2γ
√
q + k 6 q + (2γ + 1)

√
q, since k < qm−1 =

√
q.

We take care of small values of q as usual by writing

|C(Fq)| 6 q + d
√
q0
√
q

in all cases, since the trivial bound is

|C(Fq)| = |{(x, y) ∈ Fq × Fq | yd = g(x)}| 6 dq

which is 6 d
√
q0
√
q if q 6 q0.

Remark 4.29. As a special case of Theorem 4.17, if q is odd and g ∈ Fq[X] is monic
squarefree of degree 3, say

g = X3 + aX + b,

we obtain
|{(x, y) ∈ Fq × Fq | y2 = x3 + ax+ b}| = q − a

where
|a| 6 2

√
q.

This statement was the first (non-trivial) instance of the Riemann Hypothesis to be
proved, by H. Hasse. His first proof was very different.

Appendix: Hasse derivatives

The idea of Hasse derivatives is to “eliminate” the factor p! from the p-th derivative
by a clever formal construction.

Definition 4.30 (Hasse derivative). Let k be a field and j > 0 an integer. The j-th
Hasse derivative is the k-linear map

k[X] −→ k[X]

Xn 7→
(
n

j

)
Xn−j

with the convention that Xn 7→ 0 if j > n. We denote f [j] the j-th Hasse derivative of
f ∈ k[X], and note that f [0] = f .
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Note that the j-th derivative is given by

Xn 7→ n(n− 1) · · · (n− j + 1)Xn−j = j!

(
n

j

)
Xn−j,

hence we have by linearity

f (j) = j!f [j]

for all f ∈ k[X].
Thus, if j! is invertible in k, there is not much difference between the classical and

the Hasse derivatives. But in characteristic p, this only happens for j < p, and for j > p,
although the derivatives vanish entirely, the Hasse derivatives do not. Indeed, we have

(Xp)[p] =

(
p

p

)
= 1 6= 0.

In particular, for this particular polynomial, observing the vanishing of Hasse deriva-
tives gives the order of vanishing at 0. This is a general fact.

Proposition 4.31 (Properties of Hasse derivatives). Let k be a field.
(1) For all f1, . . . , fr ∈ k[X] and j > 0 we have

(f1 · · · fr)[j] =
∑
· · ·
∑

j1+···+jr=j

f
[j1]
1 · · · f [jr]

r ,

in particular

(f1f2)[j] =

j∑
i=0

f
[i]
1 f

[j−i]
2 .

(2) Let a ∈ k be given. Then for f ∈ k[X], we have

(4.32) f =

deg(f)∑
j=0

f [j](a)(X − a)j.

(3) An element a ∈ k is a zero of order > m > 1 of a polynomial f ∈ k[X] if and
only if

f(a) = f [1](a) = · · · = f [m−1](a) = 0.

Proof. (1) The general case follows from the special case r = 2 by induction on r.
For the latter, it is enough by linearity to consider f1 = Xd1 , f2 = Xd2 , and then the
identity is equivalent with the formula(

d1 + d2

j

)
=

j∑
i=0

(
d1

i

)(
d2

j − i

)
.

for binomial coefficients, which can be proved, e.g., by comparing the coefficients of Xj

on both sides of the obvious identity

(X + 1)d1+d2 = (X + 1)d1(X + 1)d2 .

(2) The identity says that the values of the Hasse derivatives at a are the same as
the coefficients of the Taylor expansion of f in powers of (X − a). To show this, since
the map sending f to the coefficient of (X − a)j in the basis of powers of X − a is itself
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linear, we need only compute the Hasse derivatives of h = (X − a)d for all d > 0. Now,
by the binomial expansion, we compute

h[j] =
( d∑
i=0

(
d

i

)
(−a)d−iX i

)[j]

=
d∑
i=0

(
d

i

)
(−a)d−i

(
i

j

)
X i−j

=
d∑
ι=0

(
d

ι

)
(−a)ι

(
d− ι
j

)
Xd−i−j

=

(
d

j

) d∑
ι=0

(
d− j
ι

)
(−a)ιXd−i−j =

(
d

j

)
(X − a)d−j,(4.33)

for j > 0; we have used the identity(
d

ι

)(
d− ι
j

)
=

d!

ι!j!(d− j − ι)!
=

(
d

j

)(
d− j
ι

)
.

This relation gives (4.32) in the case of h.
(3) Assume first that a is a zero of order > ` of f , so that

f = (X − a)`g = hg, with h = (X − a)`,

for some polynomial g ∈ k[X]. By (1), we have

f [j] =

j∑
i=0

h[i]g[j−i]

for any j > 0, and hence

f [j](a) = h(a)g[j](a) + · · ·+ h[j](a)g(a),

so that it is enough to show that h[j](a) = 0 for j < `. (In other words, we have reduced
the problem to the case of h). But (4.33) gives immediately h[j](a) = 0 if j < `.

Now for the converse, if, for some ` > 1, we have

f(a) = f [1](a) = · · · = f [`−1](a) = 0,

the relation (4.32) shows that

f =

deg(f)∑
j=0

f [j](a)(X − a)j =

deg(g)∑
j=`

f [j](a)(X − a)j

= (X − a)`
deg(g)∑
j=`

f [j](a)(X − a)j−`

is divisible by (X − a)` in k[X], as desired. �
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CHAPTER 5

Additive character sums

We now come to the proof of Theorem 3.2, involving additive character sums. In some
sense, the proof is very similar to the proof of the Riemann Hypothesis for multiplicative
character sums. However, the similarity comes in spite of very striking differences between
the two situations, which we will also emphasize throughout.

We will use information from the successful proof of Theorem 3.1 to motivate the
steps we are going to take, but these will not be in the same order as before.

Indeed, we used three main ingredients in the previous chapter:

• The introduction of a suitable L-function (associated to a Dirichlet character)
to represent the exponential sum and its relatives over extension fields as a finite
sum (with at most d− 1 terms) of powers of some fixed complex numbers;
• An averaging trick to reduce the estimation of a family of these sums of ωνj to a

point counting problem;
• The use of Bombieri’s version of the Stepanov method to obtain very good bounds

for the point counting.

It turns out that the second and third steps can be adapted very easily to additive
character sums. The first one is where the main difference lies, as it is not possible to
obtain an L-function for these sums using only Dirichlet characters, and one needs a
generalization of these. Because of this, we first cover the last steps in the next two
sections, before dealing with L-functions for additive characters.

5.1. Reduction to point counting

Consider once more a finite field Fq with q elements and the ring Fq[X] of polynomials
in one variable with coefficients in Fq. For a fixed g ∈ Fq[X], and any additive character

ψ : Fq → C×,

we want to bound the exponential sum∑
x∈Fq

ψ(g(x)).

It is natural to expect that, in addition to the sum over Fq, the sums

(5.1) Sν(g, ψ) =
∑
x∈Fqν

ψ(TrFqν /Fq(g(x))),

ranging over extensions Fqν of Fq, will play a role.
Indeed, the easy first reduction is to go from bounding character sums to bounding

the number of points on some “curve” over finite fields. The analogue of Lemma 4.16 is
the following:

Lemma 5.1 (Reduction to point counting). Let Fq be a finite field, g a non-constant
monic polynomial in Fq[X], ψ a fixed non-trivial additive character of Fq. For all ν > 1,
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we have∑
a∈F×q

∑
x∈Fqν

ψ(TrFqν /Fq(ag(x))) =

|{(x, y) ∈ Fqν × Fqν | yq − y = g(x)}| − qν .

