Characteristic Polynomials of Unitary Matrices

We survey repr'n theoretic ideas underlying work of:

- Diaconis and Shahshahani
- Keating and Snaith (following Gamburd)
- Conrey, Farmer, Zirnbauer (Bump-Gamburd)
- Szegö LT: Bump-Diaconis, Tracy-Widom, Dehaye
- Derivatives: Dehaye

The last two topics are not covered but would fit in. Also omitted are symplectic and orthogonal groups (see Bump-Gamburd for example).

In A Nutshell

- Basic idea is using a correspondence to move computation from one group to another.

These slides

http://sporadic.stanford.edu/bump/zurich.pdf

Motivation: From CUE to ζ

GUE (Random Hermitian Matrices)

- Physicists (Wigner, Gaudin, Dyson, Mehta) investigated random Hermitian matrices (GUE).
- Interest is in local statistics: eigenvalue correlations. (Eigenvalues repel).
- From Montgomery and Dyson GUE also models zeros of ζ.

CUE (Random Unitary Matrices)

Dyson: the exponential map
$X \longmapsto e^{i X}:\left\{\begin{array}{l}\text { Hermitian } \\ \text { matrices (GUE) }\end{array}\right\} \longrightarrow\left\{\begin{array}{l}\text { Haar Unitary } \\ \text { matrices (CUE) }\end{array}\right\}$

- Maps eigenvalues from $\mathbb{R} \longrightarrow\{|z|=1\}$.
- Preserves local statistics (eigenval correlations)
- CUE (Circular Unitary Ens.) is ($U(n), d \mu_{\text {Haar }}$).
- CUE is easier to work with since compact.

The Idea of a Correspondence

Howe (commenting on Weyl, Weil) observed naturally occurring representations of groups $G \times H$ are multiplicity free in a strong sense.

- $\left(\omega, V_{\omega}\right)$ a unitary rep'n of $G \times H$
- For simplicity G, H compact
- $\omega=\bigoplus \pi_{i}^{G} \otimes \pi_{i}^{H}$ with π_{i}^{G} and π_{i}^{H} irreducible
- Peter-Weyl: π_{i}^{G} and π_{i}^{H} are finite-dim'l
- Assume no repetitions in π_{i}^{G} or π_{i}^{H}.

Then call ω a correspondence.

- $\pi_{i}^{G} \Leftrightarrow \pi_{i}^{H}$ is a bijection $\left\{\pi_{i}^{G}\right\} \cong\left\{\pi_{i}^{H}\right\}$.

Examples:

- $G \times G$ acting on $L^{2}(G)$
- $S_{k} \times U(n)$ acting on $\otimes^{k} V\left(V=\mathbb{C}^{n}\right)$
- Dual reductive pairs in $\operatorname{Sp}(2 n)$ - Weil rep'n

Frobenius-Schur Correspondence

Let $G=S_{k}, H=U(n) . H$ acts on $V=\mathbb{C}^{n}$ and both act on $V_{\omega}=\otimes^{k} V$.

- $\omega(\sigma) \in S_{k}: v_{1} \otimes \cdots \otimes v_{k} \longrightarrow v_{\sigma^{-1}} \otimes \ldots \otimes v_{\sigma^{-1} k}$
- $\omega(g) \in U(n): v_{1} \otimes \cdots \otimes v_{k} \longrightarrow g v_{1} \otimes \cdots \otimes g v_{k}$
- Actions commute so ω is a rep'n of $S_{k} \times U(n)$

Theorem. This is a correspondence.

- So there is a bijection between certain rep's of S_{k} and certain rep's of $U(n)$.
- Explains Frobenius' use of symmetric functions (related to $U(n))$ to compute characters of S_{k}.
- It is useful to study S_{k} and $U(n)$ together.

Reps of $\boldsymbol{S}_{\boldsymbol{k}}$

- Let $\lambda=\left(\lambda_{1}, \cdots, \lambda_{m}\right)$ be a partition of k.
- $\lambda_{1} \geqslant \ldots \geqslant \lambda_{m}$ and $\sum \lambda_{i}=k$.
- $S_{\lambda}=S_{\lambda_{1}} \times \cdots \times S_{\lambda_{m}} \subset S_{k}$.

Let $\mu=\lambda^{\prime}$ be conjugate partition.

$$
\lambda=(3,1) \quad \Longleftrightarrow \quad \mu=(2,1,1)
$$

Theorem. $\quad \operatorname{Hom}_{\mathbb{C}\left[S_{k}\right]}\left(\operatorname{Ind}_{S_{\lambda}}^{S_{k}}(1), \quad \operatorname{Ind}_{S_{\mu}}^{S_{k}}(\operatorname{sgn})\right)$ is onedimensional.

Proof. Mackey Theory.

- Mackey Theory computes intertwinings of induced rep's by double coset computations.
- More on Mackey Theory for S_{k} later.

Let $\pi_{\lambda}^{S_{k}}$ be the unique irreducible constituent of $\operatorname{Ind}_{S_{\lambda}}^{S_{k}}$ that can be mapped into $\operatorname{Ind}_{S_{\mu}}^{S_{k}}(\mathrm{sgn})$.

