
Characteristic Polyno-
mials of Unitary

Matrices

We survey repr’n theoretic ideas underlying work of:

• Diaconis and Shahshahani

• Keating and Snaith (following Gamburd)

• Conrey, Farmer, Zirnbauer (Bump-Gamburd)

• Szegö LT: Bump-Diaconis, Tracy-Widom, Dehaye

• Derivatives: Dehaye

The last two topics are not covered but would fit in.
Also omitted are symplectic and orthogonal groups (see
Bump-Gamburd for example).

In A Nutshell
• Basic idea is using a correspondence to move

computation from one group to another.

These slides
http://sporadic.stanford.edu/bump/zurich.pdf
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Motivation: From CUE to ζ

GUE (Random Hermitian Matrices)

• Physicists (Wigner, Gaudin, Dyson, Mehta)
investigated random Hermitian matrices (GUE).

• Interest is in local statistics: eigenvalue correla-
tions. (Eigenvalues repel).

• From Montgomery and Dyson GUE also models
zeros of ζ.

CUE (Random Unitary Matrices)

Dyson: the exponential map

X 	 eiX:

{

Hermitian
matrices (GUE)

}� {

HaarUnitary
matrices (CUE)

}

• Maps eigenvalues from R� {|z |= 1}.

• Preserves local statistics (eigenval correlations)

• CUE (Circular Unitary Ens.) is (U(n), dµHaar).

• CUE is easier to work with since compact.
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The Idea of a Correspondence

Howe (commenting on Weyl, Weil) observed naturally
occurring representations of groups G × H are multi-
plicity free in a strong sense.

• (ω, Vω) a unitary rep’n of G×H

• For simplicity G, H compact

• ω =
⊕

πi
G⊗πi

H with πi
G and πi

H irreducible

• Peter-Weyl: πi
G and πi

H are finite-dim’l

• Assume no repetitions in πi
G or πi

H.

Then call ω a correspondence.

• πi
G⇔πi

H is a bijection {πi
G}@ {πiH}.

Examples:

• G×G acting on L2(G)

• Sk×U(n) acting on ⊗kV (V =Cn)

• Dual reductive pairs in Sp(2n) – Weil rep’n
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Frobenius-Schur Correspondence

Let G = Sk, H = U(n). H acts on V = Cn and both act

on Vω=⊗kV .

• ω(σ)∈Sk: v1⊗� ⊗ vk� vσ−11⊗� ⊗ vσ−1k

• ω(g)∈U(n): v1⊗� ⊗ vk� gv1⊗� ⊗ gvk

• Actions commute so ω is a rep’n of Sk×U(n)

Theorem. This is a correspondence.

• So there is a bijection between certain rep’s of Sk
and certain rep’s of U(n).

• Explains Frobenius’ use of symmetric functions
(related to U(n)) to compute characters of Sk.

• It is useful to study Sk and U(n) together.
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Reps of Sk

• Let λ = (λ1,� , λm) be a partition of k.

• λ1 >� > λm and
∑

λi= k.

• Sλ= Sλ1
×� ×Sλm

⊂Sk.

Let µ = λ′ be conjugate partition.

λ = (3, 1) � µ = (2, 1, 1)

�
Theorem. HomC[Sk](IndSλ

Sk(1), IndSµ

Sk(sgn)) is one-

dimensional.

Proof. Mackey Theory. �

• Mackey Theory computes intertwinings of
induced rep’s by double coset computations.

• More on Mackey Theory for Sk later.

Let πλ
Sk be the unique irreducible constituent of IndSλ

Sk

that can be mapped into IndSµ

Sk(sgn).
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Reps of U(n)

• If λ = (λ1, � , λn) ∈ Zn associate the character

diag(t1,� , tn)	 ∏

ti
λi, called a weight.

• Call λ a dominant weight if λ1 >� > λn.

• Call λ effective if λn> 0.

• An effective dominant weight is a partition.

Let λ be dominant. Define Schur polynomial

sλ(t1,� , tn) =
det(ti

λj+n−j)

det(ti
n−j)

.

