Characteristic Polynomials of Unitary Matrices

We survey repr'n theoretic ideas underlying work of:

- Diaconis and Shahshahani
- Keating and Snaith (following Gamburd)
- Conrey, Farmer, Zirnbauer (Bump-Gamburd)
- Szegö LT: Bump-Diaconis, Tracy-Widom, Dehaye
- Derivatives: Dehaye

The last two topics are not covered but would fit in. Also omitted are symplectic and orthogonal groups (see Bump-Gamburd for example).

In A Nutshell

• Basic idea is using a **correspondence** to move computation from one group to another.

These slides

http://sporadic.stanford.edu/bump/zurich.pdf

Motivation: From CUE to ζ

GUE (Random Hermitian Matrices)

- Physicists (Wigner, Gaudin, Dyson, Mehta) investigated random Hermitian matrices (GUE).
- Interest is in local statistics: eigenvalue correlations. (Eigenvalues repel).
- From Montgomery and Dyson GUE also models zeros of ζ .

CUE (Random Unitary Matrices)

Dyson: the exponential map

$$X \longmapsto e^{i X} \colon \left\{ \begin{array}{c} \text{Hermitian} \\ \text{matrices} (\text{GUE}) \end{array} \right\} \longrightarrow \left\{ \begin{array}{c} \text{Haar Unitary} \\ \text{matrices} (\text{CUE}) \end{array} \right\}$$

- Maps eigenvalues from $\mathbb{R} \longrightarrow \{|z|=1\}.$
- Preserves **local statistics** (eigenval correlations)
- CUE (Circular Unitary Ens.) is $(U(n), d\mu_{\text{Haar}})$.
- CUE is easier to work with since compact.

The Idea of a Correspondence

Howe (commenting on Weyl, Weil) observed naturally occurring representations of groups $G \times H$ are multiplicity free in a strong sense.

- (ω, V_{ω}) a unitary rep'n of $G \times H$
- For simplicity *G*, *H* compact
- $\omega = \bigoplus \pi_i^G \otimes \pi_i^H$ with π_i^G and π_i^H irreducible
- **Peter-Weyl:** π_i^G and π_i^H are finite-dim'l
- Assume no repetitions in π_i^G or π_i^H .

Then call ω a **correspondence**.

• $\pi_i^G \Leftrightarrow \pi_i^H$ is a **bijection** $\{\pi_i^G\} \cong \{\pi_i^H\}.$

Examples:

- $G \times G$ acting on $L^2(G)$
- $S_k \times U(n)$ acting on $\otimes^k V$ $(V = \mathbb{C}^n)$
- Dual reductive pairs in Sp(2n) Weil rep'n

Frobenius-Schur Correspondence

Let $G = S_k$, H = U(n). H acts on $V = \mathbb{C}^n$ and both act on $V_{\omega} = \bigotimes^k V$.

- $\omega(\sigma) \in S_k: v_1 \otimes \cdots \otimes v_k \longrightarrow v_{\sigma^{-1}1} \otimes \ldots \otimes v_{\sigma^{-1}k}$
- $\omega(g) \in U(n): v_1 \otimes \cdots \otimes v_k \longrightarrow gv_1 \otimes \cdots \otimes gv_k$
- Actions commute so ω is a rep'n of $S_k \times U(n)$

Theorem. This is a correspondence.

- So there is a bijection between certain rep's of S_k and certain rep's of U(n).
- Explains Frobenius' use of symmetric functions (related to U(n)) to compute characters of S_k .
- It is useful to study S_k and U(n) together.

Reps of S_k

- Let $\lambda = (\lambda_1, \dots, \lambda_m)$ be a partition of k.
- $\lambda_1 \ge \dots \ge \lambda_m$ and $\sum \lambda_i = k$.
- $S_{\lambda} = S_{\lambda_1} \times \cdots \times S_{\lambda_m} \subset S_k.$

Let $\mu = \lambda'$ be conjugate partition.

Theorem. Hom_{$\mathbb{C}[S_k]$}(Ind^{S_k}_{S_λ}(1), Ind^{S_k}_{S_μ}(sgn)) is onedimensional.

Proof. Mackey Theory.

• Mackey Theory computes intertwinings of induced rep's by double coset computations.

• More on Mackey Theory for S_k later.

Let $\pi_{\lambda}^{S_k}$ be the unique irreducible constituent of $\operatorname{Ind}_{S_{\lambda}}^{S_k}$ that can be mapped into $\operatorname{Ind}_{S_{\mu}}^{S_k}(\operatorname{sgn})$.