Reps of $\boldsymbol{U}(\boldsymbol{n})$

- If $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \mathbb{Z}^{n}$ associate the character $\operatorname{diag}\left(t_{1}, \cdots, t_{n}\right) \longmapsto \Pi t_{i}^{\lambda_{i}}$, called a weight.
- Call λ a dominant weight if $\lambda_{1} \geqslant \ldots \geqslant \lambda_{n}$.
- Call λ effective if $\lambda_{n} \geqslant 0$.
- An effective dominant weight is a partition.

Let λ be dominant. Define Schur polynomial

$$
s_{\lambda}\left(t_{1}, \cdots, t_{n}\right)=\frac{\operatorname{det}\left(t_{i}^{\lambda_{j}+n-j}\right)}{\operatorname{det}\left(t_{i}^{n-j}\right)} .
$$

- It is a symmetric polynomial of degree $\sum \lambda_{j}$.

Theorem. (Schur, Weyl) Given a dominant weight λ there is a rep' $n \pi_{\lambda}^{U(n)}$ with character

$$
\chi_{\lambda}^{U(n)}(g)=s_{\lambda}\left(t_{1}, \cdots, t_{n}\right), \quad t_{i}=\text { eigenval's of } g .
$$

Frobenius-Schur duality

In the Frobenius-Schur correspondence partitions λ of k of length $\leqslant n$ are effective dominant weights.

$$
\pi_{\lambda}^{S_{k}} \Longleftrightarrow \pi_{\lambda}^{U(n)}
$$

Diaconis-Shahshahani

As a first application, the distribution of $\operatorname{traces} \operatorname{tr}(g)$ for $g \in U(n)$ is approximately Gaussian. More precisely, let ϕ be any smooth test function on \mathbb{C}. Then

$$
\lim _{n \longrightarrow \infty} \int_{U(n)} \phi(\operatorname{tr}(g)) d g=\int_{\mathbb{C}} \phi(z)\left[\frac{e^{-\pi\left(x^{2}+y^{2}\right)}}{\pi}\right] d x d y
$$

$z=x+i y$. This is surprising since the right-hand side is independent of n. We might expect the traces to spread out as $n \longrightarrow \infty$ since they are sums of many eigenvalues.

- If $\phi(x)=|x|^{k}$ and $k<n$ then exactly

$$
\int_{U(n)} \phi(\operatorname{tr}(g)) d g=\int_{\mathbb{C}} \phi(x+i y)\left[\frac{e^{-\pi\left(x^{2}+y^{2}\right)}}{\pi}\right] d x d y
$$

- Method of moments: This is sufficient.
- Assume ϕ homogeneous of degree k and transfer the computation to $\boldsymbol{S}_{\boldsymbol{k}}$.
- If $\phi(x)=|x|^{k}$ then RHS $=k$!

Transferring The Computation

- Let $\omega: G \times H \longrightarrow \operatorname{End}\left(V_{\omega}\right)$ be correspondence.
- Remember $\omega=\bigoplus \pi_{i}^{G} \otimes \pi_{i}^{H}$.
- Let f be a class function on G. We construct a class function f^{\prime} on H.
- If $f=\chi_{i}^{G}$ is a character of a π_{i}^{G} let $f^{\prime}=\chi_{i}^{H}$.
- If f is orthogonal to the χ_{i}^{G} let $f^{\prime}=0$.
- $\quad f \longmapsto f^{\prime}$ is an isometry on the span of the χ_{i}^{G} by Schur orthogonality.
So if f is in the span of the χ_{i}^{G} and we can compute $\left\|f^{\prime}\right\|_{L_{2}}$ we can compute $\|f\|_{L_{2}}$.

Transferring Diaconis-Shahshani

For example, let $G=S_{k}$ and $H=U(n)$. Let

$$
f(\sigma)= \begin{cases}\frac{1}{|C|} & \text { if } \sigma \in C \\ 0 & \text { otherwise }\end{cases}
$$

where C is the conjugacy class of k-cycles. Then f^{\prime} is the function $\operatorname{tr}(g)^{k}$ on $U(n)$, and if $n \geqslant k$

$$
\left\|f^{\prime}\right\|^{2}=\|f\|^{2}=k!
$$

or

$$
\int_{U(n)}|\operatorname{tr}(g)|^{2 k} d g=k!
$$

which is the Diaconis-Shahshahani result. Indeed

$$
\int_{\mathbb{C}}|x+i y|^{2 k}\left[\frac{e^{-\pi\left(x^{2}+y^{2}\right)}}{\pi}\right] d x d y=k!
$$

- This is their method.
- They proved more: the distributions on $U(n)$ of $\operatorname{tr}(g), \operatorname{tr}\left(g^{2}\right), \cdots, \operatorname{tr}\left(g^{m}\right)$ converge in measure to independent Gaussians as $n \longrightarrow \infty$.
- Same trick, other conjugacy classes of S_{k}.

$G \times G$ Correspondences

- $\mathrm{GL}_{n} \times \mathrm{GL}_{m}$ is a dual reductive pair and so there is a Howe correspondence.
- We do not need the Weil representation to discuss it but it is in the background.