• It is a symmetric polynomial of degree
∑

λj.

Theorem. (Schur, Weyl) Given a dominant weight λ

there is a rep’n πλ
U(n)

with character

χλ
U(n)

(g) = sλ(t1,� , tn), ti= eigenval’s of g.

Frobenius-Schur duality

In the Frobenius-Schur correspondence partitions λ of k

of length 6 n are effective dominant weights.

πλ
Sk � πλ

U(n)
.
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Diaconis-Shahshahani

As a first application, the distribution of traces tr(g) for
g ∈ U(n) is approximately Gaussian. More precisely, let
φ be any smooth test function on C. Then

lim
n�∞

∫

U(n)

φ(tr(g))dg =

∫

C

φ(z)

[

e−π(x2+y2)

π

]

dx dy,

z = x + iy. This is surprising since the right-hand side is
independent of n. We might expect the traces to spread
out as n� ∞ since they are sums of many eigenvalues.

• If φ(x)= |x|k and k < n then exactly

∫

U(n)

φ(tr(g))dg =

∫

C

φ(x + iy)

[

e−π(x2+y2)

π

]

dx dy.

• Method of moments: This is sufficient.

• Assume φ homogeneous of degree k and transfer
the computation to Sk.

• If φ(x) = |x|k then RHS= k!
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Transferring The Computation

• Let ω: G×H � End(Vω) be correspondence.

• Remember ω =
⊕

πi
G⊗πi

H.

• Let f be a class function on G. We construct a
class function f ′ on H .

• If f = χi
G is a character of a πi

G let f ′ = χi
H.

• If f is orthogonal to the χi
G let f ′= 0.

• f 	 f ′ is an isometry on the span of the χi
G by

Schur orthogonality.

So if f is in the span of the χi
G and we can com-

pute ‖f ′‖L2
we can compute ‖f ‖L2

.
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Transferring Diaconis-Shahshani

For example, let G = Sk and H = U(n). Let

f(σ)=

{

1

|C |
if σ ∈C

0 otherwise

where C is the conjugacy class of k-cycles. Then f ′ is

the function tr(g)k on U(n), and if n > k

‖f ′‖2 = ‖f ‖2 = k!

or
∫

U(n)

|tr(g)|2kdg = k!

which is the Diaconis-Shahshahani result. Indeed

∫

C

|x + iy |2k

[

e−π(x2+y2)

π

]

dx dy = k!

• This is their method.

• They proved more: the distributions on U(n) of
tr(g), tr(g2),� , tr(gm) converge in measure to
independent Gaussians as n. ∞.

• Same trick, other conjugacy classes of Sk.
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G × G Correspondences

• GLn × GLm is a dual reductive pair and so there
is a Howe correspondence.

• We do not need the Weil representation to dis-
cuss it but it is in the background.

1. Very general. Let G = H be any compact group.

Then G×H acts on L2(G) by

ω(g, h)f(x) = f(g−1xh).

This is a correspondence. All irreducible reps appear:

{πi
G}= {πi

H}= all irreducibles

and πi
H = π̂i

G is the contragredient representation.

2. G = U(n). If G = H = U(n) we can modify this
construction as follows.

• G has an involution g 	 tg−1 that interchanges
π and π̂ .

• So let G×H act on L2(G) by

ω(g, h)f(x)= f(tgxh).

Then πi
G= πi

H.
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3. G=GL(n,C).

• K = U(n) is maximal compact in G =GL(n,C).

• From last example K ×K acts on L2(K) by

ω(g, h)f(x)= f(tgxh).

• Polynomial functions are dense in L2(K) and
closed under this action (finite functions).

• Action on on polynomials extends to GL(n, C)
by same formula.

• Polynomials=C[gij , det
−1] (gij= coordinates).

• Every irreducible rep’n πλ
U(n)

of U(n) extends

uniquely to an analytic rep’n πλ
GL(n)

of GL(n,C).