Reps of U(n)

- If $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n$ associate the character $\operatorname{diag}(t_1, \dots, t_n) \longmapsto \prod t_i^{\lambda_i}$, called a **weight**.
- Call λ a **dominant weight** if $\lambda_1 \ge ... \ge \lambda_n$.
- Call λ effective if $\lambda_n \ge 0$.
- An effective dominant weight is a partition.

Let λ be dominant. Define **Schur polynomial**

$$s_{\lambda}(t_1, \cdots, t_n) = \frac{\det(t_i^{\lambda_j + n - j})}{\det(t_i^{n - j})}$$

• It is a symmetric polynomial of degree $\sum \lambda_j$.

Theorem. (Schur, Weyl) Given a dominant weight λ there is a rep'n $\pi_{\lambda}^{U(n)}$ with character

$$\chi_{\lambda}^{U(n)}(g) = s_{\lambda}(t_1, \dots, t_n), \qquad t_i = eigenval's of g.$$

Frobenius-Schur duality

In the Frobenius-Schur correspondence partitions λ of k of length $\leq n$ are effective dominant weights.

$$\pi_{\lambda}^{S_k} \longleftrightarrow \pi_{\lambda}^{U(n)}.$$

Diaconis-Shahshahani

As a first application, the distribution of traces tr(g) for $g \in U(n)$ is approximately Gaussian. More precisely, let ϕ be any smooth test function on \mathbb{C} . Then

$$\lim_{n \to \infty} \int_{U(n)} \phi(\operatorname{tr}(g)) dg = \int_{\mathbb{C}} \phi(z) \left[\frac{e^{-\pi (x^2 + y^2)}}{\pi} \right] dx \, dy,$$

z = x + iy. This is surprising since the right-hand side is independent of n. We might expect the traces to spread out as $n \longrightarrow \infty$ since they are sums of many eigenvalues.

• If
$$\phi(x) = |x|^k$$
 and $k < n$ then **exactly**

$$\int_{U(n)} \phi(\operatorname{tr}(g)) dg = \int_{\mathbb{C}} \phi(x+iy) \left[\frac{e^{-\pi(x^2+y^2)}}{\pi} \right] dx \, dy.$$

- Method of moments: This is sufficient.
- Assume ϕ homogeneous of degree k and transfer the computation to S_k .

• If
$$\phi(x) = |x|^k$$
 then RHS = k!

Transferring The Computation

- Let $\omega: G \times H \longrightarrow \operatorname{End}(V_{\omega})$ be correspondence.
- Remember $\omega = \bigoplus \pi_i^G \otimes \pi_i^H$.
- Let f be a class function on G. We construct a class function f' on H.
- If $f = \chi_i^G$ is a character of a π_i^G let $f' = \chi_i^H$.
- If f is orthogonal to the χ_i^G let f'=0.
- $f \mapsto f'$ is an isometry on the span of the χ_i^G by Schur orthogonality.

So if f is in the span of the χ_i^G and we can compute $\|f'\|_{L_2}$ we can compute $\|f\|_{L_2}$.

Transferring Diaconis-Shahshani

For example, let $G = S_k$ and H = U(n). Let

$$f(\sigma) = \begin{cases} \frac{1}{|C|} & \text{if } \sigma \in C \\ 0 & \text{otherwise} \end{cases}$$

where C is the conjugacy class of k-cycles. Then f' is the function $\operatorname{tr}(g)^k$ on U(n), and if $n \ge k$

$$\|f'\|^2 = \|f\|^2 = k!$$

or

$$\int_{U(n)} |\operatorname{tr}(g)|^{2k} dg = k!$$

which is the Diaconis-Shahshahani result. Indeed

$$\int_{\mathbb{C}} |x+iy|^{2k} \left[\frac{e^{-\pi (x^2+y^2)}}{\pi} \right] dx \, dy = k!$$

- This is their method.
- They proved more: the distributions on U(n) of $\operatorname{tr}(g), \operatorname{tr}(g^2), \cdots, \operatorname{tr}(g^m)$ converge in measure to independent Gaussians as $n \longrightarrow \infty$.
- Same trick, other conjugacy classes of S_k .

$G \times G$ Correspondences

- $\operatorname{GL}_n \times \operatorname{GL}_m$ is a dual reductive pair and so there is a Howe correspondence.
- We do not need the Weil representation to discuss it but it is in the background.