1. Very general. Let $G=H$ be any compact group. Then $G \times H$ acts on $L^{2}(G)$ by

$$
\omega(g, h) f(x)=f\left(g^{-1} x h\right) .
$$

This is a correspondence. All irreducible reps appear:

$$
\left\{\pi_{i}^{G}\right\}=\left\{\pi_{i}^{H}\right\}=\text { all irreducibles }
$$

and $\pi_{i}^{H}=\hat{\pi}_{i}^{G}$ is the contragredient representation.
2. $\boldsymbol{G}=\boldsymbol{U}(\boldsymbol{n})$. If $G=H=U(n)$ we can modify this construction as follows.

- G has an involution $g \longmapsto{ }^{t} g^{-1}$ that interchanges π and $\hat{\pi}$.
- So let $G \times H$ act on $L^{2}(G)$ by

$$
\omega(g, h) f(x)=f\left({ }^{t} g x h\right) .
$$

Then $\pi_{i}^{G}=\pi_{i}^{H}$.

3. $G=G L(n, \mathbb{C})$.

- $K=U(n)$ is maximal compact in $G=\mathrm{GL}(n, \mathbb{C})$.
- From last example $K \times K$ acts on $L^{2}(K)$ by

$$
\omega(g, h) f(x)=f\left({ }^{t} g x h\right)
$$

- Polynomial functions are dense in $L^{2}(K)$ and closed under this action (finite functions).
- Action on on polynomials extends to $\operatorname{GL}(n, \mathbb{C})$ by same formula.
- Polynomials $=\mathbb{C}\left[g_{i j}, \operatorname{det}^{-1}\right]\left(g_{i j}=\right.$ coordinates $)$.
- Every irreducible rep'n $\pi_{\lambda}^{U(n)}$ of $U(n)$ extends uniquely to an analytic rep'n $\pi_{\lambda}^{\mathrm{GL}(n)}$ of $\mathrm{GL}(n, \mathbb{C})$.
Conclusion:

$$
\mathbb{C}\left[g_{i j}, \operatorname{det}^{-1}\right] \cong \bigoplus_{\text {dominant weight } \lambda} \pi_{\lambda}^{\mathrm{GL}(n)} \otimes \pi_{\lambda}^{\mathrm{GL}(n)}
$$

as $\mathrm{GL}(n, \mathbb{C})$-modules. Sum is over dominant weights λ.
4. $G=\mathrm{GL}(n, \mathbb{C}):$ regular on $\operatorname{det}=0$

Question: Which elements of $\mathbb{C}\left[g_{i j}, \operatorname{det}^{-1}\right]$ are regular on the determinant locus in $\mathbb{C}^{n^{2}}=\operatorname{Mat}_{n}(\mathbb{C})$?
Answer: λ must be effective ($\lambda_{1} \geqslant \ldots \geqslant \lambda_{n} \geqslant 0$).

$$
\mathbb{C}\left[g_{i j}\right] \cong \quad \bigoplus \quad \pi_{\lambda}^{\mathrm{GL}(n)} \otimes \pi_{\lambda}^{\mathrm{GL}(n)}
$$

effective
dominant weight λ
as $\mathrm{GL}(n, \mathbb{C})$-modules.

- Restrict to $T \times T$ ($T=$ diagonal subgroup)

$$
\left(\begin{array}{ccc}
\alpha_{1} & & \\
& \ddots & \\
& & \alpha_{n}
\end{array}\right),\left(\begin{array}{ccc}
\beta_{1} & & \\
& \ddots & \\
& & \beta_{n}
\end{array}\right) \in T \times T
$$

- Assume $\left|\alpha_{i}\right|,\left|\beta_{j}\right| \leqslant 1$
- Take traces to obtain Cauchy identity

$$
\prod_{i, j}\left(1-\alpha_{i} \beta_{j}\right)^{-1}=\sum_{\text {effective dominant } \lambda} s_{\lambda}(\alpha) s_{\lambda}(\beta) .
$$

The Ring Λ

- We return to Frobenius-Schur duality.
- Recall: $S_{k} \times U(n)$ acts on $\otimes^{k} V\left(V=\mathbb{C}^{n}\right)$ and so there is a Frobenius-Schur correspondence

$$
\begin{array}{r}
\pi_{\lambda}^{S_{k}} \Longleftrightarrow \pi_{\lambda}^{U(n)} \\
\\
\left.\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n} \geqslant 0, \quad \lambda_{i}, \cdots, \lambda_{n}\right) \\
\sum_{i}=k .
\end{array}
$$

- Let $\Lambda^{(n)}=$ ring of symmetric poly in n variables
- Recall: The character $\chi_{\lambda}^{U(n)}$ of $\pi_{\lambda}^{U(n)}$ is
$\chi_{\lambda}^{U(n)}(g)=s_{\lambda}\left(\alpha_{1}, \cdots, \alpha_{n}\right), \quad \alpha_{i}=$ eigenvalues of g
where $s_{\lambda}=s_{\lambda}^{(n)}=$ Schur polynomial in $\Lambda^{(n)}$.
- We have homomorphisms $\Lambda^{(n+1)} \longrightarrow \Lambda^{(n)}$ setting the last variable to zero.
- Let $\Lambda=\lim \Lambda^{(n)}$.
- $\quad \Lambda$ is the ring of symmetric poly's in ∞ variables.
- We have $s_{\lambda}^{(n)}\left(\alpha_{1}, \cdots, \alpha_{n}\right)=s_{\lambda}^{(n+1)}\left(\alpha_{1}, \cdots, \alpha_{n}, 0\right)$.
- So $s_{\lambda} \in \Lambda$.
- The s_{λ} are a VS basis of the \mathbb{C}-algebra Λ.