Proof. This is a simple consequence of Lemma 1.3: since the characters

x 7→ ψ(ax),

where a ∈ Fq, are all the additive characters of Fq, we have∑
a∈Fq

∑
x∈Fqν

ψ(aTrFqν /Fq(g(x))) =
∑
x∈Fqν

∑
a∈Fq

ψ(aTrFqν /Fq(g(x)))

= q|{x ∈ Fqν | Tr(g(x)) = 0}|

by orthogonality of characters. But Tr(g(x)) = 0 if and only if there exists y ∈ Fqν such
that yq − y = g(x), by Lemma 1.3. Moreover, if that is the case, there are q solutions to
the equation

yq − y = g(x),

which are given by y = y0 + α with α ∈ Fq, in terms of a fixed solution y0 (indeed, we
must have (y − y0)q = (y − y0) so y − y0 ∈ Fq), so that

q|{x ∈ Fqν | Tr(g(x)) = 0}| = |{(x, y) ∈ Fqν × Fqν | yq − y = g(x)}|.

This corresponds to the sum over all a ∈ Fq; the contribution of a = 0 is of course
qν , so that we obtain the statement after subtraction. �

5.2. Implementing Bombieri’s method

What remains to do now is to prove the following point-counting estimate, which is
the analogue of Theorem 4.17 in the previous chapter:

Theorem 5.2. Let Fq be a finite field, g ∈ Fq[X] a non-constant monic polynomial
of degree d with d < q and (d, q) = 1. Then there exists a constant C > 0, depending
only on d and q, such that for al ν > 1, we have

||{(x, y) ∈ Fq2ν × Fq2ν | yq − y = g(x)}| − q2ν | 6 Cqν .

Note that this statement, for ν = 1, is trivial if the constant C depends on d and q
(as it does), so we think of it as an asymptotic result.

We want to proceed as in Section 4.3, and this turns out to be surprisingly easy. We
first have the analogue of Lemma 4.18, which allows us to reduce the two-sided estimate
to an upper-bound only, accessible by means of the Stepanov method.

Lemma 5.3 (From upper bound to lower bound). Let Fq be a finite field. For ν > 1
and polynomials g ∈ Fqν [X] with degree d > 1 with (d, p) = 1 and d < q, let a(g) ∈ Z be
defined by the equality

|{(x, y) ∈ Fqν × Fqν | yq − y = g(x)}| = qν + a(g).

Then we have

|{(x, y) ∈ Fqν × Fqν | yq − y = g(x)}| > qν − (q − 1) max
α∈Fqν

|a(g + α)|.
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Proof. This is the same type of argument used in Lemma 4.18, where intead of the
cyclic group F×q /(F

×
q )d, we use the (additive) group

AS = Fqν/〈yq − y | y ∈ Fqν 〉
of order q. Let

{0, α2, . . . , αq−1}
be representatives of AS in Fqν . For any x ∈ Fqν , g(x) is of the form yq − y+α for some
unique α in this set of representatives, and for q different values of y. Thus using the
auxiliary polynomials hα = g − α and

Xα = {(x, y) ∈ Fqν × Fqν | yq − y = hα(x)},
we obtain the stated result by looking at the formula

q · qν =
∑
α

|Xα| = q · qν +
∑
α

a(gα).

�

From now on, we proceed to show that, for g ∈ Fq2ν [X] of degree d with (d, p) = 1,
d < q, we have

(5.2) |{(x, y) ∈ Fq2ν × Fq2ν | yq − y = g(x)}| 6 q2ν +Dqν

where C depends only on d and q.
For simplicity of notation, we let

F = Fqν ,

and consider g ∈ F[X] of degree coprime with p and < q. Only at the end will it be
needed to assume ν is even. We are now looking at the curve

X = {(x, y) ∈ F̄q × F̄q | yq − y = g(x)},
and want to estimate the cardinality of the set X(F) of points with coordinates in F. We
will do this by finding an auxiliary function f on X vanishing to high order at all points
in X(F) and with “small degree”. Here are the definitions to proceed with Bombieri’s
construction:

Definition 5.4 (Degree and multiplicity for X). Let Fq be a finite field with q
elements, ν > 1, F = Fqν , and let g ∈ F[X] be a non-constant polynomial of degree d
with (d, q) = 1, d < q. Let

O(X) = F[X, Y ]/(Y q − Y − g)

be the integral ring of functions on X, and K(X) its quotient field.
(1) Any f ∈ O(X) can be expressed in a unique way as

f =

q−1∑
j=0

gjY
j

with gj ∈ F[X], and if f 6= 0, the degree of f is defined by

deg(f) = max{q deg(gi) + id | 0 6 i 6 q − 1} > 0,

(2) If x ∈ X, f ∈ O(X) and m > 1, one says that f vanishes to order > m at x if and
only if there exist f1, f2 ∈ O(X) such that f2(x) 6= 0 and

f

X − x
=
f1

f2

∈ K(X).
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Remark 5.5. With the correspondance d ↔ q, deg(g) ↔ d, the definition of the
degree is identical with that used for the curves C that appeared in Section 4.3.

The definition of the multiplicity is simpler because there is no need to distinguish
between two types of points to define it: the function X − x can always be used to
determine the multiplicity. The reason is the following: for any z ∈ F (for instance,
z = g(x)) the equation

yq − y = z

has exactly q distinct roots in an algebraic closure of F (because the derivative in F[X] of
the relevant polynomial is the constant −1, hence has no common zero with Y q−Y − z),
whereas, for d | q − 1, the equations

yd = z

may have a single multiple root, in the special case y = z = 0.

We then have the exact analogue of Proposition 4.20:

Proposition 5.6. Let Fq be a finite field with q elements, ν > 1, F = Fqν and let
g ∈ F[X] be a non-constant polynomial of degree d with (d, q) = 1, d < q.

(1) We have

deg(f1f2) = deg(f1) + deg(f2),

deg(f1 + f2) 6 max(deg(f1), deg(f2)),

for any f1, f2 ∈ O(X), with f1 + f2 6= 0 in the second case.
(2) For f ∈ O(X), f 6= 0, the number of zeros of f with multiplicity is at most the

degree deg(f) of f .

Proof. The proof of (1) is left as an exercise: it is very similar to the corresponding
part of Proposition 4.20. The proof of (2) is also essentially identical, after one introduces

(a · f)(x, y) = f(x, y + a)

for a ∈ Fq and the norm map

NX : K(X)× → F(X)×

by

NXf(x, y) =
∏
a∈Fq

f(x, y + a),

(which can be seen as identical as the definition in (4.26) after noticing that in both cases
the value of the norm of f at x ∈ F̄q is the product of the values of f over all points x
in the curve with first coordinate x). It is easy to see that NX does map O(X) to F[X],
and proceeding as in Proposition 4.20, one finds

degF[X](NX(f)) = degO(X)(f),

from which the remainder of the argument is almost identical with the earlier one. �

One can now define “Riemann-Roch” spaces as before:

H(k) = {0} ∪ {f ∈ O(X) | deg(f) 6 k},

and the analogue of Lemma 4.24 holds:
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Lemma 5.7 (Riemann-Roch properties). With notation as before, we have:
(1) The space H(0) is reduced to the constant functions, and for all k, we have

dimH(k) 6 dimH(k + 1) 6 dimH(k) + 1.

(2) For all k > 0, we have

k + 1− (d− 1)(deg(g)− 1) 6 dimH(k) 6 k + 1,

and there exists γ > 0 and k0, depending only on d and q, such that

dimH(k) = k + 1− γ

for all k > k0. If γ = 0, then also k0 = 0, and in any case one can take

k0 = (d− 1)(q − 1).

In view of the definition of the degree, this follows from Lemma 4.25 applied with
(d,m) = (q, d) and the same arguments used in Proposition 4.24.

One can then follow the remainder of Bombieri’s construction, with the data denoted
(d, deg(g), q) there replaced by (q, d, q2ν), and the conclusion of Theorem 5.2 comes out.

Remark 5.8. Since Bombieri’s original paper [1] gives a uniform proof of point-
counting estimates for arbitrary (non-singular) curves over finite fields, it is not surprising
that the versions we presented work also (almost) identically for the curves C of the
previous chapter and X in this section.