Conclusion:

C[gij , det−1]@ ⊕

dominant weight λ

πλ
GL(n)

⊗ πλ
GL(n)

as GL(n,C)-modules. Sum is over dominant weights λ.

11



4.G=GL(n,C): regular on det= 0

Question: Which elements of C[gij , det
−1] are regular

on the determinant locus in Cn2

=Matn(C)?
Answer: λ must be effective (λ1 >� > λn> 0).

C[gij]@ ⊕

effective
dominant weight λ

πλ
GL(n)

⊗πλ
GL(n)

as GL(n,C)-modules.

• Restrict to T ×T (T = diagonal subgroup)





α1 �
αn



,





β1 �
βn



∈T ×T

• Assume |αi|, |βj |6 1

• Take traces to obtain Cauchy identity

∏

i,j

(1−αiβj)
−1 =

∑

effective dominant λ

sλ(α)sλ(β).
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The Ring Λ

• We return to Frobenius-Schur duality.

• Recall: Sk×U(n) acts on ⊗k V (V =Cn) and so
there is a Frobenius-Schur correspondence

πλ
Sk � πλ

U(n)
λ = (λ1,� , λn),

λ1 >λ2 >� >λn >0, Σiλi= k.

• Let Λ(n) = ring of symmetric poly in n variables

• Recall: The character χλ
U(n)

of πλ
U(n)

is

χλ
U(n)

(g) = sλ(α1,� , αn), αi= eigenvalues of g

where sλ= sλ
(n)

= Schur polynomial in Λ(n).

• We have homomorphisms Λ(n+1) � Λ(n) setting
the last variable to zero.

• Let Λ = lim
←

Λ(n).

• Λ is the ring of symmetric poly’s in ∞ variables.

• We have sλ
(n)

(α1,� , αn) = sλ
(n+1)

(α1,� , αn, 0).

• So sλ∈Λ.

• The sλ are a VS basis of the C-algebra Λ.
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The Involution

We have an involution ι: Λ � Λ such that sλ � sλ′

where λ′ is the conjugate partition.

• In terms Sk, the involution tensors a representa-
tion of Sk with the sign charactor.

• In terms of U(n) it turns symmetric tensors
(bosons) into skew-symmetric ones (fermions).

Let ek= s(1k) the k-th elementary symmetric poly.

Let hk= s(k) the k-th complete symmetric poly.

ι: ek� hk
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The Dual Cauchy Identity

In Λ(n)

∑

ekx
k=

∏

i=1

n

(1 + αix),
∑

hkx
k=

∏

i=1

n

(1−αix)−1

so (roughly) ι interchanges these two expressions.

• ι acts on Λ not Λ(n) so this needs interpretation.

Applying ι to one set of variables it transforms the
Cauchy identity

∏

i,j

(1−αiβj)
−1 =

∑

λ

sλ(α)sλ(β)

into the dual Cauchy identity:
∏

i,j

(1 + αiβj)=
∑

λ

sλ(α)sλ′(β).
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The GLn ×GLm Correspondences

We proved the Cauchy identity

∏

i=1

n
∏

j=1

m

(1−αiβj)
−1 =

∑

λ

sλ
(n)

(α)(m)sλ(β)

when n = m but we can specialize some parameters to
zero and hence obtain the same formula for n � m. Sim-
ilarly in the dual Cauchy identity we do not need n= m.

∏

i=1

n
∏

j=1

m

(1 + αiβj) =
∑

λ

sλ
(n)

(α)sλ′

(m)
(β)

• The Cauchy identity describes the decomposition
of the symmetric algebra over Matn×m(C) under
the natural action of GLn × GLm by left and
right multiplication.

• Dual Cauchy identity describes the decomposi-
tion of the exterior algebra on Matn×m(C).

• In Cauchy identity we need |αi|, |βj | < 1 for con-
vergence.

• In dual identity we do not. The sum is essentially
finite since only finitely many λ have length 6 n

(so sλ
(n)� 0) with λ′ of length 6 m.