The Involution

We have an involution $\iota: \Lambda \longrightarrow \Lambda$ such that $s_{\lambda} \longrightarrow s_{\lambda^{\prime}}$ where λ^{\prime} is the conjugate partition.

- In terms S_{k}, the involution tensors a representation of S_{k} with the sign charactor.
- In terms of $U(n)$ it turns symmetric tensors (bosons) into skew-symmetric ones (fermions).
Let $e_{k}=s_{\left(1^{k}\right)}$ the k-th elementary symmetric poly. Let $h_{k}=s_{(k)}$ the k-th complete symmetric poly.

$$
\iota: e_{k} \longleftrightarrow h_{k}
$$

The Dual Cauchy Identity

In $\Lambda^{(n)}$
$\sum e_{k} x^{k}=\prod_{i=1}^{n}\left(1+\alpha_{i} x\right), \quad \sum h_{k} x^{k}=\prod_{i=1}^{n}\left(1-\alpha_{i} x\right)^{-1}$
so (roughly) ι interchanges these two expressions.

- $\quad \iota$ acts on Λ not $\Lambda^{(n)}$ so this needs interpretation.

Applying ι to one set of variables it transforms the Cauchy identity

$$
\prod_{i, j}\left(1-\alpha_{i} \beta_{j}\right)^{-1}=\sum_{\lambda} s_{\lambda}(\alpha) s_{\lambda}(\beta)
$$

into the dual Cauchy identity:

$$
\prod_{i, j}\left(1+\alpha_{i} \beta_{j}\right)=\sum_{\lambda} s_{\lambda}(\alpha) s_{\lambda^{\prime}}(\beta) .
$$

The $\mathrm{GL}_{n} \times \mathrm{GL}_{m}$ Correspondences

 We proved the Cauchy identity$$
\prod_{i=1}^{n} \prod_{j=1}^{m}\left(1-\alpha_{i} \beta_{j}\right)^{-1}=\sum_{\lambda} s_{\lambda}^{(n)}(\alpha)^{(m)} s_{\lambda}(\beta)
$$

when $n=m$ but we can specialize some parameters to zero and hence obtain the same formula for $n \neq m$. Similarly in the dual Cauchy identity we do not need $n=m$.

$$
\prod_{i=1}^{n} \prod_{j=1}^{m}\left(1+\alpha_{i} \beta_{j}\right)=\sum_{\lambda} s_{\lambda}^{(n)}(\alpha) s_{\lambda^{\prime}}^{(m)}(\beta)
$$

- The Cauchy identity describes the decomposition of the symmetric algebra over $\operatorname{Mat}_{n \times m}(\mathbb{C})$ under the natural action of $\mathrm{GL}_{n} \times \mathrm{GL}_{m}$ by left and right multiplication.
- Dual Cauchy identity describes the decomposition of the exterior algebra on $\operatorname{Mat}_{n \times m}(\mathbb{C})$.
- In Cauchy identity we need $\left|\alpha_{i}\right|,\left|\beta_{j}\right|<1$ for convergence.
- In dual identity we do not. The sum is essentially finite since only finitely many λ have length $\leqslant n$ (so $s_{\lambda}^{(n)} \neq 0$) with λ^{\prime} of length $\leqslant m$.

Keating and Snaith

Theorem. (Keating and Snaith) We have

$$
\int_{U(n)}|\operatorname{det}(I-g)|^{2 k} d g=\prod_{j=0}^{n-1} \frac{j!(j+2 k)!}{((j+k)!)^{2}}
$$

- This was proved by K\&S using Selberg integral.
- Gamburd found another proof that we describe.
- This is in the CMP paper of Bump-Gamburd.
- The proofs give different information, viz:
- In KS the argument k could be real.
- In BG $d g$ could be replaced by $\overline{\chi_{\nu}(g)} d g$.

Idea is to use $U(n)-U(2 k)$ correspondence to transfer the calculation to $U(2 k)$.