5.3. The L-functions associated to additive character sums

The last step is to construct a suitable L-function for additive character sums. This
requires more extensive changes to the framework of the previous chapter because, as
it turns out, one can not construct Dirichlet characters of Fq[X] to recover additive
exponential sums. One needs to extend slightly the objects to which L-functions are
attached.

To explain the construction, we may start using as motivation Proposition 4.7. This
gives an a priori description of the L-function from character sums, and suggests that,
given ψ and g, we define

(5.3) Z(g, ψ;T ) = exp
(∑
ν>1

Sν(g, ψ)

ν
T ν
)

where Sν(g, ψ) is given by (5.1). This expression makes sense in the ring C[[T ]] of formal
power series. Then it is enough to prove the following to conclude successfully the proof
of Theorem 3.2:

Proposition 5.9 (Rationality of L-function). Let Fq be a finite field, ψ a non-trivial
additive character of Fq and g ∈ Fq[X] a non-constant polynomial of degree d such that
(d, q) = 1. The L-function Z(g, ψ;T ) given by (5.3) is a polynomial in C[T ] of degree
6 (d− 1).

A first step towards this result is to see that this L-function function Z(g, ψ;T )
still retains one feature of those associated with Dirichlet characters: an Euler product
expansion over irreducible monic polynomials.
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Lemma 5.10 (Euler product). Let Fq be a finite field, ψ a non-trivial additive charac-
ter of Fq and g ∈ Fq[X] a non-constant polynomial of degree d < q such that (d, q) = 1.
Then we have

Z(g, ψ;T ) =
∏
π

(1− η(π)T deg(π))−1

where π runs over irreducible monic polynomials in Fq[X] and

η(π) = ψ(TrF
qdeg(π)

/Fq(g(α)))

for any root α of π in F̄q.

Note that since η(π) depends only on the trace of the root α, it is independent of the
latter. Also, despite the similarity in notation with the previous chapter, we emphasize
again that η is not a Dirichlet character.

Proof. This is roughly the proof of Proposition 4.7, run backwards. Indeed, we have
first

T
Z ′

Z
(g, ψ;T ) =

∑
ν>1

Sν(g, ψ)T ν .

On the other hand, we can rewrite the sum over x ∈ Fqν defining Sν(g, ψ) in terms
of the minimal polynomials πx of those elements, and their roots:

Sν(g, ψ) =
∑
x∈Fqν

ψ(TrFqν /Fq(g(x)))

=
∑

deg(π)|ν

∑
x∈Fqν
π(x)=0

ψ(TrFqν /Fq g(x))

=
∑
d|ν

∑
deg(π)=d

∑
π(x)=0

ψ
(ν
d

TrF
qd
/Fq(g(x))

)
=
∑
d|ν

d
∑

deg(π)=d

η(π)ν/d

by the definition of η. Now, multiplying by T ν and summing over ν > 1 leads to

T
Z ′

Z
(g, ψ;T ) =

∑
π

deg(π)
η(π)T deg(π)

1− η(π)T deg(π)

which immediately implies the result. �

Formally, we can now write down the expansion of Z(g, ψ;T ) as a formal power series
in T , from which we hope to deduce its polynomial nature: we extend the map η by
multiplicativity to all monic polynomials f ∈ Fq[X] by

η(πr) = η(π)r, η(f · g) = η(f)η(g),

and we then have

Z(g, ψ;T ) =
∑
f

η(f)T deg(f) =
∑
n>0

cn(η)T n

where the sum runs over monic polynomials f ∈ Fq[X], and

cn(η) =
∑

deg(f)=n

η(f).
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The statement we need to prove to get Proposition 5.9 is that

cn(η) = 0

for all n > d. Although this could be done more quickly than the way we will prove it, our
argument is constructed so that it is a specialization of much more general constructions
which are very important when looking at the further development of the theory.

In the previous chapter, this result was proved for a Dirichlet character by using
essentially its periodicity modulo some polynomial (see Proposition 4.5). To obtain a
similar property, we start by interpreting η as the restriction to (monic) polynomials of a
character of a certain group related to the group Fq(X)× of non-zero rational functions.

Precisely, we define
P (Fq) = Fq(X)×/F×q ,

where F×q is seen as the subgroup of constant functions. Any element in P (Fq) can
be represented in a unique manner as a quotient f = f1/f2 with fi non-zero monic
polynomials in Fq[X] and f1 coprime with f2. (Indeed, for unicity, a relation f1/f2 = g1/g2

implies f1g2 = f2g1, hence f2 divides g2, g2 divides f2, so that f2 = αg2 for some α ∈ F×q ,
and α = 1 since they are monic; similarly for f1 = g1). In particular, as an abstract
group, we can write

P (Fq) '
⊕
π

πZ

where π runs as usual over monic irreducible polynomials; here the direct sum notation
still corresponds to a product of powers of irreducible polynomials, but it expresses the
fact that there are only finitely many non-trivial factors in the decomposition of some
f ∈ P (Fq).

Because of this relation, the group P (Fq) has many characters. Indeed, for any family
ϑ = (eiθπ)π, indexed by irreducible polynomials, of elements of the unit circle S1 ⊂ C×,
we can define a character

ηϑ : P (Fq)→ C×

by mapping any generator π to eiθπ ; hence we have

ηϑ

(∏
π

πm(π)
)

=
∏
π

eim(π)θπ .

Because there are no relations between the generators, these are all well-defined. We
then note that the map η defined above from the additive exponential sums Sν(g, ψ) is
the restriction to monic polynomials of such a character, with

ϑ =
(
ψ
(

TrF
qdeg(π)

/Fq(g(απ))
))

π
.

We can associate a formal Euler product

L(ηϑ, T ) =
∏
π

(1− ηϑ(π)T deg(π))−1 =
∏
π

(1− eiθπT deg(π))−1

to any character of P (Fq). It is certainly not the case that all such Euler products can
be expressed as polynomials, even if the character is assumed non-trivial. This property
requires a (rare) special feature which expresses some kind of “global” correlation between
the various “local” components eiθπ , similar (but weaker) to the periodicity of Dirichlet
characters. This property is reflected by the kernel of ηϑ being of a certain shape.

In our case, this periodicity is given by the following lemma. Before stating it, we note
that we will extend the degree map from Fq[X] to P (Fq) by additivity (i.e., deg(f1/f2) =
deg(f1) − deg(f2) for fi ∈ Fq[X]), and that we will denote by ord0(f) the order of
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f ∈ Fq(X)× at 0 (which is the multiplicity of 0 as a zero of f if f does not have a pole at
0, and is the opposite of the order of the pole otherwise), and by ord∞(f) the opposite
of deg(f). The following properties are then easy to check, if not already known to the
reader:

ord∞ f(X) = ord0 f(X−1), ord∞(f + g) > min(ord∞(f), ord∞(g))

ord0(f1f2) = ord0(f1) + ord0(f2).

Lemma 5.11 (Kernel of characters). Let Fq be a finite field, ψ a non-trivial character
of Fq, g ∈ Fq[X] a non-constant polynomial in Fq[X] of degree d, with g(0) = 0. Let η
be the character of P (Fq) defined by

η(π) = ψ
(

TrF
qdeg(π)

/Fq(g(απ))
)

for any monic irreducible polynomial, where απ is any root of π. Then we have:
(1) The kernel of η contains the element X ∈ P (Fq).
(2) The kernel of η contains the subgroup P∞(d+ 1) defined by

P∞(d+ 1) = {f ∈ P (Fq) | ord∞(X−deg(f)f(X)− 1) > d+ 1}.

Equivalently, Ker η contains the subgroup P0(d+ 1) defined by

P0(d+ 1) = {f ∈ P (Fq) | ord0(Xdeg(f)f(X−1)− 1) > d+ 1}.
(3) If (d, q) = 1, then η is a non-trivial character of P (Fq).