16



Keating and Snaith

Theorem. (Keating and Snaith) We have

∫

U(n)

|det(I − g)|2kdg =
∏

j=0

n−1
j!(j + 2k)!

((j + k)!)2

• This was proved by K&S using Selberg integral.

• Gamburd found another proof that we describe.

• This is in the CMP paper of Bump-Gamburd.

• The proofs give different information, viz:

• In KS the argument k could be real.

• In BG dg could be replaced by χν(g) dg.

Idea is to use U(n)–U(2k) correspondence to transfer
the calculation to U(2k).
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Proof (Gamburd)

Suppose α1, � , αn are the eigenvalues of g ∈ U(n) so
|αi|= 1. Let m = 2k and take β1 =� = β2k= 1. Then

|det(I + g)|2k =
∏

i=1

n
∏

j=1

k

(1 + αi)(1 + αi
−1)

= det(g)−k
∏

i=1

n
∏

j=1

k

(1 + αi)(αi+ 1).

Apply dual Cauchy with β1 =� = β2k= 1. Then

|det(I + g)|2k= det(g)−k
∑

λ

sλ
(n)

(α1,� , αn)sλ′

(2k)
(1,� , 1).

Now (kn) being the partition (k,� , k):

det(g)k= χ(kn)
U(n)

(g) = s(kn)
n (α1,� , αn)

|det(I + g)|2k= χ(kn)
U(n)

(g)−1
∑

λ

χλ
U(n)

(g)−1sλ′

(2k)
(1,� , 1).

Integrating picks off a single term λ = (kn), λ′= (nk).

∫

U(n)

|det(I + g)|2kdg = s(nk)
(2k)

(1,� , 1)=
∏

j=0

n−1
j!(j + 2k)!

((j + k)!)2

by the Weyl dimension (=hook length) formula.
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What Happened?

Just as in the proof of the Diaconis-Shahshahani result,
the computation was moved to another group. It was
moved from U(n) to U(2k), where it is easer to do.

Ratios

ΞL,K consist of all permutations σ ∈SK+L such that

σ(1) <� < σ(L), σ(L + 1)<� < σ(L + K).

Theorem. (Conrey, Farmer and Zirnbauer)
Assume n > Q, R and that |γq |, |δr |< 1.

∫

U(n)

∏

l=1
L det (I + αl

−1
· g−1) ·

∏

k=1
K det (I + αL+k · g)

∏

q=1
Q det (I − γq · g)

∏

r=1
R det (I − δr · g

−1)
dg=

∑

σ∈ΞL,K

∏

k=1

K

(ασ(L+k)
−1 αL+k)

n×

∏

q=1
Q ∏

l=1
L (1+ γqασ(l)

−1 )
∏

r=1
R ∏

k=1
K (1 + δrασ(L+k))

∏

k=1
K ∏

l=1
L (1−ασ(l)

−1 ασ(K+k))
∏

r=1
R ∏

q=1
Q (1− γqδr)

.

After the initial proof by CFZ other proofs were given
by Conrey, Forrester, Snaith and by Bump Gamburd.

We will not discuss the proof in detail but we isolate a
couple of important ingredients.
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Laplace-Levi expansions

• Let G = complex reductive group, Φ = roots

• P = MU parabolic with Levi M and radical U .

• W and WM the Weyl groups of G and M .

• C and CM = positive Weyl chambers.

• Ξ = coset reps for WM\W such that wC ⊂CM.

• ρU =
1

2

∑

α∈Φ+ α.

Then

χλ
G=

1

e−ρU
∏

α∈Φ+−ΦU
+ (1− eα)

∑

w∈Ξ

(− 1)l(w)χλw

M .

This follows from the Weyl character formula.

• With G =GLL+K and M =GLL×GLK,

• λ = (λ1,� , λL+K),

• τ = (λ1,� , λL), ρ = (λL+1,� , λL+K).

sλ(α1,� , αL+K) =
∑

σ∈ΞL,K

∏

16l6L

16k6K

(ασ(l)−ασ(L+k))
−1

sτ+
〈

KL
〉(ασ(1),� , ασ(L))sρ(ασ(L+1),� , ασ(L+K)) .