Proof (Gamburd)

Suppose $\alpha_{1}, \cdots, \alpha_{n}$ are the eigenvalues of $g \in U(n)$ so $\left|\alpha_{i}\right|=1$. Let $m=2 k$ and take $\beta_{1}=\cdots=\beta_{2 k}=1$. Then

$$
\begin{aligned}
|\operatorname{det}(I+g)|^{2 k} & =\prod_{i=1}^{n} \prod_{j=1}^{k}\left(1+\alpha_{i}\right)\left(1+\alpha_{i}^{-1}\right) \\
& =\operatorname{det}(g)^{-k} \prod_{i=1}^{n} \prod_{j=1}^{k}\left(1+\alpha_{i}\right)\left(\alpha_{i}+1\right)
\end{aligned}
$$

Apply dual Cauchy with $\beta_{1}=\cdots=\beta_{2 k}=1$. Then

$$
|\operatorname{det}(I+g)|^{2 k}=\operatorname{det}(g)^{-k} \sum_{\lambda} s_{\lambda}^{(n)}\left(\alpha_{1}, \cdots, \alpha_{n}\right) s_{\lambda^{\prime}}^{(2 k)}(1, \cdots, 1)
$$

Now $\left(k^{n}\right)$ being the partition (k, \cdots, k) :

$$
\begin{gathered}
\operatorname{det}(g)^{k}=\chi_{\left(k^{n}\right)}^{U(n)}(g)=s_{\left(k^{n}\right)}^{n}\left(\alpha_{1}, \cdots, \alpha_{n}\right) \\
|\operatorname{det}(I+g)|^{2 k}=\chi_{\left(k^{n}\right)}^{U(n)}(g)^{-1} \sum_{\lambda} \chi_{\lambda}^{U(n)}(g)^{-1} s_{\lambda^{\prime}}^{(2 k)}(1, \cdots, 1)
\end{gathered}
$$

Integrating picks off a single term $\lambda=\left(k^{n}\right), \lambda^{\prime}=\left(n^{k}\right)$.

$$
\int_{U(n)}|\operatorname{det}(I+g)|^{2 k} d g=s_{\left(n^{k}\right)}^{(2 k)}(1, \cdots, 1)=\prod_{j=0}^{n-1} \frac{j!(j+2 k)!}{((j+k)!)^{2}}
$$

by the Weyl dimension (=hook length) formula.

What Happened?

Just as in the proof of the Diaconis-Shahshahani result, the computation was moved to another group. It was moved from $U(n)$ to $U(2 k)$, where it is easer to do.

Ratios

$\Xi_{L, K}$ consist of all permutations $\sigma \in S_{K+L}$ such that

$$
\sigma(1)<\cdots<\sigma(L), \quad \sigma(L+1)<\cdots<\sigma(L+K)
$$

Theorem. (Conrey, Farmer and Zirnbauer) Assume $n \geqslant Q, R$ and that $\left|\gamma_{q}\right|,\left|\delta_{r}\right|<1$.

$$
\begin{aligned}
& \int_{U(n)} \frac{\prod_{l=1}^{L} \operatorname{det}\left(I+\alpha_{l}^{-1} \cdot g^{-1}\right) \cdot \prod_{k=1}^{K} \operatorname{det}\left(I+\alpha_{L+k} \cdot g\right)}{\prod_{q=1}^{Q} \operatorname{det}\left(I-\gamma_{q} \cdot g\right) \prod_{r=1}^{R} \operatorname{det}\left(I-\delta_{r} \cdot g^{-1}\right)} d g= \\
& \sum_{\sigma \in \Xi_{L, K}} \prod_{k=1}^{K}\left(\alpha_{\sigma(L+k)}^{-1} \alpha_{L+k}\right)^{n} \times \\
& \frac{\prod_{q=1}^{Q} \prod_{l=1}^{L}\left(1+\gamma_{q} \alpha_{\sigma(l)}^{-1}\right) \prod_{r=1}^{R} \prod_{k=1}^{K}\left(1+\delta_{r} \alpha_{\sigma(L+k)}\right)}{\prod_{k=1}^{K} \prod_{l=1}^{L}\left(1-\alpha_{\sigma(l)}^{-1} \alpha_{\sigma(K+k)}\right) \prod_{r=1}^{R} \prod_{q=1}^{Q}\left(1-\gamma_{q} \delta_{r}\right)} .
\end{aligned}
$$

After the initial proof by CFZ other proofs were given by Conrey, Forrester, Snaith and by Bump Gamburd.

We will not discuss the proof in detail but we isolate a couple of important ingredients.

Laplace-Levi expansions

- Let $G=$ complex reductive group, $\Phi=$ roots
- $\quad P=M U$ parabolic with Levi M and radical U.
- W and W_{M} the Weyl groups of G and M.
- \mathcal{C} and $\mathcal{C}_{M}=$ positive Weyl chambers.
- $\Xi=$ coset reps for $W_{M} \backslash W$ such that $w \mathcal{C} \subset \mathcal{C}_{M}$.
- $\rho_{U}=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha$.

Then

$$
\chi_{\lambda}^{G}=\frac{1}{e^{-\rho_{U}} \prod_{\alpha \in \Phi^{+}-\Phi_{U}^{+}}\left(1-e^{\alpha}\right)} \sum_{w \in \Xi}(-1)^{l(w)} \chi_{\lambda_{w}}^{M}
$$

This follows from the Weyl character formula.

