# Primes, partitions and permutations 

Paul-Olivier Dehaye pdehaye@math.ethz.ch

## EHH

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

ETH Zürich, October 31 ${ }^{\text {st }}$


Primes,

- Review of Bump \& Gamburd's method
- A theorem of Okounkov-Olshanski
- Moments of derivatives of characteristic polynomials
- Hypergeometric functions
- Integral representations
- Markov chain on a Young graph
- Comments
- Explain the title

Primes,

Definitions
Let

$$
Z_{U}(\theta)=\prod_{j=1}^{N}\left(1-e^{\mathrm{i}\left(\theta_{j}-\theta\right)}\right)
$$

be the char. pol. of $U \in U(N)$, which has eigenvalues $\left\{e^{i \theta_{j}}\right\}$.

A partition $\lambda$ is a non-increasing sequence $\left(\lambda_{1}, \cdots, \lambda_{l(\lambda)}, 0,0, \cdots\right)$ of integers trailing to 0 s. We define its length $I(\lambda)$ as the number of non-zero entries, and its weight $|\lambda|$ as the total value $\sum \lambda_{i}$ of the entries in the sequence.

We always identify a partition with its Young diagram. The
diagram for $(6,5,3,1)$, for instance, is


## Definitions (II)

Schur polynomials are symmetric polynomials. They form compatible families, indexed by partitions:

$$
\mathfrak{s}_{\lambda}\left(x_{1}, \cdots, x_{N}\right)=\mathfrak{s}_{\lambda}\left(x_{1}, \cdots, x_{N}, 0\right)
$$

There is one reduction property:

$$
\mathfrak{s}_{\lambda}\left(x_{1}, \cdots, x_{N}\right)=0 \text { if } I(\lambda)>N .
$$

Excluding those, we have irreducible characters of $\mathrm{U}(N)$, and

$$
\left\langle\mathfrak{s}_{\lambda}(U) \overline{\mathfrak{s}_{\mu}(U)}\right\rangle_{U(N)}= \begin{cases}\delta_{\lambda \mu} & \text { if } N \geq I(\lambda) \\ 0 & \text { if } I(\lambda)>N\end{cases}
$$

with $\mathfrak{s}_{\lambda}(U):=\mathfrak{s}_{\lambda}\left(e^{\mathrm{i} \theta_{1}}, \cdots, e^{\mathrm{i} \theta_{N}}\right)$.
"For large $N$, the $\mathfrak{s}_{\lambda}$ are orthonormal over $\mathrm{U}(N)$."

Primes,
partitions and permutations

The method of Bump and Gamburd Bump and Gamburd have a way to compute

$$
\left.\left.\langle | Z_{U}(0)\right|^{2 k}\right\rangle_{\mathrm{U}(N)}
$$

which uses the dual Cauchy identity
$\sum_{\lambda \text { partitions }} \mathfrak{s}_{\lambda}\left(x_{1}, x_{2}, \cdots, x_{M}\right) \mathfrak{s}_{\lambda^{t}}\left(y_{1}, y_{2}, \cdots, y_{N}\right)=\prod_{m, n}^{M, N}\left(1+x_{m} y_{n}\right)$.

$$
\begin{aligned}
\sum_{\lambda} \mathfrak{s}_{\lambda}\left(\{1\}^{2 k}\right) \overline{\mathfrak{s}_{\lambda^{t}}(U)} & =\operatorname{det}(\mathrm{Id}+\bar{U})^{2 k} \\
& =\overline{\operatorname{det}(U)^{k}}|\operatorname{det}(\mathrm{Id}+U)|^{2 k} \\
& =\frac{\mathfrak{s}_{\left\langle k^{N}\right\rangle}(U)}{}|\operatorname{det}(\mathrm{Id}+U)|^{2 k}
\end{aligned}
$$

or (replacing $U$ by $-U$ )
$\left|Z_{U}(0)\right|^{2 k}=(-1)^{k N} \mathfrak{s}_{\left\langle k^{N}\right\rangle}(U) \sum_{\lambda}(-1)^{|\lambda|} \mathfrak{s}_{\lambda}\left(\{1\}^{2 k}\right) \overline{\mathfrak{s}_{\lambda^{t}}(U)}$.

