Characteristic Polyno-

mials of Unitary
Matrices

We survey repr’n theoretic ideas underlying work of:

Diaconis and Shahshahani

Keating and Snaith (following Gamburd)

Conrey, Farmer, Zirnbauer (Bump-Gamburd)
Szegd LT: Bump-Diaconis, Tracy-Widom, Dehaye

Derivatives: Dehaye

The last two topics are not covered but would fit in.
Also omitted are symplectic and orthogonal groups (see
Bump-Gamburd for example).

In A Nutshell

Basic idea is using a correspondence to move
computation from one group to another.

These slides

http://sporadic.stanford.edu/bump/zurich.pdf



Motivation: From CUE to
GUE (Random Hermitian Matrices)

Physicists (Wigner, Gaudin, Dyson, Mehta)
investigated random Hermitian matrices (GUE).

Interest is in local statistics: eigenvalue correla-
tions. (Eigenvalues repel).

From Montgomery and Dyson GUE also models
zeros of (.

CUE (Random Unitary Matrices)

Dyson: the exponential map

X i X, { Hermitian } . { Haar Unitary }

matrices (GUE) matrices (CUE)

Maps eigenvalues from R — {|z|=1}.
Preserves local statistics (eigenval correlations)
CUE (Circular Unitary Ens.) is (U(n), dpmnaar)-

CUE is easier to work with since compact.



The Idea of a Correspondence

Howe (commenting on Weyl, Weil) observed naturally
occurring representations of groups G x H are multi-
plicity free in a strong sense.

e (w,V,) a unitary rep'n of G x H

e For simplicity G, H compact

o w=@FP 78 @l with #¢ and 7 irreducible

e Peter-Weyl: ¢ and 7/ are finite-dim’l

e Assume no repetitions in 7w or 7} .
Then call w a correspondence.

o 7¢& s a bijection {78} = {nH}.

Examples:
e G x @G acting on L*(G)
e SixU(n) acting on @*V (V =C")
e Dual reductive pairs in Sp(2n) — Weil rep’n



Frobenius-Schur Correspondence

Let G=S;, H=U(n). H acts on V = C"™ and both act
onV,=xFV.

o WO)ESKVNMR QU —Us-11R ... QUH—1},
o w(@elUn)n® - Qu— gui®-Q gu

e Actions commute so w is a rep’n of Si x U(n)
Theorem. This is a correspondence.
e So there is a bijection between certain rep’s of S

and certain rep’s of U(n).

e [Explains Frobenius’ use of symmetric functions
(related to U(n)) to compute characters of Sy.

e It is useful to study Sx and U(n) together.



Reps of S;,
e Let A= (A1, -+, A\y) be a partition of k.
o M >..>2)\pand > \=k.
o S)\=05) x--x8y, CSk.
Let © =\’ be conjugate partition.
A=(3,1) <= pn=(2,1,1)

Theorem. Hom@[gk](lndg’;(l), Indg’;(sgn)) is one-
dimenstonal.

Proof. Mackey Theory. []
e Mackey Theory computes intertwinings of
induced rep’s by double coset computations.

e More on Mackey Theory for S later.

Let 75" be the unique irreducible constituent of Indg’;
that can be mapped into Indg’; (sgn).



Reps of U(n)
o If A= (A, -, \p) € Z"™ associate the character
diag(ty, -, tn) — [] t, called a weight.
e C(all A a dominant weight if \{ > ... > \,.
e C(Call )\ effective if \,, > 0.
e An effective dominant weight is a partition.
Let A be dominant. Define Schur polynomial

det (97" 7
Saltny s tn) = de(t(t?”‘_j) :

e It is a symmetric polynomial of degree ) ;.

Theorem. (Schur, Weyl) Given a dominant weight X

there 1s a rep’n 7T§\J<n) with character

Xg\](n)(g) =sa(t1, -5 tn), t; = eigenval’s of g.
Frobenius-Schur duality

In the Frobenius-Schur correspondence partitions A\ of &
of length <n are effective dominant weights.

k= i



Diaconis-Shahshahani

As a first application, the distribution of traces tr(g) for
g € U(n) is approximately Gaussian. More precisely, let
¢ be any smooth test function on €. Then

. 2 2
o~ (z2+y?)