- With $G=\mathrm{GL}_{L+K}$ and $M=\mathrm{GL}_{L} \times \mathrm{GL}_{K}$,
- $\lambda=\left(\lambda_{1}, \ldots, \lambda_{L+K}\right)$,
- $\tau=\left(\lambda_{1}, \ldots, \lambda_{L}\right), \quad \rho=\left(\lambda_{L+1}, \ldots, \lambda_{L+K}\right)$.

$$
\begin{array}{r}
\sum_{\sigma \in \Xi_{L, K}} \prod_{\substack{1 \leqslant l \leqslant L \\
1 \leqslant k \leqslant K}} \begin{array}{r}
s_{\lambda}\left(\alpha_{1}, \cdots, \alpha_{L+K}\right)= \\
\left(\alpha_{\sigma(l)}-\alpha_{\sigma(L+k)}\right)^{-1}
\end{array} \\
s_{\tau+\left\langle K^{L}\right\rangle}\left(\alpha_{\sigma(1)}, \cdots, \alpha_{\sigma(L)}\right) s_{\rho}\left(\alpha_{\sigma(L+1)}, \cdots, \alpha_{\sigma(L+K)}\right)
\end{array}
$$

This accounts for sum over $\Xi_{L, K}$ in the ratios formula.

Littlewood-Schur sym polynomials

Due to Littlewood, rediscovered by Berele and Regev. Let $c_{\mu \nu}^{\lambda}$ be Littlewood-Richardson coefficients:

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}
$$

Define (for two sets of variables)

$$
\begin{array}{r}
\operatorname{LS}_{\lambda}\left(x_{1}, \cdots, x_{k} ; y_{1}, \cdots, y_{l}\right)= \\
\sum_{\mu, \nu} c_{\mu \nu}^{\lambda} s_{\mu}\left(x_{1}, \cdots, x_{k}\right) s_{\nu^{\prime}}\left(y_{1}, \cdots, y_{l}\right) .
\end{array}
$$

The generalized Cauchy identity (Berele, Remmel)

$$
\begin{aligned}
& \sum_{\prod_{i, k}} \mathrm{LS}_{\lambda}\left(\alpha_{1}, \cdots, \alpha_{m} ; \beta_{1}, \cdots, \beta_{n}\right) \operatorname{LS}_{\lambda}\left(\gamma_{1}, \cdots, \gamma_{s} ; \delta_{1}, \cdots, \delta_{t}\right)= \\
& \left.\prod_{i, l} \gamma_{k}\right)^{-1} \prod_{j, k}\left(1+\alpha_{i} \delta_{l}\right) \prod_{j, k}\left(1+\beta_{j} \gamma_{k}\right) \prod_{j, l}\left(1-\beta_{j} \delta_{l}\right)^{-1}
\end{aligned}
$$

We will discuss the significance of this momentarily. First we outline the proof of the ratios theorem.

- Cauchy and dual Cauchy identities are applied to LHS producing a sum of Schur functions.
- Some of these are multiplied producing Little-wood-Richardson coefficients
- Regrouped into Littlewood-Schur polynomials.
- Generalized Cauchy identity is applied.
- Laplace-Levi expansion is applied.
- It all works out.

Sketch

Left-Hand-Side:

$$
\int_{U(n)} \frac{\prod_{l=1}^{L} \operatorname{det}\left(I+\alpha_{l}^{-1} \cdot g^{-1}\right) \cdot \prod_{k=1}^{K} \operatorname{det}\left(I+\alpha_{L+k} \cdot g\right)}{\prod_{q=1}^{Q} \operatorname{det}\left(I-\gamma_{q} \cdot g\right) \prod_{r=1}^{R} \operatorname{det}\left(I-\delta_{r} \cdot g^{-1}\right)} d g
$$

Expand Π with dual Cauchy (up), Cauchy (down)

$$
\begin{array}{r}
\sum_{\lambda, \mu, \nu}\left\langle\chi_{\lambda^{\prime}} \chi_{\mu}, \operatorname{det}^{L} \otimes \chi_{\nu}\right\rangle \\
\prod_{l=1}^{L} \alpha_{l}^{-N^{N}} s_{\lambda}\left(\alpha_{1}, \cdots, \alpha_{L+K}\right) s_{\mu}\left(\gamma_{1}, \cdots, \gamma_{Q}\right) s_{\nu}\left(\delta_{1}, \cdots, \delta_{R}\right)
\end{array}
$$

inner product is $c_{\lambda^{\prime} \mu}^{\tilde{\nu}}$ with $\tilde{\nu}=\nu+\left(L^{n}\right), \tilde{\nu}^{\prime}=N^{L} \cup \nu^{\prime}$

$$
\prod_{l=1}^{L} \alpha_{l}^{-N} \sum_{\nu} \mathrm{LS}_{N^{L} \cup \nu^{\prime}}\left(\alpha_{1}, \ldots, \alpha_{L+K} ; \gamma_{1}, \ldots, \gamma_{Q}\right) s_{\nu}\left(\delta_{1}, \cdots, \delta_{R}\right)
$$