Primes,

$$
\left|Z_{U}(0)\right|^{2 k}=(-1)^{k N_{\mathfrak{s}}\left\langle k^{N}\right\rangle}(U) \sum_{\lambda}(-1)^{|\lambda|} \mathfrak{s}_{\lambda}\left(\{1\}^{2 k}\right) \overline{\mathfrak{s}^{t}(U)}
$$

So

$$
\left.\left.\langle | Z_{U}(0)\right|^{2 k}\right\rangle_{U(N)}=\mathfrak{s}^{\mathfrak{s}}\left\langle N^{k}\right\rangle\left(\{1\}^{2 k}\right)
$$

which can be evaluated combinatorially, provides many alternate expressions and gives analytic continuations.

This gives an interpreation of the Keating-Snaith "geometric" term as a dimension.

## Evaluation

There are many ways to evaluate a Schur function, based on

- (ratios of Vandermonde determinants)
- determinants (valid for any values of the variables)
- Jacobi-Trudi identity (2 expressions)
- Giambelli formula
- the hook-content formula (a dimension formula, only 1s)

$$
\begin{aligned}
\mathfrak{s}_{\lambda}\left(\{1\}^{K}\right) & =\prod_{\square \in \lambda} \frac{K+c(\square)}{H(\square)} \\
& =\frac{K \uparrow \lambda}{H(\lambda)}
\end{aligned}
$$

The $K \uparrow \lambda$ notation is a generalization of the Pochhammer symbol, which provides analytic continuations in $K$.

## Evaluation (II)

$$
\begin{aligned}
\mathfrak{s}_{\lambda}\left(\{1\}^{K}\right) & =\prod_{\square \in \lambda} \frac{K+c(\square)}{H(\square)} \\
& =\frac{K \uparrow \lambda}{H(\lambda)}
\end{aligned}
$$

- The way these expressions vanish when $I(\lambda)>K$ is very important.
- Boxes can be grouped in many ways: along rows, columns or "half-hooks" [BHNY: columns]
- The numerators $K \uparrow \lambda$ can be obtained as exponentials of integrals against Russian diagrams of the logarithmic derivative of the Barnes $G$-function

Primes,

## Moments of derivatives

We now consider the question of moments of derivatives of characteristic polynomials, i.e. we look at

$$
\left.\left.\langle | Z_{U}(0)\right|^{2 k}\left|Z_{U}^{\prime}(0)\right|^{2 h}\right\rangle_{U(N)}
$$

(remember: $\left.Z_{U}(\theta)=\prod_{j=1}^{N}\left(1-e^{\mathfrak{i}\left(\theta_{j}-\theta\right)}\right)\right)$.
We also look at

$$
\left.\left.\langle | V_{U}(0)\right|^{2 k}\left|V_{U}^{\prime}(0)\right|^{2 h}\right\rangle_{U(N)}
$$

with $V_{U}(\theta)=e^{\mathrm{i} N(\theta+\pi) / 2} e^{-\mathrm{i} \sum_{j=1}^{N} \theta_{j} / 2} Z_{U}(\theta)$
The two are simple linear combinations obtained from the moments

$$
\left.\left.\langle | Z_{U}(0)\right|^{2 k}\left(\frac{Z_{U}^{\prime}(0)}{Z_{U}(0)}\right)^{r}\right\rangle_{U(N)}
$$

A theorem of Okounkov and Olshanski
Generalized Binomial Theorem: If $\mathfrak{s}_{\mu}^{*}$ stand for "shifted Schur functions", then

$$
\frac{\mathfrak{s}_{\lambda}\left(1+a_{1}, \cdots, 1+a_{n}\right)}{\mathfrak{s}_{\lambda}\left(\{1\}^{n}\right)}=\sum_{\mu} \frac{\mathfrak{s}_{\mu}^{*}\left(\lambda_{1}, \cdots, \lambda_{n}\right) \mathfrak{s}_{\mu}\left(a_{1}, \cdots, a_{n}\right)}{n \uparrow \mu} .
$$

(The case $n=1$ is the binomial theorem).