1. Very general. Let G = H be any compact group. Then $G \times H$ acts on $L^2(G)$ by

$$\omega(g,h)f(x) = f(g^{-1}xh).$$

This is a correspondence. All irreducible reps appear:

$$\{\pi_i^G\} = \{\pi_i^H\} = \text{all irreducibles}$$

and $\pi_i^H = \hat{\pi}_i^G$ is the **contragredient representation**.

2. G = U(n). If G = H = U(n) we can modify this construction as follows.

- G has an involution $g \mapsto {}^tg^{-1}$ that interchanges π and $\hat{\pi}$.
- So let $G \times H$ act on $L^2(G)$ by

$$\omega(g,h)f(x) = f({}^tgxh).$$

Then $\pi_i^G = \pi_i^H$.

3. $G = \operatorname{GL}(n, \mathbb{C}).$

- K = U(n) is maximal compact in $G = GL(n, \mathbb{C})$.
- From last example $K \times K$ acts on $L^2(K)$ by

$$\omega(g,h)f(x) = f(^tgxh).$$

- Polynomial functions are dense in $L^2(K)$ and closed under this action (finite functions).
- Action on on polynomials extends to $GL(n, \mathbb{C})$ by same formula.
- Polynomials = $\mathbb{C}[g_{ij}, \det^{-1}]$ (g_{ij} = coordinates).
- Every irreducible rep'n $\pi_{\lambda}^{U(n)}$ of U(n) extends uniquely to an analytic rep'n $\pi_{\lambda}^{\operatorname{GL}(n)}$ of $\operatorname{GL}(n, \mathbb{C})$. Conclusion:

$$\mathbb{C}[g_{ij}, \det^{-1}] \cong \bigoplus_{\text{dominant weight } \lambda} \pi_{\lambda}^{\mathrm{GL}(n)} \otimes \pi_{\lambda}^{\mathrm{GL}(n)}$$

as $GL(n, \mathbb{C})$ -modules. Sum is over dominant weights λ .

4. $G = GL(n, \mathbb{C})$: regular on det = 0

Question: Which elements of $\mathbb{C}[g_{ij}, \det^{-1}]$ are regular on the determinant locus in $\mathbb{C}^{n^2} = \operatorname{Mat}_n(\mathbb{C})$? Answer: λ must be effective $(\lambda_1 \ge ... \ge \lambda_n \ge \mathbf{0})$.

 $\mathbb{C}[g_{ij}] \cong \bigoplus_{\substack{\text{effective} \\ \text{dominant weight } \lambda}} \pi_{\lambda}^{\mathrm{GL}(n)} \otimes \pi_{\lambda}^{\mathrm{GL}(n)}$

as $GL(n, \mathbb{C})$ -modules.

• Restrict to $T \times T$ (T = diagonal subgroup)

$$\left(\begin{array}{ccc} \alpha_1 & & \\ & \ddots & \\ & & \alpha_n \end{array}\right), \left(\begin{array}{ccc} \beta_1 & & \\ & \ddots & \\ & & \beta_n \end{array}\right) \in T \times T$$

- Assume $|\alpha_i|, |\beta_j| \leq 1$
- Take traces to obtain **Cauchy identity**

$$\prod_{i,j} (1 - \alpha_i \beta_j)^{-1} = \sum_{\text{effective dominant } \lambda} s_\lambda(\alpha) s_\lambda(\beta).$$

The Ring Λ

- We return to Frobenius-Schur duality.
- **Recall:** $S_k \times U(n)$ acts on $\otimes^k V$ $(V = \mathbb{C}^n)$ and so there is a Frobenius-Schur correspondence

$$\pi_{\lambda}^{S_k} \Longleftrightarrow \pi_{\lambda}^{U(n)} \qquad \qquad \lambda = (\lambda_1, \cdots, \lambda_n), \\ \lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n \geqslant 0, \quad \Sigma_i \lambda_i = k.$$

- Let $\Lambda^{(n)} = \text{ring of symmetric poly in } n$ variables
- **Recall:** The character $\chi_{\lambda}^{U(n)}$ of $\pi_{\lambda}^{U(n)}$ is $\chi_{\lambda}^{U(n)}(g) = s_{\lambda}(\alpha_1, \dots, \alpha_n), \qquad \alpha_i = \text{eigenvalues of } g$

where $s_{\lambda} = s_{\lambda}^{(n)} =$ Schur polynomial in $\Lambda^{(n)}$.