Use Laplace-Levi: $\operatorname{LS}_{\tau \cup \rho}\left(\alpha_{1}, \cdots, \alpha_{L+K} ; \gamma_{1}, \ldots, \gamma_{Q}\right)=$

$$
\begin{array}{r}
\sum_{\sigma \in \Xi_{L, K}} \prod_{\substack{1 \leqslant l \leqslant L \\
1 \leqslant k \leqslant K}}\left(\alpha_{\sigma(l)}-\alpha_{\sigma(L+k)}\right)^{-1} \\
\operatorname{LS}_{\tau+\left\langle K^{L}\right\rangle}\left(\alpha_{\sigma(1)}, \cdots, \alpha_{\sigma(L)} ; \gamma_{1}, \ldots, \gamma_{Q}\right) \\
\operatorname{LS}_{\rho}\left(\alpha_{\sigma(L+1)}, \cdots, \alpha_{\sigma(L+K)} ; \gamma_{1}, \ldots, \gamma_{Q}\right)
\end{array}
$$

Sketch (continued)

Generalized Cauchy:

$$
\begin{aligned}
& \sum_{l_{i, k}} \operatorname{LS}_{\lambda}\left(\alpha_{1}, \cdots, \alpha_{m} ; \beta_{1}, \cdots, \beta_{n}\right) \mathrm{LS}_{\lambda}\left(\gamma_{1}, \cdots, \gamma_{s} ; \delta_{1}, \cdots, \delta_{t}\right)= \\
& \prod_{i, l}\left(1-\alpha_{i} \gamma_{k}\right)^{-1} \prod_{i, l}\left(1+\alpha_{i} \delta_{l}\right) \prod_{j, k}\left(1+\beta_{j} \gamma_{k}\right) \prod_{j, l}\left(1-\beta_{j} \delta_{l}\right)^{-1} .
\end{aligned}
$$

Right-Hand Side:

$$
\begin{aligned}
& \sum_{\sigma \in \Xi_{L, K}} \prod_{k=1}^{K}\left(\alpha_{\sigma(L+k)}^{-1} \alpha_{L+k}\right)^{n} \times \\
& \frac{\prod_{q=1}^{Q} \prod_{l=1}^{L}\left(1+\gamma_{q} \alpha_{\sigma(l)}^{-1}\right) \prod_{r=1}^{R} \prod_{k=1}^{K}\left(1+\delta_{r} \alpha_{\sigma(L+k)}\right)}{\prod_{k=1}^{K} \prod_{l=1}^{L}\left(1-\alpha_{\sigma(l)}^{-1} \alpha_{\sigma(K+k)}\right) \prod_{r=1}^{R} \prod_{q=1}^{Q}\left(1-\gamma_{q} \delta_{r}\right)} .
\end{aligned}
$$

Hopf Algebra (Geissinger)

The multiplication in Λ induces a map $m: \Lambda \otimes \Lambda \longrightarrow \Lambda$, whose adjoint with respect to the basis for which the s_{λ} are orthonormal is a map $m^{*}: \Lambda \longrightarrow \Lambda \otimes \Lambda$. Thus

$$
m\left(s_{\mu} \otimes s_{\nu}\right)=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}, \quad m^{*}\left(s_{\lambda}\right)=\sum_{\mu, \nu} c_{\mu \nu}^{\lambda} s_{\mu} \otimes s_{\nu} .
$$

The map m^{*} is a comultiplication making Λ a coalgebra. The Hopf axiom is the commutativity of:

$$
\begin{array}{cc}
\Lambda \otimes \Lambda \xrightarrow{m^{*} \otimes m^{*}} \Lambda \otimes \Lambda \otimes \Lambda \otimes \Lambda \xrightarrow{1 \otimes \tau \otimes 1} & \Lambda \otimes \Lambda \otimes \Lambda \otimes \Lambda \\
\downarrow m & \xrightarrow{m^{*}} \\
\Lambda & \\
\hline m \otimes m \\
& \Lambda \otimes \Lambda
\end{array}
$$

where $\tau: R \otimes R \longrightarrow R \otimes R$ is the map $\tau(u \otimes v)=v \otimes u$.

- Interpreting the multiplication in Λ as induction (from $S_{k} \times S_{l}$ to S_{k+l}) and the comultiplication as restriction (from S_{k+l} to $S_{k} \times S_{l}$), the Hopf property boils down to Mackey theory.

Mackey Theory

If G is a finite group and H, K are subgroups, Mackey theory is schematically a commutative diagram

$$
\begin{array}{ll}
\text { Reps of } H & \xrightarrow{\text { induce }}
\end{array} \begin{aligned}
& \text { Reps of } G \\
& \downarrow_{\text {restrict }} \\
& \text { Reps of } \\
& \\
& \downarrow_{\text {restrict }}^{\text {induce }}
\end{aligned} \text { Reps of } K
$$

Here means that we intersect H with K in all possible ways. That is, let γ run through a set of coset reps of $H \backslash G / K$ and let $H \cap_{\gamma} K$ mean $H \cap \gamma K \gamma^{-1}$. If π is a repn' of H then as K-modules

$$
\operatorname{Res}_{G \rightarrow K} \circ \operatorname{Ind}(\pi) \cong \bigoplus_{H \rightarrow G} \operatorname{Ind}_{H \cap_{\gamma} K \rightarrow K} \quad \circ \operatorname{Res}_{G \rightarrow H \cap_{\gamma} K}(\pi)
$$

Here $H \cap_{\gamma} K$ is not a subgroup of K but is conjugate to one which is enough.