Also,

$$
\mathfrak{s}_{\mu}^{*}\left(\{N\}^{k}\right)=(-1)^{|\mu|} \frac{(-N \uparrow \mu)(k \uparrow \mu)}{H(\mu)},
$$

${ }^{\text {so }}{ }^{\left.\mathfrak{s}_{\langle } / N^{k}\right\rangle}\left(1+a_{1}, \cdots, 1+a_{n}\right)$ has a nice expression as a sum
over partitions.
"The Taylor expansion of a Schur function near the identity."

Primes,
partitions and permutations

## Okounkov-

 Olshanski$$
\begin{gathered}
\left|Z_{U}(0)\right|^{2 k}\left(\frac{Z_{U}^{\prime}(0)}{Z_{U}(0)}\right)^{r}=(-1)^{k N_{\mathfrak{s}}\left\langle k^{N}\right\rangle}(U) \cdot \sum_{\lambda}(-1)^{|\lambda|_{\mathfrak{s}} \lambda^{t}} \\
\left.\partial_{1} \cdots \partial_{r} \mathfrak{s}_{\lambda}\left(\{1\}^{2 k-r} \cup\left\{1-\mathfrak{i} a_{1}, \cdots, 1-\mathfrak{i} a_{r}\right\}\right)\right|_{a_{j}=0}
\end{gathered}
$$

and hence

$$
\begin{aligned}
& \left.\left.\langle | Z_{U}(0)\right|^{2 k}\left(\frac{Z_{U}^{\prime}(0)}{Z_{U}(0)}\right)^{r}\right\rangle_{U(N)}= \\
& \left.\partial_{1} \cdots \partial_{r} \mathfrak{s}\left\langle N^{k}\right\rangle\left(\{1\}^{2 k-r} \cup\left\{1-\mathfrak{i} a_{1}, \cdots, 1-\mathfrak{i} a_{r}\right\}\right)\right|_{a_{j}=0}
\end{aligned}
$$

Primes,

Using Okounkov-Olshanski, we get
Proposition: When $0 \leq r \leq 2 k$,

$$
\begin{aligned}
&\left.\left.\langle | Z_{U}(0)\right|^{2 k}\left(\frac{Z_{U}^{\prime}(0)}{Z_{U}(0)}\right)^{r}\right\rangle_{U(N)}= \\
&\left.\left.\mathfrak{i}^{r} r!\langle | Z_{U}(0)\right|^{2 k}\right\rangle_{U(N)} \times \sum_{\mu \vdash r} \frac{1}{H(\mu)^{2}} \frac{(-N \uparrow \mu)(k \uparrow \mu)}{2 k \uparrow \mu}
\end{aligned}
$$

Remarks:

- $r$ has to be an integer
- At first $k$ is an integer, and $r \leq 2 k$
- This can be extentded to a rational function of $k$
- The sum yields a polynomial in $N$ of degree $r$, with coefficients even rational functions in $k$ (Hughes, unpublished).

Primes,
partitions and permutations

## Generating series (I)

$$
\begin{aligned}
\sum_{r} & \left.\left.\langle | Z_{U}(0)\right|^{2 k}\left(\frac{Z_{U}^{\prime}(0)}{Z_{U}(0)}\right)^{r}\right\rangle_{U(N)} \frac{(\mathrm{iz})^{r}}{r!} \\
& \left.=\left.\langle | Z_{U}(0)\right|^{2 k}\right\rangle_{U(N)} \times \sum_{\mu} \frac{(-k \uparrow \mu)}{-2 k \uparrow \mu} \frac{(N \uparrow \mu) z^{|\mu|}}{H(\mu)^{2}} \\
& \left.=\left.\langle | Z_{U}(0)\right|^{2 k}\right\rangle_{U(N)} \times \sum_{\mu} \frac{-k \uparrow \mu}{-2 k \uparrow \mu} \frac{\mathfrak{s}_{\mu}\left(z \operatorname{ld}_{N \times N)}\right.}{H(\mu)}
\end{aligned}
$$