Proof. (1) Since X is irreducible, we have η(X) = ψ(g(0)) = ψ(0) = 1 by definition
and by the assumption g(0) = 0.

(2) We first check that P∞(k) is indeed a subgroup of P (Fq) for any integer k > 0:
this follows from the formulas

ord∞(X− deg(f)f − 1) = ord∞(X− deg(f)f) + ord∞(1−Xdeg(f)f−1)

= ord∞(Xdeg(f)f−1 − 1),

and

ord∞(X− deg(f1f2)f1f2 − 1) = ord∞

(
(X− deg(f1)f1 − 1)

+X−deg(f1)f1(X− deg(f2)f2 − 1)
)

= ord∞(h1 + h2)

where ord∞(h1) > k if f1 ∈ P∞(k), while also

ord∞(h2) = ord∞(X− deg(f1)f1 × (X− deg(f2)f2 − 1)))

= ord∞(X− deg(f2)f2 − 1) > k

if f2 ∈ P∞(k).
Now to come back to the main point, let f ∈ P (Fq) be written f = f1/f2 with

fi ∈ Fq[X] coprime monic polynomials. Then we have

X− deg(f)f(X) =
X− deg(f1)f1(X)

X− deg(f2)f2(X)

and hence

X− deg(f)f(X)− 1 =
X− deg(f1)f1(X)−X− deg(f2)f2(X)

X− deg(f2)f2(X)
.
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Let n = deg(f1), m = deg(f2), and write

f1 = Xn + an−1X
n−1 + · · ·+ a1X + a0,

f2 = Xm + bm−1X
m−1 + · · ·+ b1X + b0,

so that

X−nf1 = 1 + an−1X
−1 + · · ·+ a0X

−n,

X−mf2 = 1 + bm−1X
−1 + · · ·+ b0X

−m.

Note that ord∞(X−mf2) = 0 and therefore f ∈ P∞(d+ 1) if and only if

ord∞(X−nf1 −X−mf2) > d+ 1,

and by definition this happens if and only if the coefficients of 1, X−1, X−2, . . . , X−d in
the difference X−nf1 −X−mf2 are all zero, namely when

(5.4) an−1 = bm−1, . . . , an−d = bm−d = 0,

with the convention ai = bi = 0 if i < 0.
With this in mind, we now observe that for a monic polynomial h ∈ Fq[X], we can

express concisely η(h) as follows: we have

η(h) = ψ
( ∑
h(α)=0

g(α)
)
,

where α runs over all the roots of h, counted with multiplicity. Indeed, this is because
this expression is itself multiplicative with respect to h, and for h = π irreducible, we
have ∑

π(α)=0

g(α) = TrF
qdeg(π)

/Fq(g(απ)).

Now consider the map

F : h 7→
∑
h(α)=0

g(α).

Since g ∈ Fq[X] is a fixed polynomial, this is obviously a symmetric function of the
roots of h, in fact a linear combination of the sums of k-th powers of the roots, for
1 6 k 6 deg(g); there is no constant term because g(0) = 0. Consequently, by the
theory of symmetric functions, F (h) is also a polynomial in the deg(g) first elementary
symmetric functions of the roots, i.e., the functions∑

α

α,
∑
α 6=β

αβ, . . . ,

which (up to signs) are, in terms of the coefficients of

h =
∑
i>0

ci(h)X i,

simply the functions ei : h 7→ cdeg(h)−i(h), for 1 6 i 6 deg(g). Hence the condition (5.4)
is in fact equivalent with F (f1) = F (f2), in which case

η(f) = η(f1)η(f2)−1 = ψ(F (f1)− F (f2)) = 1,

as claimed.
(3) We try construct a polynomial f where η(f) 6= 1 by taking

f = Xd − β
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for some β ∈ Fq. In that case, the roots are given by α = ξα0 where α0 is any root of
αd0 = β and ξ runs over the d-th roots of unity in F̄q. Thus, we have∑

f(α)=0

αj = αj0
∑
ξd=1

ξj

and this is zero for 1 6 j 6 d− 1. Therefore, expanding g is powers of X, we find∑
f(α)=0

g(α) = γ
∑
ξd=1

αd0ξ
d = dβγ,

where γ 6= 0 is the leading coefficient of g ∈ Fq[X]. Such polynomials therefore satisfy

η(f) = ψ(dβγ).

Now, since ψ is non-trivial, γ 6= 0 and d is assumed to be coprime with q, we can
find β such that dβγ is an element of Fq with ψ(dβγ) 6= 1, and this shows that η is
non-trivial. �

Example 5.12. It is quite easy to see how the argument above translates to explicit
expressions for the character associated to concrete polynomials. Consider for instance
g = X3 + aX where a ∈ Fq. For a monic polynomial h ∈ Fq[X], which we write as

h = Xn + a1X
n−1 + a2X

n−2 + a3X
n−3 + · · ·+ an−1X + an =

∏
h(α)=0

(X − α),

we have the identities∑
α

α = −a1,
∑
α

α3 = −a3
1 − 3a3 + 3a1a2,

and hence
η(h) = ψ(−a3

1 − 3a3 + 3a1a2 − aa1).

Of course, although this expression is very concrete, it is not clear from a simple look
that it is multiplicative with respect to η!

The situation is now quite favorable because we can see η as a character of the quotient
group modulo P∞(d+ 1):

η : P (Fq)→ P (Fq)/P∞(d+ 1)→ C×.

As one can expect, this quotient is finite. More precisely, analyzing it will quickly
lead to:

Proof of Proposition 5.9. We denote by C(d+ 1) the quotient group

C(d+ 1) = P (Fq)/P∞(d+ 1),

and identify η with a character of this group. First of all, we claim that this is a finite
group, and that any class c ∈ C(d+1) has a unique representative which is a monic poly-
nomial of degree d. Indeed, let c be the class of f1/f2 with fi coprime monic polynomials,
given by

fi = Xni + ai,1X
ni−1 + · · ·+ ai,ni−1X + ai,ni ,

and let
h = Xd + b1X

d−1 + · · ·+ bd−1X + bd

be a polynomial of degree d. Then the class of h is equal to c if and only if

ord∞

(hf2

f1

− 1
)
> d+ 1.
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As in the proof of Lemma 5.11, this translates exactly to equations expressing that
the d+ 1 coefficients of topmost degree of hf2 and f1 coincide, namely:

b1 + a2,1 = a1,1, b2 + a2,1b1 + a2,2 = a1,2, . . .

bd + a2,1bd−1 + · · ·+ a2,d−1b1 + a2,d = a1,d

This linear system of equations (with unknowns the bi’s) has a solution, which shows
the existence of a representative as claimed. For unicity, note that two different monic
polynomials h1, h2 of degree d can not have h1/h2 ∈ P∞(d+ 1), by the same argument
based on the proof of Lemma 5.11. (In particular, we see that C(d + 1) is a group of
order qd.)

Now let n > d be given, and let

cn(η) =
∑

deg(f)=n

η(f)

be the coefficient of T n in Z(g, ψ;T ) (the sum ranging, of course, over monic polynomials
in Fq[X]). We have

cn(η) =
∑

c∈C(d+1)

η(c)
∑

deg(f)=n
f≡c (modP∞(d+1))

1.

If we consider the unique representative h of c constructed above (of degree d, with
coefficients bi), the congruence f ≡ h (modP∞(d+ 1)) means that

f = Xn + a1X
n−1 + · · ·+ an−1X + an,

with

a1 = b1, a2 = b2, · · · , ad = bd.