- We have homomorphisms $\Lambda^{(n+1)} \longrightarrow \Lambda^{(n)}$ setting the last variable to zero.
- Let $\Lambda = \lim_{\leftarrow} \Lambda^{(n)}$.
- Λ is the ring of symmetric poly's in ∞ variables.
- We have $s_{\lambda}^{(n)}(\alpha_1, \dots, \alpha_n) = s_{\lambda}^{(n+1)}(\alpha_1, \dots, \alpha_n, 0).$
- So $s_{\lambda} \in \Lambda$.
- The s_{λ} are a VS basis of the \mathbb{C} -algebra Λ .

The Involution

We have an involution $\iota: \Lambda \longrightarrow \Lambda$ such that $s_{\lambda} \longrightarrow s_{\lambda'}$ where λ' is the conjugate partition.

- In terms S_k , the involution tensors a representation of S_k with the sign charactor.
- In terms of U(n) it turns symmetric tensors (bosons) into skew-symmetric ones (fermions).

Let $e_k = s_{(1^k)}$ the k-th elementary symmetric poly. Let $h_k = s_{(k)}$ the k-th complete symmetric poly.

$$\iota: e_k \longleftrightarrow h_k$$

The Dual Cauchy Identity

In $\Lambda^{(n)}$

$$\sum e_k x^k = \prod_{i=1}^n (1 + \alpha_i x), \qquad \sum h_k x^k = \prod_{i=1}^n (1 - \alpha_i x)^{-1}$$

so (roughly) ι interchanges these two expressions.

• ι acts on Λ not $\Lambda^{(n)}$ so this needs interpretation.

Applying ι to one set of variables it transforms the Cauchy identity

$$\prod_{i,j} (1 - \alpha_i \beta_j)^{-1} = \sum_{\lambda} s_{\lambda}(\alpha) s_{\lambda}(\beta)$$

into the dual Cauchy identity:

$$\prod_{i,j} (1 + \alpha_i \beta_j) = \sum_{\lambda} s_{\lambda}(\alpha) s_{\lambda'}(\beta).$$

The $\operatorname{GL}_n \times \operatorname{GL}_m$ Correspondences

We proved the Cauchy identity

$$\prod_{i=1}^{n} \prod_{j=1}^{m} (1 - \alpha_i \beta_j)^{-1} = \sum_{\lambda} s_{\lambda}^{(n)}(\alpha)^{(m)} s_{\lambda}(\beta)$$

when n = m but we can specialize some parameters to zero and hence obtain the same formula for $n \neq m$. Similarly in the dual Cauchy identity we do not need n = m.

$$\prod_{i=1}^{n} \prod_{j=1}^{m} (1 + \alpha_i \beta_j) = \sum_{\lambda} s_{\lambda}^{(n)}(\alpha) s_{\lambda'}^{(m)}(\beta)$$

- The Cauchy identity describes the decomposition of the symmetric algebra over $\operatorname{Mat}_{n \times m}(\mathbb{C})$ under the natural action of $\operatorname{GL}_n \times \operatorname{GL}_m$ by left and right multiplication.
- Dual Cauchy identity describes the decomposition of the exterior algebra on $Mat_{n \times m}(\mathbb{C})$.
- In Cauchy identity we need $|\alpha_i|$, $|\beta_j| < 1$ for convergence.
- In dual identity we do not. The sum is essentially finite since only finitely many λ have length $\leq n$ (so $s_{\lambda}^{(n)} \neq 0$) with λ' of length $\leq m$.

Keating and Snaith

Theorem. (Keating and Snaith) We have

$$\int_{U(n)} |\det(I-g)|^{2k} dg = \prod_{j=0}^{n-1} \frac{j!(j+2k)!}{((j+k)!)^2}$$

- This was proved by K&S using Selberg integral.
- Gamburd found another proof that we describe.
- This is in the CMP paper of Bump-Gamburd.
- The proofs give different information, viz:
- In KS the argument k could be real.
- In BG dg could be replaced by $\overline{\chi_{\nu}(g)} dg$.

Idea is to use U(n)-U(2k) correspondence to transfer the calculation to U(2k).