Primes,

## Generating series (II)

Proposition (Borodin, D.):

$$
\begin{aligned}
& \left.\left.\sum_{r}\langle | Z_{U}(0)\right|^{2 k}\left(\frac{Z_{U}^{\prime}(0)}{Z_{U}(0)}\right)^{r}\right\rangle_{U(N)} \frac{(\mathfrak{i} z)^{r}}{r!} \\
& \left.=\left.\langle | Z_{U}(0)\right|^{2 k}\right\rangle_{U(N)} \times \sum_{\mu} \frac{(-k \uparrow \mu)}{(-2 k \uparrow \mu)} \frac{1}{H(\mu)} \frac{(N \uparrow \mu) z^{|\mu|}}{H(\mu)} \\
& \left.=\left.\langle | Z_{U}(0)\right|^{2 k}\right\rangle_{U(N)}{ }_{1} F_{1}\left(-k ;-2 k ; z \mathrm{ld}_{N \times N}\right)
\end{aligned}
$$

See work of Richards, Gross, Yan on hypergeometric functions of matrix arguments.

At finite $N$, any problem of analytic continuation (in $k, h$ ) is not much harder than classical hypergeometric functions (cf. integral representations, differential equations, recurrence relations).

Primes,

## Integral representations

Hypergeometric functions have integral representations.
When they have matrix arguments, Selberg integrals appear.
As meromorphic functions of $k$,

$$
\begin{aligned}
\sum_{r} & \frac{\left.\left.\langle | Z_{U}(0)\right|^{2 k}\left(\frac{Z_{U}(0)^{\prime}}{Z_{U}(0)}\right)^{r}\right\rangle_{U(N)}}{\left.\left.\langle | Z_{U}(0)\right|^{2 k}\right\rangle_{U(N)}} \frac{(\mathfrak{i z})^{r}}{r!}= \\
& \frac{\int_{0}^{1} \int_{0}^{1} e^{z \sum t_{i}} \prod_{i}^{N} t_{i}^{-k-N}\left(1-t_{i}\right)^{-k-N} \Delta\left(t_{i}\right)^{2} \mathrm{~d} t_{1} \cdots \mathrm{~d} t_{N}}{\int_{0}^{1} \int_{0}^{1} \prod_{i}^{N} t_{i}^{-k-N}\left(1-t_{i}\right)^{-k-N} \Delta\left(t_{i}\right)^{2} \mathrm{~d} t_{1} \cdots \mathrm{~d} t_{N}}
\end{aligned}
$$

Primes,
partitions and permutations

$$
\begin{gathered}
\sum_{h} \frac{\left.\left.\langle | V_{U}(0)\right|^{2 k}\left|\frac{V_{U}(0)^{\prime}}{V_{U}(0)}\right|^{2 h}\right\rangle_{U(N)}}{\left.\left.\langle | V_{U}(0)\right|^{2 k}\right\rangle_{U(N)}} \frac{z^{h}}{h!}= \\
\frac{\int_{0}^{1} \int_{0}^{1} e^{-\frac{1}{4}\left(2 \sum_{i} t_{i}-N\right)^{2} z} \prod_{i}^{N} t_{i}^{-k-N}\left(1-t_{i}\right)^{-k-N} \Delta\left(t_{i}\right)^{2} \mathrm{~d} t_{1} \cdots \mathrm{~d} t_{N}}{\int_{0}^{1} \int_{0}^{1} \prod_{i}^{N} t_{i}^{-k-N}\left(1-t_{i}\right)^{-k-N} \Delta\left(t_{i}\right)^{2} \mathrm{~d} t_{1} \cdots \mathrm{~d} t_{N}} \\
=\frac{z^{N(N+2 k)}}{\prod_{j=1}^{N} \Gamma(2 k+j) \Gamma(j+1)} \times \\
\int_{0}^{\infty} \int_{0}^{\infty} e^{-\frac{1}{4}\left(2 \sum_{i} t_{i}+N\right)^{2} z} \prod_{i}^{N} t_{i}^{k}\left(1+t_{i}\right)^{k} \prod_{1 \leq i<j \leq N}\left|t_{i}-t_{j}\right|^{2} \mathrm{~d} t_{1} \cdots \mathrm{~d}
\end{gathered}
$$

In the limit in $N$, I don't know. The existence of an analytic continuation in $h$ in the limit in $N$ is unproved and very possibly false.