Thus these coefficients are fixed (and can be fixed in this manner because n > d),
while all the other coefficients (namely ad+1, . . . , an) can be freely chosen in Fq. This
means that the inner sum is equal to qn−d for all c, and therefore

cn(η) = qn−d
∑

c∈C(d+1)

η(c) = 0

since η is, for (d, q) = 1, a non-trivial character of the finite quotient group C(d + 1) by
Lemma 5.11, (3). �

Example 5.13. Continuing the previous example, with g = X3 + aX and

η(Xn + a1X
n−1 + · · ·+ an−1X + an) = ψ(−a3

1 − 3a3 + 3a1a2 − aa1),

where a ∈ Fq is fixed, the computation boils down to∑
· · ·
∑

(a1,...,an)∈Fq

ψ(−a3
1 − 3a3 + 3a1a2 − aa1) = 0

if n > 3, which is of course quite clear if 3 - q, because the free summation over a3 can
be extracted and gives 0:∑

· · ·
∑

(a1,...,an)∈Fq

ψ(−a3
1 − 3a3 + 3a1a2 − aa1) =

qn−3
∑

a1,a2∈Fq

ψ(−a3
1 + 3a1a2 − aa1)

∑
a3

ψ(−3a3) = 0.
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Remark 5.14. (1) More intrinsically, the group P (Fq) should be seen as the group
of fractional ideals in the field Fq(X). Because Fq[X] is a principal ideal domain, such
ideals are all principal, and thus a fractional ideal corresponds to a non-zero element
f ∈ Fq(X)×, modulo the group of units F×q (multiplying by units corresponds to the
different possible generators of a fractional ideal).

(2) We can also see Dirichlet characters as corresponding to certain characters of
certain subgroups of P (Fq). This would allow (as in [18]) a more direct approach of both
types of sums simultaneously (including even, quite easily, mixed character sums, that
we will not discuss explicitly in this first part).

(3) As the two previous remarks suggest, an even better understanding of the situation
would involve the detailed study of Hecke Grössencharakters of all “global function fields”;
this would involve defining them as suitable characters of idèle groups of finite extensions
of Fq(X).

5.4. Kloosterman sums in odd characteristic

Theorem 3.2 does not cover the important special case of estimating Kloosterman
sums (i.e., it does not imply the Weil bound, Theorem 10 of the introduction) because
the latter involves the rational function aX + bX−1 in the additive character.
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CHAPTER 6

Heilbronn sums

6.1. Introduction

In the two previous chapters, we have proved important special cases of the Riemann
Hypothesis over finite fields for one-variable exponential sums. The results are best
possible in some sense (in particular, once the degree of the L-function, as a polynomial,
is known, as well as the fact that the inverse roots are Weil numbers of weight 1, one
can not improve on the estimate for the companion sums over extension fields Fqν as
ν → +∞). However, in applications, one may have to deal with exponential sums for
which the Riemann Hypothesis does not lead to any non-trivial result. A typical example
is given by the sums

Gk(a; p) =
∑
x∈Fp

e
(axk
p

)
, a ∈ F×p ,

if k is not considered as fixed, but is allowed to vary with p. Indeed, if k | p−1, detecting
k-th powers in Fq using multiplicative characters, one gets∑

x∈Fp

e
(axk
p

)
=
∑
y∈Fp

e
(ay
p

)
|{x ∈ Fp | xk = y}|

=
∑
y∈Fq

e
(ay
p

) ∑
χk=1

χ(y)

=
∑
χk=1

∑
y∈Fq

χ(y)e
(ay
p

)
=
∑
χk=1
χ 6=1

τ(χ, ψa)

where ψa(x) = e(ax/p) is a non-trivial additive character of Fp; we have used the fact
that τ(1, ψa) = 0. This expression is a sum of p-Weil numbers of weight 1; however, the
bound it leads to is ∣∣∣∑

x∈Fp

e
(axk
p

)∣∣∣ 6 (k − 1)
√
p

(which is also what the Riemann Hypothesis gives here), and if k >
√
p, this is no better,

or even worse, than the trivial bound

|Gk(a; p)| =
∣∣∣∑
x∈Fp

e
(axk
p

)∣∣∣ 6 p.

Even independently of potential applications (which certainly exist), it is natural to
take this as a challenge to our understanding of exponential sums. Is this trivial bound
really the best that can be done? If not, how could one improve it?
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In this chapter, we will consider another type of sum, which is however closely related,
and for which the same type of questions arise.

Definition 6.1 (Heilbronn sum). Let p be a prime number and let a ∈ F×p . The
Heilbronn sum H(a; p) is defined by

(6.1) H(a; p) =
∑
x∈F×p

e
(axp
p2

)
.

Note that this is not quite an exponential sum of the type we have considered up to
now, since the denominator p2 is not a typo (if it were replaced by p, since xp ≡ x (mod p),
the sum would be −1). So a first remark is in order to justify the definition: the point is
that if n ∈ Z is any lift of x ∈ F×p , we define

e
(axp
p2

)
= e
(anp
p2

)
,

and this is well-defined because if m = n+ αp is any other integer reducing to x modulo
p, we have

mp = (n+ αp)p = np + p · (αp)np−1 +

(
p

2

)
(αp)2np−2 + · · ·

and this is congruent to np modulo p2, so that

e
(amp

p2

)
= e
(anp
p2

)
,

which shows that the sum is well-defined.
The only obvious bound for this sum is

|H(a; p)| 6 p− 1.

Can one do better? This question was raised by Heilbronn in the 1940’s, and only
recently was there some progress, due to Heath-Brown [8]. We will prove his result:

Theorem 6.2 (Heath-Brown). We have

H(a; p)� p11/12

for all primes p and a ∈ F×p , where the implied constant is absolute. In fact, more
precisely, we have

(6.2) |H(a; p)| 6 4p11/12.

Remark 6.3. This is not the best result currently known: by elaborating on Heath-
Brown’s ideas, Heath-Brown and Konyagin [9] have shown

H(a; p)� p7/8,

and indeed they have also proved that

Gk(a; p)� min((kp)5/8, k3/8p3/4)

using similar techniques, which is a non-trivial estimate as long as k � p2/3, whereas the
Riemann Hypothesis bound is only non-trivial for k � p1/2.
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The methods involved are elementary and quite closely related to Stepanov’s method,
in its original form. The strategy is to reduce first to point-counting on some curve over
Fp; the fact that the sum bears some similarity to the sums Gk(a; p) appears clearly
at this point, since the curve involved has large degree depending on p, so that the
point counting results deriving from the Riemann Hypothesis would only lead to a trivial
bound, once more. Then a variant of Stepanov’s method is shown to be applicable to the
point-counting problem.

6.2. Reduction to point counting

In this section, we show how to go from the problem of estimating Heilbronn sums to
that of counting solutions to (large degree) polynomial equations over Fp. This is given
by the following proposition:

Proposition 6.4. Let p be a prime number. Define the polynomial

(6.3) Lp = X +
X2

2
+ · · ·+ Xp−1

p− 1
∈ Fp[X],

and let
Nr(Fp) = {x ∈ Fp − {0, 1} | L(x) = r}.

for r ∈ Fp.
Then for any a ∈ F×p , we have

|H(a; p)| 6 (p− 1)1/2 + N(Fp)
1/4p3/4

where
N(Fp) = max

r∈Fp
|Nr(Fp)|,

and the implied constant is absolute.

Remark 6.5. It is important to note that although this estimate does not lead to any
direct upper-bound for the Heilbronn sums by itself, it remains “neutral”: if we input the
obvious bound |Nr(Fp)| 6 p for all r, the right-hand side is of size p, which is the trivial
bound for Heilbronn sums. In other words this proposition has not led to any direct loss
for the estimate. Thus one may get a result from any non-trivial understanding of the
order of Nr(Fp). This is the point-counting problem that will be dealt with in the next
section.

The second remark is that the polynomial involved, Lp, is a truncated logarithm: we
have

log
( 1

1−X

)
= X +

X2

2
+ · · ·+ Xn

n
+ · · ·

in the formal power-series ring Q[[X]], and Lp is obtained by eliminating the terms of
degree > p – since Xp/p does not make sense in Fp[X], this is necessary. We will see
that, in quite a few places, this “transcendental” origin of the polynomial plays a crucial
role.