Proof (Gamburd)

Suppose $\alpha_1, \dots, \alpha_n$ are the eigenvalues of $g \in U(n)$ so $|\alpha_i| = 1$. Let m = 2k and take $\beta_1 = \dots = \beta_{2k} = 1$. Then

$$|\det(I+g)|^{2k} = \prod_{i=1}^{n} \prod_{j=1}^{k} (1+\alpha_i)(1+\alpha_i^{-1})$$
$$= \det(g)^{-k} \prod_{i=1}^{n} \prod_{j=1}^{k} (1+\alpha_i)(\alpha_i+1).$$

Apply dual Cauchy with $\beta_1 = \cdots = \beta_{2k} = 1$. Then

$$|\det(I+g)|^{2k} = \det(g)^{-k} \sum_{\lambda} s_{\lambda}^{(n)}(\alpha_1, \cdots, \alpha_n) s_{\lambda'}^{(2k)}(1, \cdots, 1).$$

Now (k^n) being the partition (k, \dots, k) :

$$\det(g)^{k} = \chi_{(k^{n})}^{U(n)}(g) = s_{(k^{n})}^{n}(\alpha_{1}, \dots, \alpha_{n})$$
$$|\det(I+g)|^{2k} = \chi_{(k^{n})}^{U(n)}(g)^{-1} \sum_{\lambda} \chi_{\lambda}^{U(n)}(g)^{-1} s_{\lambda'}^{(2k)}(1, \dots, 1).$$

Integrating picks off a single term $\lambda = (k^n), \lambda' = (n^k).$

$$\int_{U(n)} |\det(I+g)|^{2k} dg = s_{(n^k)}^{(2k)}(1,\dots,1) = \prod_{j=0}^{n-1} \frac{j!(j+2k)!}{((j+k)!)^2}$$

by the Weyl dimension (=hook length) formula.

What Happened?

Just as in the proof of the Diaconis-Shahshahani result, the computation was moved to another group. It was moved from U(n) to U(2k), where it is easer to do.

Ratios

 $\Xi_{L,K}$ consist of all permutations $\sigma \in S_{K+L}$ such that

$$\sigma(1) < \dots < \sigma(L), \qquad \sigma(L+1) < \dots < \sigma(L+K).$$

Theorem. (Conrey, Farmer and Zirnbauer) Assume $n \ge Q, R$ and that $|\gamma_q|, |\delta_r| < 1$.

$$\begin{split} &\int_{U(n)} \frac{\prod_{l=1}^{L} \det \left(I + \alpha_{l}^{-1} \cdot g^{-1}\right) \cdot \prod_{k=1}^{K} \det \left(I + \alpha_{L+k} \cdot g\right)}{\prod_{q=1}^{Q} \det \left(I - \gamma_{q} \cdot g\right) \prod_{r=1}^{R} \det \left(I - \delta_{r} \cdot g^{-1}\right)} dg = \\ &\sum_{\sigma \in \Xi_{L,K}} \prod_{k=1}^{K} \left(\alpha_{\sigma(L+k)}^{-1} \alpha_{L+k}\right)^{n} \times \\ &\frac{\prod_{q=1}^{Q} \prod_{l=1}^{L} \left(1 + \gamma_{q} \alpha_{\sigma(l)}^{-1}\right) \prod_{r=1}^{R} \prod_{k=1}^{K} \left(1 + \delta_{r} \alpha_{\sigma(L+k)}\right)}{\prod_{k=1}^{K} \prod_{l=1}^{L} \left(1 - \alpha_{\sigma(l)}^{-1} \alpha_{\sigma(K+k)}\right) \prod_{r=1}^{R} \prod_{q=1}^{Q} \left(1 - \gamma_{q} \delta_{r}\right)}. \end{split}$$

After the initial proof by CFZ other proofs were given by Conrey, Forrester, Snaith and by Bump Gamburd.

We will not discuss the proof in detail but we isolate a couple of important ingredients.

Laplace-Levi expansions

- Let $G = \text{complex reductive group}, \Phi = \text{roots}$
- P = MU parabolic with Levi M and radical U.
- W and W_M the Weyl groups of G and M.
- C and $C_M =$ positive Weyl chambers.
- $\Xi = \text{coset reps for } W_M \setminus W \text{ such that } w\mathcal{C} \subset \mathcal{C}_M.$

•
$$\rho_U = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha.$$

Then

$$\chi_{\lambda}^{G} = \frac{1}{e^{-\rho_{U}} \prod_{\alpha \in \Phi^{+} - \Phi_{U}^{+}} (1 - e^{\alpha})} \sum_{w \in \Xi} (-1)^{l(w)} \chi_{\lambda_{w}}^{M}.$$

This follows from the Weyl character formula.