## Probabilistic reformulation

## Fact:

$\operatorname{dim} \lambda:=\operatorname{dim} \chi_{\lambda}=\frac{|\lambda|!}{H(\lambda)}=\#$ paths to $\lambda$ in the Young graph.
Set (Poissonized Plancherel measure)

$$
m(\lambda)=\frac{\operatorname{dim}(\lambda)^{2}}{|\lambda|!},
$$

which satisfies

$$
\sum_{\lambda \text { s.t. }|\lambda|=\text { cst }} m(\lambda)=1 .
$$

The formula obtained before then takes the form

$$
\sum_{r} g(r) \frac{z^{r}}{r!}=\sum_{\lambda} f(\lambda) m(\lambda) \frac{z^{|\lambda|}}{|\lambda|!}
$$

for $f(\lambda)$ given by a product over the boxes of the partition $\lambda$.

## Probabilistic reformulation (II)

$$
\begin{aligned}
\sum_{r} & \left.\left.\langle | Z_{U}(0)\right|^{2 k}\left(\frac{Z_{U}^{\prime}(0)}{Z_{U}(0)}\right)^{r}\right\rangle_{U(N)} \frac{(\mathfrak{i} z)^{r}}{r!} \\
& \left.=\left.\langle | Z_{U}(0)\right|^{2 k}\right\rangle_{U(N)} \times \sum_{\mu} \frac{(-k \uparrow \mu)(N \uparrow \mu)}{(-2 k \uparrow \mu)} m(\mu) \frac{z^{|\mu|}}{|\mu|!}
\end{aligned}
$$

$$
\sum_{r} g(r) \frac{z^{r}}{r!}=\sum_{\lambda} f(\lambda) m(\lambda) \frac{z^{|\lambda|}}{|\lambda|!}
$$

- If the RMT conjectures are to be believed, the partitions are necessary to express the joint moments of the derivatives of $\zeta$.
- In the limit in $N$, all partitions $\lambda$ appear, not just those with $I(\lambda) \leq N$.
- Hypergeometric functions of operator arguments have not been studied, but the probabilistic interpretation is still present, and points to the study of the whole Young graph, not just restrictions of it.


## Cauchy identities

$$
\begin{aligned}
\sum_{\lambda} \mathfrak{s}_{\lambda}\left(x_{1}, x_{2}, \cdots, x_{M}\right) \mathfrak{s}_{\lambda}\left(y_{1}, y_{2}, \cdots, y_{N}\right) & =\prod_{m, n}^{M, N} \frac{1}{1-x_{m} y_{n}} \\
\sum_{\lambda} \mathfrak{s}_{\lambda}\left(x_{1}, x_{2}, \cdots, x_{M}\right) \mathfrak{s}_{\lambda^{t}}\left(y_{1}, y_{2}, \cdots, y_{N}\right) & =\prod_{m, n}^{M, N} 1+x_{m} y_{n}
\end{aligned}
$$

Theorem (Bourgade, D., Nikeghbali) For $k \in \mathbb{N}$, when $\Re s \geq 1$,

$$
\zeta(s)^{k}=\sum_{\lambda} \mathfrak{s}_{\lambda}\left(\{1\}^{k}\right) \mathfrak{s}_{\lambda}\left(p^{-s}\right)
$$

and one can continue analytically $\mathfrak{s}_{\lambda}\left(p^{-s}\right)$ to $\Re s>0$.
This is merely a reorganization of an absolutely convergent sum. Note that when $k \rightarrow \infty$ or $k \notin \mathbb{N}$, this is not trivial. This preserves a symmetry of the Riemann zeta function (invariance under permutation of the primes).