This accounts for sum over ΞL,K in the ratios formula.
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Littlewood-Schur sym polynomials
Due to Littlewood, rediscovered by Berele and Regev.
Let cµν

λ be Littlewood-Richardson coefficients:

sµsν=
∑

λ

cµν
λ sλ.

Define (for two sets of variables)

LSλ(x1,� , xk; y1,� , yl) =
∑

µ,ν

cµν
λ sµ(x1,� , xk)sν ′(y1,� , yl).

The generalized Cauchy identity (Berele, Remmel)
∑

LSλ(α1,� , αm; β1,� , βn)LSλ(γ1,� , γs; δ1,� , δt) =
∏

i,k

(1−αiγk)−1
∏

i,l

(1+ αiδl)
∏

j,k

(1 + βjγk)
∏

j,l

(1− βjδl)
−1.

We will discuss the significance of this momentarily.
First we outline the proof of the ratios theorem.

• Cauchy and dual Cauchy identities are applied to
LHS producing a sum of Schur functions.

• Some of these are multiplied producing Little-
wood-Richardson coefficients

• Regrouped into Littlewood-Schur polynomials.

• Generalized Cauchy identity is applied.

• Laplace-Levi expansion is applied.

• It all works out.
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Sketch

Left-Hand-Side:
∫

U(n)

∏

l=1
L det (I + αl

−1
· g−1) ·

∏

k=1
K det (I + αL+k · g)

∏

q=1
Q det (I − γq · g)

∏

r=1
R det (I − δr · g

−1)
d g

Expand Π with dual Cauchy (up), Cauchy (down)
∑

λ,µ,ν

〈

χλ′χµ, detL ⊗ χν

〉

∏

l=1

L

αl
−Nsλ(α1,� , αL+K)sµ(γ1,� , γQ)sν(δ1,� , δR).

inner product is cλ′µ
ν̃ with ν̃ = ν + (Ln), ν̃ ′= NL∪ ν ′

∏

l=1

L

α
l

−N
∑

ν

LSNL∪ν ′(α1
,� , αL+K; γ

1
,� , γQ)sν(δ

1
,� , δR)

Use Laplace-Levi: LSτ∪ρ(α1,� , αL+K; γ1,� , γQ)=
∑

σ∈ΞL , K

∏

16 l6L

16k6K

(ασ(l)−ασ(L+k))
−1

LSτ+
〈

KL
〉(ασ(1),� , ασ(L); γ1,� , γQ)

LSρ(ασ(L+1),� , ασ(L+K); γ1,� , γQ)
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Sketch (continued)

Generalized Cauchy:

∑

LSλ(α1,� , αm; β1,� , βn)LSλ(γ1,� , γs; δ1,� , δt) =
∏

i,k

(1−αiγk)−1
∏

i,l

(1+ αiδl)
∏

j,k

(1 + βjγk)
∏

j,l

(1− βjδl)
−1.

Right-Hand Side:

∑

σ∈ΞL,K

∏

k=1

K

(ασ(L+k)
−1 αL+k)n×

∏

q=1
Q ∏

l=1
L (1+ γqασ(l)

−1 )
∏

r=1
R ∏

k=1
K (1+ δrασ(L+k))

∏

k=1
K ∏

l=1
L (1−ασ(l)

−1 ασ(K+k))
∏

r=1
R ∏

q=1
Q (1− γqδr)

.
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Hopf Algebra (Geissinger)

The multiplication in Λ induces a map m: Λ ⊗ Λ � Λ,
whose adjoint with respect to the basis for which the sλ
are orthonormal is a map m∗: Λ� Λ⊗Λ. Thus

m(sµ⊗ sν)=
∑

λ

cµν
λ sλ, m∗(sλ)=

∑

µ,ν

cµν
λ sµ⊗ sν.