• With
$$G = \operatorname{GL}_{L+K}$$
 and $M = \operatorname{GL}_L \times \operatorname{GL}_K$,

•
$$\lambda = (\lambda_1, ..., \lambda_{L+K}),$$

•
$$\tau = (\lambda_1, ..., \lambda_L), \qquad \rho = (\lambda_{L+1}, ..., \lambda_{L+K}).$$

$$\sum_{\sigma \in \Xi_{L,K}} \prod_{\substack{1 \leq l \leq L \\ 1 \leq k \leq K}} (\alpha_{\sigma(l)} - \alpha_{\sigma(L+k)})^{-1}$$
$$s_{\tau + \langle K^L \rangle} (\alpha_{\sigma(1)}, \cdots, \alpha_{\sigma(L)}) s_{\rho} (\alpha_{\sigma(L+1)}, \cdots, \alpha_{\sigma(L+K)})$$

This accounts for sum over $\Xi_{L,K}$ in the ratios formula.

Littlewood-Schur sym polynomials

Due to Littlewood, rediscovered by Berele and Regev. Let $c_{\mu\nu}^{\lambda}$ be Littlewood-Richardson coefficients:

$$s_{\mu}s_{\nu} = \sum_{\lambda} c^{\lambda}_{\mu\nu}s_{\lambda}.$$

Define (for two sets of variables)

$$LS_{\lambda}(x_1, \cdots, x_k; y_1, \cdots, y_l) =$$
$$\sum_{\mu,\nu} c^{\lambda}_{\mu\nu} s_{\mu}(x_1, \cdots, x_k) s_{\nu'}(y_1, \cdots, y_l).$$

The generalized Cauchy identity (Berele, Remmel)

$$\sum_{i,k} \operatorname{LS}_{\lambda}(\alpha_{1}, \dots, \alpha_{m}; \beta_{1}, \dots, \beta_{n}) \operatorname{LS}_{\lambda}(\gamma_{1}, \dots, \gamma_{s}; \delta_{1}, \dots, \delta_{t}) = \prod_{i,k} (1 - \alpha_{i}\gamma_{k})^{-1} \prod_{i,l} (1 + \alpha_{i}\delta_{l}) \prod_{j,k} (1 + \beta_{j}\gamma_{k}) \prod_{j,l} (1 - \beta_{j}\delta_{l})^{-1}.$$

We will discuss the significance of this momentarily. First we outline the proof of the ratios theorem.

- Cauchy and dual Cauchy identities are applied to LHS producing a sum of Schur functions.
- Some of these are multiplied producing Littlewood-Richardson coefficients
- Regrouped into Littlewood-Schur polynomials.
- Generalized Cauchy identity is applied.
- Laplace-Levi expansion is applied.
- It all works out.

Sketch

Left-Hand-Side:

$$\int_{U(n)} \frac{\prod_{l=1}^{L} \det (I + \alpha_{l}^{-1} \cdot g^{-1}) \cdot \prod_{k=1}^{K} \det (I + \alpha_{L+k} \cdot g)}{\prod_{q=1}^{Q} \det (I - \gamma_{q} \cdot g) \prod_{r=1}^{R} \det (I - \delta_{r} \cdot g^{-1})} dg$$

Expand Π with dual Cauchy (up), Cauchy (down)

$$\sum_{\lambda,\mu,\nu} \left\langle \chi_{\lambda'} \chi_{\mu}, \det^{L} \otimes \chi_{\nu} \right\rangle$$
$$\prod_{l=1}^{L} \alpha_{l}^{-N} s_{\lambda}(\alpha_{1}, \cdots, \alpha_{L+K}) s_{\mu}(\gamma_{1}, \cdots, \gamma_{Q}) s_{\nu}(\delta_{1}, \cdots, \delta_{R}).$$

inner product is $c_{\lambda'\mu}^{\tilde{\nu}}$ with $\tilde{\nu}=\nu+(L^n),\,\tilde{\nu}\,'\!=\!N^L\cup\nu'$

$$\prod_{l=1}^{L} \alpha_l^{-N} \sum_{\nu} \operatorname{LS}_{N^L \cup \nu'}(\alpha_1, ..., \alpha_{L+K}; \gamma_1, ..., \gamma_Q) s_{\nu}(\delta_1, ..., \delta_R)$$