Primes,

$$
\begin{aligned}
\sum_{\lambda} \mathfrak{s}_{\lambda}\left(x_{1}, x_{2}, \cdots, x_{M}\right) \mathfrak{s}_{\lambda}\left(y_{1}, y_{2}, \cdots, y_{N}\right) & =\prod_{m, n}^{M, N} \frac{1}{1-x_{m} y_{n}} \\
\sum_{\lambda} \mathfrak{s}_{\lambda}\left(x_{1}, x_{2}, \cdots, x_{M}\right) \mathfrak{s}_{\lambda^{t}}\left(y_{1}, y_{2}, \cdots, y_{N}\right) & =\prod_{m, n}^{M, N} 1+x_{m} y_{n}
\end{aligned}
$$

Conjecture (D.) There exist functions $f_{\lambda}(z, s)$ such that $\mathfrak{s}_{\lambda}\left(f_{\lambda}\left(\gamma_{i}, s\right)\right)$ admits an analytic continuation to $\Re s>0$ and

$$
\mathfrak{s}_{\lambda}\left(f_{\lambda}\left(\gamma_{i}, s\right)\right)=\mathfrak{s}_{\lambda^{t}}\left(p^{-s}\right)
$$

Selecting $N$ zeroes would then correspond to looking at partitions $\lambda$ with $\lambda_{1} \leq N$ (cf. Keating-Snaith).

The involution on partitions is crucial (cf. graded Hopf algebra of symmetric functions has an antipode). By using partitions we can index characters in a way that is more natural for the symmetric group, and less for the unitary groun

Primes,
We then have 3 types of objects:

- primes
- zeroes
- eigenvalues of random matrices


## Question

We know that

$$
\lim _{N \rightarrow \infty}\left\langle\mathfrak{s}_{\lambda}(U), \overline{\mathfrak{s}_{\mu}(U)}\right\rangle_{U(N)}=\delta_{\lambda \mu},
$$

can we conjecture

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \mathfrak{s}_{\lambda^{t}}\left(p^{1 / 2+\mathrm{i} t}\right) \overline{\mathfrak{s}_{\mu^{t}}\left(p^{1 / 2+\mathrm{it})} \mathrm{d} t=C_{\lambda^{t}} \delta_{\lambda \mu},{ }^{2} .\right.}
$$

and pass from proofs using orthonormality of characters of $\mathrm{U}(N)$ directly to conjectures using orthogonality?

## Primes,

partitions and permutations

Derivatives
OkounkovOlshanski
Generating series Integral representations Probabilistic reformulation

## Comments

Primes and partitions

## Main

 computations
## Main computations

Just as before,

$$
Z_{U}\left(a_{1}\right) \cdots Z_{U}\left(a_{r}\right)=\sum_{\lambda}(-1)^{|\lambda|} \mathfrak{s}_{\lambda^{t}}(U) \mathfrak{s}_{\lambda}\left(e^{-\mathrm{i} a_{1}}, \cdots, e^{-\mathrm{i} a_{r}}\right) .
$$

To the first order in small $a$, we have

$$
e^{-\mathfrak{i} a} \approx 1-\mathfrak{i} a
$$

so

$$
\begin{aligned}
Z_{U}^{\prime}(0)^{r}= & \sum_{\lambda}(-1)^{|\lambda|_{\mathfrak{s}^{\lambda^{t}}}}(U) \times \\
& \left.\partial_{1} \cdots \partial_{r} \mathfrak{s}_{\lambda}\left(1-\mathfrak{i} a_{1}, \cdots, 1-\mathfrak{i} a_{r}\right)\right|_{a_{1}=\cdots=a_{r}=0}
\end{aligned}
$$

where $\partial_{j}:=\partial_{a_{j}}$.
Also,

$$
\begin{aligned}
{\overline{Z_{U}(0)}}^{k} & =(-1)^{k N} \overline{\operatorname{det} U^{k}} Z_{U}(0)^{k} \\
& =(-1)^{k N} \overline{\mathfrak{s}_{\left\langle k^{N}\right\rangle}(U)} Z_{U}(0)^{k}
\end{aligned}
$$