]dxdy,

lim p(tx(g))dg = / o(2)

n—00 JU(n) C s

z=x +1y. This is surprising since the right-hand side is
independent of n. We might expect the traces to spread
out as n — oo since they are sums of many eigenvalues.

o If ¢(x)=|z|* and k <n then exactly

/U(m qﬁ(tr(g))dg:AJ ¢(x+iy)

e Method of moments: This is sufficient.

dx dy.

eﬁ(x2+y2)]

e Assume ¢ homogeneous of degree k and transfer
the computation to Sj.

o If ¢(x)=|z|* then RHS = k!



Transferring The Computation

Let w: G x H— End(V,,) be correspondence.
Remember w =& ¢ @i,

Let f be a class function on G. We construct a
class function f’ on H.

If f=x% isa character of a ¢ let f'= y.
If f is orthogonal to the x§ let f/=0.

f+— f’is an isometry on the span of the Y& by
Schur orthogonality.

So if f is in the span of the x$ and we can com-
pute || f’||L, we can compute || f||L.-



Transferring Diaconis-Shahshani
For example, let G=S;, and H =U(n). Let

1.
f(a)—{ e if ceC

0 otherwise

where C is the conjugacy class of k-cycles. Then f’ is
the function tr(g)* on U(n), and if n >k

LI =1 £1% = k!

/ te(g)[2kdg = k!
U(n)

which i1s the Diaconis-Shahshahani result. Indeed
—m(z?+y?)
/ x+iy2k[€ ]dwdy—k!
C Tr

e 'This is their method.

or

e They proved more: the distributions on U(n) of
tr(g),tr(g?), -, tr(g™) converge in measure to
independent Gaussians as n — o0.

e Same trick, other conjugacy classes of Sk.



G X G Correspondences

e GL, x GL,, is a dual reductive pair and so there
is a Howe correspondence.

e We do not need the Weil representation to dis-

cuss it but it is in the background.

1. Very general. Let G = H be any compact group.
Then G x H acts on L?(G) by

w(g,h)f(z)=f(g~'zh).

This is a correspondence. All irreducible reps appear:

(78 ={rH} = all irreducibles

and 771 =#F is the contragredient representation.

2. G =U(n). If G=H =U(n) we can modify this
construction as follows.

e (@ has an involution g — fg~! that interchanges
m and 7.

e Solet Gx H act on L?*(G) by

w(g,h)f(x)= f(*gxh).

Then 7¢ = .

10



3. G=GL(n,C).

K =U(n) is maximal compact in G = GL(n, C).
From last example K x K acts on L?(K) by

w(g,h)f(x)= f(*gxh).

Polynomial functions are dense in L*(K) and
closed under this action (finite functions).

Action on on polynomials extends to GL(n, C)
by same formula.
Polynomials = C|g; ;, det '] (g;; = coordinates).

Every irreducible rep’n WE\](n) of U(n) extends

uniquely to an analytic rep’n WSL(n) of GL(n, C).

Conclusion:

Clgij, det 1] @ 7TSL(n) 2 7T;}L(n)

dominant weight A

as GL(n, C)-modules. Sum is over dominant weights .
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4.G = GL(n,C): regular on det =0

Question: Which elements of Cl[g;;, det™!] are regular

on the determinant locus in €™ = Mat,,(C)?
Answer: X\ must be effective (A1 >... >\, > 0).

~ GL(n GL(n

effective
dominant weight A

as GL(n, C)-modules.
e Restrict to T'x T (T = diagonal subgroup)

g 51
. : el xT

Qlp, B

e Assume |, |3 <1

e Take traces to obtain Cauchy identity

[[a-ws)™= " 3 s

effective dominant \
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The Ring A

We return to Frobenius-Schur duality.