Use Laplace-Levi: $LS_{\tau \cup \rho}(\alpha_1, \cdots, \alpha_{L+K}; \gamma_1, \dots, \gamma_Q) =$

$$\sum_{\sigma \in \Xi_{L,K}} \prod_{\substack{1 \leq l \leq L \\ 1 \leq k \leq K}} (\alpha_{\sigma(l)} - \alpha_{\sigma(L+k)})^{-1}$$
$$\mathrm{LS}_{\tau + \langle K^L \rangle} (\alpha_{\sigma(1)}, \cdots, \alpha_{\sigma(L)}; \gamma_1, \dots, \gamma_Q)$$
$$\mathrm{LS}_{\rho} (\alpha_{\sigma(L+1)}, \cdots, \alpha_{\sigma(L+K)}; \gamma_1, \dots, \gamma_Q)$$

Sketch (continued)

Generalized Cauchy:

$$\sum_{i,k} \operatorname{LS}_{\lambda}(\alpha_{1}, \dots, \alpha_{m}; \beta_{1}, \dots, \beta_{n}) \operatorname{LS}_{\lambda}(\gamma_{1}, \dots, \gamma_{s}; \delta_{1}, \dots, \delta_{t}) = \prod_{i,k} (1 - \alpha_{i}\gamma_{k})^{-1} \prod_{i,l} (1 + \alpha_{i}\delta_{l}) \prod_{j,k} (1 + \beta_{j}\gamma_{k}) \prod_{j,l} (1 - \beta_{j}\delta_{l})^{-1}.$$

Right-Hand Side:

$$\sum_{\sigma \in \Xi_{L,K}} \prod_{k=1}^{K} \left(\alpha_{\sigma(L+k)}^{-1} \alpha_{L+k} \right)^{n} \times \frac{\prod_{q=1}^{Q} \prod_{l=1}^{L} (1 + \gamma_{q} \alpha_{\sigma(l)}^{-1}) \prod_{r=1}^{R} \prod_{k=1}^{K} (1 + \delta_{r} \alpha_{\sigma(L+k)})}{\prod_{k=1}^{K} \prod_{l=1}^{L} (1 - \alpha_{\sigma(l)}^{-1} \alpha_{\sigma(K+k)}) \prod_{r=1}^{R} \prod_{q=1}^{Q} (1 - \gamma_{q} \delta_{r})}.$$

Hopf Algebra (Geissinger)

The multiplication in Λ induces a map $m: \Lambda \otimes \Lambda \longrightarrow \Lambda$, whose adjoint with respect to the basis for which the s_{λ} are orthonormal is a map $m^*: \Lambda \longrightarrow \Lambda \otimes \Lambda$. Thus

$$m(s_{\mu} \otimes s_{\nu}) = \sum_{\lambda} c_{\mu\nu}^{\lambda} s_{\lambda}, \qquad m^{*}(s_{\lambda}) = \sum_{\mu,\nu} c_{\mu\nu}^{\lambda} s_{\mu} \otimes s_{\nu}.$$

The map m^* is a comultiplication making Λ a coalgebra. The Hopf axiom is the commutativity of:

where $\tau: R \otimes R \longrightarrow R \otimes R$ is the map $\tau(u \otimes v) = v \otimes u$.

• Interpreting the multiplication in Λ as induction (from $S_k \times S_l$ to S_{k+l}) and the comultiplication as restriction (from S_{k+l} to $S_k \times S_l$), the Hopf property boils down to Mackey theory.

Mackey Theory

If G is a finite group and H, K are subgroups, Mackey theory is schematically a commutative diagram

Here means that we intersect H with K in all possible ways. That is, let γ run through a set of coset reps of $H \setminus G/K$ and let $H \cap_{\gamma} K$ mean $H \cap \gamma K \gamma^{-1}$. If π is a repn' of H then as K-modules

$$\operatorname{Res}_{G \to K} \circ \operatorname{Ind}_{H \to G} (\pi) \cong \bigoplus_{\Gamma} \operatorname{Ind}_{H \cap_{\gamma} K \to K} \circ \operatorname{Res}_{G \to H \cap_{\gamma} K} (\pi).$$

Here $H \cap_{\gamma} K$ is not a subgroup of K but is conjugate to one which is enough.