Proof. The basic idea is quite similar to well-known techniques in the study of
exponential sums: one writes down |H(a; p)|2 and tries to rearrange the double sum that
arises in terms of new variables.

We have

|H(a; p)|2 =
∑

x,y∈F×p

e
(a(xp − yp)

p2

)
,
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and we start by isolating the “diagonal” contribution where x = y, then for the remainder
we put

y = x− t

where t ∈ Fp − {0, x}: we get

|H(a; p)|2 = p− 1 +
∑
x∈F×p

∑
t∈F−{0,x}

e
(a(xp − (x− t)p)

p2

)
.

Then it seems natural to factor xp in the exponential; thus we write t = ux with
u ∈ Fp − {0, 1}, and get

|H(a; p)|2 = p− 1 +
∑
x∈F×p

∑
u∈F−{0,1}

e
(a(xp(1− (1− u)p)

p2

)
.

We now expand the term 1− (1− u)p and reduce it modulo p2; this is similar to the
Taylor expansions often performed in the Weyl or van der Corput methods. We may of
course assume that p 6= 2, and thus we have

1− (1− u)p = −
p∑
j=1

(−1)j
(
p

j

)
uj

= (−1)p+1up −
p−1∑
j=1

(−1)j
(
p

j

)
uj

= up −
p−1∑
j=1

(−1)j
(
p

j

)
uj.

However, for 1 6 j 6 p− 1, we can write(
p

j

)
=
p(p− 1) · · · (p− j + 1)

1 · 2 · · · (j − 1) · j

= p · p− 1

1
· p− 2

2
· · · p− (j − 1)

j − 1
· 1

j

≡ (−1)j−1p

j
(mod p2),

and consequently we get

1− (1− u)p ≡ up + p

p−1∑
j=1

uj

j
= up + pLp(u) (mod p2).

This means that

|H(a; p)|2 = p− 1 +
∑
x∈F×p

∑
u∈F−{0,1}

e
(axp(up + pLp(u))

p2

)
.
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Now, note that if u 6= 0 in Fp, we have up−1 ≡ 1 (mod p) and hence

Lp(u) =
(
u+

u2

2
+ · · ·+ up−1

p− 1

)
= up

(
u1−p +

u2−p

2
+ · · ·+ u−1

p− 1

)
= up

(
− u1−p

p− 1
− up−2

p− 2
− · · · − u−1

)
= −upLp(u−1)

in Fp (which could be compared with the equation log(x−1) = − log x). This leads to the
new expression

|H(a; p)|2 = p− 1 +
∑
x∈F×p

∑
u∈F−{0,1}

e
(a(ux)p(1− pLp(u−1))

p2

)
.

We are now naturally led to make the change of variable (v = u−1, y = ux) with
v ∈ Fp − {0, 1} and y ∈ F×, and we obtain

|H(a; p)|2 = p− 1 +
∑
y∈F×p

∑
v∈F−{0,1}

e
(a(1− pLp(v))yp

p2

)
= p− 1 +

∑
r∈Fp

∑
v∈Fp−{0,1}
Lp(v)=r

∑
y∈F×

e
(a(1− pr)yp

p2

)

= p− 1 +
∑
r∈Fp

H(a(1− pr); p)|Nr(Fp)|.

This is the basic relation we need. Now, to obtain the proposition, we must separate
the Heilbronn sums H(a(1− pr); p) from the point-counting values Nr(Fp). For this, we
first note the obvious relation

(6.4)
∑
r∈Fp

|Nr(Fp)| = |Fp − {0, 1}| = p− 2,

and the mean-square estimate∑
r∈Fp

|H(a(1− pr); p)|2 =
∑
r∈Fp

∑
x,y∈F×p

e
(a(1− pr)(xp − yp)

p2

)
=
∑

x,y∈F×p

e
(a(xp − yp)

p2

)∑
r∈Fp

e
(−ar(xp − yp)

p

)
= p(p− 1)

by orthogonality of characters and the fact that xp = yp implies x = y in Fp.
Then we apply Cauchy’s inequality to the second term of the expression we obtained

for |H(a; p)|2, to derive from these two facts the upper bound∣∣∣∑
r∈Fp

H(a(1− pr); p)|Nr(Fp)|
∣∣∣2 6∑

r∈Fp

|Nr(Fp)|2
∑
r

|H(a(1− pr); p)|2

6 p(p− 1)(p− 2) max
r∈Fp
|Nr(Fp)|.

This leads immediately to the proposition since
√
a2 + b2 6 a+b for any a, b > 0. �
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6.3. Point counting for Heilbronn sums

From the previous section, we see that Theorem 6.2 will follow from the next result.
The exponent of p is obtained by

1

4
· 2

3
+

3

4
=

11

12
,

and the more precise bound (6.2) comes from

|H(a; p)| 6 √p+ 441/4p11/12 6
√
p+ 3p11/12 6 4p11/12

for all p > 2 and a ∈ F×p .

Theorem 6.6 (Mit’kin; Heath-Brown). Let p be a prime number, and let

Lp = X +
X2

2
+ · · ·+ Xp−1

p− 1
∈ Fp[X],

and let
Nr(Fp) = {x ∈ Fp − {0, 1} | Lp(x) = r}.

for r ∈ Fp. Then we have

|Nr(Fp)| � p2/3

where the implied constant is absolute. In fact, we have

(6.5) |Nr(Fp)| 6 44p2/3.

Although this result was proved also by Heath-Brown in his paper [8], it turned out
that this point-counting result (but not its application to Heilbronn sums) had been
proved already by D.A. Mit’kin [17] just a few years before.

The proof is elementary, but delicate. To understand a bit why it is not unreasonable
to expect this to be true (or at least something similar), note that we have already seen
in (6.4) that the average of |Nr(Fp)| is bounded (by 1). However, we are interested in
a bound on the maximal size, and in order for this to be also reasonably small, we may
look at the mean square of |Nr(Fp)| (in fact, it is from this mean-square that we arrived
at the maximum). Expanding the square, we find that∑

r∈Fp

|Nr(Fp)|2 =
∑

x,y∈Fp−{0,1}

∑
r∈Fp

Lp(x)=Lp(y)=r

1

= |{(x, y) ∈ (Fp − {0, 1})2 | Lp(x) = Lp(y)}|.
This is therefore the number of points, with coordinates in Fp − {0, 1}, of the curve

defined by the equation
Lp(X)− Lp(Y ) = 0

in the plane. There are of course p−2 solutions corresponding to diagonal pairs (x, x), but
for the remaining ones, the fact that the degree of the polynomial Lp(X)−Lp(Y ) is large
(it is p− 1) means that even if we could apply directly the Riemann Hypothesis for the
number of solutions to this equation, we would only get a trivial estimate of size roughly
p5/2 (the genus of the curve could be as large as p2). So the problem is quite similar to
what we described at the beginning of this chapter with the estimates of Gk(a; p).

Heath-Brown’s adaptation of the Stepanov method to deal with this problem is based
on the construction of an auxiliary polynomial F ∈ Fp[A,B,C], in three variables A, B
and C, with the following properties:

(i) its degree with respect to each variable will not be “too large”;
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(ii) the associated specialized polynomial

G = F (X,Xp, Lp(X)) ∈ Fp[X]

is non-zero, and is such that G vanishes to a fairly larger order > m for all x ∈ Nr(Fp),
i.e., all x ∈ Fp−{0, 1} such that Lp(x) = r (where r is fixed and F may of course depend
on r).

It follows in that case that

(6.6) |Nr(Fp)| 6
deg(G)

m
6

degA(F ) + p degB(F ) + (p− 1) degC(F )

m
.

Since a bound of size p is trivial, we see already that it will be imperative that m be
quite large (a positive power of p). However, we will also see that one must take m < p,
and this allows us to use usual derivatives (instead of Hasse derivatives) to detect zeros
of order > m:

Lemma 6.7. Let K be a field of characteristic p > 0, f ∈ K[X] a polynomial. Then,
if 0 6 m 6 p, an element x ∈ K is a zero of f of order > m if and only if

f(x) = f ′(x) = · · · = f (m−1)(x) = 0.