Recall: Sy x U(n) acts on ®@*V (V =C") and so
there is a Frobenius-Schur correspondence

Tk = §f<”>

Let A" =ring of symmetric poly in n variables

U(n) Un) ;

Recall: The character "’ of my

xf\](”)(g) = sa(ai, -, an), a; = eigenvalues of g

where s = ! >\ — Schur polynomial in A™).

We have homomorphisms A™ Y — A(™) getting
the last variable to zero.

Let A =1lim A™),
—

A is the ring of symmetric poly’s in oo variables.

We have s (ay, -+, an) = s (aq, -, an, 0).
So sy € A.
The sy are a VS basis of the C-algebra A.

13



The Involution

We have an involution ¢: A — A such that sy — sy
where A\’ is the conjugate partition.

e In terms Sk, the involution tensors a representa-
tion of Si with the sign charactor.

e In terms of U(n) it turns symmetric tensors
(bosons) into skew-symmetric ones (fermions).

Let ex = s(1#) the k-th elementary symmetric poly.
Let hy = s() the k-th complete symmetric poly.

L. € <—— hk

14



The Dual Cauchy Identity
In A(™)

Z ekxk:H (1+ ayx), Z hprt =
i=1

so (roughly) ¢ interchanges these two expressions.

||E:

e . acts on A not A™ so this needs interpretation.

Applying ¢ to one set of variables it transforms the
Cauchy identity

H (1—a;8;)~ Z sxa(a
%]
into the dual Cauchy identity:

[ @+aigy) =) sa@)sn(B).

i) A

15



The GL, X GL,, Correspondences

We proved the Cauchy identity

TT T - i) 1=3 s (@) ™sy(8)

i=1 j=1 A

when n = m but we can specialize some parameters to
zero and hence obtain the same formula for n # m. Sim-
ilarly in the dual Cauchy identity we do not need n=m.

[T I (e =3" si"(@)s ()

A

e The Cauchy identity describes the decomposition
of the symmetric algebra over Mat,, «.,,(C) under

the natural action of GL, x GL,, by left and
right multiplication.

e Dual Cauchy identity describes the decomposi-
tion of the exterior algebra on Mat,, x ,(C).

e In Cauchy identity we need |o;|, |3;| < 1 for con-
vergence.

e In dual identity we do not. The sum is essentially
finite since only finitely many A have length < n
(so s =£0) with A’ of length <m.

16



Keating and Snaith

Theorem. (Keating and Snaith) We have

o ok, _ TT J! J+2k)
/U(n)mt(f 9)?*dg 1:I( e

e This was proved by K&S using Selberg integral.
e Gamburd found another proof that we describe.
e 'This is in the CMP paper of Bump-Gamburd.

e The proofs give different information, viz:

e In KS the argument £ could be real.

e In BG dg could be replaced by x.(g) dg.

Idea is to use U(n)-U(2k) correspondence to transfer
the calculation to U(2k).

17



Proof (Gamburd)

Suppose a1, -+, a are the eigenvalues of g € U(n) so
la;| =1. Let m =2k and take B; =---= 2 =1. Then

n k
det(I + g)|** = H H (1+ o)1+t

n k
= det(g H H (1+a;)(a;+1).

1=1 57=1
Apply dual Cauchy with 8y =---= (G5 =1. Then
det(I + g)|2k = det(g kz s (ar, -, an)sEF(1, 0, 1),

Now (k™) being the partition (k, -, k):
det(9)* = X (1 (9) = 8{jy (@1, o)

U(ln _ Uln _ 2k
det( + g)1%* = x( o (0) Y AV M) s, 1),
A

Integrating picks off a single term A= (k"), X' = (n*).

det(I + g Qk:dgzs(ik) 1, 1) = j._ .
/U(n) det{I+9) (i)l ) ((J+ k)12

by the Weyl dimension (=hook length) formula.

18



What Happened?