$$
\begin{aligned}
Z_{U}^{\prime}(0)^{r}= & \sum_{\lambda}(-1)^{|\lambda|_{\mathfrak{s}^{\lambda^{t}}}}(U) \times \\
& \left.\quad \partial_{1} \cdots \partial_{r} \mathfrak{s}_{\lambda}\left(1-\mathfrak{i} a_{1}, \cdots, 1-\mathfrak{i} a_{r}\right)\right|_{a_{1}=\cdots=a_{r}=0}
\end{aligned}
$$

and

$$
{\overline{Z_{U}(0)}}^{k}=(-1)^{k N} \overline{\mathfrak{s}_{\left\langle k^{N}\right\rangle}(U)} Z_{U}(0)^{k}
$$

imply

$$
\begin{gathered}
\left|Z_{U}(0)\right|^{2 k}\left(\frac{Z_{U}^{\prime}(0)}{Z_{U}(0)}\right)^{r}=(-1)^{k N_{\mathfrak{s}}} \overline{\left\langle k^{N}\right\rangle}(U) \cdot \sum_{\lambda}(-1)^{|\lambda|_{\mathfrak{s}} \lambda^{t}}(U) \times \\
\left.\partial_{1} \cdots \partial_{r} \mathfrak{s}_{\lambda}\left(\{1\}^{2 k-r} \cup\left\{1-\mathfrak{i} a_{1}, \cdots, 1-\mathfrak{i} a_{r}\right\}\right)\right|_{a_{j}=0}
\end{gathered}
$$

and hence

$$
\begin{aligned}
& \left.\left.\langle | Z_{U}(0)\right|^{2 k}\left(\frac{Z_{U}^{\prime}(0)}{Z_{U}(0)}\right)^{r}\right\rangle_{U(N)}= \\
& \left.\partial_{1} \cdots \partial_{r} \mathfrak{s}\left\langle N^{k}\right\rangle\left(\{1\}^{2 k-r} \cup\left\{1-\mathfrak{i} a_{1}, \cdots, 1-\mathfrak{i} a_{r}\right\}\right)\right|_{a_{j}=0}
\end{aligned}
$$

Primes,
partitions and permutations

Main computations

Using Okounkov-Olshanski,

$$
\begin{aligned}
& \frac{\left.\left.\langle | Z_{U}(0)\right|^{2 k}\left(\frac{Z_{U}^{\prime}(0)}{Z_{U}(0)}\right)^{r}\right\rangle_{\mathrm{U}(N)}}{\left.\left.\langle | Z_{U}(0)\right|^{2 k}\right\rangle_{\mathrm{U}(N)}} \\
& =(-\mathfrak{i})^{r} \sum_{\mu \vdash r} \frac{\mathfrak{s}_{\mu}^{*}\left(\{N\}^{k}\right) \partial_{1} \cdots \partial_{\left.r^{\prime} \mathfrak{s}_{\mu}\left(a_{1}, \cdots, a_{r}\right)\right|_{a_{j}=0}}^{2 k \uparrow \mu}}{=(-\mathfrak{i})^{r} \sum_{\mu \vdash r} \frac{\mathfrak{s}_{\mu}^{*}\left(\{N\}^{k}\right)\left\langle\mathfrak{s}_{\mu}, \mathfrak{p}_{\left\langle 11^{r}\right\rangle}\right\rangle_{\mathcal{S}_{r}}}{2 k \uparrow \mu}} \\
& =(-\mathfrak{i})^{r} \sum_{\mu \vdash r} \frac{\mathfrak{s}_{\mu}^{*}\left(\{N\}^{k}\right) \operatorname{dim} \mu}{2 k \uparrow \mu} \\
& =\mathfrak{i}^{r} r!\sum_{\mu \vdash r} \frac{1}{H(\mu)^{2}} \frac{(-N \uparrow \mu)(k \uparrow \mu)}{2 k \uparrow \mu},
\end{aligned}
$$

with a condition that $0 \leq r \leq 2 k$.

Primes,
partitions and
permutations

## Main

Basics about partitions slide
transpose
$\mathfrak{s} k^{N}$
$s(U)=0$ when length
rectangle $\left\langle N^{k}>\right.$
Frobenius
vect
sort
ones
character symmetric group