The map m∗ is a comultiplication making Λ a coalgebra.
The Hopf axiom is the commutativity of:

Λ⊗Λ .m∗⊗m∗

Λ⊗Λ⊗Λ⊗Λ .1⊗τ⊗1
Λ⊗Λ⊗Λ⊗Λ m  m⊗m

Λ .m∗

Λ⊗Λ

,

where τ : R⊗R � R⊗R is the map τ (u⊗ v) = v⊗ u.

• Interpreting the multiplication in Λ as induction
(from Sk × Sl to Sk+l) and the comultiplication
as restriction (from Sk+l to Sk × Sl), the Hopf
property boils down to Mackey theory.

24



Mackey Theory

If G is a finite group and H, K are subgroups, Mackey
theory is schematically a commutative diagram

Reps of H .induce Reps of G restrict  restrict

Reps of�� .induce Reps of K

Here �� means that we intersect H with K in all pos-
sible ways. That is, let γ run through a set of coset reps
of H

∖

G/K and let H ∩γ K mean H ∩ γKγ−1. If π is a

repn’ of H then as K-modules

Res
G→K

◦ Ind
H →G

(π)@ ⊕

Γ

Ind
H ∩γ K →K

◦ Res
G→H ∩γ K

(π).

Here H ∩γK is not a subgroup of K but is conjugate to
one which is enough.

• Nutshell: “induction and restriction commute”
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Hopf = Mackey

• Λ is a graded ring. In symmetric group optic
Λk= (virtual) representations of Sk.

• (Λ⊗Λ)k=Reps of Sm×Sn (m + n= k).

• Multiplication Λk ⊗ Λl � Λk+l is induction from
Sk×Sλ to Sk+l.

• Coultiplication Λk+l � Λk ⊗ Λl is restriction
from Sk+l to Sk×Sλ.

• Λ⊗Λ.m Λ .m∗

Λ⊗Λ is Ind ◦Res

• Λ⊗Λ.m∗

Λ⊗Λ⊗Λ⊗Λ .m◦1⊗t⊗1
Λ⊗Λ: Res ◦ Ind

• To verify equivalence consider one component

Λm⊗Λn� Λp⊗Λq (m + n = p + q)

• H = Sm×Sn, K = Sp×Sq

• H ∩γK = Sx×Sy×Sz×Sw

• x + y = m, z + w = n, x + z = p, y + w = q

• Grading is a bookkeeping device.

• Hopf=Mackey.
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Generalized Schur identity

Theorem. The Generalized Cauchy formula is equiva-

lent to the Hopf property of Λ.

Proof. The Hopf axiom reduces to the formula
∑

λ

cµν
λ cστ

λ =
∑

ϕ,η

cϕη
σ cψξ

τ cϕξ
µ

cψη
ν . (1)

• Apply m∗ ◦m to sµ ⊗ sν, then extract the coeffi-
cient of sσ⊗ sτ the left-hand side in (1).

• Same with (m⊗m) ◦ (1⊗ τ ⊗ 1) ◦ (m∗⊗m∗) gives
the right-hand side.

∑

LSλ(α1,� , αm; β1,� , βn)LSλ(γ1,� , γs; δ1,� , δt) =
∏

i,k

(1−αiγk)−1
∏

i,l

(1+ αiδl)
∏

j,k

(1 + βjγk)
∏

j,l

(1− βjδl)
−1.

The LHS is
∑

cµν
λ sµ(α)sν ′(β)cστ

λ sσ(γ)sτ ′(δ)

while the right-hand side is (using Cauchy & dual)
∑

sϕ(α)sϕ(γ)sψ ′(β)sψ ′(δ)sξ(α)sξ ′(δ)sη ′(b)sη(γ)

=
∑

cϕη
σ cψξ

τ sϕ(α)sξ(α)sψ ′(β)sη ′(β)sσ(γ)sτ ′(δ)

=
∑

cϕη
σ cψξ

τ cϕξ
µ

cψη
ν sµ(α)sν ′(β)cστ

λ sσ(γ)sτ ′(δ).

Comparing, the equivalence amounts to (1). �
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