• Nutshell: "induction and restriction commute"

Hopf = Mackey

- Λ is a graded ring. In symmetric group optic $\Lambda_k = (\text{virtual})$ representations of S_k .
- $(\Lambda \otimes \Lambda)_k = \text{Reps of } S_m \times S_n \ (m+n=k).$
- Multiplication $\Lambda_k \otimes \Lambda_l \longrightarrow \Lambda_{k+l}$ is induction from $S_k \times S_\lambda$ to S_{k+l} .
- Coultiplication $\Lambda_{k+l} \longrightarrow \Lambda_k \otimes \Lambda_l$ is restriction from S_{k+l} to $S_k \times S_\lambda$.

•
$$\Lambda \otimes \Lambda \xrightarrow{m} \Lambda \xrightarrow{m^*} \Lambda \otimes \Lambda$$
 is Ind \circ Res

•
$$\Lambda \otimes \Lambda \xrightarrow{m^*} \Lambda \otimes \Lambda \otimes \Lambda \otimes \Lambda \otimes \Lambda \xrightarrow{m \circ 1 \otimes t \otimes 1} \Lambda \otimes \Lambda$$
: Res \circ Ind

• To verify equivalence consider one component

$$\Lambda_m \otimes \Lambda_n \longrightarrow \Lambda_p \otimes \Lambda_q \qquad (m+n=p+q)$$

•
$$H = S_m \times S_n, K = S_p \times S_q$$

•
$$H \cap_{\gamma} K = S_x \times S_y \times S_z \times S_w$$

•
$$x + y = m, \ z + w = n, \ x + z = p, \ y + w = q$$

- Grading is a bookkeeping device.
- Hopf = Mackey.

Generalized Schur identity

Theorem. The Generalized Cauchy formula is equivalent to the Hopf property of Λ .

Proof. The Hopf axiom reduces to the formula

$$\sum_{\lambda} c^{\lambda}_{\mu\nu} c^{\lambda}_{\sigma\tau} = \sum_{\varphi,\eta} c^{\sigma}_{\varphi\eta} c^{\tau}_{\psi\xi} c^{\mu}_{\varphi\xi} c^{\nu}_{\psi\eta}.$$
(1)

- Apply $m^* \circ m$ to $s_{\mu} \otimes s_{\nu}$, then extract the coefficient of $s_{\sigma} \otimes s_{\tau}$ the left-hand side in (1).
- Same with $(m \otimes m) \circ (1 \otimes \tau \otimes 1) \circ (m^* \otimes m^*)$ gives the right-hand side.

$$\sum_{i,k} \operatorname{LS}_{\lambda}(\alpha_{1}, \dots, \alpha_{m}; \beta_{1}, \dots, \beta_{n}) \operatorname{LS}_{\lambda}(\gamma_{1}, \dots, \gamma_{s}; \delta_{1}, \dots, \delta_{t}) = \prod_{i,k} (1 - \alpha_{i}\gamma_{k})^{-1} \prod_{i,l} (1 + \alpha_{i}\delta_{l}) \prod_{j,k} (1 + \beta_{j}\gamma_{k}) \prod_{j,l} (1 - \beta_{j}\delta_{l})^{-1}.$$

The LHS is

$$\sum c^{\lambda}_{\mu\nu} s_{\mu}(\alpha) s_{\nu'}(\beta) c^{\lambda}_{\sigma\tau} s_{\sigma}(\gamma) s_{\tau'}(\delta)$$

while the right-hand side is (using Cauchy & dual)

$$= \sum_{\substack{\sigma \in \sigma \\ \varphi \neq \varphi}} s_{\varphi}(\alpha) s_{\varphi}(\gamma) s_{\psi'}(\beta) s_{\psi'}(\delta) s_{\xi}(\alpha) s_{\xi'}(\delta) s_{\eta'}(b) s_{\eta'}(\gamma)$$

$$= \sum_{\substack{\sigma \in \sigma \\ \varphi \neq \varphi}} c_{\psi\xi}^{\tau} s_{\varphi}(\alpha) s_{\xi}(\alpha) s_{\psi'}(\beta) s_{\eta'}(\beta) s_{\sigma}(\gamma) s_{\tau'}(\delta)$$

$$= \sum_{\substack{\sigma \in \sigma \\ \varphi \neq \varphi}} c_{\psi\xi}^{\tau} c_{\psi\varphi}^{\mu} c_{\psi\eta}^{\nu} s_{\mu}(\alpha) s_{\nu'}(\beta) c_{\sigma\tau}^{\lambda} s_{\sigma}(\gamma) s_{\tau'}(\delta).$$

Comparing, the equivalence amounts to (1).