Just as in the proof of the Diaconis-Shahshahani result,
the computation was moved to another group. It was
moved from U(n) to U(2k), where it is easer to do.

Ratios

=1, K consist of all permutations o € Sk 4, such that

o(l)<--<o(L), oc(L+1)<--<o(L+K).

Theorem. (Conrey, Farmer and Zirnbauer)
Assume n > Q, R and that |v,|,|0,| <1.

Hleldet(I+ocl_ g™ 1) Hf L det (T +ar 4k g)
Um) 12—y det (I —~q-g) [TF, det (I —6--g~ 1)
K

> T el imorir)™

occZr Kk k=1

H? 1 Hl 1 (1+’7q%(z>)Hr 1 sz 1 (1+5T‘)‘0(L+k))
sz 1 Hz p (1= a(Z)O‘o(KJrk:))Hr 1 H _, (I— )

g_

After the initial proof by CFZ other proofs were given
by Conrey, Forrester, Snaith and by Bump Gamburd.

We will not discuss the proof in detail but we isolate a
couple of important ingredients.

19



Laplace-Levi expansions

e Let G =complex reductive group, ® =roots

e P = MU parabolic with Levi M and radical U.
e [V and W), the Weyl groups of G and M.

e ( and Cj; = positive Weyl chambers.

e == coset reps for W/ \W such that wC C Cyy.

1
° pUZEZa€@+ .
Then

1
G N\ (w), M
XX = = I o E (= 1) XN,
e Y aECI>+—CI>$ (1 € )

This follows from the Weyl character formula.
¢ With G=GL;,x and M =GL; x GLk,
e A=(\,..., \L1K),
o 7=(A1,...,AL), P=(AL11, -y ALLK)-

we=

SA(Oéla Ty &L+K)

> Il (o) —omsn)™

c€= k 1<I<L
1<k<K

S (KLY Qo (1), 0 Qo (L) S p(Qo(L41), 5 Qo (L+K)) -

This accounts for sum over Zr, g in the ratios formula.

20



Littlewood-Schur sym polynomials

Due to Littlewood, rediscovered by Berele and Regev.
Let cf),/ be Littlewood-Richardson coefficients:

A
SuSy = E ClivS-
A

Define (for two sets of variables)

LSA(21, s Tk Y1y, Y1) =
A

Cuusu(x17 Tty xk)sl/’(yla Tty yl)
v
The generalized Cauchy identity (Berele, Remmel)

Z LSA(OzL ey Ol 517 e 5n)LS)\(717 e 73351, "'7515) —
I] Q=com) '] O+ed) [T O+ 87 [T -850
,l j,k il

i)k
We will discuss the significance of this momentarily.
First we outline the proof of the ratios theorem.

e (Cauchy and dual Cauchy identities are applied to
LHS producing a sum of Schur functions.

e Some of these are multiplied producing Little-
wood-Richardson coefficients

e Regrouped into Littlewood-Schur polynomials.
e Generalized Cauchy identity is applied.
e Laplace-Levi expansion is applied.

e [t all works out.
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Sketch

Left-Hand-Side:

/ Hlel det (I—I—ozl_l-g_l)-l_[f:1 det (I +ar+k-9)
U(n) HqQ:]_ det ({ =4+ 9) Hﬁ:1 det (I —dr-g~1)

Expand II with dual Cauchy (up), Cauchy (down)

Z <X>\’X/M detL 2 Xv>

A, v

dg

L
[T i Vsalon, - antw)su(yis - ¥Q)su (81, -+, 8R)-
=1

inner product is ¢/, with 7 =v+ (L"), v'=NL U/

L

—N
H Oél Z LSNLUV’(al’""aL—|—K571""?'7@)3,/(51,"-,51%)
=1

v

Use Laplace-Levi: LS: | (a1, -, @p+ K571y o0y 7Q) =

> Il (eowy—co@er) ™

c€=r k 1<ILL
1<k< K

LS4 (k1) (Qo(1)s 05 Qo ()i V15 - 7Q)
LSp(()ég(L+1), Tty aa(L—I—K); Y1y ey 7@)
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Sketch (continued)