- Nutshell: "induction and restriction commute"

Hopf $=$ Mackey

- $\quad \Lambda$ is a graded ring. In symmetric group optic $\Lambda_{k}=$ (virtual) representations of S_{k}.
- $(\Lambda \otimes \Lambda)_{k}=$ Reps of $S_{m} \times S_{n}(m+n=k)$.
- Multiplication $\Lambda_{k} \otimes \Lambda_{l} \longrightarrow \Lambda_{k+l}$ is induction from $S_{k} \times S_{\lambda}$ to S_{k+l}.
- Coultiplication $\Lambda_{k+l} \longrightarrow \Lambda_{k} \otimes \Lambda_{l}$ is restriction from S_{k+l} to $S_{k} \times S_{\lambda}$.
- $\Lambda \otimes \Lambda \xrightarrow{m} \Lambda \xrightarrow{m^{*}} \Lambda \otimes \Lambda$ is Ind \circ Res
- $\Lambda \otimes \Lambda \xrightarrow{m^{*}} \Lambda \otimes \Lambda \otimes \Lambda \otimes \Lambda \xrightarrow{m \circ 1 \otimes t \otimes 1} \Lambda \otimes \Lambda$: Res \circ Ind
- To verify equivalence consider one component

$$
\Lambda_{m} \otimes \Lambda_{n} \longrightarrow \Lambda_{p} \otimes \Lambda_{q} \quad(m+n=p+q)
$$

- $H=S_{m} \times S_{n}, K=S_{p} \times S_{q}$
- $H \cap_{\gamma} K=S_{x} \times S_{y} \times S_{z} \times S_{w}$
- $\quad x+y=m, z+w=n, x+z=p, y+w=q$
- Grading is a bookkeeping device.
- \quad Hopf $=$ Mackey.

Generalized Schur identity

Theorem. The Generalized Cauchy formula is equivalent to the Hopf property of Λ.

Proof. The Hopf axiom reduces to the formula

$$
\begin{equation*}
\sum_{\lambda} c_{\mu \nu}^{\lambda} c_{\sigma \tau}^{\lambda}=\sum_{\varphi, \eta} c_{\varphi \eta}^{\sigma} c_{\psi \xi}^{\tau} c_{\varphi \xi}^{\mu} c_{\psi \eta}^{\nu} \tag{1}
\end{equation*}
$$

- Apply $m^{*} \circ m$ to $s_{\mu} \otimes s_{\nu}$, then extract the coefficient of $s_{\sigma} \otimes s_{\tau}$ the left-hand side in (1).
- \quad Same with $(m \otimes m) \circ(1 \otimes \tau \otimes 1) \circ\left(m^{*} \otimes m^{*}\right)$ gives the right-hand side.
$\sum \mathrm{LS}_{\lambda}\left(\alpha_{1}, \cdots, \alpha_{m} ; \beta_{1}, \cdots, \beta_{n}\right) \operatorname{LS}_{\lambda}\left(\gamma_{1}, \cdots, \gamma_{s} ; \delta_{1}, \cdots, \delta_{t}\right)=$ $\prod_{i, k}\left(1-\alpha_{i} \gamma_{k}\right)^{-1} \prod_{i, l}\left(1+\alpha_{i} \delta_{l}\right) \prod_{j, k}\left(1+\beta_{j} \gamma_{k}\right) \prod_{j, l}\left(1-\beta_{j} \delta_{l}\right)^{-1}$.

The LHS is

$$
\sum c_{\mu \nu}^{\lambda} s_{\mu}(\alpha) s_{\nu^{\prime}}(\beta) c_{\sigma \tau}^{\lambda} s_{\sigma}(\gamma) s_{\tau^{\prime}}(\delta)
$$

while the right-hand side is (using Cauchy \& dual)

$$
\begin{aligned}
& \sum s_{\varphi}(\alpha) s_{\varphi}(\gamma) s_{\psi^{\prime}}(\beta) s_{\psi^{\prime}}(\delta) s_{\xi}(\alpha) s_{\xi^{\prime}}(\delta) s_{\eta^{\prime}}(b) s_{\eta}(\gamma) \\
= & \sum c_{\varphi \eta}^{\sigma} c_{\psi \xi}^{\tau} s_{\varphi}(\alpha) s_{\xi}(\alpha) s_{\psi^{\prime}}(\beta) s_{\eta^{\prime}}(\beta) s_{\sigma}(\gamma) s_{\tau^{\prime}}(\delta) \\
= & \sum c_{\varphi \eta}^{\sigma} c_{\psi \xi}^{\tau} c_{\varphi \xi}^{\mu} c_{\psi \eta^{\prime}}^{\nu} s_{\mu}(\alpha) s_{\nu^{\prime}}(\beta) c_{\sigma}^{\lambda} s_{\sigma}(\gamma) s_{\tau^{\prime}}(\delta)
\end{aligned}
$$

Comparing, the equivalence amounts to (1).