If x 6= 0, 1, then x is a zero of f of order > m if and only if

f(x) = δf(x) = · · · = δm−1f(x) = 0,

where δ is the linear map {
K[X] −→ K[X]
f 7→ X(1−X)f ′

.

The example of f = Xp, where x = 0 is a zero of order p but f (j)(0) = 0 for all
j > 0 (because the p-th derivative is p! = 0), shows that this does not hold anymore for
order > p. Then one would have to appeal to Hasse derivatives (see the Appendix to
Chapter 4).

The main reason why the strategy above has a chance is the following obvious fact:
if x ∈ Nr(Fp), the auxiliary polynomial G evaluated at x satisfies

(6.7) G(x) = H(x)

where H is the polynomial H = F (X,X, r) ∈ Fp[X]. The point is that the degree of H
is much smaller than that of G: we have

deg(H) 6 degA(F ) + degB(F ).

This means, in particular, that it may well be that H = 0 (as a polynomial) even
when G 6= 0. And if that is the case, we have at least the starting case m = 1 of condition
(ii): the polynomial G then vanishes to order > 1 at all points of Nr(Fp). (This argument
is the analogue to Lemma 4.27 in Bombieri’s variant of the Stepanov method.)

To deal with cases where m > 1, we use the following lemma to generalize (6.7) to
derivatives of G. First of all, for convenience we denote by Φ the Fp-linear specialization
giving the auxiliary polynomial G:

Φ

{
Fp[A,B,C] −→ Fp[X]

F 7→ F (X,Xp, Lp(X))
.

Lemma 6.8. Let p be a prime, Lp ∈ Fp[X] as before. For F ∈ Fp[A,B,C] and
G = Φ(F ) = F (X,Xp, Lp(X)) ∈ Fp[X], we have

δG = X(1−X)G′ = ∂(F )(X,Xp, Lp(X)) = Φ(∂F ),
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where ∂ denotes the map{
Fp[A,B,C] −→ Fp[A,B,C]

F 7→ A(1− A)
∂F

∂A
+ (A−B)

∂F

∂C

.

Proof. It is enough to check this for a monomial F = AaBbCc, by linearity. Even
better: it is a simple fact that either ∆ = Φ ◦ ∂ or ∆ = δ ◦ Φ, as Fp-linear maps

Fp[A,B,C]→ Fp[X],

satisfy the following version of Leibniz rule:

∆(F1F2) = Φ(F1)∆(F2) + Φ(F2)∆(F1)

for F1, F2 ∈ Fp[A,B,C].
Using this rule, it follows immediately that the desired conclusion (namely, Φ ◦ ∂ =

δ ◦ Φ) follows from its validity in the special cases F = A, F = B and F = C.
We consider each of these in turn. For F = A, we have G = Φ(A) = X and

δG = X(1−X) = Φ(∂A),

and for F = B, we have G = Φ(B) = Xp and

δG = 0 = Φ(∂B).

Finally,for F = C, we have G = Φ(C) = Lp(X) and by definition (6.3), we get

X(1−X)G′ = X(1−X)
(

1 +X + · · ·+Xp−2
)

= X −Xp = Φ(A−B) = Φ(∂C),

as expected. �

Remark 6.9. The identity

X(1−X)L′p(X) = X −Xp

should be compared with the standard formula

X(1−X)
(

log
1

1−X

)′
= X.

From this lemma, we see that for j > 0, we have

δjG = (∂jF )(X,Xp, Lp(X)) ∈ Fp[X],

while for j > 0 and x ∈ Nr(Fp), we get

(δjG)(x) = Hj(x)

with

Hj = (∂jF )(X,X, r).

Consequently, if 0 6 m < p and if F ∈ Fp[A,B,C] has the property that the polyno-
mials Hj defined in this manner satisfy

H0 = · · · = Hm−1 = 0

(as polynomials in Fp[X]), then any x ∈ Nr(Fp) is a zero of G = F (X,Xp, Lp(X)) of
order > m.

Now, counting unknowns and equations, we will quickly get:
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Lemma 6.10 (Ensuring high order of vanishing). Let r ∈ Fp be fixed. If 0 6 m < p
and a, b, c > 1 are integers such that

(6.8) m(a+ b+m− 1) < abc,

then there exists a non-zero polynomial F ∈ Fp[A,B,C] such that

degA(F ) < a, degB(F ) < b, degC(F ) < c,

and

F (X,X, r) = (∂F )(X,X, r) = · · · = (∂m−1F )(X,X, r) = 0,

and in particular such that each x ∈ Nr(Fp) is a zero of

G = F (X,Xp, Lp(X))

of order > m.

This step is analogue to the use of the Riemann-Roch theorem to construct a function
f satisfying the relation (4.30) in Lemma 4.27. Note that this does not yet give the
existence of the desired auxiliary polynomials G: we must afterwards still ensure that
one can find a polynomial F as above such that G 6= 0 ∈ Fp[X], and whether this is
possible is by no means clear! (In fact, this will be the trickiest part of the proof).

Proof. Fix a, b, c > 1, and let V(a, b, c) denote the Fp-subspace of Fp[A,B,C] of
polynomials F such that

degA(F ) < a, degB(F ) < b, degC(F ) < c,

and similarly let H(d) be the subspace of polynomials of degree < d in Fp[X]. (These are
analogue to Riemann-Roch spaces). Note that dimV(a, b, c) = abc and dimH(d) = d.

We now observe that

degA(∂F ) < a+ 1, degB(∂F ) < b+ 1, degC(∂F ) < c,

and hence, by immediate induction on j > 0, the map ∂j is a linear map

V(a, b, c)
∂j−→ V(a+ j, b+ j, c).

On the other hand, the map

Ψ : F 7→ H = F (X,X, r)

sends V(a, b, c) to H(a+ b), and hence we have linear maps

Ψj = Ψ ◦ ∂j : V(a, b, c)→ H(a+ b+ 2j).

In these terms, our goal is to show that, under the stated conditions on a, b and c,
there is a non-zero element in the kernel of the linear map T

V(a, b, c)
T−→

⊕
06j6m−1

H(a+ b+ 2j)

that sends F to

T (F ) = (Ψ(F ),Ψ1(F ), . . . ,Ψm−1(F )).
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By linear algebra, this is true as soon as

abc = dimV(a, b, c) > dim
⊕

06j6m−1

H(a+ b+ 2j)

=
∑

06j6m−1

(a+ b+ 2j)

= m(a+ b+m− 1),

which is exactly what we stated. �

Now for the last step, which shows that the auxiliary polynomial G can also be taken
non-zero, under suitable assumptions – this is the analogue of Lemma 4.28. Note that,
up to this point, we have not used much information concerning the polynomial Lp.

Lemma 6.11 (Injectivity of specialization). Let m < p and let a, b, c > 1 be integers
such that

(6.9) ab 6 p.

Then, with notation as in the proof of the previous lemma, the restriction of Φ given
by

Φ

{
V(a, b, c) −→ Fp[X]

F 7→ F (X,Xp, Lp(X))

is injective.

Before proving this last fact – which will be somewhat delicate –, we use it to finish
the proof of Theorem 6.6.