Generalized Cauchy:

Z LSx(a1, -+ am; B1, -5 Bn) LSA(71, -5 Vs; 01,00+, 0) =
T ¢ =) T + ) [T 1+ B [T (- 8,602
i,l g,k gl

ik

Right-Hand Side:

K
> 1 (aonymonsr)™ x

O'EEL,K k=1

[T Ty A vga, ) Ty Tlaey (L4 8raonim)
H§:1 Hlel (1_aa_(1l)a0'(K+kJ)) Hﬁ:1 HqQ:1 (1 —vg0r)
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Hopf Algebra (Geissinger)

The multiplication in A induces a map m: A ® A — A,
whose adjoint with respect to the basis for which the s)
are orthonormal is a map m*: A — A ® A. Thus

A
m(s, ®s,)= E A m*(s)\):g CrvSu ® Sy

The map m* is a comultiplication making A a coalgebra.
The Hopt axiom is the commutativity of:

AA ™27 AoAAA T AQAQAQA

[ [mom .

k

A =, A®A

where T: R®Q R— R® R is the map 7(u ® v) =v ® u.

e Interpreting the multiplication in A as induction
(from Sp x S; to Sky;) and the comultiplication
as restriction (from Sii; to Sip x 5;), the Hopf
property boils down to Mackey theory.
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Mackey Theory

If G is a finite group and H, K are subgroups, Mackey
theory is schematically a commutative diagram

induce

Reps of H — Reps of G

lrestrict lrestrict

Reps of induce Reps of K

Here ...... means that we intersect H with K in all pos-
sible ways. That is, let v run through a set of coset reps

of H\G/K and let H Ny K mean HN Ky~ ' If 7 is a
repn’ of H then as K-modules

Res o Ind (W)’é@ Ind o Res ().
G— K H— G r HﬂvK—>K G—>Hﬂ,7K

Here H N, K is not a subgroup of K but is conjugate to
one which is enough.

e Nutshell: “induction and restriction commute”
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Hopf = Mackey

A is a graded ring. In symmetric group optic
Ay = (virtual) representations of Sg.

(A®A)r,=Reps of S, xS, (m+n=k).

Multiplication A ® A; — A1 is induction from
Sk X Sy to Sk

Coultiplication Axr; — Ar ® A; is restriction
from Si; to Sk x S).

A@A"SA ™S A®A is Ind o Res
ARATSARARARA " EE A®A: Resolnd
To verify equivalence consider one component
Ap @A, — A, @A, (m+n=p+q)
H=25,x5, K=5,x5,
HNyK=5;x85,x5;,%x8y
rt+y=m,zt+w=n,Tr+z=p,Yyt+w=4q
Grading is a bookkeeping device.
Hopf = Mackey.
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Generalized Schur identity

Theorem. The Generalized Cauchy formula is equiva-
lent to the Hopf property of A.

Proof. The Hopf axiom reduces to the formula
Z ChCor = Z ConCipeCepeCiin: (1)
A ©,M

e Apply m*om to s, ® s,, then extract the coeffi-
cient of s, ® s, the left-hand side in (1).

e Same with (m®m)o(1®7®1)o(m*Rm*) gives
the right-hand side.

Z LSa(aa, -+, am; B1, -+, Br) LSA(71, -+ Vs3 0150+, 01) =
] Q=) ] O+ed) [T O+87) [ 1—856)1
i,l g,k gl

The LHS is
Z C/WSM )CéTSJ(W)ST’w)
while the right-hand side is (using Cauchy & dual)
> sp(@)sp(1)55(B)syr(8)se(@)ser(8) sy (b)sy(7)
= Y Gucuese(@)se(a)sy(8)sn(8)sa(7)s7/(5)
= Y cnChecheClns u(@)su(8)carso(7)s0/(8).

Comparing, the equivalence amounts to (1). ]
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