Proof of Theorem 6.6. From our discussion (see, in particular, (6.6)), and the
combination of Lemmas 6.10 and 6.11, we see that, whenever m > 0 and a, b, c > 1 are
integers for which 

m < p

m(a+ b+m− 1) < abc

ab 6 p,

we have

|Nr(Fp)| 6
a+ pb+ (p− 1)c

m
,

and we need to optimize this to obtain the smallest bound possible.
As in the end of Section 4.3, we explain how to reach the values of m, a, b and c that

we will select. First, note that we need to have m > b, m > c to beat the trivial bound on
|Nr(Fp)|. Now, in terms of order of magnitude, if m > a, the second condition roughly
becomes

m2 < abc,

and since m should be as large as possible, this means that m should be about
√
abc;

moreover, to have this as large as possible, we should have ab as large as possible, i.e.,
about ab ≈ p. Since we assume a < m, the upper-bound on |Nr(Fp)| is then

≈ √p
( b√

c
+
√
c
)
,
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and to minimize this one must take b = c, and b as small as possible, which means
m ≈

√
pb as small as possible, under the constraint m > a. This is done when there is

equality, and so a, b and p are then related by relations{
ab ≈ p√
pb ≈ a,

which have solutions of size

a ≈ p2/3, b ≈ p1/3

from which we get the final guess

a ≈ p2/3, b ≈ p1/3, c = b ≈ p1/3, m = a ≈ p2/3,

leading to an upper bound of type

|Nr(Fp)| �
√
pb = p2/3.

It is easily checked, in a similar way, that assuming m 6 a leads to the same solutions
in terms of order of magnitude.

Now, to get exact constants as in (6.5), the following can be done: take

m = a = bp2/3c, b = bp1/3c,
and then check that, of course, m < p, ab 6 p, and that for

c = 10dp1/3e,
we have1

m(a+ b+m− 1) < abc

for all p > 2. The upper bound becomes

|Nr(Fp)| 6 1 + p
bp1/3c
bp2/3c

+ 10p
dp1/3e
bp2/3c

,

and one checks (wastefully) that

p
bp1/3c
bp2/3c

6 3p2/3, p
dp1/3e
bp2/3c

6 4p2/3

for all p > 2, which gives

|Nr(Fp)| 6 43p2/3 + 1 6 44p2/3,

for p > 2 and r ∈ Fp. �

And now for the final step: proving Lemma 6.11. The intuition is the following:
if Φ(F ) = 0 with F of “small” degree, this means that the truncated logarithm Lp
satisfies (essentially) a polynomial equation, i.e., that it behaves like an algebraic function.
However, we know that, in Q[[X]], the element log(1/(1 −X)) is transcendental. So we
may expect that such relations are not possible.

Proof of Lemma 6.11. We first write F as a polynomial in B with coefficients in
Fp[A,C], which gives a formula of the type

Φ(F ) =
∑
j

Fj(X,Lp(X))Xpj.

1 This is easier to do with a graphing software.
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Now we observe that if Φ(F ) = 0, there exists some j such that Gj = Fj(X,Lp(X))
is non-zero but satisfies

v(Gj) > p

where v(·) denotes the order of vanishing of a polynomial at 0; indeed, if that is not the
case, the different terms Fj(X,Lp(X))Xpj satisfy

v(Fj(X,Lp(X))Xpj) = v(Gj) + pj,

and hence they are all distinct as j varies; but then the order of vanishing at 0 of Φ(F )
is the minimal among these v(Gj) + pj, and in particular it is finite, which means that
Φ(F ) 6= 0.

Now we are going to prove the following fact:
Fact 1. Assume F ∈ Fp[A,C] is not identically zero and satisfies

degA(F ) < a, degC(F ) < c,

and ac 6 p. Then v(F (X,Lp(X))) < p.

If we prove this, then obviously we are done. For the proof, we follow [22, §3], which is
shorter than Heath-Brown’s original argument. This proceeds by proving a more refined
statement, which is better suited to a clever induction argument. Thus we will show:

Fact 2. Assume F ∈ Fp[A,C] is not zero and is of the form

F =
∑
k<c

FkC
k

where Fk ∈ Fp[A] has degree degA Fk 6 ak, Fc−1 6= 0, and

a0 > a1 > · · · > ac−1.

Denoting

(6.10) d = a0 + · · ·+ ac−1,

if d+ c− 1 < p, we have v(F (X,Lp(X))) 6 d+ c− 1.

In the situation of Fact 1, we can take ak = a− 1 for 0 6 k < c, so that d = (a− 1)c,
and we have

d+ c− 1 = ac− 1 < p

by assumption, so we deduce that v(F (X,Lp(X))) 6 d+ c− 1 = ac− 1 < p, as claimed.
So Fact 2 is indeed more general.

We will prove Fact 2 by induction on c > 1; observing that for c = 1, the result is
obvious (F is then in Fp[A] so F (X) vanishes to order 6 deg(F ) 6 a0 = d), we assume
that Fact 2 holds for c replaced by c − 1 or smaller integers, and we argue for a given
c > 2 by induction on the quantity d given by (6.10). If d = 0, F is now in Fp[C], and
the result follows from the fact that v(Lp) = 1 (i.e., 0 is a root of Lp with multiplicity 1)
and F has degree 6 c− 1.

Thus assume that d > 1 and Fact 2 is valid when a0 + · · ·+ ac−1 < d (and a0 + · · ·+
ac−1 + c− 1 < p). We suppose that F ∈ Fp[A,C] is given as above with degC(F ) = c− 1
and

d = a0 + · · ·+ ac−1,

and satisfies v(Φ(F )) = v(F (X,Lp(X))) > c+ d. To make use of the induction assump-
tion, we want to consider the derivative of G = Φ(F ); if we notice that the logarithm
log(1/(1−X)) satisfies the very simple relation

(X − 1)(log(1/(1−X)))′ = −1,
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it is natural to consider H = (X − 1)G′. Indeed, we have

(X − 1)L′p = (X − 1)(1 +X + · · ·+Xp−2) = Xp−1 − 1,

and hence for k > 1, we get

(X − 1)(Lkp)
′ = kLk−1

p (Xp−1 − 1).

This means in particular that

(X − 1)G′ ≡
∑

06k<c

(X − 1)F ′kL
k
p −

∑
16k<c

kFkL
k−1
p (modXp−1)

≡ Φ(H) (modXp−1)

where

H =
∑

06k<c−1

(
(A− 1)F ′k − (k + 1)Fk+1

)
Ck

− (X − 1)Fc−1C
c−1 ∈ Fp[A,C].

Because v((X − 1)G′) > c+ d− 1 and c+ d− 1 6 p− 1, the congruence implies that

v(Φ(H)) > c+ d− 1.

Now we look at the coefficients of Ck in H, trying to apply the induction to it; since
the ai’s are assumed to be non-increasing, we have

degA((A− 1)F ′k − (k + 1)Fk+1) 6 ak

for 0 6 k < c− 1, and degA((A− 1)F ′c−1) 6 ac−1. Thus the quantity d has not decreased
in H; however, if we consider instead

H̃ = H − (degFc−1)F,

the coefficients of Ck for k < c− 1 are still of degree 6 ak, but the coefficient of Cc−1 is
now

(A− 1)F ′c−1 − (degFc−1)Fc−1

which has degree strictly smaller than Fc−1. Since we have

v(Φ(H̃)) > c+ d− 1,

we can apply the induction argument to H̃, and because v(Φ(H̃)) > c+d− 1 contradicts
the conclusion, the only possibility is that H̃ = 0. But this means, in particular, that{

(A− 1)F ′c−1 − (degFc−1)Fc−1 = 0

(A− 1)F ′c−2 − (degFc−1)Fc−2 = −(c− 1)Fc−1

The first relation implies that Fc−1 is of the form

Fc−1 = α(A− 1)r

for some r = deg(Fc−1) > 0 and α 6= 0. Now we look at the terms of highest degree in
the second relation; writing

Fc−2 = βAs + · · · , s = deg(Fc−2),

we find
(A− 1)F ′c−2 − (degFc−1)Fc−2 = β(s− r)As + · · · ,

and this means that the second relation implies first s = r, and then the coefficient of
As = Ar must vanish, i.e., we must have

−(c− 1)α = 0,
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which is not possible since 2 6 c 6 p. This shows that F 6= 0 can not exist, and finishes
the induction. �
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